


Imprint
© 2018 Smashing Media AG, Freiburg, Germany
ISBN (PDF): 978-3-945749-67-8
Cover Design: Ricardo Gimenes
eBook Production: Cosima Mielke
Tools: Elja Friedman
Syntax Highlighting: Prism by Lea Verou
Idea & Concept: Smashing Media AG

The WebP Manual was written by Jeremy Wagner.

IMPRINT

2



Table of Contents

Foreword ........................................................................................4
WebP Basics ..................................................................................6
Performance................................................................................ 21
Converting Images To WebP ................................................34
Using WebP Images.................................................................62
In Closing.....................................................................................78
Appendix...................................................................................... 80
Thanks...........................................................................................83
About The Author ..................................................................... 84

3



Foreword

Performance matters now more than ever. What we
send over the wire, how we send it, and how much of it
we send matters. Because users matter. Web perfor-
mance is a vast subject with many nooks and crannies,
and all deserve their due attention.

Of serious concern, however, is the role of media in
performance, specifically images. Images are powerful.
Engaging visuals evoke visceral feelings. They can pro-
vide key information and context to articles, or merely
add humorous asides. They do anything for us that plain
text just can’t by itself. But when there’s too much im-
agery, it can be frustrating for users on slow connec-
tions, or run afoul of data plan allowances. In the latter
scenario, that can cost users real money. This sort of in-
advertent trespass can carry real consequences.

Though images don’t block rendering in typical us-
age like CSS and JavaScript can, they represent a dispro-
portionate portion of a given page’s weight. According
to HTTP Archive1, images comprise approximately
900 Kb of the median web page’s total weight. For those
users on slower connections and older devices, this can
be an insurmountable obstacle between them and your
content.

A whole niche area of web performance exists to ex-
plain how to best optimize images. We’re constantly
searching for new ways to transmit as little image data

1. http://smashed.by/bytesimg

FOREWORD

4

http://smashed.by/bytesimg
http://smashed.by/bytesimg
http://smashed.by/bytesimg
http://smashed.by/bytesimg
http://smashed.by/bytesimg
http://smashed.by/bytesimg


as possible while also keeping a close eye on quality.
While established formats such as JPEG, PNG and GIF
are serviceable and highly optimizable, there’s an addi-
tional image format at our disposal that helps us go a
little further. That format is WebP.

In this short ebook, you’ll learn all about WebP: what
it’s capable of, how it performs, how to convert images
to the format in a variety of ways, and most important-
ly, how to use it.

5



WebP Basics

WebP is a relatively recent open source raster image2

format first released by Google in 2010, and was derived
from the VP8 video codec3. Though not as ubiquitous as
established formats such as JPEG, PNG, or GIF which
enjoy broad use on the web and browser support, WebP
distinguishes itself with better suitability in high-per-
formance web applications. This is chiefly because
WebP images usually use less disk space when com-
pared to other formats at reasonably comparable visual
similarity.

While WebP doesn’t enjoy universal browser sup-
port, a majority of internet users use browsers that do4.
Depending on your site’s audience and the browsers
they use, an opportunity to deliver less data-intensive
user experiences for a significant segment of your audi-
ence might exist.

Aside from its suitability in scenarios where perfor-
mance is vital, WebP excels in its flexibility and bevy of
features. WebP takes what’s best about established for-
mats and incorporates them into a single format well-
suited for web use. Let’s kick things off by covering
some of those features.

2. http://smashed.by/rastergraphics
3. http://smashed.by/vp8
4. http://smashed.by/caniusewebp

WEBP BASICS

6

http://smashed.by/rastergraphics
http://smashed.by/rastergraphics
http://smashed.by/rastergraphics
http://smashed.by/vp8
http://smashed.by/vp8
http://smashed.by/vp8
http://smashed.by/caniusewebp
http://smashed.by/caniusewebp
http://smashed.by/caniusewebp
http://smashed.by/rastergraphics
http://smashed.by/rastergraphics
http://smashed.by/vp8
http://smashed.by/vp8
http://smashed.by/caniusewebp
http://smashed.by/caniusewebp


Encoding Features
If you’re totally new to WebP, you may not know what
to expect. This is understandable, and your first ques-
tion is likely to be “What format is WebP most like?”
The answer is not entirely straightforward, as WebP is
a highly flexible format sporting a number of encoding
features. Because of this, WebP resembles both JPEG
and PNG in many ways. Let’s step through each of
these features, and learn what WebP has to offer.

LOSSY ENCODINGLOSSY ENCODING

If you’ve used WebP at all, you might already see it as
being somewhat similar to JPEG in that WebP can en-
code images using lossy compression5, which achieves
lower file sizes by discarding some amount of image
data during encoding. This flavor of WebP is arguably
used most frequently, and often outperforms JPEG in
output size while retaining reasonably comparable vi-
sual similarity.

Lossy WebP permanently discards data during en-
coding, so it’s important to keep in mind that, as is the
case with JPEG, the compression is not reversible.

Like JPEG, encoding quality for lossy WebP is ex-
pressed as an integer within the 0 to 100 range. The
lowest setting of 0 provides the smallest possible file
size, and consequently the worst possible visual quality.
As you progress from 0 to 100, however, you’re increas-

5. http://smashed.by/lossy

7

http://smashed.by/lossy
http://smashed.by/lossy
http://smashed.by/lossy
http://smashed.by/lossy
http://smashed.by/lossy


ing file size, but also increasing visual quality. In the
figure on the next page, note the higher quality WebP
image on the left has better visual quality along with a
larger output file size, whereas the opposite is the case
with the WebP image on the right.

If your experience with WebP has only been in passing,
then lossy WebP is what you’re likely familiar with.
Tools that export images to WebP employ lossy encod-
ing by default, including Google’s own cwebp com-
mand line encoder.

Of course, WebP isn’t only capable of lossy encod-
ing. Where image quality is paramount, WebP provides
a lossless encoding mode.

A JPEG encoded at a quality setting of 75 versus a lossy WebP image of
similar visual quality (as measured by SSIMULACRA6) encoded at a

quality setting of 67. The WebP version is roughly 30% smaller. Both im-
ages have been encoded from the same lossless PNG source.

6. http://smashed.by/ssimulacra

WEBP BASICS

8

http://smashed.by/ssimulacra
http://smashed.by/ssimulacra
http://smashed.by/ssimulacra
http://smashed.by/ssimulacra
http://smashed.by/ssimulacra


LOSSLESS ENCODINGLOSSLESS ENCODING

What makes WebP so flexible is that it isn’t strictly lim-
ited to one type of encoding. WebP images can also be
encoded in lossless fashion7. Whereas lossy WebP is
most like JPEG, lossless WebP is more like PNG. As is
the case with lossless formats, no data is discarded dur-
ing encoding (barring potential color quantizing8 opti-
mizations, which discard colors above a determined
threshold to achieve further reductions in file size).
Consequently, the compression used is reversible,
meaning that lower file sizes are achieved while main-
taining the same visual quality as the source image.

In my practical (and admittedly anecdotal) experi-
ence, file size reductions achieved by lossless WebP
over PNG can be quite significant:

A high-quality lossy WebP image exported using a quality setting of 95
versus a low-quality lossy WebP image exported using a quality setting

of 5.

7. http://smashed.by/lossless
8. http://smashed.by/quantization

9

http://smashed.by/lossless
http://smashed.by/lossless
http://smashed.by/lossless
http://smashed.by/quantization
http://smashed.by/quantization
http://smashed.by/quantization
http://smashed.by/lossless
http://smashed.by/lossless
http://smashed.by/quantization
http://smashed.by/quantization


As with full-color PNG, lossless WebP images can be
encoded in 24-bit color. Encoding tools can also adjust
the compression ratio. Lower compression yields high-
er file sizes with faster compression speeds. Higher
compression levels yield the inverse of this. Some PNG
optimizers offer similar compression ranges, but the re-
sults of those optimizers don’t yield quite the same re-
duction in file size that lossless WebP often can.

TRANSPARENCY FEATURESTRANSPARENCY FEATURES

When we think of transparency in raster image for-
mats, it’s often in two flavors: 1-bit (Boolean) trans-
parency used in GIFs and 8-bit PNG images, and 8-bit
(full) transparency often used in full color PNG images.
Those who want transparency features in JPEG are out
of luck.

WebP’s transparency capabilities are highly flexible.
As such, it supports full transparency for both lossless
and lossy encoding types. Because of this, you can take
24-bit PNG images with transparency and realize sig-

A PNG image (left) compared to a lossless WebP image (right). In this
case, lossless WebP offers an approximate 26% reduction in file size

without sacrificing image quality.

WEBP BASICS

10



nificant savings in file size by encoding them in lossy
fashion.

If you take away one thing about WebP’s transparency
capability, it’s that you can have what’s best about JPEG
(smaller file sizes through lossy compression) and have
full 8-bit transparency as with PNG. It’s the best of both
worlds combined in a single, versatile image format.

It should be noted that the cwebp command line en-
coder also allows you to specify a quality setting for the
alpha channel itself, lending further optimization op-
portunities. We’ll cover this little tidbit in some detail in
the encoding chapter.

ANIMATED WEBPANIMATED WEBP

The short version: Don’t use animated image formats
unless you must. Use <video> instead9, as videos tend
to be much smaller than animated GIFs.

Transparent lossless PNG versus transparent lossy WebP at a quality
setting of 75. Transparency is retained while reducing file size by

roughly 85%.

9. http://smashed.by/replacegifs

11

http://smashed.by/replacegifs
http://smashed.by/replacegifs
http://smashed.by/replacegifs
http://smashed.by/replacegifs
http://smashed.by/replacegifs


The long version: As with GIF, WebP is capable of ani-
mation. As you might guess, this simply means that
WebP is capable of storing multiple images in the same
file in frames, with viewers displaying frames in se-
quence. Compared to animated GIF, the file size of a
comparable animated WebP can be quite competitive
(especially where lossy compression is used). That said,
while animated WebP images outperform animated
GIFs by a significant margin where file size is con-
cerned, the best vehicle for this type of content is usual-
ly video. WebM10 (a sister project of WebP) is particu-
larly performant in this regard. Below is a comparison
graph of three animated image formats and two video
formats. The basis for these numbers comes from 15 an-

Animated image formats (GIF, WebP and APNG) versus common video
formats (MPEG-4 and WebM).

10. https://www.webmproject.org/

WEBP BASICS

12

https://www.webmproject.org/
https://www.webmproject.org/
https://www.webmproject.org/
https://www.webmproject.org/
https://www.webmproject.org/


imated GIFs selected at random and converted to vari-
ous formats for comparison.

