
Case studies from the web’s finest products
Curated by Addy Osmani

A
ddy

O
sm

ani

“It's rare to find one resource with this many real-world case studies.
I highly recommend the book for any web developer. A true gem!”

– Ahmad Shadeed, Design Engineer

Provide an inclusive
web experience.

ACCESSIBILITY

Optimize and sustain
high site speeds.

PERFORMANCE
Build reliable, installable,
feature- rich applications.

CAPABILITIES

Create a culture where
people and projects thrive.

DEVELOPER EXPERIENCE

SUCCESS AT SCALE

Addy Osmani is an engineering leader
working on Google Chrome. He leads up
Chrome’s Developer Experience organization,
helping reduce the friction for developers to
build great user experiences.

9 783910 835009

is a curated collection of case studies from

successful large-scale web projects.

Discover practical takeaways and insights to

achieve great results for projects large and small.

SUCCESS AT SCALE

Provide an inclusive
web experience.

ACCESSIBILITY

Optimize and sustain
high site speeds.

PERFORMANCE
Build reliable, installable,
feature- rich applications.

CAPABILITIES

Create a culture where
people and projects thrive.

DEVELOPER EXPERIENCE

Case studies from the web’s finest products

Curated by

Addy Osmani

Published 2024 by Smashing Media AG, Freiburg, Germany.
All rights reserved.
ISBN: 978-910835-00-9

Copyediting: Owen Gregory
Proofreading: Owen Gregory and Geoff Graham
Cover and interior illustration: Espen Brunborg
Book design: Ari Stiles
Ebook production: Cosima Mielke
Typefaces: Elena by Nicole Dotin and Mija by

Miguel Hernández.

Success at Scale was curated by Addy Osmani
Research and editing: Leena Sohoni-Kasture
Case study authors: Nabeel Al-Shamma, Zack Argyle,
Benji Bear, Christopher Chedeau, Gareth Clubb, Glenn Conner,
Eyal Eizenberg, Ilknur Eren, Darren Hebner, Catherine Houle,
Roderick Hsiao, Xuan Huang, Daniel Husar, Renato Iwashima,
Ankit Jain, Tomoki Kiraku, Natasha Kosoglov, Sriram Krishan,
Kiko Lam, Ohad Laufer, Nolan Lawson, Andrew Lee,
Milica Mihajlija, Thomas Nattestad, Addy Osmani, Rob Palmer,
José M. Pérez, Barry Pollard, Aaron Shekey, Shunya Shishido,
Thomas Steiner, Melanie Sumner, Stacey Tay,
Charis Theodoulou, and Oliver Tse.

This book is printed with material from
FSC® certified forests, recycled
material and other controlled sources.

Please send errors to: errata@smashingmagazine.com

Dedicated to the brilliant minds moving the web forward.

You inspire us every day.

Case studies and interviews
with the people who made it happen

CONTENTSCONTENTS

This Table of Contents represents the

print edition. An expanded PDF with even

more case studies is available free to

everyone who purchases the print book!

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
P

E
R

F
O

R
M

A
N

C
E

A
C

C
E

S
S

IB
IL

IT
Y

C
A

P
A

B
IL

IT
IE

S
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

P
E

R
F

O
R

M
A

N
C

E
A

C
C

E
S

S
IB

IL
IT

Y
C

A
P

A
B

IL
IT

IE
S

Introduction 7

Glossary 9

Making Instagram.com Faster 20

Interview with Glenn Conner 34

Improving Core Web Vitals,

A Smashing Magazine Case Study. 37

Improving Scrolling Comments in Figma 61

Shopping for Speed on eBay.com 69

How CLS Increased Yahoo! JAPAN News’s Page Views . . 79

Photoshop’s Journey to the Web 95

A Year into the Pinterest PWA 103

Building Spotify’s New Web Player 110

Interview with José M Pérez 116

Deprecating Excalidraw for Electron 120

Interview with Christopher Chedeau 130

The Story of Making WiX Accessible. 148

Interview with Ohad Laufer 158

LinkedIn’s Approach to Automated Accessbility Testing . 161

Interview with Oliver Tse & Andrew Lee 171

Building Dark Mode on Stack Overflow 175

Shopping Platforms: Accessibility Is

More Than a Technical Problem 190

Improving Accessibility on YouTube Web 204

Deploying New Tech for Facebook.com 223

Bloomberg: 10 Insights to Adopting TypeScript at Scale . 241

Interview with Rob Palmer 261

Rebuilding a Featured News Section

with Modern CSS: Vox News 264

Wix: When Life Gives You Lemons,

Write Better Error Messages 293

Introduction 7

Glossary 9

Making Instagram.com Faster 20

Interview with Glenn Conner 34

Improving Core Web Vitals,

A Smashing Magazine Case Study. 37

Improving Scrolling Comments in Figma 61

Shopping for Speed on eBay.com 69

How CLS Increased Yahoo! JAPAN News’s Page Views . . 79

Photoshop’s Journey to the Web 95

A Year into the Pinterest PWA 103

Building Spotify’s New Web Player 110

Interview with José M Pérez 116

Deprecating Excalidraw for Electron 120

Interview with Christopher Chedeau 130

The Story of Making WiX Accessible. 148

Interview with Ohad Laufer 158

LinkedIn’s Approach to Automated Accessbility Testing . 161

Interview with Oliver Tse & Andrew Lee 171

Building Dark Mode on Stack Overflow 175

Shopping Platforms: Accessibility Is

More Than a Technical Problem 190

Improving Accessibility on YouTube Web 204

Deploying New Tech for Facebook.com 223

Bloomberg: 10 Insights to Adopting TypeScript at Scale . 241

Interview with Rob Palmer 261

Rebuilding a Featured News Section

with Modern CSS: Vox News 264

Wix: When Life Gives You Lemons,

Write Better Error Messages 293

Introduction

The success of a web product or service hinges on several factors
that encompass more than flashy design. Website performance,
capabilities, accessibility, and developer experience ultimately deter-
mine the fate of a web development project. In this series, we look at
why each of four factors are crucial for success and how they play a
critical role in achieving not just functional websites but exceptional
ones. Here’s a very brief definition for each of the four factors.

 Performance is an important factor because a slow-
loading website will frustrate users and lead to high
bounce rates, making it a critical factor for project success.

 Capabilities refers to the app-like features and function-
ality that a website provides.

 Accessibility is the ability of all users to access and use
a website, regardless of their disabilities. This includes
users with visual impairments, hearing impairments,
and motor impairments.

 Developer experience refers to the ease with which
developers can build and maintain a website. A good
developer experience will make it easier for developers
to be productive and to create high-quality websites.

This series of case studies will explore how these four factors
can contribute to the success of a web development project.

Introduction 7Introduction

They will also discuss the challenges that developers face in
ensuring that their websites are performant, capable, accessible,
and developer-friendly.

Join in then, to take a look at these real-world examples, that discuss
the pivotal decisions, challenges, and triumphs that helped to shape
some of the digital experiences we encounter daily. I hope that these
case studies will serve as a roadmap for developers, businesses, and
enthusiasts alike, guiding them towards the path of success in our
user-centric online world.

Success at Scale8

Glossary

A list of common terms and references you will find across the book.

API: Application programming interface, which is a software inter-
mediary that allows two applications to talk to each other and serves
as a contract of service between them. The Instagram case study
provides an example of using preloads for dynamically loaded JavaS-
cript and xhr GraphQL requests for data (pp. 20 – 36).