If you must use an animated image format in lieu of
video, animated WebP may be a performant alternative
to animated GIF (especially if you employ lossy encod-
ing, or use the -mixed option available in the gif2webp
binary11), but also consider Animated PNG (APNG),
which is capable of displaying more colors than GIF.
Otherwise, just stick with video. If you want embedded
videos to exhibit the same behavior as an animated GIF
or WebP image, the HTML below should suffice:

<video autoplay muted loop playsinline>
<source src="example.webm" type="video/webm">
<source src="example.mp4" type="video/mp4">

</video>

The key attributes to pay attention to here are auto-
play, muted, loop, and playsinline, which represent
the typical characteristics of animated images:

• automatic playback

• no audio track (muted)

• continuous looping

• inline media element (i.e., doesn’t play in fullscreen)

11. http://smashed.by/gif2webp

13

http://smashed.by/gif2webp
http://smashed.by/gif2webp
http://smashed.by/gif2webp
http://smashed.by/gif2webp
http://smashed.by/gif2webp
http://smashed.by/gif2webp


As always, order your sources by the size of each file
from smallest to largest. Browsers will pick up
whichever video source matches first. WebM is often
smallest, but it’s not supported everywhere12. For every
other browser, there’s MPEG-413.

As a side note, it is possible (at the time of writing) to
use MPEG-4 files in <img> tags14, but only in Safari.
There is a currently an open ticket15 for implementation
into Chrome, but until this approach is ubiquitous
across browsers, it should be avoided in lieu of <video>
to avoid compatibility issues.

Content Suitability
When it comes to what kind of visual content WebP
works best for, use these two rules as a basic guideline:

1. Whatever’s a JPEG probably works best as lossy WebP.

2. Whatever’s a PNG probably works best as lossless
WebP.

Of course, these are not hard and fast rules. You may
get acceptable quality by encoding PNGs to lossy
WebP, and realize more savings than a PNG to lossless
WebP conversion (especially for images with full trans-

12. http://smashed.by/caniusewebm
13. http://smashed.by/caniusempeg4
14. http://smashed.by/animatedgif
15. http://smashed.by/imgsrcbug

WEBP BASICS

14

http://smashed.by/caniusewebm
http://smashed.by/caniusewebm
http://smashed.by/caniusewebm
http://smashed.by/caniusempeg4
http://smashed.by/caniusempeg4
http://smashed.by/caniusempeg4
http://smashed.by/animatedgif
http://smashed.by/animatedgif
http://smashed.by/animatedgif
http://smashed.by/imgsrcbug
http://smashed.by/imgsrcbug
http://smashed.by/imgsrcbug
http://smashed.by/caniusewebm
http://smashed.by/caniusewebm
http://smashed.by/caniusempeg4
http://smashed.by/caniusempeg4
http://smashed.by/animatedgif
http://smashed.by/animatedgif
http://smashed.by/imgsrcbug
http://smashed.by/imgsrcbug


parency). If time allows, experiment a little to see what
works best for you.

Beyond these simplistic guidelines, the type of visual
content can be a good predictor of what encoding will
work best. Photographs (or similar content) will work
great as lossy WebP images. Line art, logos, illustra-
tions or any imagery with flat, well-delineated shapes,
colors and shading will tend to work quite well as loss-
less WebP images (assuming you don’t want to use
SVG).

Additionally, be aware that encoding JPEGs (which
have already been encoded in lossy fashion) to lossy
WebP will suffer further quality degradation. This phe-
nomenon is known as generation loss16. When you re-en-
code an image that previously has had lossy compres-
sion applied to it, visual artifacts present in the lossy
source will be compounded. As a consequence, new arti-
facts will be introduced as the image is re-encoded.

Some encoders (such as jpeg-recompress17) attempt
to mitigate recompression issues by using a visual simi-
larity scoring algorithm (for example, the structural
similarity index method SSIM18) to compare output to
the source. Even so, some additional quality loss may
occur that may be unacceptable to you. It’s best to test
when you can.

16. http://smashed.by/generationloss
17. http://smashed.by/recompress
18. http://smashed.by/similarity

15

http://smashed.by/generationloss
http://smashed.by/generationloss
http://smashed.by/generationloss
http://smashed.by/recompress
http://smashed.by/recompress
http://smashed.by/recompress
http://smashed.by/similarity
http://smashed.by/similarity
http://smashed.by/similarity
http://smashed.by/similarity
http://smashed.by/generationloss
http://smashed.by/generationloss
http://smashed.by/recompress
http://smashed.by/recompress
http://smashed.by/similarity
http://smashed.by/similarity


If quality is of paramount concern, you should always
strive to encode lossy WebP images from lossless
sources. However, this may not always be practical or
even possible, such as when build systems are in place
or when lossless or uncompressed sources are unavail-
able. In any case, you can specify a higher quality set-
ting to minimize recompression artifacts, or check if
your specific image encoder has an option that allows
you to specify a visual similarity target value. For exam-
ple, the command line WebP encoder allows you to
specify a target similarity using the peak signal-to-
noise ratio (PSNR) method19. While PSNR doesn’t ac-
count for human perception of image quality quite like
SSIM and similar algorithms, it’s better than nothing.
Finally, if time permits, perform a quick spot check to
ensure the encoder’s output is up to your standards.

Generation loss introduced by re-encoding a JPEG several times. The in-
tensity of recompression artifacts increases from left to right.

19. http://smashed.by/psnr

WEBP BASICS

16

http://smashed.by/psnr
http://smashed.by/psnr
http://smashed.by/psnr
http://smashed.by/psnr
http://smashed.by/psnr
http://smashed.by/psnr


Measuring WebP Support within Your
Audience
The simplified answer to who in your audience can
benefit from WebP is easy: it’s whoever uses Chrome
(including Chrome for Android). Given Chrome’s large
market share among browsers (at least at the time of
writing), many of your users could benefit from WebP.

A somewhat more nuanced answer includes not on-
ly users of Chrome, but also users of Chromium-based
browsers, such as Samsung Internet, Opera, and UC
Browser. Opera Mini also supports the format, and is
more popular in developing nations. There are signals
that Firefox may eventually support WebP, but no sig-
nificant movement has occurred on that front at the
time of writing. Similarly, WebP support for Edge is in
development20, and could very well land by the time
you read this.

Be aware, however, that browsers are anything but
static in their adoption (and deprecation) of features
and APIs. Browsers change constantly. To get the ab-
solute latest state of WebP support, check out the Can I
Use… feature support page21.

Of course, you could look at browser market share
statistics and use them as the basis for a loose assump-
tion of how much of your audience supports WebP.
Tools such as StatCounter GlobalStats22 do an ad-

20. http://smashed.by/webpformat
21. http://smashed.by/caniusewebp
22. http://gs.statcounter.com/

17

http://smashed.by/webpformat
http://smashed.by/webpformat
http://smashed.by/webpformat
http://smashed.by/webpformat
http://smashed.by/caniusewebp
http://smashed.by/caniusewebp
http://smashed.by/caniusewebp
http://smashed.by/caniusewebp
http://gs.statcounter.com/
http://gs.statcounter.com/
http://gs.statcounter.com/
http://smashed.by/webpformat
http://smashed.by/webpformat
http://smashed.by/caniusewebp
http://smashed.by/caniusewebp
http://gs.statcounter.com/
http://gs.statcounter.com/


mirable job of providing this kind of data. The problem
with relying on statistics such as these, however, is they
don’t effectively show the makeup of your audience
and the browsers they use.

The most popular tool for gathering data on your visi-
tors is Google Analytics23. This tool alone can tell you
everything you’d need to know about your users, in-
cluding the browsers they use. Unfortunately, it doesn’t
translate those browsers into a segmented list of those
in your audience who can use WebP. It’s only when we
feed analytics data into caniuse.com, however, that we
actually get to see what WebP support looks like for a
specific audience.

In the Can I Use… app, simply toggle the settings pan-
el, which is found near the search bar at the top of the
page. Once that panel is opened, you’ll see a small
prompt to import data from Google Analytics.

caniuse.com showing the status of WebP support in available
browsers.

23. https://www.google.com/analytics/

WEBP BASICS

18

https://www.google.com/analytics/
https://www.google.com/analytics/
https://www.google.com/analytics/
https://www.google.com/analytics/
https://www.google.com/analytics/


After you import your site data, enter “WebP” into the
search bar at the top. You’ll not only see the global sup-
port view in the statistics, but also an audience support
view that shows what support for WebP (or any other
browser feature you care to search for!) looks like for
your site’s visitors.

When the data is imported, a new data point will show
up in the upper right-hand corner of the feature sup-
port table showing the degree of support for a particu-
lar feature for your site’s audience. When caniuse.com
and Google Analytics are used together, you can make
an educated decision on whether it’s worth the effort to
serve alternate WebP images on your site. Should you

caniuse.com’s prompt in the settings panel to import visitor data from
Google Analytics.

Can I Use… showing feature support for a specific audience from
Google Analytics data, labeled “All Web Site Data.”

19



decide this is the correct course of action, you’ll want to
read the “Converting Images to WebP” and “Using
WebP Images” sections to get started.

Before we touch on how to encode WebP images,
however, let’s first cover how the format performs in
terms of encoding/decoding speed, output size, and vi-
sual similarity to established formats.

WEBP BASICS

20



Performance

You’ve learned about WebP’s features, and while that
might answer questions you have about its suitability
for your sites and applications, you likely want to know
how it performs compared to JPEG and PNG. To get a
reasonably broad picture of WebP performance, com-
parisons were performed on a large set of images, with
statistics averaged where appropriate. To find out more
about how the testing was done, check out the appen-
dix.

File Size
The most attractive feature of WebP is its ability to out-
perform established formats in the realm file size. After
all, reducing the amount of bytes transferred over the
wire (while retaining a reasonable degree of quality, of
course) is the primary goal of any image optimization
effort. To this end, WebP performs well.

In this section, we’ll cover how both lossy and loss-
less WebP compare to JPEGs and PNGs exported by a
number of image encoders. If your experience of ex-
porting images is limited to imaging software, you
might not be aware that there are a number of com-
mand line encoders that each export JPEGs and PNGs
in different (and sometimes novel) ways. Each of these
encoders performs differently than others. As such,
we’ll compare the output from a handful of encoders to
WebP to gain a broader understanding of the format’s
performance.

21



LOSSY WEBPLOSSY WEBP

Lossy WebP is probably what you’ll use most often, as it
tends to be the default setting for the official WebP en-
coder (cwebp) as well as interfaces that implement it.
Let’s examine how lossy WebP output file sizes com-
pare to the output of a few JPEG encoders:

In this graph, three JPEG encoders are represented,
with both progressive and baseline modes for
mozjpeg24 and cjpeg plotted. Since Google’s Guetzli en-
coder25 doesn’t export JPEGs lower than a quality of 84,
its output performance is only represented from
84–100 on the quality scale. Additionally, Guetzli only
outputs JPEGs in baseline mode.

Output file sizes of popular JPEG encoders versus lossy WebP.