ARIA: Accessible Rich Internet Applications, a set of roles and
attributes that help to make web content more accessible to people
with disabilities (https://smashed.by/ariadocs). The Wix Accessibility
case study discusses using ARIA roles and attributes to make compo-
nents accessible to screen readers (pp. 148 – 160).

Chrome user experience report (CrUX): Get user experience met-
rics for how real-world Chrome users experience popular destina-
tions on the web. (https://smashed.by/cruxdocs). The Smashing Core
Web Vitals case study discusses using the Chrome User Experience
Report (CrUX) to gather field data on site performance metrics
from real users (pp. 37 – 60). The eBay.com case study looks at how
analyzing CrUX reports helped eBay meet performance budgets and
increase site speeds (pp. 69 – 78). See examples of the CrUX dash-
board (https://smashed.by/cruxlauncher) on page 48.

CI/CD: Continuous integration/continuous delivery, a modern
software development practice where frequent code changes are
introduced, integrated, and deployed, often using automation. The
Facebook case study discusses implementing ci/cd and testing pro-
cesses while transitioning to a new tech stack (pp. 223 – 240)

9Introduction

GraphQL: A query language for apis and a runtime for fulfilling
those queries with your existing data (https://graphql.org/). The Face-
book case study looks at transitioning data fetching to Relay and
GraphQL while rebuilding the Facebook.com front-end
(pp. 223 – 240).

Lazy loading: A strategy to load noncritical resources only when
they are actually needed. The Instagram case study provides an
example of lazy loading images that are out of view using request-
IdleCallback (pp. 20 – 36).

Lighthouse: An open-source diagnostic tool from Google Chrome
for improving the performance, quality, and correctness of your web
apps (https://smashed.by/lighthouse). The Smashing Magazine case
study focuses extensively on using Lighthouse to audit web perfor-
mance and identify areas for improvement (pp. 37 – 60).

Next.js: A React framework for creating full-stack web applications
at scale (https://nextjs.org/). Frameworks are discussed throughout
the DevEx section beginning on page 215.

NPM: Package manager for Node.js (https://www.npmjs.com/).
The Bloomberg case study discusses challenges with dependency
management at scale and enforcing consistency of npm packages
(pp. 241 – 263). BundlePhobia is a tool that provides the cost (in MBs)
of adding an npm package to your bundle (https://bundlephobia.com/).

Performance tools: Tools such as Lighthouse used to measure the
performance of web sites. Other common tools: WebPageTest, Page-
Speed Insights, Google Search Console. The Smashing Magazine case
study mentions various performance tools like Lighthouse, CrUX,
and web-vitals to measure and improve site speed (pp. 37 – 60).

Success at Scale10

PWA: Progressive web applications that can provide an app-like
experience on the web (https://smashed.by/pwasguide). PWAs
are discussed extensively in the Capabilities section starting on
page 87, but more specifically in the Pinterest (p. 103) and
Excalidraw (p. 120) case studies.

React: Popular library for building web and native user interfaces
(https://reactjs.org/). The Spotify case study discusses rebuilding
Spotify’s web player using React and the developer experience
benefits (pp. 110 – 119).

React Native (https://reactnative.dev/) is used for developing native
applications for Android/iOS devices. The Photoshop case study
looks at porting Photoshop to the web, including using React Native
for building native apps (pp. 95 – 102).

Service workers: Proxy servers that sit between web applications,
the browser, and the network (when available)
(https://smashed.by/serviceworkersprimer). Both the Photoshop
(p. 94) and Excalidraw (p. 120) case studies include specifics on the
use of service workers.

SPA: Single page app or a web app where most of the interaction takes
place on a single page by dynamically rewriting it with fresh data.
The Figma case study discusses optimizing performance for Figma’s
comments spa (pp. 61 – 68).

TypeScript: A language that extends JavaScript by adding types to
the language (https://www.typescriptlang.org/). The Bloomberg case
study provides a detailed look at lessons from adopting TypeScript
across Bloomberg’s massive codebase (pp. 241 – 263).

Introduction 11

WCAG: Web Content Accessibility Guidelines 2.2
(https://smashed.by/wcagquickref). The entire Accessibillty section
– beginning on page 137 – is full of references to wcag, but The
LinkedIn case study specifically mentions accessibility testing using
wcag 2.0 guidelines (pp. 161 – 174).

Web app manifest: A json file where developers can specify the
behavior for the pwa after it’s installed on a device. Mentioned in
more detail in Excalidraw case study (pp. 120 – 134)

Web vitals: Google’s unified guidance for quality signals that are es-
sential to delivering a great user experience on the web (https://web.
dev/vitals/). This includes Core Web Vitals such as Largest Content-
ful Paint (LCP), First Input Delay (FID) - to be replaced with Interac-
tion To Next Paint (INP), and Cumulative Layout Shift (CLS). Other
diagnostic metrics that may be helpful are Time To First Byte (TTFB),
First Contentful Paint (FCP), Time To Interactive (TTI), and Total
Blocking Time (TBT). The Smashing Magazine case study focuses
on identifying and optimizing Web Vitals metrics using Chrome UX
Report and Lighthouse (pp. 37 – 60).

Workbox: Production-ready service worker libraries and tooling.
(https://smashed.by/workbox). The Instagram case study demon-
strates using Workbox to control service worker caching
strategies (pp. 20 – 36).

Success at Scale12

PE
RF

O
RM

AN
C

E
P

E
R

F
O

R
M

A
N

C
E

P
E

R
F

O
R

M
A

N
C

E

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

20

34

37

6 1

69

79

84

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Making Instagram.com Faster

Interview with Glenn Conner

Improving Core Web Vitals,

A Smashing Magazine Case Study

Improving Scrolling Comments in Figma

Shopping for Speed on eBay.com

How CLS Increased

Yahoo! JAPAN News’s Page Views

#

Making Instagram.com Faster

Interview with Glenn Conner

Improving Core Web Vitals,

A Smashing Magazine Case Study

Improving Scrolling Comments in Figma

Shopping for Speed on eBay.com

How CLS Increased

Yahoo! JAPAN News’s Page Views

#

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

React at 60 fps: Improving
Scrolling Comments in Figma
by Kiko Lam

Figma enables closer collaboration between designers and
non-designers by tightening the feedback loop.1 By comment-
ing directly on a file or prototype, teammates have important

context, without needing to send files back and forth.

Since we first introduced Figma, we’ve been making consistent
improvements to reach new levels of scale.2 As more users left an
increasing number of comments on their files, we started to observe
performance problems. Knowing that Figma supports teams and or-
ganizations of all sizes, we had to do better. So we kicked off a project
to improve the speed at which comments respond when users zoom
and pan on the canvas.

React Faster, per Second

Our primary goal was to render the editor at 60 fps. No matter how
our users collaborated, or how many comments and threads they cre-
ated, we wanted the editor to perform at a speed that could flex
to support them.