24. http://smashed.by/mozjpeg
25. http://smashed.by/guetzli

PERFORMANCE

22

http://smashed.by/mozjpeg
http://smashed.by/mozjpeg
http://smashed.by/mozjpeg
http://smashed.by/guetzli
http://smashed.by/guetzli
http://smashed.by/guetzli
http://smashed.by/guetzli
http://smashed.by/mozjpeg
http://smashed.by/mozjpeg
http://smashed.by/guetzli
http://smashed.by/guetzli


What we see in the graph is that some encoders at the
lowest end of the quality spectrum slightly outperform
WebP. However, as quality increases into usable
ranges, WebP begins to outperform other encoders. In
our image set, this begins to happen at quality levels in
the mid 60s. Most JPEG encoders are outdone by at
least 16 kilobytes starting at a quality range of 80 to 90,
which is not necessarily an insignificant improvement.
As quality approaches 95, gains were at least 32KB over
at least Guetzli. Guetzli competes well at lower quality
settings, but output size begins to skyrocket at quality
settings higher than 95, as is the case with other JPEG
encoders. Truthfully, you’re not likely to encode at qual-
ity settings higher than 95, but WebP does extremely
well in this quality range.

It’s worth noting that while Guetzli performs well
among JPEG encoders, it takes a long time to encode im-
ages, as its similarity scoring algorithm26 is very CPU-
intensive. Still, if you’re not encoding images on the fly
(which you should avoid anyway), this shouldn’t be a
problem for your users. It just means you’ll need to be
more patient at encode time, and that converting very
large sets of images could take several hours.

Bear in mind, though, that it’s not enough to com-
pare output file size. You should take visual similarity
into account. A reduction in file size from JPEG to
WebP may not be acceptable if visual similarity is low
(that is, too degraded). Because WebP’s lossy encoding

26. http://smashed.by/butteraugli

23

http://smashed.by/butteraugli
http://smashed.by/butteraugli
http://smashed.by/butteraugli
http://smashed.by/butteraugli
http://smashed.by/butteraugli


algorithm is different from that of JPEG encoders, its
output at a given quality setting may not be directly
comparable to that of a JPEG at the same quality set-
ting. In other words, a WebP at a quality of 75 may dif-
fer substantially from a JPEG at a quality of 75.

To get an idea of how different JPEG encoders compare
visually to WebP, we leaned on SSIMULACRA27, an im-
age similarity scoring program developed by Cloudi-
nary28. SSIMULACRA’s algorithm improves on similar
visual similarity comparison methods (such as SSIM)
by focusing on how people perceive images, as opposed
to simply calculating differences between pixel values
within two similar images. When SSIMULACRA calcu-

Visual similarity of various JPEG encoders and lossy WebP.

27. http://smashed.by/psychovisual
28. https://cloudinary.com/

PERFORMANCE

24

http://smashed.by/psychovisual
http://smashed.by/psychovisual
http://smashed.by/psychovisual
https://cloudinary.com/
https://cloudinary.com/
https://cloudinary.com/
https://cloudinary.com/
http://smashed.by/psychovisual
http://smashed.by/psychovisual
https://cloudinary.com/
https://cloudinary.com/


lates the difference between two images, it returns a
score. Lower scores indicate high similarity, whereas
higher scores indicate low similarity.

To calculate visual similarity, we once again com-
pared the output of the same JPEG encoders, and plot-
ted their similarity scores against WebP:

At lower quality ranges, WebP has better similarity
scores than both cjpeg and mozjpeg, but as quality in-
creases, WebP starts to fall in line with other JPEG en-
coders. For the set of images this data was generated
from, this means that WebP’s quality is generally com-
parable with JPEG. This signifies that in most cases, the
format should offer some benefit in file size gains in
typical quality ranges while retaining reasonably good
visual similarity to lossless sources.

That said, it’s not always possible to encode from
lossless sources (for reasons we’ll cover soon). To that
end, I also wanted to see how WebP performed with
other formats when recompressed from lossy JPEG
sources.

RECOMPRESSING FROM LOSSY SOURCESRECOMPRESSING FROM LOSSY SOURCES

While it’s ideal from a quality standpoint to encode im-
ages from lossless sources, that’s not always a choice
you’ll have. Sometimes you don’t have access to design
documents or other lossless sources, and must make do
with whatever is available. In times like these, it’s not
uncommon to recompress lossy images to achieve fur-
ther savings in file size. This is especially true in auto-
mated build systems (gulp, Grunt, and so on) where im-

25



ages in a source directory are uniformly optimized and
written to a destination directory.

To figure out the impact of lossy recompression on
file size and visual similarity, I recompressed JPEGs in
the research image set from the various JPEG encoders
represented in the initial output size graph at mozjpeg’s
default quality setting of 75. I also did the same for
lossy WebP images at the same quality setting of 75.
The result looked something like this:

What we can see in this graph is not too surprising: re-
compressing lossy images yields even further file size
reduction for both JPEG and WebP, but WebP still wins
out by a bit. But how much do these recompressed im-
ages resemble their lossy sources?

Comparisons of mozjpeg and lossy WebP images both compressed
from lossless sources, and recompressed from lossy sources.

PERFORMANCE

26



Unsurprisingly, we see that recompressed images in
our image set are less similar to their lossless sources
for most of the quality range, especially as we approach
the higher end of the quality spectrum. But let’s put this
into perspective: SSIMULACRA’s command line help
text states that if a “value is above 0.1 (or so)” then “the
distortion is likely to be perceptible/annoying”; and if a
“value is below 0.01 (or so)” then “the distortion is likely
to be imperceptible.” Given that images in typical quali-
ty ranges are well within the 0.01 to 0.1 range, it’s safe to
assume that a measure of recompression may be ac-
ceptable. Thus, WebP should afford some savings in file
size without a hugely significant degradation in percep-
tible visual quality (at least within the set of images this
data draws on anyway).

It’s important to also note that the nature of how
people perceive images on the web is subjective. We’re

Visual similarity of compressed and recompressed JPEG and lossy
WebP images to their lossless sources.

27



used to having high quality sources to compare against,
but our users don’t have that ability. As always, though,
verify visual quality for yourself when possible.

With the performance benefits of lossy WebP un-
derstood, let’s move on and cover how lossless WebP
competes with PNG.

LOSSLESS WEBPLOSSLESS WEBP

As I pointed out earlier, WebP is also capable of encod-
ing images in lossless format. WebP excels at deliver-
ing lower file sizes when compared to PNG, even when
those PNGs have been optimized. Let’s take a quick look
at a graph of various PNG optimizers versus lossless
WebP.

In this test, the 90th percentile, average, and median
output file sizes are measured across 50 PNG samples.

Output file size of various PNG encoders versus lossless WebP.

PERFORMANCE

28



The images encoded in the WebP test were taken from
the highest performing optimizer, which was OptiPNG.
As you can see, lossless WebP does extremely well. All
PNG optimizers do a good job of reducing image sizes
relative to their source, but lossless WebP goes a step
further, and shaves off even more. Because the opti-
mizations are lossless, these images are visually identi-
cal to their PNG counterparts. There’s no risk of sacri-
ficing visual quality to achieve lower file sizes. If you
serve a lot of PNG images and want to reduce the
amount of data you send to your users, seriously con-
sider lossless WebP as an alternative format.

That said, the optimizers in this test did not use col-
or quantization. Color quantization29 is when colors are
removed from an image at a specified threshold, or in a
selective fashion as to be less noticeable to the eye.
Quantizing optimizers (such as pngquant30) excel at re-
ducing file size, but the output may not be suitable for
all applications. While these optimizers don’t discard vi-
sual information the same way JPEG or lossy WebP do,
they still discard some data to achieve further reduc-
tions in file size. If your goal is to export images that
are visually identical to their lossless sources, you’ll
want to avoid color quantization.

If you do find quantizing optimization acceptable, be
aware that you can take the optimizations they provide
even further by re-encoding the quantized output into

29. http://smashed.by/quantization
30. https://pngquant.org/

29

http://smashed.by/quantization
http://smashed.by/quantization
http://smashed.by/quantization
https://pngquant.org/
https://pngquant.org/
https://pngquant.org/
http://smashed.by/quantization
http://smashed.by/quantization
https://pngquant.org/
https://pngquant.org/


lossless WebP. The following graph shows what kind of
gains you may realize.

If you’re cool with quantizing your PNGs, you can
clearly see that there’s further benefit to be had in con-
verting them to lossless WebP.

Now that we’ve covered the file size-related perfor-
mance aspects of the WebP format, let’s focus a bit on
decoding speed which, while not as important a perfor-
mance factor as file size, is still something that deserves
attention.

Decode Time
Image decode time is not something you often think
about, but it is an aspect of performance worth some
minor attention. When any kind of resource finishes

Output sizes of OptiPNG and OptiPNG-derived lossless WebP versus
quantized PNG and pngquant-derived lossless WebP.

PERFORMANCE

30



downloading, be it CSS, JavaScript or images, the
browser’s job doesn’t stop there. In the case of image re-
sources, the browser still needs to decode the image be-
fore it can display it to the browser window.

Established formats such as JPEG and PNG have had
a long history of development. They’ve both benefited
from many years of research and optimization. By com-
parison, WebP has had less time in development. As
such, WebP’s decoding speed is not quite as fast as these
two established formats. First, let’s take a look at aver-
age decode times for JPEG versus WebP:

As you can see here, WebP takes somewhat longer to
decode at all quality levels as compared to JPEG. As
quality level increases, WebP’s decoding performance
falls behind that of JPEG. Here’s my personal take on
this: even though this test was performed on modern,

Average decode times across various file sizes for JPEG versus lossy
WebP.

31



high-end hardware, decode time for either WebP or
JPEG is often not the deciding factor on which image is
painted to the browser window first. In most situations,
especially where latency is high and bandwidth is low, a
smaller image is going to win out over a much larger
one. Lossy WebP has some very high decode times at
the highest end of the file size spectrum, but those are
for extremely large files you would be unlikely to see on
most web pages. Now let’s tip the hand to lossless
WebP and look at its decoding performance compared
to PNG.

As you might expect, lossless WebP’s performance
against PNG is similar to that of lossy WebP versus
JPEG. WebP often takes longer to decode, especially in
extreme cases where file sizes are quite large. Relative

Average decode times across various file sizes for PNG versus lossless
WebP.

PERFORMANCE

32



to other formats, though, the time is not significantly
greater.

In short, don’t sweat decode time too much. Smaller
images decode faster than larger ones, and according to
HTTP Archive data31 queryable from BigQuery, the me-
dian and average image sizes on the web are quite
small:

Format
Number of
Requests

Median
Size

Average
Size

p90
Size

JPEG 9,153,030 19.06Kb 57.54Kb 105.09Kb

PNG 3,284,588 16.26Kb 69.14Kb 134.15Kb

WebP 128,766 17.91Kb 33.87Kb 59.69Kb

Furthermore, in scenarios where bandwidth or data
plan allotments are of high paramount concern, any po-
tential performance issues that could arise with image
decode time are always second to conserving band-
width.

That was quite a bit of noodling around with perfor-
mance numbers, but I believe it makes a nice case for
WebP’s suitability in high-performance web sites. Let’s
continue and cover the variety of ways you can convert
your existing images to WebP!