BUT FIRST, INFRASTRUCTURE

Before we dive into performance, it’s important to understand a bit
about Figma’s technology. Figma is built on an unconventional stack
– like our cto Evan shared,3 we essentially made “a browser inside a

1 The original version of this case study was published in August 2020:
https://smashed.by/figmascrolling

2 https://smashed.by/introducingfigma
3 https://smashed.by/buildingfigma

61React at 60 fps: Improving Scrolling Comments in Figma

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

browser.” Our design editor is powered by WebGL and WebAssem-
bly, with some of the user interface implemented in TypeScript and
React.4 Unlike most static interfaces built in React, comments are
dynamic, and they can pan and zoom as part of the canvas. As you
scroll around the canvas, we anchor your comment to something we
call a comment pin, which ensures that your feedback stays exactly
where you want it.

To do so, we need to get constant viewport updates from our editor.
The viewport updates are stored in Redux and retrieved by the com-
ment components. Each comment pin component uses this informa-
tion to calculate where the comment pins should be rendered on the
canvas in relation to the viewport.

Getting to the Bottom of Slow Performance

In order to improve performance on this particular view, we need-
ed to identify what was slowing it down. We used two main tools:
Chrome performance tools and React Profiler.

COMPONENTS CONSTANTLY RE-RENDER

The profile generated from the Chrome performance tools shows
that most of the time was spent on JavaScript (JS). About 68 ms per
frame is spent on JS on a page with 30 comments, and only a small
portion of the computing time per frame is spent on rendering and
painting. Scripting refers to JS events and event handlers; rendering
and painting have to do with the translation of html elements to
displayable onscreen elements. It’s promising that most improve-
ment could be done on the JS and React optimization, but we still
needed to understand more of what was happening under the hood
of rendering the comment components in React.

4 https://smashed.by/webassembly

Success at Scale62

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

We used React Profiler to pinpoint which components were ac-
tually re-rendering. React profile shows that only about 1.8 ms is
spent rendering the comments view. This re-rendering is necessary
because its content is changing. However, from the React Profiler
we observed that a lot of time was consumed rendering many fixed
position components like the left panel, toolbar view, and properties

Chrome’s performance tool showed we spent the majority of time on scripting and
rendered the comments view at 19 fps with 30 comment threads.

React Profiler shows the left panel, toolbar view, properties panel, comments list, and
comments view re-rendered with every viewport change.

63React at 60 fps: Improving Scrolling Comments in Figma

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

panel. But intuitively, only the comment should care about the view-
port change, not these fixed components. The biggest inefficiency
that creeps in as React applications grow is needlessly re-rendering
components, which is exactly what we observed. This was a red flag,
and we needed to address it.

How different components are structured in the Figma editor.

We started investigating why the other components were re-
rendering when viewport information in the Redux store changed.
We found that Redux runs every single middleware and loops

through and runs
mapStateToProps
for every connect-
ed component,
each time an action
is dispatched. It
then passes all of

the data down through multiple layers to the comments view. But in
our case, the only thing that should need this is the comments view.
We had instances where we were passing in anonymous functions
to force the components to render over and over again.

The biggest inefficiency that creeps in

as React applications grow is needlessly

re-rendering components, which is

exactly what we observed. This was a

red flag, and we needed to address it.

Success at Scale64

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Our Approach

To fix the unnecessary re-rendering, we decided to remove view-
port information from our Redux store and instead implemented
our own event emitter5 in our React codebase to broadcast this
piece of information. We switched over from old components to
functional components and, using React Hooks – which enabled us
to memorize expensive computation – we now only do them when
information changes. By avoiding dispatching an action to update
viewport information in Redux, we successfully stopped running
mapStateToProps for every connected component and avoided
passing all of the data down through multiple layers to the com-
ments view. As a result, we essentially prevented other components
that don’t need ViewportInfo from re-rendering.

BETTER, BUT NOT QUITE THERE

At this point, we ran the Chrome performance tool and React Profiler
again. We saw that the constant re-rendering had stopped and the
frame rate of the comment view had significantly improved from 15
fps to 50 fps with 50 comment pins. However, we still weren’t quite
at our goal of 60 fps. We also observed that performance linearly de-
grades with an increasing number of comment pins. So, we still had
work ahead of us.

0(nn) OPERATION ON EVERY VIEWPORT CHANGE

TJ Pavlu, an engineer on my team, worked with me on further
improvements. By observing how the comment pins move on the
document level, we noticed that every comment pin performs a
transform action when the viewport moves. Each of the comment
pin components was recomputing its pin position and performing
a transform-style action with each viewport change (which you’ll
see below). In turn, comments view triggers an 0(n) operation, where

5 https://smashed.by/eventemitters

65React at 60 fps: Improving Scrolling Comments in Figma

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

n is the number of comment threads as we pan and zoom. This
might seem trivial for files with just a few comments, but the more
comments there are, the slower the operation.

With every viewport change, each of the comment pin components recomputed
its pin position and performed a transform-style action.

We came up with the solution to create an overlay container on
the canvas and then to position the comment pins statically on this
container. From there, we repositioned the overlay container (one
computation) using css translate instead of doing so with each
comment pin (n computations) as the viewport moves (illustrated in
the second screen recording). Now, every viewport change triggers
an 0(1) operation instead of 0(n) operation.

Only the overlay parent component recomposes its position
on viewport changes.

Success at Scale66

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

We created this overlay
container by creating a box
around the most top-left
pin and the most bot-
tom-right pin. This means
every time a new com-
ment is added, we have to
recompute this top-left/
bottom-right boundary box.
This trade-off is worth it be-
cause: a) comments are add-
ed less often than panning
around the canvas; and b) this boundary box calculation happens
when the canvas isn’t moving.

Better Performance, Not Perfection

Based on how we scoped the project – achieving 60 fps for files with
up to 150 comments – it was a success. You can see from the screen
recording below that the interaction is much smoother and delivers
a better user experience.

Now, we maintain 60fps rendering, no matter how many comments there
are on a file.

Panning is much smoother now..

67React at 60 fps: Improving Scrolling Comments in Figma

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

But with performance, the work is never truly done. Moving for-
ward, it’ll be an ongoing process of setting new goals and identifying
potential bottlenecks.

Beyond performance, we improved our React codebase and moved
from old components to a new functional components system, while
also taking advantage of React hooks. We’ll continue to revisit our
systems to ensure that Figma is built for scale.

Figma Key Takeaways
Optimizing the frame rate on a dynamic canvas for a

smooth editing experience.

Figma allows for extensive collaboration between app designers and
stakeholders through its intricate comments system. The Figma
team realized that when the number of comments on a canvas
increased, the frame rate of the editor measured in frames per
second would go down. They analyzed the situation using Chrome
performance tools and the React profiler, and realized that viewport
updates received from the editor would cause not just the comments
view to reload but also the other fixed position components.

Once they understood this, they were able to change their architec-
ture to only re-render the comments view relative to a fixed canvas
whenever viewport updates were received from the editor. After this
change, they were able to achieve a framerate of 60 fps for files with
up to 150 comments.

Success at Scale68

C
AP

AB
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

C
A

P
A

B
IL

IT
IE

S

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

95

103

1 10

1 16

120

130

134

Photoshop’s Journey to the Web

A Year into the Pinterest PWA

Building Spotify’s New Web Player

Interview with José M. Pérez

Deprecating Excalidraw for Electron

Interview with Christopher Chedeau

#

Photoshop’s Journey to the Web

A Year into the Pinterest PWA

Building Spotify’s New Web Player

Interview with José M. Pérez

Deprecating Excalidraw for Electron

Interview with Christopher Chedeau

#

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

Building Spotify’s New Web Player
By José M. Pérez

The purpose of this case study is to tell the story of the new
Spotify web player: how and why it came to be.1 We will
focus on what the steps were that led to a complete rewrite,

and how the lessons learned influenced the experience and the tech
decisions of the new web player for desktop browsers.2

Using the Web to Implement Spotify
Applications at Spotify

Spotify has been using web technologies for a long time. Before tools
like Electron3 became a reality for building hybrid applications, Spo-
tify started using Chromium Embedded Framework (CEF)4 in 2011 to
embed web views on the desktop application. This made it easier to
build and iterate on different parts of the application without having
to perform full releases. It was also the foundation used to integrate
a myriad of third-party apps built using web technologies, what we
called Spotify Apps.

Spotify’s web player was released in 2012 and complemented the
experience on desktop devices. It made it possible for users to play
music from Spotify as quickly as possible, without needing to down-
load and install any application.

The architecture of the web player followed the same approach as
the desktop application. The views were isolated from each other

1 The original version of this case study was published in March 2019:
https://smashed.by/spotifyengineering

2 https://open.spotify.com/
3 https://electronjs.org/
4 https://smashed.by/cef

Success at Scale110

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

using iframes, and this allowed the teams to iterate on and release
them without interfering with the rest of the application.

In addition, the code for the views was identical on both desktop
and web player. Thus, the team working on the playlist view would
implement a new feature and make it available on the desktop
application and the web player without having to care about the
underlying infrastructure.

The architecture of the web player was ideal for consistency between
platforms, and fit how the company was organized in feature teams.
It also had its drawbacks.

Having iframes for every feature and having that feature load its
own JavaScript and css might have worked well for the desktop
application, which the user downloads bundled with all the resourc-
es that it needs. The web player, on the other hand, had to download
many resources every time the user navigated between views, which
resulted in long load times, which impacted user experience.

An early version of Spotify’s web player.

111Building Spotify’s New Web Player

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

Considering a New Web Player

Over the years, we got better at prioritizing a core set of features.
With the rise of smartphones, we learned how to strive for removing
clutter, to properly A/B test features, and to better understand what
was really needed to deliver a good user experience.

In the summer of 2016 we decided to improve the web player. We re-
alized that the architecture of isolated views was difficult to maintain
and was preventing us from building a better product. We wanted
to go back to basics and support a set of core features (e.g. playback,
library management, and search) and work our way from there.

We found inspiration in the Spotify application for TV and video
consoles.5 This application is a web-based single page application,
and uses the Spotify Web api,6 which combines the access to lots of
micro services to create a unified interface to manipulate Spotify
data. It represented a good example of a light client being built by a
single team leveraging existing libraries at Spotify. We researched
the feasibility of upgrading the web player, rewriting it view by view.
In parallel, we started working on a prototype following a similar ar-
chitecture to the TV application. After considering the two approach-
es, we decided on the latter.

5 https://smashed.by/spotifytv
6 https://smashed.by/spotifyapi

Spotify
for TV.

Success at Scale112

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

As a company we usually try to improve existing systems iteratively
instead of completely replacing systems with new ones. There were
a few key points behind the decision to rewrite the new web player
from scratch versus improving the existing one:

• The system to deliver the code for the views, which worked in
isolation from one another, wasn’t used by the desktop applica-
tion anymore, and it was too complex for the web player use case.

• The web player was based on lots of libraries and frameworks
that were quite outdated. Giving every team an isolated en-
vironment to run their code also resulted in them choosing
different client-side stacks to build their views.

• The web player was built by multiple teams with over 40 de-
velopers but now would be maintained by a dedicated team
of five developers.

• It was very slow to iterate on and experiment, especially when
it came to making changes across multiple views, like updating
the visual style.

The Birth of a New Web Player

We decided not to repeat the mistakes of the past, so before decid-
ing the feature set that the new web player should have, we ran A/B
tests on the existing web player. For some users we removed certain
features and we measured their impact in user engagement. After get-
ting the results, we decided on the bare minimum feature set that we
would feel comfortable with releasing and that our users would enjoy.

We built a minimum viable product (mvp) in a few weeks, using our
new infrastructure based on Spotify’s Web api. During the following
months, we carried out extensive user testing and improved the pro-

113Building Spotify’s New Web Player

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

totype based on the feedback. Once we felt comfortable, we released
it to a small percentage of users side-by-side with the existing web
player, and checked the performance among them closely.

Our hypothesis was proved. The simpler and faster web player out-
performed the old web player in all key metrics.

The Tech Architecture

The new web player is in line with the overall Spotify look and feel,
and is built on html5 standards. It drops Flash in favor of encrypted
media extensions (eme)7 for music playback, which is supported na-
tively by most modern browsers. It is fast, even on spotty connections,
and responsive, and we have focused on making it enjoyable to use.

The architecture is based on React + Redux, which has made it easier
for us to share components between the views, to have a clear data
flow, and to improve debuggability and testability. Although the
components are not shared with other Spotify clients, we see a trend
in other Spotify web development teams who are also embracing a
similar approach to building web experiences.

Making the decision to embrace well-known open source solutions
and avoiding using Spotify custom libraries allowed us to onboard

7 https://smashed.by/eme

The new web player.

Success at Scale114

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

new developers quickly. This has led to numerous contributions
from web developers from all over the company.

Having a simpler architecture allowed us to experiment faster and
add features that didn’t exist in the old web player, like daily mixes,
video and audio podcasts, and Connect.8 On top of that, we were also
able to build fast ci/cd pipelines. Now with every commit the latest
version of the web player is reaching our users immediately. Finally,
we have a web player leveraging today’s technologies. As an example,
we added support for progressive web apps on Chrome OS,9 so the
web player is installed and run as a regular desktop application.

8 https://smashed.by/connect
9 https://smashed.by/pwachrome

Spotify Key Takeaways

A simpler and faster web player for desktop users using

modern technology and based on user preferences outper-

forms the old web player.

Spotify had released a web app for desktop users to complement its
desktop app as early as 2012. However, this web player reused most
of the code and features of the desktop app by loading similar con-
tent to iframes on the web app. Over the years, Spotify realized that
the architecture had become challenging to maintain and decided to
build a simpler app based on their single-page apps for TV and video
consoles using Spotify Web API.

Spotify built the new web player by considering user preferences
after performing A/B testing. It was built on the HTML5 standard
and uses Encrypted Media Extensions for music playback instead
of Flash. The new design and architecture make it fast, responsive,
and enjoyable to users and allow developers to release new features
quickly. The web player can also run as a PWA on Chrome OS.

115Building Spotify’s New Web Player

Success at Scale116

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

Interview

José M. Pérez
Former Engineering Manager at Spotify

Author of “Building Spotify’s New Web Player”

What excited you or your team the most about the work in
the case study?

The new Spotify web player was born out of necessity. The previous
version mimicked Spotify’s organization, where many feature teams
could deploy mini sites run within iframes. With the change of focus
towards mobile and a native desktop application, the web player had
become slow and challenging to maintain. We wanted to build a
product that was cohesive and delightful, and that could work well
on any device and network condition.

We decided to build a single page application (spa) with a shared
data store. Navigating between pages was instantaneous. We would
render a skeleton page with the header in its final state, and render
the rest of the page through additional data fetching.

We also included lazy loading for images through IntersectionOb-
server, which reduced the data consumption without penalizing the
user experience.