31. http://smashed.by/httparchivedata

33

http://smashed.by/httparchivedata
http://smashed.by/httparchivedata
http://smashed.by/httparchivedata
http://smashed.by/httparchivedata
http://smashed.by/httparchivedata


Converting Images To WebP

To use WebP, you’ll first need to convert your existing
images to the format. This can be done in a myriad of
ways, from something as simple as exporting from
your preferred design program, to cloud services, to the
official cwebp encoder, and even in Node.js-based build
systems. Here, we’ll cover all avenues.

Sketch
Sketch is able to export any resource in a design docu-
ment to WebP natively. To export an image to WebP,
select a resource on the canvas, open the Export panel
on the right hand side, and choose “WEBP” in the for-
mat dropdown.

After you make your selection, click the Export
Bitmap… button. The resulting dialog will predictably

The resource export panel in Sketch, with the WebP format chosen in
the format dropdown.

CONVERTING IMAGES TO WEBP

34



ask where you want the image to be exported to. With-
in that dialog, a slider will appear at the bottom that
prompts you to specify the quality of the WebP image
from 0 to 100, implying the output is lossy WebP.

If you’re using design software to export to WebP,
Sketch is probably one of the easier programs to use. Al-
though, there are other programs capable of doing this,
such as Photoshop.

Photoshop
Exporting images to WebP in Photoshop is possible, but
is not as convenient as in Sketch. You’ll need to rely on
a plug-in to get the job done. The good news, however,
is that the Photoshop plug-in does give you a bit more
flexibility than Sketch does. To obtain the Photoshop
plug-in for exporting WebP images, visit the Telegraph-
ics site32 and grab the version for your system. Once in-
stalled, start Photoshop and open an image. Once
opened, you can export an image to WebP through the
Save As… dialog. At the bottom of the dialog where you

The quality slider in the export dialog when exporting a resource to
WebP.

32. http://smashed.by/telegraphics

35

http://smashed.by/telegraphics
http://smashed.by/telegraphics
http://smashed.by/telegraphics
http://smashed.by/telegraphics
http://smashed.by/telegraphics
http://smashed.by/telegraphics


choose a format, you’ll notice two options: WebP, and
WebP Lossless.

What happens from here depends on what you
choose in the dropdown. If you choose WebP Lossless,
the file will be exported, and that will be that. If you
choose WebP, however, you’ll be presented with a dia-
log with several configuration options:

In most cases, you’ll merely adjust the encoding quality,
but feel free to experiment with the filtering, denoising,
and sharpness options to obtain the desired result. Un-
fortunately, this plug-in lacks the ability to show a pre-
view of the image before you save it. If you’re accus-
tomed to using the Save for Web tool, this is kind of a
bummer, as you’ll have to go at it blind.

Of course, if you’re not a fan of tinkering around in
imaging software, the easiest possible option for using

The Photoshop plug-in’s lossy WebP export dialog.

CONVERTING IMAGES TO WEBP

36



WebP might just be to rely on an image optimization
CDN. Cloudinary is one such service.

Cloudinary
Using WebP is not a frictionless experience, and the
easiest way to use it is to never have to convert to the
format on your own in the first place. Some online ser-
vices can do this work for you, and Cloudinary is one of
them.

You only need to upload images to their service.
From there, Cloudinary will optimize your images for
you. These optimizations are highly customizable, and
one such optimization is to automatically serve whatev-
er image format is optimal for your users. If you use
Cloudinary to serve your site’s images and your visitors
are using WebP-capable browsers, Cloudinary takes on
the hassle of serving WebP images for you, provided
you choose the proper URL parameters. When you up-
load an image, Cloudinary’s control panel will provide a
URL to your image that looks something like this:

https://res.cloudinary.com/drp9iwjqz/image/upload/
v1508291830/jeremywagner.me/using-webp-images/
tacos-2x.jpg

Using any number of URL parameters, you can change
how Cloudinary serves images to you, including serv-
ing WebP images automatically to clients that can best
handle them. The parameter that controls this behavior
is f_auto, which tells Cloudinary to automatically pick

37



the best format for the client issuing the request. Para-
meters are added after the /upload/ portion in the URL
like so:

https://res.cloudinary.com/drp9iwjqz/image/upload/f_auto/
v1508291830/jeremywagner.me/using-webp-images/
tacos-2x.jpg

Though Cloudinary preserves the extension, you can
tell what the content type of the image is by looking at
the image’s Content-Type response header. If you’re
using a browser that supports WebP, that header will
have a value of image/webp. Of course, Cloudinary is
capable of more than simply serving the best format for
a given browser. You can combine multiple parameters
by separating them with commas. For example, here’s
how you could tell Cloudinary to automatically pick the
best format and the best quality setting (represented by
q_auto):

https://res.cloudinary.com/drp9iwjqz/image/upload/
f_auto,q_auto/v1508291830/jeremywagner.me/using-webp-im-
ages/tacos-2x.jpg

To learn more about what Cloudinary is capable of,
check out their documentation33.

While Cloudinary is a convenient tool that does the
work of image optimization for you, you may yet feel

33. https://cloudinary.com/documentation

CONVERTING IMAGES TO WEBP

38

https://cloudinary.com/documentation
https://cloudinary.com/documentation
https://cloudinary.com/documentation
https://cloudinary.com/documentation
https://cloudinary.com/documentation


compelled to encode your own images. And there are
plenty of good reasons to do so! Beyond using imaging
software, you can accomplish this with perhaps the
most flexibility by using the Google’s official WebP
command line encoder.

The Official cwebp Command Line
Encoder
The official tool for encoding images to the WebP for-
mat is Google’s own command line utility. While a
command line program may not be as easy to use as a
graphical interface, it offers much more flexibility in
controlling the output. Most graphical front-ends that
export to WebP abstract away features that don’t neatly
fit into a dialog, and thus aren’t the best tools for
achieving the best result for your site. Before you can
use the command line encoder, however, you’ll need to
install it.

INSTALLINGINSTALLING

Your installation method will depend on your operating
system. The easiest way to install the WebP encoder
will be through your operating system’s package man-
ager. macOS users can install the encoder and related
tools using the Homebrew34 package manager:

brew install webp

34. https://brew.sh/

39

https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/


Windows users can install the encoder using Choco-
latey35:

choco install webp

Users of Red Hat and Red Hat-derived Linux distros
such as CentOS or Fedora can use yum to install the en-
coder:

yum install libwebp-tools

Other platforms may use different package managers
(such as apt-get for Debian Linux), but the mere pres-
ence of a package manager doesn’t mean it will provide
a way to install the encoder. If your operating system
package manager somehow fails you, the WebP en-
coder is available via Node.js’s own package manager
(npm):

npm install -g cwebp-bin

If none of these options work for you, you can always
download the source36 and compile your own binaries.
It’s a bit onerous, but the option is there.

With the encoder installed, let’s take a look at some
quick examples of how you can use it.

35. https://chocolatey.org/
36. http://smashed.by/libwebp

CONVERTING IMAGES TO WEBP

40

https://chocolatey.org/
https://chocolatey.org/
https://chocolatey.org/
https://chocolatey.org/
http://smashed.by/libwebp
http://smashed.by/libwebp
http://smashed.by/libwebp
http://smashed.by/libwebp
https://chocolatey.org/
https://chocolatey.org/
http://smashed.by/libwebp
http://smashed.by/libwebp


SIMPLE COMMAND LINE EXAMPLESSIMPLE COMMAND LINE EXAMPLES

The WebP encoder can be invoked with the cwebp com-
mand. For starters, let’s examine what is arguably the
most common use case: converting an image to lossy
WebP:

cwebp -q 75 source.png -o output.webp

This command takes a PNG image and converts it to
lossy WebP by way of the -o parameter. By default, the
encoder outputs lossy WebP images, and the quality of
the output can be set from 0 to 100 via the -q parame-
ter. The default lossy quality setting is 75.

You may remember reading earlier that WebP is ca-
pable of full alpha transparency, even for lossy images.
You can control the quality of this transparency in the
same fashion via the -alpha_q parameter:

cwebp -q 75 -alpha_q 10 source.png -o output.web

-alpha_q applies lossy compression to the transparen-
cy in an image. The default for -alpha_q is 100, which
is lossless. You can further reduce output size by lower-
ing this value, which will apply lossy compression to
the transparency, but lowering it too much can signifi-
cantly degrade the quality of transparent regions in the
image.

If you’re conservative in adjusting -alpha_q, you
can reduce the size of transparent images even further,
but be sure to examine the output to ensure it’s accept-
able to you. If you’re automating conversion of images

41



(through a shell script, for example), you might want to
shy away from setting this parameter at all. It’s also
worth noting that -alpha_q has no effect when encod-
ing lossless WebP images.

We’ve discussed encoding lossy WebP images with
cwebp, but what if you want to export to lossless
WebP? Just use the -lossless option:

cwebp -lossless source.png -o output.webp

Depending on image content, you may not realize as
much of a reduction in output file size when compared
to lossy WebP. You can control the aggressiveness of
the compression via the -z parameter, though:

cwebp -lossless -z 9 source.png -o output.webp

The -z parameter accepts a value between 0 (no com-
pression) and 9 (most compression). Higher compres-
sion yields lower file sizes, but requires more time to
encode images. You can also set the -m parameter to in-

A lossy transparent WebP with best transparency quality (left), and a
lossy transparent WebP with low transparency quality (right). Note the

loss of fine details at the cloud’s edges.

CONVERTING IMAGES TO WEBP

42



fluence output size, which specifies a compression
method from 0 to 6:

cwebp -lossless -m 6 -z 9 source.png -o output.webp

You can also use the -q parameter to tell cwebp how
aggressively to compress the image, which can be
slightly confusing because -q means something entire-
ly different for lossless WebP than it does for lossy im-
ages. For lossless WebP, -q 100 applies the most com-
pression, whereas -q 0 applies the least. You can use -q
in tandem with the -m and -z parameters to achieve
very high compression, like so:

cwebp -lossless -m 6 -z 9 -q 100 source.png -o
output.webp

This level of compression takes by far the longest, but it
can go quite a ways further in reducing your lossless
image payloads. Experiment to find what works best
for you. You might shave off more kilobytes than you
thought possible!

Of course, these are just some quick examples of
what’s possible. cwebp is an amazingly flexible encoder.
To get the full list of available options, type cwebp -
longhelp and poke around.

There’s a good chance you’ll need to convert a whole
bunch of images at once. Next, I’ll show you a couple
ways you can convert multiple files with short com-
mands for Unix-like systems on bash.

43



BULK CONVERSION IN BASHBULK CONVERSION IN BASH

If you’re using Bash on a Unix-like operating system
such as macOS or Ubuntu, and you have a directory of
images you need to convert to WebP, the find com-
mand does an excellent job. As the name would imply,
find finds objects in the file system. The syntax for
finding files by a specific extension is very straightfor-
ward:

find ./ -type f -name '*.png'

In case you’re not familiar with how find works, let’s
step through this example command.

1. The first argument is the file system path to search,
which in this case, is the current directory.

2. The second argument specifies the type of file system
object. You can find directories with -type d. We’re
finding files in this case, however, which means we’re
going with -type f.