Were you surprised by the impact your work had on the overall
user experience, business, team, or other metrics?

After the release of the new web player we soon started seeing an in-
crease in traffic from countries with slower network connections. Us-

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

117Building Spotify’s New Web Player

age from devices like Chromebooks rocketed, as the web player didn’t
require installing any application and it offered a similar experience.

Spotify had traditionally considered the web player as a gateway to
drive desktop app installs, since users who had downloaded the app
were more engaged. This proved to be wrong, and we saw a consider-
able increase in users and retention soon after releasing the new player.

It’s important to be present where the user is and give them choices.
With features like push notifications, service workers, picture-in-pic-
ture, or File api, the web doesn’t have to envy native applications.

If you had a similar project/problem today, do you think your
process/tooling/decisions would be exactly the same?
Or, to put it differently, looking back now, what would you
have done differently if you had a chance to make adjustments?

I think today I would have taken a similar approach, but be even
more metric-driven. I’ve grown to think that metrics are important
and “data wins arguments.” Metrics remove part of the bias, and are
especially important when proposing rebuilding a product. Lots of
stakeholders will think these decisions are made by developers be-
cause they want to have fun and play with new technology. The data
that proved that building from scratch was the best way forward pre-
vented many discussions and gave a clear path towards execution.

I learned that you need to make sure to spend the right amount of
time analyzing the problem and wondering – from the very begin-
ning – how you are going to prove that the project is successful.
This lets you monitor the right metrics and be more analytical and
less sentimental.

Success at Scale118

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

What do you think was the one critical decision that made
the outcome successful? What brought you to this decision,
and how did you or your entire team make it?

I liked that we had constraints and we wanted to focus on
building a product in a few months’ time. Having a timeline with
planned milestones and deliverables makes everyone involved
focus on the outcome, avoiding bikeshedding on technical details
that are insignificant.

What came next after the case study was published?

The technical approach we followed, using lazy loading and shared
data stores to improve the site speed, were showcased at Google IO
2018 and 2019. This was accompanied by the post published on Spo-
tify’s engineering blog, explaining the history of the project and why
we had made some decisions.

The feedback we got was really positive and gave the team more con-
fidence to share our thinking process with the world. It also paved

the way for other
projects that
adopted a similar
tech stack and
ideas around data
fetching, loading
of assets, and
navigation.

We learned that
many compa-

nies, small or large, have similar challenges. Being open about what
worked and what didn’t can be seen as a weakness, but it’s quite the

We think we can create the definitive

product with a stack that will remain forever.

However, we make decisions based on the

current state of the technology and business

insights. Those will change over time, and

a good architecture makes it possible to

introduce changes over time, replacing parts

of it with better alternatives and removing

sections that are not needed anymore.

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

119Building Spotify’s New Web Player

opposite. You help other teams going through a similar journey, and
they share ideas back with you. The whole community benefits.

Do you have any advice for teams that would like to follow
in your footsteps?

Measure. When working on performance optimization it is easy to
find two extremes: those who don’t do anything about it, and those
who do too much. Find a sweet spot, where you make sure you are
delivering a good experience and are aware when you are reaching
diminishing returns.

Finally, write code that is easy to remove. We think we can create the
definitive product with a stack that will remain forever. However,
we make decisions based on the current state of the technology and
business insights. Those will change over time, and a good archi-
tecture makes it possible to introduce changes over time, replacing
parts of it with better alternatives and removing sections that are
not needed anymore.

Has the site changed significantly since the case study
was published?

The web player received new features without incurring additional
data usage. It became a pwa and could be installed on Chrome-
books providing a more app-like experience. For a long time, we had
maintained another set of pages with a similar content and design,
built in a different stack. These pages were server-side rendered and
optimized for seo. The new web player made it possible to merge both
projects, simplifying the codebase and removing lots of custom logic
to decide what version should be rendered.

In summary, it helped reduce duplication and made the engineering
team move faster.

AC
C

ES
SI

BI
LI

TY
A

C
C

E
S

S
IB

IL
IT

Y
A

C
C

E
S

S
IB

IL
IT

Y

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

148

158

16 1

17 1

175

190

204

2 12

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

The Story of Making Wix Accessible

Interview with Ohad Laufer

LinkedIn’s Approach to

Automated Accessbility Testing

Interview with Oliver Tse & Anderew Lee

Building Dark Mode on Stack Overflow

Shopping Platforms: Accessibility Is

More Than a Technical Problem

Improving Accessibility on YouTube Web

#

The Story of Making Wix Accessible

Interview with Ohad Laufer

LinkedIn’s Approach to

Automated Accessbility Testing

Interview with Oliver Tse & Anderew Lee

Building Dark Mode on Stack Overflow

Shopping Platforms: Accessibility Is

More Than a Technical Problem

Improving Accessibility on YouTube Web

#

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

Shopping Platforms: Accessibility
Is More Than a Technical Problem
By Devon Persing

Digital accessibility is more than a technical problem to
solve,1 although many organizations approach it as some-
thing that can be fully addressed by development and

testing. However, approaching accessibility in a sustainable way
requires appreciating the complexity and breadth of disabilities that
impact your users, and understanding how accessibility impacts
every part of your product or service, as well as your organizational
values and goals.

I’ve been doing accessibility work full-time for about 11 years, after a
short career in libraries, so I’m pretty familiar with some of the myths
surrounding accessibility work. I’ve worked as a consultant, both solo
and in agencies, as well as in product companies. It’s through that
product company lens that I’m approaching this article, with the idea
that you can improve accessibility programming from within. In this
case study, I’m going to help you rethink accessibility work and give
you some practical tips for making your products and services more
accessible, more easily. To do that, I need to debunk some myths.

Myth #1: Disability is Simple

There’s a myth around accessibility work that disability is simple.
Or, maybe a better way of saying this is that disability is mono-
lithic.2 However, “disabled” is not a user type. Disability is often

1 The original version of this case study was published in April 2021:
https://smashed.by/shopifya11y

2 I use the phrase “disabled person” to describe myself, but you may prefer
“person with a disability.”

Success at Scale190

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

dynamic and situational, and impacts every disabled person’s
experiences differently.

To start, it’s important to know that about 26% of adults in the United
States,3 22% of adults in Canada,4 and 15% of people worldwide have
a disability that affects their daily lives.5 (How people measure and
count disability varies across nations and cultures, but it’s safe to say
that approximately a quarter of all people have at least one disability.)

There are a few common types of disabilities that relate to digital
spaces, which can be organized into a few categories:

• Dexterity and mobility, which impacts how a person physical-
ly interacts with devices.

• Cognitive and neurological, which impacts how a person takes
in, processes, and remembers information and sensory input.

• Vestibular and motion, which impacts how people experience
visual motion, as well as the physical impacts of motion or per-
ceived motion on the body.

• Vision, which impacts how and how much a person can see.

• Hearing, which impacts how and how much a person can hear.

• Speech, which impacts how or whether a person speaks or
communicates verbally.

Using the social model of disability,6 disability is a mismatch be-
tween a person and the environment that has been designed.7
The negative impacts of disability are caused by systemic barriers,
attitudes, and exclusion in society, not a failing of the person with a
disability, nor something to be “fixed” or “overcome” in the person.