3. Lastly, the -name argument is the pattern by which to
find files. In this instance, we’re finding all files ending
in .png. When we run this command in a directory tree
containing PNG files, the output might look something
like this:

./sources/5-1024w.png

./sources/14-768w.png

./sources/old/15-768w.png

CONVERTING IMAGES TO WEBP

44



This might not seem very useful by itself, but here’s
where the magic happens: you can take the files found
by find and redirect them as input to any other pro-
gram you want via the -exec parameter. Here’s how
you could use -exec with cwebp to encode all PNGs in
a subtree to lossy WebP images at a quality setting of
75:

find ./ -type f -name '*.png' -exec sh -c 'cwebp -q
75 $1 -o "${1%.png}.webp"' _ {} \;

This may look a bit convoluted, but let’s step through
what’s going on so we can better understand it togeth-
er:

1. The initial part of the command finds all files ending
with a .png extension in the current directory (and sub-
directories), just as we described earlier.

2. Files found are sent to the -exec parameter, which in-
vokes an instance of the sh shell. The -c parameter ac-
cepts a command to run.

3. The command invoked is the cwebp encoder. The -q ar-
gument is the quality setting.

4. The $1 placeholder represents the file found by find as
an argument passed into sh. The output file name is
the -o "${1%.png}.webp" portion. The pattern ex-
pressed replaces the .png extension with a .webp exten-
sion.

45



5. The final part passes the reference to the file found by
find (represented by {}) to sh, and the entire com-
mand is terminated by \;.

While this is admittedly a bit unwieldy, it’s quite useful
when you need to convert a number of images to WebP
quickly. When invoking cwebp in this fashion, feel free
to adjust parameters as necessary to achieve the desired
results. Just be aware this example command dumps
the converted images into the same folder as the source
images, so adjust as needed to control the location of
the output.

The only drawback of this approach is it may take a
long time to finish if you’re processing a large number
of files, since images are processed one after the other
rather than concurrently. If you need to speed up pro-
cessing a bit, you might consider parallelizing image
processing, which we’ll talk about next.

CONCURRENT BULK CONVERSION IN BASHCONCURRENT BULK CONVERSION IN BASH

Here’s a potential scenario. You have hundreds, perhaps
thousands of images you need to convert to WebP.
While cwebp is reasonably fast, it can still take a very
long time if you’re not processing images concurrently.
Serialized processing doesn’t make the best use of your
CPU’s potential like concurrent processing does. To get
around this, you can augment the earlier command
used for serialized batch conversion with xargs like so:

CONVERTING IMAGES TO WEBP

46



find ./ -type f -name '*.png' | xargs -P 8 -I {} sh
-c 'cwebp -q 75 $1 -o "${1%.png}.webp"' _ {} \;

This isn’t much different than the command from earli-
er, except with some key differences:

1. The -exec parameter is notably absent. Instead, the
output from find is piped directly to xargs, which han-
dles processing in lieu of -exec.

2. The xargs command immediately follows the | charac-
ter with three specific parts. The first is the -P parame-
ter, which specifies the maximum amount of concur-
rent processes (8 in this example). The second is the -I
parameter, which is the input xargs acts on (the value
of which is the file found by find, represented by the
{} placeholder). The final argument is the command
xargs will execute, which is exactly the same as in the
serialized bulk conversion command from before.

If you want to increase the amount of concurrent
processes, simply change the value you pass to the -P
parameter. Unlike other asynchronous approaches,
xargs allows you to throttle concurrency to a specified
maximum so you don’t render your system unrespon-
sive. While this approach may only shave off a few sec-
onds for small batches of images, it shines when oper-
ating on very large ones. For example, when converting
a batch of roughly 10,000 JPEGs to WebP, a serialized
approach using only find took 21 minutes and 26 sec-
onds, whereas a concurrent approach using both find

47



and xargs took 9 minutes and 8 seconds. This is ap-
proximately a 57% decrease in processing time, and
with a relatively conservative concurrency of 8 process-
es at a time. If you can afford to bump up concurrency,
you may realize further reductions in processing time.

Of course, these commands aren’t limited to merely
converting images to WebP. Whatever shell commands
you can think of that will work with find and xargs
will be just as serviceable. Experiment and see what you
can pull off.

If converting images to WebP this way isn’t to your
liking, maybe you’d prefer to accomplish the task in
JavaScript. Next, we’ll talk about how to convert your
images to WebP using Node, as well as within the vari-
ous build systems available in the Node.js ecosystem.

Convert Images to WebP with Node.js
Node.js’s only use isn’t just a JavaScript application
stack. Even in environments where JavaScript isn’t
used in an application back-end, Node.js still proves
useful as a build tool. The tool used for exporting im-
ages to WebP in Node.js or any Node.js-based build sys-
tem is imagemin. Imagemin is a tool that converts and
optimizes images of all formats, but it can be extended
to support WebP conversion. Whether you’re writing
scripts to run with Node.js, or using one of many
Node.js-based build systems (gulp, et al.), imagemin is
the ticket. Let’s get started by demonstrating how you
can convert images to WebP in a simple Node.js script.

CONVERTING IMAGES TO WEBP

48



USING A NODE.JS SCRIPTUSING A NODE.JS SCRIPT

Perhaps you’re not the type to reach for an opinionated
build system first, and prefer to use Node.js scripts in-
stead. That’s reasonable enough, and if you know how
to write JavaScript, the learning curve isn’t very steep,
since you don’t need to learn the syntax of a build sys-
tem. To get started on converting images to WebP in
Node.js, install the imagemin and imagemin-webp
modules in your project root directory:

npm install imagemin imagemin-webp

This command installs two modules: the first is im-
agemin itself, and the second is the imagemin-webp
plugin that extends imagemin so it can convert images
to WebP. With these two modules installed locally in
our project, we can then write a small script that will
process JPEG images in a directory and convert them to
WebP:

const imagemin = require("imagemin");
const webp = require("imagemin-webp");

imagemin(["sources/*.png"], "images", {
use: [

webp({
quality: 75

})
]

}).then(function() {

49



console.log("Images converted!");
});

This short script imports the imagemin and imagemin-
webp modules into the current script as two constants
(imagemin and webp, respectively). We then run im-
agemin’s main method, which takes three arguments:

1. The location of the source images. In this case, we’re
converting all files ending in .png in the sources directo-
ry, which is assumed to be located in the same directory
as the script itself.

2. The destination directory, which in this case is images.
This directory is created if it doesn’t already exist.

3. An options object for the imagemin program. In this
case, we’re specifying the use option, which allows us
to pass plug-ins into imagemin. The only plug-in we’re
using here is an instance of imagemin-webp (represent-
ed by the webp constant). The plug-in itself also accepts
a configuration object, which we have used to specify
that we want all PNGs converted to lossy WebP (im-
plied, as lossy encoding is the default) with a quality
setting of 75.

Imagemin will convert images for us, and when it’s fin-
ished, it will return a Promise37. In that Promise, we
output to the console that all of the images have been

37. http://smashed.by/promiseobject

CONVERTING IMAGES TO WEBP

50

http://smashed.by/promiseobject
http://smashed.by/promiseobject
http://smashed.by/promiseobject
http://smashed.by/promiseobject
http://smashed.by/promiseobject


converted. If we save this script as webp.js, we can run it
with the node command like so:

node webp.js

Assuming everything is successful, a message will ap-
pear in the console:

Images converted!

When all is done, WebP images should now exist in the
images directory, relative to the location of where you
saved webp.js. If you want to tweak the output, you can
do so through a variety of options38. For example, if you
wanted to to generate lossless WebP images, you would
instead use the lossless option like so:

webp({
lossless: true

})

Just be aware that as stated earlier, the quality setting
for lossless mode adjusts the compression. The com-
pression is still lossless, but higher settings will gener-
ate smaller files.

Pro tip: the options you can pass to this plug-in are
the same, no matter where you invoke the imagemin-
webp plug-in, be it in a Node.js script, or the build sys-
tem of your choice. Speaking of build systems, let’s next
cover how you might convert images using gulp.

38. http://smashed.by/imagemin

51

http://smashed.by/imagemin
http://smashed.by/imagemin
http://smashed.by/imagemin
http://smashed.by/imagemin
http://smashed.by/imagemin
http://smashed.by/imagemin


USING GULPUSING GULP

As far as build systems go, gulp39 is pretty common.
Thanks to a huge ecosystem of plug-ins, gulp can do al-
most anything you’d need it to, including converting
images to WebP! If you have gulp installed and config-
ured for your project, you only need to install a few ex-
tra node modules at the command line:

npm install gulp-imagemin imagemin-webp
gulp-ext-replace

gulp-imagemin is a plugin that allows imagemin to in-
terface with gulp. As in the previous example using a
plain Node.js script, imagemin-webp is the plug-in that
allows imagemin to export images to the WebP format.
The final plug-in, gulp-ext-replace, just allows us to
change the extension of files output by gulp. By default,
gulp outputs files with the same extension as their in-
put source. gulp-ext-replace helps us to overcome this
so we can write WebP images to the disk with the prop-
er .webp extension.

Once you have these plugins installed, you’d just
need to write a quick gulp task that reads source images
from the disk and outputs them to WebP format. That
task might look something like this:

const gulp = require("gulp");
const imagemin = require("gulp-imagemin");
const webp = require("imagemin-webp");

39. https://gulpjs.com/

CONVERTING IMAGES TO WEBP

52

https://gulpjs.com/
https://gulpjs.com/
https://gulpjs.com/
https://gulpjs.com/
https://gulpjs.com/


const extReplace = require("gulp-ext-replace");

gulp.task("exportWebP", function() {
let src = "src/images/**/*.png"; // Where your
PNGs are coming from.
let dest = "dist/images"; // Where your WebPs are
going.

return gulp.src(src)
.pipe(imagemin([

webp({
quality: 75

})
]))
.pipe(extReplace(".webp"))
.pipe(gulp.dest(dest));

});

There’s a lot going on here, so let’s break it down:

1. Like any Node.js-driven program, the first part of the
script imports the modules necessary for the script to
work.

2. Using the gulp.task method, we create a task named
exportWebP, which starts with two variables: src
points to the image files we want to process (PNG files
in this example), dest points to the directory where the
resulting WebP images will be written to.

53



3. The gulp.src method reads the PNG images from the
location specified by the src variable.

4. Images are ferried to imagemin by the gulp.pipe
method. The sole argument passed to imagemin is an
array of imagemin plug-ins, which in this case is the
sole imagemin-webp plug-in. As is the case with using
imagemin in any environment, the arguments passed
to the imagemin-webp plug-in (or any imagemin plug-
in) will follow the same format.

5. Before we write the converted WebP images to the disk,
we want to ensure the resulting files are written with a
.webp extension by using the gulp-ext-replace plug-in.
Using gulp’s dest method, we write all the converted
images to the location specified earlier in the dist vari-
able.

6. Using gulp’s dest method, we write all the converted
images to the location specified earlier by the dist vari-
able.

When everything’s in place, we can invoke gulp on the
command line to convert images in the src/images direc-
tory like so:

gulp exportWebP

Once the command finishes, your destination directory
will contain WebP images you converted from whatev-
er gulp finds in the source directory. That simple!