3 https://smashed.by/cdc
4 https://smashed.by/cdccanada
5 https://smashed.by/who
6 https://smashed.by/socialmodel
7 https://smashed.by/rethinkingdisability

191Shopping Platforms: Accessibility Is More Than a Technical Problem

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

To make things even more complex, many people experience dis-
abilities that vary day to day. As Brianne Benness says: “In main-
stream culture and media, ‘disabled’ usually refers to people with
static and visible disabilities. […] And so, if I tell somebody that I am
disabled, I must explain that not all disabilities are visible and also
not all disabilities are static.”8 For example, I have two conditions,
fibromyalgia and adhd, which make my day-to-day very different,
depending on how much stress I’m under, whether I’ve been sleep-
ing, and many other factors.

Assistive Tech Is More than Screen Readers

Often when I talk to designers and developers about assistive tech-
nology, they get stuck on the idea of the screen reader experience
being the accessibility experience we need to work for. But, consider-
ing the broad diversity in disabled experiences, people with disabil-
ities use a wide variety of assistive software and hardware tools to
connect to technology, and some people with disabilities don’t use
assistive tech at all.

Here are just a few examples of the many types of tech
disabled folks use.

TECH FOR DEXTERITY AND MOBILITY DISABILITIES

One of the most common categories of assistive tech is for people
with dexterity and mobility issues. These might be caused by an
injury (even temporary ones), limb difference, paralysis, or chronic
pain. (Over 22% of Americans have arthritis, fibromyalgia, or similar
chronic pain disorders,9 so chronic pain is quite common!) These
tools might make it easier for a person to use a keyboard and/or

8 https://smashed.by/dynamicdisability
9 https://smashed.by/arthritis

Success at Scale192

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

mouse, or might replace those altogether. There are eye-tracking
tools that let you interact without touching a device at all, for exam-
ple. There are similar hardware and software combinations that let
users interact through a switch device, by pressing simple buttons
or performing small movements with their head or mouth to control
the mouse. There are yet other tools that allow people to control their
devices with their voice alone, such as Dragon on Windows and
Voice Control on Mac devices, as well as highly customizable key-
boards designed for use with one hand, or which replace keyboard
keys with large paddles.

TECH FOR VISION AND VISUAL SENSORY DISABILITIES

While most folks familiar with accessibility are familiar with screen
readers, there is a wide variety of other tools available for people
with issues related to vision and visual input.

Screenshot of high contrast settings in Windows 10, showing the default colors, with
a black background and bright colors to indicate links, text, and other elements.

193Shopping Platforms: Accessibility Is More Than a Technical Problem

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

A common vision tool is the high contrast theme in Windows, which
allows users to change colors across the operating system and in the
browser. This is used by people with vision issues, as well as visual
sensory issues. It color-codes different types of content, based on
the user’s settings and based on how the page is marked up. There
are other tools that invert colors to add permanent “dark modes” for
content that many people use as well.

For people who aren’t on Windows, or who have other preferences,
dark mode (or light mode!) at the system level or through browser
plug-ins is a legitimate accessibility need. People with photosensitivity
or who can have migraines triggered by certain types of contrast may
use these settings. Tools and settings to reduce motion or turn off an-
imations are also helpful for people with conditions that are triggered
by unnecessary movement or animation. Personally, I get migraines
if I look at content that is on a bright white background or has a lot
of motion. Slack threads full of animated emojis and gifs are a night-
mare, for example, and I’m grateful that I can just turn all that off.

Users with vision issues also often use magnification, and text or
content resizing in the browser. This gives users control over what
part of the screen they see at a given time, and makes information
easier to read.

TECH FOR COGNITIVE AND NEUROLOGICAL DISABILITIES

Options to reduce motion or adjust other sensory inputs can also be
extremely helpful for people with cognitive and neurological dis-
abilities. It’s critical to prevent triggering seizures. Also, people with
adhd, brain injuries, and other conditions may rely on dark or light
mode or motion reduction to prevent sensory overload and head-
aches. There are also plug-ins that allow users to customize colors
related to text, which can help folks with reading disabilities.

Success at Scale194

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

For people who have trouble reading on busy web pages, Reader
Mode in the Safari and Firefox web browsers allows you to strip out
all ads, navigation, sharing buttons – anything that’s not an article –
while you’re reading. It also gives you options for changing fonts and
colors. It’s designed to make it easier to read without distractions or
without complicated layouts, which can be a huge help for folks with
reading disabilities and disabilities that impact focus and attention.

Prevent Assistive Tech Barriers

We all need a greater awareness of how people use (and don’t use)
assistive tech. It’s possible to find some accessibility barriers with
automated testing, but the vast majority of websites and apps are
too complex to rely only on an automated solution. It’s important to
be able to test behavior as well as check for basic issues. Pre-Covid,
many tech organizations had device labs or other in-house solu-
tions for device testing. These often served as a way for teams to do
testing with different types of assistive tech. With many product
teams continuing to work remotely, there need to be other options.

One option is to build your own “virtual” assistive tech lab based
on the tech that your customers (or potential customers) are prob-
ably using. This requires educating teams about how to test with
assistive technology
effectively, which
has its own learning
curve but leads to a
deeper understanding
of how users might
actually interact with your product. To be effective, this type of effort
requires documentation and clear guidance about how and when to
use assistive tech when testing new features and products.

One option is to build your own “virtual”

assistive tech lab based on the tech

that your customers (or potential

customers) are probably using.

195Shopping Platforms: Accessibility Is More Than a Technical Problem

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

Another option is to work with a vendor that provides virtual ma-
chines specifically for accessibility testing. This will give you access
to common assistive technologies without the overhead of managing
your own virtual machines, but does still have that learning curve.

Focus on the Experience

When I teach workshops about disability and accessibility, I often
ask my students to do a matching exercise to map good UX practic-
es to the types of disabilities they might help. My students quickly
learn there are no one-to-one relationships between accessibility
best practices and individual types of disabilities. The interconnec-
tions show us that none of these individual types of disabilities are
experienced in a vacuum.

Here’s an example of how we might map UX experience to
disability categories:

example
practice dexterity cognitive vestibular vision hearing speech

Keyboard

support

Use of color

Clear labels

No auto-

playing video

Captions and

transcripts

Text-based

commands for

virtual assistants

like Siri

The upside to this level of complexity is that it forces us to give up
the notion that categories of disability are silos. Instead, we can

Success at Scale196

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

focus on how these different experiences are supported, rather
than trying to over-engineer solutions for any one audience or
disability type. This actually makes it easier to think about disability
as a collection of experiences that can be met with best practices, not
a monolith of people or stereotypes.

In this way, we can focus on a few general types of experiences:

• Dexterity and mobility barriers caused by pain or other factors
can result in a variety of different ways of touching or interact-
ing with hardware and software. These might even affect how
people hold a device, and whether a user might touch a device at
all, or rely fully on voice activation or other tools.

• The wide variety of neurodiversity means we need to think
broadly about how people think, process, and sense informa-
tion. No two people think alike, and people with cognitive
disabilities typically benefit from the simple language, clear
organization, and consistent workflows that help all users.

• Media that relies heavily on visuals, color, or sounds needs to have
alternatives for people who can’t or prefer to not to take in infor-
mation in those ways. Many people are visual learners, but consid-
ering how people who don’t take in information visually strength-
ens how we design visual or color-based experiences, making our
decision-making to use visuals or colors even stronger.