CONVERTING IMAGES TO WEBP

54



If you prefer Grunt over gulp, you’re in luck. Next, we’ll
show an example of how you can use Grunt to convert
images to WebP.

USING GRUNTUSING GRUNT

Much like gulp, Grunt40 is a task runner, albeit with a
different syntax. It can be used for many of the same
things gulp is used for, including optimization and con-
version of images to different formats via imagemin.
Unsurprisingly, it too can convert images to WebP by
way of imagemin’s imagemin-webp plug-in. If you
have a project currently using Grunt that you would
like to modify to generate WebP images, it’s a relatively
trivial task. In the directory containing Gruntfile.js, sim-
ply install these two modules like so:

npm install grunt-contrib-imagemin imagemin-webp

This command installs the imagemin plug-in for Grunt
(represented as grunt-contrib-imagemin), as well as the
familiar imagemin-webp plug-in used to convert im-
ages to WebP. Once the installation finishes, you’ll need
to set up a Grunt task in Gruntfile.js like so:

const grunt = require("grunt");
const webp = require("imagemin-webp");

grunt.initConfig({
imagemin: {

40. https://gruntjs.com/

55

https://gruntjs.com/
https://gruntjs.com/
https://gruntjs.com/
https://gruntjs.com/
https://gruntjs.com/


dist: {
options: {

use: [webp({
quality: 75

})]
},
files: [{

expand: true,
cwd: "src/images/",
src: ["**/*.png"],
dest: "dist/images",
ext: ".webp"

}]
}

}
});

grunt.loadNpmTasks("grunt-contrib-imagemin");

Once again, let’s step through this code and find out
what’s going on:

1. Initially, we require the necessary grunt and
imagemin-webp modules that we’ll need for the im-
agemin Grunt task.

2. In the imagemin task, we create a dist target, which is
what we’ll run from the command line. This target con-
tains an options object for Grunt’s imagemin plug-in
that allows us to specify configuration options. In this

CONVERTING IMAGES TO WEBP

56



case, we supply an instance of the imagemin-webp
plug-in and pass the usual options to it.

3. The files object is the guts of the operation. cwd speci-
fies which directory we want to work within. src speci-
fies the files within cwd that we want to convert to
WebP. dest specifies the directory we want to output
the converted images to. Finally, ext specifies that we
want the converted images to be saved with a .webp ex-
tension.

4. The last line of code loads the grunt-contrib-imagemin
plug-in so we can use it in the Gruntfile.

Once you have this in place, you can convert images to
WebP like so:

grunt imagemin:dist

Once this command finishes, images ending in .png in
the directory specified in files.cwd will be converted
to WebP, and output to the directory specified in
files.dest.

Grunt is not quite as intuitive as gulp is, and is
falling out of use somewhat. However, it’s still a ser-
viceable choice for a build system, and you may yet en-
counter it in some situations.

To round out our documentation of how to convert
images to WebP within the Node.js ecosystem, let’s dis-
cuss how you might accomplish that same task in web-
pack.

57



USING WEBPACKUSING WEBPACK

If you’re developing modern JavaScript applications,
chances are high that webpack41 is in your midst. In
contrast to gulp and Grunt, which style themselves as
task runners, Webpack is a module bundler that ana-
lyzes your code starting from one or more entry points
and generates optimized output. While much of what
webpack does is accomplished through loaders, it does
have a large ecosystem of plug-ins, too. imagemin is
represented in that space by imagemin-webpack-plug-
in.

How webpack works and how to write a config for it
are complex subjects, especially if you’re used to using
task runners like gulp. I’m going to assume you have at
least some familiarity with webpack basics, and just
show you how to add imagemin to an existing webpack
config to convert images to WebP. Like gulp and Grunt
before, you’ll need to use npm to install a few necessary
Node.js modules:

npm install imagemin-webpack-plugin imagemin-webp
copy-webpack-plugin

Similar to how gulp has its own imagemin plugin, web-
pack has one as well in the form of imagemin-webpack-
plugin. And as is the case with all imagemin-related use
cases, the imagemin-webp plug-in provides the WebP
conversion functionality. The copy-webpack-plugin

41. https://webpack.js.org/

CONVERTING IMAGES TO WEBP

58

https://webpack.js.org/
https://webpack.js.org/
https://webpack.js.org/
https://webpack.js.org/
https://webpack.js.org/


module is used in this case to help us copy images from
a source folder, and tell imagemin to process those im-
ages for us. Webpack can be rigged up with loaders
(such as file-loader) to pipe the file it encounters in its
dependency graph to imagemin intelligently, but it may
be more utilitarian to specify a source directory on the
disk and let imagemin churn through everything it
finds and spit out images to the destination directory.
Such code might look something like this:

ImageminWebpackPlugin =
require("imagemin-webpack-plugin").default;
ImageminWebP = require("imagemin-webp");
CopyWebpackPlugin = require("copy-webpack-plugin");

module.exports = {
// Omitted required entry, output, and loader
configs for brevity...
plugins: [

new CopyWebpackPlugin([{
from: "./src/images/*.png",
to: "./images/[name].webp"

}]),

new ImageminWebpackPlugin({
plugins: [

ImageminWebP({
quality: 75

})
]

59



})
]

};

As we have with other code examples, let’s step through
everything and get a handle on what’s happening:

1. As noted, the required entry, output, and loader config-
urations have been omitted for brevity and relevance,
as we’re assuming you have some familiarity with web-
pack.

2. The plugins config is merely an array of plug-ins we
want to use. The first plug-in in the array is an instance
of copy-webpack-plugin. To start, we specify in from
the files we want to copy from the source directory. In
this example, we include all files ending in .png from a
specific source directory.

3. Next, we tell copy-webpack-plugin where we want the
optimized images to go in the to option. It’s important
to note in this option that we’re using a placeholder of
[name] to tell copy-webpack-plugin that we want the
name of the output file to be the same as its corre-
sponding source. However, because we’re outputting
WebP files, we don’t want to preserve the source file’s
extension, so we’re hardcoding the output file’s exten-
sion to .webp. It’s also important to remember that files
will be written to a location relative to whatever is set in
output.path earlier in your webpack config.

CONVERTING IMAGES TO WEBP

60



4. The next plug-in in the sequence is an instance of
imagemin-webpack-plugin, which should look familiar
to other imagemin use cases. Here, we’re simply pass-
ing an instance of the imagemin-webp plug-in to the
imagemin instance.

Using this configuration, all images ending in .png
found in ./src/images will be converted to WebP and out-
put to the images directory relative to your configura-
tion’s output.path directory.

While there are multiple approaches to converting
images to WebP within webpack, this aims to be the
most straightforward. Compared to other build sys-
tems, webpack is an incredibly rich (and at times com-
plex) tool. This example is not meant to be the authorita-
tive approach to generating WebP images within web-
pack, but rather to show that it’s possible.

With an explanation of how to convert images to
WebP within Node.js and its numerous build systems
out of the way, let’s move on to what is perhaps the
most pressing matter: how to use WebP.

61



Using WebP Images

Because WebP isn’t supported in all browsers, you’ll
need to learn how to use it that sites and applications
gracefully fall back to established formats when WebP
support is lacking. Here, we’ll discuss the many ways
you can use WebP responsibly, starting by detecting
browser support in the Accept request header.

Detecting Support on the Server
When a browser that supports WebP happens by, it will
advertise WebP support in the Accept HTTP request
header. If you’re not familiar with Accept, its purpose
is to advertise what content types a given browser sup-
ports. The value of this header is contextual. As such, it
will change depending on the resource type being re-
quested. For example, a request for a CSS file may carry
a different value for a corresponding Accept header
than a request for an image might.

Browsers supporting WebP advertise their support
for it in relevant contexts, which is often in requests for
HTML documents and images. The value of Accept in
these cases may look something like this:

Accept: text/html,application/xhtml+xml,application/
xml;q=0.9,image/webp,image/apng,*/*;q=0.8

Within the Accept header content, you’ll notice the im-
age/webp content type is advertised, which signals the
browser supports WebP images. If your site is powered

USING WEBP IMAGES

62



by a back-end language, you can easily inspect the con-
tent of this header to modify image delivery. In PHP,
for example, that could look something like this:

<?php
$webpSupport = stristr($_SERVER["HTTP_ACCEPT"],
"image/webp") !== false;
$imageSource = $webpSupport ? "example.webp" :
"example.jpg";
?>

<img src="<?php echo($imageSource); ?>">

In this example, we use PHP’s stristr function42,
which performs case-insensitive substring matching on
a string input. If it finds the image/webp substring in
the Accept header (accessible in the $_SERVER["HTTP_
ACCEPT"] global variable), we can change the src value
of the <img> tag accordingly. The logic used here
should be largely similar in any other back-end lan-
guage.

The main advantage of serving WebP images this
way is it simplifies your markup. Sending fewer bytes
down the wire is always preferable to sending more. If
you can serve WebP images in this fashion, you ab-
solutely should.

That said, it’s not always possible to inspect the Ac-
cept header and modify markup based on its value. For

42. http://smashed.by/stristr

63

http://smashed.by/stristr
http://smashed.by/stristr
http://smashed.by/stristr
http://smashed.by/stristr
http://smashed.by/stristr


example, you might be running a static site with no ac-
cess to a back-end language. In cases like these, you
may have to rely on a Rewrite rule, or the <picture> el-
ement to provide adequate fallbacks.

As a Rewrite Rule
Sometimes it’s desirable to separate WebP delivery log-
ic from your application code entirely, and rely on the
web server configuration to rewrite requests for appro-
priate image types to WebP. This may be desirable to
you if you like to keep WebP detection out of your ap-
plication code, and turn it into a web server concern. To
achieve this on Apache, you’d use mod_rewrite43 in an
.htaccess or core configuration file to rewrite the request:

RewriteEngine On
RewriteCond %{HTTP:Accept} image/webp [NC]
RewriteCond %{HTTP:Content-Disposition} !attachment
[NC]
RewriteCond %{DOCUMENT_ROOT}/$1.webp -f [NC]
RewriteRule (.+)\.(png|jpe?g|gif)$ $1.webp [T=image/
webp,L]

Let’s step through each line of this rewrite chain and
talk a little about what’s going on here.

1. The first line turns on the the rewrite engine. If this line
is omitted, no URL rewriting will occur.

43. http://smashed.by/modrewrite.com/

USING WEBP IMAGES

64

http://smashed.by/modrewrite
http://smashed.by/modrewrite
http://smashed.by/modrewrite
http://smashed.by/modrewrite
http://smashed.by/modrewrite


2. Similar to the server-side detection mechanism dis-
cussed previously, the first rewrite condition (Rewrite-
Cond) checks if the Accept request header advertises
WebP support by looking for the image/webp sub-
string. The [NC] portion is a rewrite flag that says the
check is not case-sensitive.