• People with vestibular or mobility issues need to have control
over how they interact with motion, or how they move. Think-
ing about low-motion experiences makes us focus on the real
goals we want users to achieve, and how we can use motion to
guide those experiences. It forces us to make workflows and
transitions that are clear even without motion.

• And people with disabilities that impact speech and people who
are nonverbal need non-speech based interfaces for tools like
virtual and home assistants.

197Shopping Platforms: Accessibility Is More Than a Technical Problem

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

Include Disabled People in the Process

To better understand the experiences of disabled users, invite
disabled people into your usability and inclusivity work. You’ll
never be able to test for every use case, but engaging in research
with participants with disabilities is the best way to ensure the ex-
periences of disabled people are included. This helps designers and
developers get better insights into making usable, accessible experi-
ences from the start.

To find participants in this kind of research, there are a few options.
One is to survey your existing user base to see if they use assistive
tech.10 You don’t even have to call it assistive tech! You can simply ask
if folks use a screen reader, switch device, and so on. You can also
reach out to organizations in your area that serve disabled people to
do your own recruitment, or contract with a company that performs
research with disabled users.

Just as critical, however, is considering who is designing, building,
and testing your products today. If you are not hiring disabled
people to do those jobs, it’s a good bet that accessibility is a chal-
lenge for your organization. Look into how accessible your organi-
zation’s hiring process is, and invest in recruiting and supporting
disabled employees.

Myth #2: Accessibility is a Technical Problem

To really deal with digital accessibility, we have to go beyond fixing
things, and start preventing them. The lack of accessibility, and how
to address it, is a cultural problem rooted in ableism. Most of our

10 Asking what types of assistive technology a person might use is a way to find
participants who fall into the categories we’ve been discussing. Some people
who use assistive tech might not identify as disabled or having a disability,
and this also avoids asking people about sensitive medical information.

Success at Scale198

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

resources and standards around accessibility are technical and ori-
ented towards testing. And, since so much accessibility work focuses
on fixing things that have already been implemented, developers are
often given the responsibility.

MEASURING ACCESSIBILITY

The primary tool we use to measure accessibility is the Web Content
Accessibility Guidelines, a technical document created by a working
group within the w3c.11 Not to knock the extremely important work
that these folks do, but this approach compounds a testing-oriented
culture around accessibility that puts the onus on developers and
testers. This results in a lot of accessibility work being done at the
end of a project, in a workflow that often starts with auditing sites
and apps that are already in the wild, then fixing issues, but not dig-
ging into the processes and workflows that caused those problems
in the first place.

This has also led to “solutions” like third-party overlays that promise
to solve complex accessibility issues with the click of a button, but
usually cause more harm than good. (Colleagues in the field have put a
useful resource together on overlays if you’d like more information.)12

Resources and guidance for designers, writers, researchers, and
others are minimal and repetitive. If you’re in one of these roles and
you’ve tried to find resources on how to integrate accessibility into
your practice, you’ve probably seen the same advice over and over
again: “Use good color contrast!” “Use simple language!” “Test with
users!” There is a lot of why, and not a lot of how. And that’s because
the how is going to vary from project to project, team to team, and
organization to organization.

11 https://smashed.by/wcag
12 https://overlayfactsheet.com/

199Shopping Platforms: Accessibility Is More Than a Technical Problem

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

Instead, try:

• Holistic, continuing education about how disability
and technology intersect.

• To include people with disabilities as part of your team
and process.

• Continuous improvement of processes and workflows to move
beyond technical guidelines to usability.

• To make accessibility part of the current work, not a future goal.

As a place to start, teams can review usability feedback from users
with disabilities, acquaint themselves with the assistive tech avail-
able on the devices they support, and look at any reported issues
for their product. These steps can help teams and team leads think
about when they might insert specific steps to avoid accessibility
issues in their workflow.

Ideally, a product workflow with accessibility included from the start
looks something like this:

1. Users with disabilities are included in the product audience
from the start.

2. Accessible experiences are included in design decisions.

3. Prototypes for new work are tested for usability, including
with users with disabilities.

4. Built solutions leverage automated testing, and testing with
common assistive tech.

5. If issues are reported by users after the product is released,
those issues are triaged and addressed by severity and priority
along with any other issues.

Success at Scale200

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

A lot of accessibility education focuses on developers, designers, and
content creators, but doesn’t support the people who manage those
UX practitioners. A critical addition was building out training ma-
terials for managers to help them better evaluate how literate their
teams are in accessibility, and how to better support accessibility
work in their processes, rituals, and hiring practices.

Myth #3: Accessibility is Hard

Accessibility work doesn’t have to be hard. Everything is hard when
you don’t know enough about it. Think back to when you first start-
ed learning your craft, gaining real experiences, learning new tools
and standards, and sometimes failing. You have to celebrate small
wins! Those wins just don’t represent the end of improvement.

And your goal doesn’t have to aim for expertise. Expertise is hard
to teach because it takes a long time. I also don’t think it’s possible
to really teach empathy. Instead, we should focus on ways to make
accessibility just another part of every process to create products.
Accessibility work at scale is an exercise in literacy and prac-
tice, not expertise or empathy.

To improve the accessibility of your work, here are some accessibility
literacy aims, borrowed from information literacy in library science:

• Learn how to discover resources about accessibility efficiently.

• Evaluate the usefulness and accuracy of resources.

• Understand the context in which those resources were created.

• Create new work using what you have learned.

• Participate in a community of practice to reinforce and
scale learning.

201Shopping Platforms: Accessibility Is More Than a Technical Problem

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

ENABLING BEST PRACTICE THROUGH RESEARCH

AND ITERATION

In a prior product company, I had the enormous benefit of working
alongside a user experience research (uxr) team. We were working
on the almost identical problem of scaling accessibility literacy and
research literacy in the same organization. This meant that we got
to iterate on each other’s experiments with tooling, education, and
processes, with the aim of creating a consistent, literacy-focused
methodology for creating user-focused activities and resources
across the organization.

Even if you don’t have a strong uxr team, there are other ways to
iterate. Many organizations have gone through major changes to
address localization and other cultural differences, workflows and
tools, and other aspects of their product work. If your organization
had a particularly successful campaign to change how people work,
study that to get ideas about how you might grow accessibility.

Shopping Platform Key Takeaways

Accessibility is not just a technical problem, but also a

cultural one.

Considering accessibility when designing and developing digital
products can have a significant impact on the user experience.
Designing for disability is not easy. It is important to consider the
different types of disabilities when designing digital products, as
different disabilities may require different accommodations.

This team integrated accessibility into the design process from the be-
ginning, rather than treating it as an afterthought. This helps ensure
that the product is accessible to all users, regardless of their abilities.

Success at Scale202

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

SHARE WINS

Another way to grow community is to create an accessibility guild
across the organization. It can be a place for teams to share their
accessibility wins, to ask
questions from internal and
external accessibility experts,
and generally build a more
sustainable community of
practice around accessibility.
This is a great way to turn
accessibility improvements
into learning opportunities
for other teams, instead of always relying on an accessibility special-
ist or small accessibility team to do that teaching.

For more formal programming, adding accessibility to project
requirements is also a huge step. This allows teams to formally ac-
knowledge their wins at demos, town halls, or whatever other rituals
your organization has around your workflows and processes.