3. The second condition checks if the Content-Disposi-
tion request header has been set. If you’ve ever right-
clicked on an image to save it, the browser sends a
Content-Disposition header with a value of attach-
ment to tell the server that the user wants to download
the image to their computer. Because WebP images
aren’t viewable in most operating systems without in-
stalling extra software, we don’t want to send a WebP
image if the user wants to save an image to their com-
puter. We want to send them whatever the request was
originally for so they can work with the image more
easily. To do this, we ensure Content-Disposition
doesn’t contain a value of attachment.

4. The third and final condition checks to see if the image
exists on the server. This is useful if you don’t have
WebP alternates for every image on your site. If a
WebP version of the image is found, the server will
send it. If not, the request for the original image will be
fulfilled. From here, we can specify the URL pattern
that will be rewritten if (and only if) this and all prior
conditions have been met.

65



5. The RewriteRule specifies the URL pattern that the
rewrite engine will act on. RewriteRules are composed
of two to three parts: a regular expression that matches
the incoming request; what the request should be
rewritten to; and any optional flags to modify the
matching behavior. In this case, we’re using a regular
expression to match any request for resources ending
in .png, .jpg, .jpeg, or .gif. If the request pattern matches,
the resource request is rewritten to point to an image
file ending in .webp. To cap it off, we use two flags: the T
flag specifies the content type of the response (image/
webp in this case). Since rewrite rules can be chained to-
gether, the L flag states that this is the last rule in the
chain.

Apache isn’t the only server capable of rewriting URLs,
it’s just one of the most commonly used. Many popular
web servers have rewrite capability either bundled in or
available in a dynamically loadable extension. Servers
with rewrite functionality include Nginx44, IIS45, and
lighttpd46.

If you’re going to use a URL rewriter other than
mod_rewrite, be aware of potential caching issues
when rewriting requests. For example, when this
rewrite rule works it doesn’t cause a browser to redirect
from https://example.com/my-awesome-image.jpg to

44. https://www.nginx.com/
45. https://www.iis.net/
46. https://www.lighttpd.net/

USING WEBP IMAGES

66

https://www.nginx.com/
https://www.nginx.com/
https://www.nginx.com/
https://www.iis.net/
https://www.iis.net/
https://www.iis.net/
https://www.lighttpd.net/
https://www.lighttpd.net/
https://www.lighttpd.net/
https://www.nginx.com/
https://www.nginx.com/
https://www.iis.net/
https://www.iis.net/
https://www.lighttpd.net/
https://www.lighttpd.net/


https://example.com/my-awesome-image.webp. If the rule
kicks in and the requesting user is sent a WebP image,
the URL for that resource still points to a resource with
a .jpg extension. You could use a 300-level redirect in a
rewrite flag (e.g., [R=302]) to force the browser to redi-
rect to the WebP image, but this is a performance anti-
pattern in that redirects add latency to requests. For
this reason, redirects should be avoided when possible.

To prevent caching issues with two types of content
originating from the same URL for different browsers,
mod_rewrite will automatically adjust the Vary re-
sponse header to pay attention to whatever header is in-
volved in a rewrite condition. This ensures that
browsers (as well as proxies and CDNs) understand
how to cache the resource properly. If you’re not using
mod_rewrite, but your rewrite rules are similar to the
one used above, ensure the Vary header is set to pay at-
tention to heads such as Accept or Content-Disposi-
tion. Otherwise, clients without WebP support could
receive WebP responses in some circumstances (such
as when CDNs are involved).

URL rewriting can seem kind of scary if you’re new
to it — and that’s OK! It’s not the easiest thing to under-
stand at first, especially if you have limited experience
with configuring web servers. If your comfort level
with mod_rewrite in particular is limited to copying
and pasting rewrite rules into an .htaccess file, the above
snippet should do the trick. If you don’t like the idea of
using them at all, though, there are plenty of other

67



methods for using WebP responsibly with fallbacks. So
don’t fret!

Using WebP in <picture>
If you don’t have access to a back-end language or the
ability to change a server’s configuration, you might
feel left in the cold when it comes to using WebP in a
responsible way. Fortunately for everyone, browser
vendors have provided a use case by way of the
<picture> element.

Use cases for <picture> are numerous, and one of
them covers using WebP images with a fallback. Let’s
take a look at some example HTML code that uses a
WebP image with a JPEG fallback:

<picture>
<!-- The preferred WebP source image -->
<source srcset="some-image.webp" type="image/
webp">
<!-- The fallback image used if WebP or <picture>
isn’t supported -->
<img src="some-image.jpg" alt="Look at this fancy
image!">

</picture>

If this looks similar to the contents of a <video> ele-
ment, you’re not wrong. In much the same way
<source> elements allow you to specify a preferred or-
der of video resources in a <video> element, <source>
elements also allow you to do the same thing within a

USING WEBP IMAGES

68



<picture> element. In the above example, the first
(and only) <source> specifies a WebP image, and iden-
tifies it as such via the type attribute. The type attribute
accepts a content (or MIME47) type the browser uses to
determine if the <source> is ultimately usable. If the
lone <source> element isn’t usable in this case, the
JPEG image specified in the the <img> element’s src at-
tribute is used instead. If <picture> is not supported in
a particular browser, the content of the contained
<img> element’s src attribute is always used, and the
<source> element is ignored. As such, an <img> ele-
ment within a <picture> element should always con-
tain a src value that points to an image usable by all
browsers.

Also be aware that, as is the case with the <video>
element, multiple <source>s can be used in
<picture>. Let’s assume a more complex use case of
<picture> with multiple <sourcess targeting high-
and low-pixel density screens (for example, Retina ver-
sus standard DPI) with WebP, JPEG-XR48 and JPEG im-
ages:

<picture>
<!-- This source is examined first -->
<source srcset="some-image-2x.webp 2x,
some-image-1x.webp 1x" type="image/webp">
<!-- This source is examined last -->

47. http://smashed.by/mimetypes
48. http://smashed.by/jpegxr

69

http://smashed.by/mimetypes
http://smashed.by/mimetypes
http://smashed.by/mimetypes
http://smashed.by/jpegxr
http://smashed.by/jpegxr
http://smashed.by/jpegxr
http://smashed.by/mimetypes
http://smashed.by/mimetypes
http://smashed.by/jpegxr
http://smashed.by/jpegxr


<source srcset="some-image-2x.jxr 2x,
some-image-1x.jxr 1x" type="image/jxr">
<!-- The fallback -->
<img src="some-image-1x.jpg"
srcset="some-image-2x.jpg 2x, some-image-1x.jpg
1x" alt="Look at this fancy image!">

</picture>

The order of these <source>s is optimal, because it
specifies preferred formats (WebP and JPEG XR) first.
Getting the order correct is important, because
browsers evaluate <source>s in <picture> from top to
bottom. As is the case with <video>, specify your most
optimal media resource(s) first, then specify additional
preferences and a fallback that will work everywhere
else.

While images are often used inline in HTML, they’re
also used quite often in CSS in various properties. Next,
let’s talk a bit about how you can use WebP images in
CSS with fallbacks in mind.

In CSS
CSS allows you load images via the url() resource
pointer in various properties, such as background,
list-style and so forth. What’s problematic about us-
ing CSS in WebP is that there’s no support detection ca-
pability for WebP built into the language. You can get
around this by using using an image CDN service (such
as Cloudinary, mentioned earlier), or by using a URL

USING WEBP IMAGES

70



rewriter (also mentioned earlier). But what if neither of
those are options?

Depending on your host and the tools you have ac-
cess to, you may have to rely on a back-end language to
detect support and modify markup on delivery. PHP is
one such potential tool you might come across. You
might remember this WebP detect code from a section
earlier on where we detect WebP support by inspecting
the Accept header:

<?php $webpSupport =
stristr($_SERVER["HTTP_ACCEPT"], "image/webp") !==
false; ?>

In an earlier example, we acted on this $webpSupport
variable to change the image source in HTML. While
it’s possible to execute PHP in contexts other than
HTML (such as a CSS file), you may not want to archi-
tect your application to do so. Another strategy could be
to expose WebP support via a class, like so:

<?php $webpClass = $webpSupport === true ? "webp" :
"no-webp"; ?>
<html class="<?php echo($webpClass); ?>">

With this class added to the <html> element, we now
have a hook we can use in CSS to change how we refer-
ence images:

.no-webp body {
background-image: url("/images/background.jpg");

}

71



.webp body {
background-image: url("/images/background.webp");

}

Easy as that. By using the no-webp and webp classes, we
can modify the delivery of images in CSS so browsers
capable of using WebP get WebP. Those that don’t will
use the proper fallback.

In a Service Worker
Ideally, you’d want to take care of serving WebP on the
server side or via the <picture> element whenever
possible, because handling image requests this way
would be both most efficient and convenient. But, one
web developer’s situation and restrictions could be
quite different from another’s. You might not have ac-
cess to a back-end language, or even the server configu-
ration itself. In cases like these, you could use a service
worker to rewrite image requests to WebP on the client.

Service workers are extremely powerful, and can
provide app-like offline experiences and push notifica-
tion functionality. At their core, however, they’re simply
a sort of a request-and-response handler similar to a
URL rewriter, except for one hugely fundamental dif-
ference: the service worker’s context is that of the client
rather than the server, and the capability is available to
front-end developers. Below is a highly simplified ex-
ample of how you could use a service worker to inter-
cept a network request in a fetch49 event to return a

USING WEBP IMAGES

72

http://smashed.by/fetchevent
http://smashed.by/fetchevent
http://smashed.by/fetchevent


WebP image if the client is capable of using WebP im-
ages:

self.addEventListener("fetch", function(event) {
const imageRequest = /\.(png|jpe?g|gif)$/i;
const url = new URL(event.request.url);

if (url.origin === location.origin &&
imageRequest.test(url.href) === true) {

if (event.request.headers.has("accept") &&
event.request.headers.get("accept").includes(
"image/webp")) {

let webp = url.href.replace(imageRequest,
".webp");
event.respondWith(fetch(webp));

}
}

});

Once again, let’s step through the code bit by bit so we
can get a handle on what’s going on:

1. The first line attaches an event listener to the service
worker’s fetch event. The attached code will run every
time the service worker detects an outgoing request to
the network.

49. http://smashed.by/fetchevent

73

http://smashed.by/fetchevent
http://smashed.by/fetchevent


2. imageRequest is simply a regular expression we can
use to check if the request is for a resource ending in
.png, .jpg, .jpeg, or .gif.

3. Using the event.request.url value, we create a new
instance of the URL object50. URL provides convenient
methods that makes working with URL data easier.

4. Before we rewrite any image requests, we want to be
sure of two things. First, the request needs to be for the
primary origin, not a cross-origin request. We ensure
this by checking that url.origin and location.ori-
gin are the same. Second, we want to ensure the re-
quest is for an image, by using the imageRequest regu-
lar expression to check if the requested resource’s ex-
tension is for an image.

5. If the request is for the primary origin, and is for an im-
age, we can continue on. At this point, we check if the
event object’s request headers includes an entry for the
Accept header, and if it contains the image/webp sub-
string. The mechanism here is exactly the same as
when we checked the Accept header in our back-end
code, only this time, we’re performing the check in
JavaScript.

6. Finally, if the browser supports WebP, we’ll rewrite the
URL to point to a WebP image, and we respond with a
fetch request to retrieve it from the network. Any re-
quests that don’t meet the conditions described above

50. http://smashed.by/urlinterface

USING WEBP IMAGES

74

http://smashed.by/urlinterface
http://smashed.by/urlinterface
http://smashed.by/urlinterface
http://smashed.by/urlinterface
http://smashed.by/urlinterface


just pass through to the browser as normal without any
intervention from the service worker.

If a user happens by in a browser that supports service
workers and supports WebP, requests for PNG, JPEG
and GIF images will be rewritten to WebP. You can ver-
ify that this works in your browser dev tools. In
Chrome’s dev tools, that process may look something
like this in the network panel:

In the figure above, you can see that the request from
test.jpg has been rewritten to test.webp by observing two
things in the network panel contents. First, the Size col-
umn for test.jpg contains a value of “(from ServiceWork-
er),” which plainly indicates that the request has been
handled by the service worker. Second, the request for
test.webp will have a small gear icon next to the resource
in the Name column. This also indicates that the re-
quest was handled by the service worker. If you hover
over the waterfall entry for test.jpg, you’ll notice the
breakdown of timings includes service worker-related
entries within the request/response category:

A request for a JPEG image rewritten to a WebP image by a service
worker.

75



It may seem unintuitive at first that these service
worker-specific timings appear under the entry for the
original JPEG request, but once you remember that this
specific request was what the service worker intercept-
ed, it makes sense that timings for it would appear in
this location.

In my opinion, this approach does present some
flaws. First, it doesn’t do anything for users on
browsers that support WebP, but don’t also support ser-
vice workers. Currently, this only includes Opera Mini.
You may be think this is an edge case, but Opera Mini
sees some usage in emerging markets where users
could benefit the most from WebP images, but would
miss out if an application depended on service workers
to serve them. Secondly, because of the service worker
life cycle, image requests may not get rewritten until
after the service worker has been installed. In this case,
the first page navigation will request images in estab-
lished formats (JPEG, GIF, or PNG), and then rewrite re-
quests to use WebP images on subsequent requests.

Service worker timings exposed in Chrome’s network panel for a service
worker-initiated network request.

USING WEBP IMAGES

76



For these reasons, I still recommend rewriting URLs on
the server side instead of in a service worker, as it will
work for everyone who supports WebP. Still, this ap-
proach gives you a reasonably transparent means of
rewriting requests, and may prove useful in some con-
texts. As with any approach, weigh the benefits against
the drawbacks, and make the best decision for your spe-
cific application and audience.

77



In Closing

The role of performance in the user experience is criti-
cal for a number of reasons, and media play a big role,
specifically in loading performance. Images account for
such a large portion of the total data we consume, and
for those on high latency and low bandwidth connec-
tions, it’s incumbent on us to do all we can to make the
experience as fast as possible.

WebP isn’t perfect, and this guide is not an adver-
tisement for the format. If you’re already well-served by
established image formats, and your site is already
quite fast, WebP may not be for you.

But WebP does offer potential benefits to a large por-
tion of internet users. To say that it doesn’t is simply
false. In my experience, WebP has substantially im-
proved loading performance for many of my clients,
and continues to be a tool I reach for when I want to
make pages as lean as possible. While it’s certainly true
that augmenting applications to serve WebP takes ef-
fort, I have found in project after project that the effort
is worth it.

While image formats represent a constantly evolv-
ing space with new contenders continually vying for
implementation in browsers, WebP currently stands as
the most viable alternative format, owing to the collec-
tive ubiquity of browsers that support it. Simply put, if
you’re not currently using WebP, you could be missing
out on a chance to make your site faster than it already
is for a substantial portion of your users. Hopefully,

IN CLOSING

78



this guide will encourage you to experiment and see
what’s possible with WebP, and help you to draw your
own conclusions.❧

79



Appendix

If you’re reading this, chances are good that you arrived
here after reading the “Performance” section of the
ebook, and are curious as to how the statistics used in
that section were generated. This appendix will answer
those questions.

Lossy WebP
For lossy WebP images, this process was followed:

1. 50 photographic images were selected at random from
the internet. All images were selected from lossless
PNG sources.

2. 101 lossy WebP images were generated from each PNG
source, one for every quality setting between and in-
cluding 0 and 100 (representing a pool of 5,050 images).
In addition to exporting to the lossy WebP format, im-
ages were exported to JPEG across the entire quality
range from PNG sources using the following JPEG en-
coders and methods:

◦ cjpeg version 9b, converting to both baseline and
progressive modes with the -optimize parameter.

◦ mozjpeg version 3.2, converting to both baseline and
progressive modes, also using the -optimize para-
meter.

APPENDIX

80



◦ Guetzli version 1.0.1. Because Guetzli has a lower
quality limit of 84, JPEGs converted using this en-
coder were exported at a quality range between 84
and 100.

3. As each set of images was exported, their file names,
target quality, file size and SSIMULACRA score were
recorded to a SQL database.

Lossless WebP
For lossless WebP tests, this process was followed:

1. 50 PNG images were selected at random from the inter-
net. Most of the images selected were logos, line art,
and other content best suited to the PNG format. Most
images used transparency.

2. Each PNG source was optimized in the OptiPNG,
ZopfliPNG, and Pngcrush optimization tools using the
most optimal settings possible.

3. Lossless WebP images were created from the output of
the highest performing PNG optimizer (OptiPNG). In
addition to the -lossless parameter, further cwebp para-
meters used were -q 100, -m 6 and -z 9, which created
the smallest possible output.

4. As each set of images was exported, their file names,
and file size were recorded to a SQL database. SSIMU-
LACRA scores were not recorded for lossless WebP or

81



PNG images because lossless encoding creates images
that are visually identical to their source.

Measuring Image Decode Time
One aspect of image performance is decode time in the
browser. I wanted to measure the decode times for the
images I generated, but where thousands of images are
concerned, this can be a brutally monotonous task if it’s
not automated.

Thankfully, tools like Puppeteer51 helped a ton on
this front. With the help of Paul Irish52 and Tim
Kadlec53, I was able to put together a hybrid Bash and
Node.js solution that automated the measurement of
image decodes. If you’re interested in seeing the code
behind this, check out this GitHub gist54.

51. http://smashed.by/puppeteer
52. https://www.paulirish.com/
53. https://timkadlec.com/
54. http://smashed.by/imagedecode

APPENDIX

82

http://smashed.by/puppeteer
http://smashed.by/puppeteer
http://smashed.by/puppeteer
https://www.paulirish.com/
https://www.paulirish.com/
https://www.paulirish.com/
https://timkadlec.com/
https://timkadlec.com/
https://timkadlec.com/
https://timkadlec.com/
http://smashed.by/imagedecode
http://smashed.by/imagedecode
http://smashed.by/imagedecode
http://smashed.by/puppeteer
http://smashed.by/puppeteer
https://www.paulirish.com/
https://www.paulirish.com/
https://timkadlec.com/
https://timkadlec.com/
http://smashed.by/imagedecode
http://smashed.by/imagedecode


Thanks

Many people were involved in the development and
production of this book, and their efforts are sincerely
appreciated.

Thank you to Rachel Andrew, Rey Bango, Markus
Seyfferth, and Vitaly Friedman of Smashing Magazine
for their work in managing the project, procuring edi-
tors, and publishing this work.

Thank you to Drew McLellan55 for tech editing the
book and ensuring the final text was as technically ac-
curate as possible.

Thank you to Paul Irish56 and Tim Kadlec57 for help-
ing me to find a way to automate image decode mea-
surements in the browser. Without them, this data
would not be present in the book.

Thank you to Paul Calvano58 for wrangling HTTP
Archive59 data from BigQuery to help me find stats on
median image sizes on the web.

Thanks for The WebM Project60 for making WebP a
thing so I could write about it!

Finally, thanks to my wife and stepdaughters for
continuing to support me in my technical writing en-
deavors.

55. https://twitter.com/drewm
56. https://twitter.com/paul_irish
57. https://twitter.com/tkadlec
58. https://twitter.com/paulcalvano
59. https://httparchive.org/
60. https://www.webmproject.org/

83

https://twitter.com/drewm
https://twitter.com/drewm
https://twitter.com/drewm
https://twitter.com/paul_irish
https://twitter.com/paul_irish
https://twitter.com/paul_irish
https://twitter.com/tkadlec
https://twitter.com/tkadlec
https://twitter.com/tkadlec
https://twitter.com/paulcalvano
https://twitter.com/paulcalvano
https://twitter.com/paulcalvano
https://httparchive.org/
https://httparchive.org/
https://httparchive.org/
https://httparchive.org/
https://www.webmproject.org/
https://www.webmproject.org/
https://www.webmproject.org/
https://twitter.com/drewm
https://twitter.com/drewm
https://twitter.com/paul_irish
https://twitter.com/paul_irish
https://twitter.com/tkadlec
https://twitter.com/tkadlec
https://twitter.com/paulcalvano
https://twitter.com/paulcalvano
https://httparchive.org/
https://httparchive.org/
https://www.webmproject.org/
https://www.webmproject.org/


About The Author

Jeremy Wagner is a developer, writer, and speaker from
Minnesota. He’s the author of the book Web Performance
in Action61, a web developer’s guide for creating fast web-
sites. You can find him on Twitter @malchata62 or on
the web at jeremywagner.me63.

61. http://smashed.by/perfinaction
62. https://twitter.com/malchata
63. https://jeremywagner.me/

ABOUT THE AUTHOR

84

http://smashed.by/perfinaction
http://smashed.by/perfinaction
http://smashed.by/perfinaction
http://smashed.by/perfinaction
https://twitter.com/malchata
https://twitter.com/malchata
https://twitter.com/malchata
https://jeremywagner.me/
https://jeremywagner.me/
https://jeremywagner.me/
http://smashed.by/perfinaction
http://smashed.by/perfinaction
https://twitter.com/malchata
https://twitter.com/malchata
https://jeremywagner.me/
https://jeremywagner.me/

	Imprint
	Table of Contents
	Foreword
	WebP Basics
	Encoding Features
	Lossy Encoding
	Lossless Encoding
	Transparency Features
	Animated WebP

	Content Suitability
	Measuring WebP Support within Your Audience

	Performance
	File Size
	Lossy WebP
	Recompressing from Lossy Sources
	Lossless WebP

	Decode Time

	Converting Images To WebP
	Sketch
	Photoshop
	Cloudinary
	The Official cwebp Command Line Encoder
	Installing
	Simple Command Line Examples
	Bulk Conversion in Bash
	Concurrent Bulk Conversion in Bash

	Convert Images to WebP with Node.js
	Using a Node.js Script
	Using gulp
	Using Grunt
	Using Webpack


	Using WebP Images
	Detecting Support on the Server
	As a Rewrite Rule
	Using WebP in <picture>
	In CSS
	In a Service Worker

	In Closing
	Appendix
	Lossy WebP
	Lossless WebP
	Measuring Image Decode Time

	Thanks
	About The Author