LIVE UP TO YOUR CURRENT GOALS

As both an accessibility specialist in organizations and as a con-
sultant, I often found that organizations had values, mission state-
ments, diversity and inclusion programs, or other foundational
beliefs that should have prioritized accessibility, but did not in prac-
tice. This comes down to ableism. If your organization aims to serve
“everyone” in a particular demographic, geographic area, or other
category of user, you need to consider accessibility, now.

Accessibility should not be a future goal. Start now. Aim to become
literate in accessibility, not an expert, and your users and products
will benefit exponentially from the experiences you design and
consistently improve.

... adding accessibility to project

requirements is also a huge step.

This allows teams to formally

acknowledge wins at demos, town

halls, or whatever other rituals

your organization has around your

workflows and processes.

Article Name 203

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

223

24 1

26 1

264

293

30 1

Deploying New Tech for Facebook.com

Bloomberg: 10 Insights to

Adopting TypeScript at Scale

Interview with Rob Palmer

Rebuilding a Featured News Section

with Modern CSS: Vox News

Wix: When Life Gives You Lemons,

Write Better Error Messages

#

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Wix: When Life Gives You Lemons,
Write Better Error Messages
By Jenni Nadler

Error messages are part of our daily lives online.1 Every time a
server is down or we don’t have an internet connection, or we
forget to add some info in a form, we get an error message.

“Something went wrong” is the classic. But what went wrong? What
happened? And, most importantly, how can I fix it?

We encounter error messages all the time, but how often do they actually help us
understand what went wrong and how to fix it?

About a year ago at Wix, we abruptly realized that too often we were
not giving users the answers to these questions. When we got this
wake-up call, we felt compelled to act swiftly, and not just to address
the one error message that woke us up.

Welcome, folks, to Errorgate 2021. Or, that time we changed
thousands of error messages across Wix in just a month.

1 The original version of this case study was published September 2022:
https://smashed.by/bettererrormessages

293Wix: When Life Gives You Lemons, Write Better Error Messages

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

To complete this effort, we first had to define what counted as a bad
error message and what counted as a good error message.

What Makes a Bad Error Message

This is an example of a bad error message. It uses an inappropriate tone, passes
the blame, speaks in technical jargon, and is too generic.

Inappropriate tone: Imagine a doctor performing a procedure and
then suddenly saying “Oops! Something went wrong.” That is the
last thing anyone wants to hear when the stakes are high, whether
it’s surgery or someone’s source of income. That is not the time to be
cutesy or fluffy. We want to show the users that we know it’s serious
and we understand it’s important to them.

Technical jargon: Even in today’s world of user-centered design,
technical jargon still sneaks its way into error messages. You couldn’t
fetch my data? My credentials were denied? What? The technical
stuff is not important to the user; they just want to know what went
wrong and how to fix it.

Passing the blame: Try to focus on the problem, rather than the
action that led to the problem. We don’t want to shame users, even if
something they did is why they’re seeing a certain error message.

Success at Scale294

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

We also made the decision not to pass blame on to third parties
because it makes us look unprofessional, even if it would have taken
some of the burden off of Wix. The user came to Wix as a trusted
platform; they don’t want to think about other platforms. While we
can say something like, “We’re having trouble connecting to Z”, we
wouldn’t say something like, “Z isn’t responding right now.”

Generic for no reason: Sometimes we don’t know what caused the
error… and sometimes we do. If we know what caused it and we’re
not telling them, we’re doing our users the ultimate disservice.

What Makes a Good Error Message

This is an example of a good error message. It explains what happened and why,
provides reassurance, is empathetic, helps the user fix the issue, and gives the
user a way out.

Say what happened and why: Make it super clear what did or
didn’t happen. This can be done with a combination of visuals and
text. Explain why the user got this error, even if the only explanation
is that there was a technical issue. At Wix, we made the decision to
say “an issue on our end” if we have the space, to really reiterate that
it’s not the user’s fault.

295Wix: When Life Gives You Lemons, Write Better Error Messages

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Provide reassurance: Where possible, let them know what was not
affected by the error. For example, were their changes still saved as a
draft, even though their email wasn’t sent?

Be empathetic: While we don’t want to be overly apologetic, we de-
cided that we did still want to use “please” if the situation warrants
it. Maybe it’s a really dire situation, or it’s something that we abso-
lutely can’t help the user solve. In that case, we might use “please” to
empathize even more.

Help them fix it: Tell them exactly what to do if there’s a way to possi-
bly fix it. Short on space? Send them to a knowledge base article with a
descriptive link like, “Learn how to resolve this” or “How do I fix this?”

Always give a way out: If they can’t fix the problem, or if it’s pos-
sible the issue could keep happening, provide them with a way to
contact customer care.

Now that we had defined what made a good or a bad error message,
we had to start getting rid of the bad ones.

How We Tackled Removing
Bad Error Messages

We searched our content management system and found that there
were 7,643 keys with the word “error” in the key or value. That’s 7,643
pieces of content that – at the very least – needed to be reviewed.

The task seemed monumental.

But we did it. We reviewed every single piece of content related to
errors and decided if it was relevant for this effort. Once we had a
list of all the errors we considered “generic” or “not helpful”, we sent
everything to developers.

Success at Scale296

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

This was just one of the Monday.com boards that we used to categorize every
single piece of content related to errors. Boards like these helped us set priorities
and due dates, and keep all disciplines in the loop.

Developers went message by message and mapped where each was
being triggered in the code. They looked at what was causing the
message to show, how frequently it occurred, and what could be
done to resolve the issue.

Based on that error mapping, the product managers, UX designers,
and writers sat down and came up with solutions. We started by
transferring everything from a spreadsheet to a Monday board,
where we could easily track the status of things and what needed to
be done. Sometimes, it was just a simple content change. In other
cases, it required brand new error messages. And in lots of other
instances, there was additional development work that needed to be
done to fix things behind the scenes.

Then we prioritized which errors to work on first. To set priorities,
we focused on how often the error was happening and if it blocked
the user from completing the flow. After that, we set milestones of
one to four weeks so that things didn’t fall by the wayside.

297Wix: When Life Gives You Lemons, Write Better Error Messages

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

What We Learned

There’s a difference between generic and unclear messages.
While there were certainly a lot of generic “Something went wrong”
messages, there were also a lot of unclear messages. These are just as
bad as generic messages and deserve the same amount of attention.

An example of a generic message compared to a message that is unclear. In
the generic message, we’re simply not telling the user anything other than
something went wrong. In the unclear message, we tried to explain what went
wrong, but it used confusing language.

It’s not a content issue most of the time. Avishai Abrahami, our
CEO and the reason this project got started, put it best in his email to
all employees.

“Generic errors are the result of bad development and
product. We must all care about it together.”

Truly everyone in Wix had to come together across all disciplines to
fix these messages. Developers had to investigate and map. Product
managers had to prioritize and create tasks. Designers had to pro-
vide new designs for new flows. And we, the UX writers, had to write
and rewrite thousands of error messages.

We should be asking more questions. It used to be really com-
mon for a developer to say to us, “Hey, we need a generic error
message here. Can you add one?” And we would say yes, thinking
it would be a fallback or rare message. We didn’t often stop to ask

Success at Scale298

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

questions like, “Why are users seeing this?” and “What is happen-
ing in the background?”

We missed a learning opportunity. Unfortunately, we were re-
active instead of proactive here. If this effort had been strategically
planned, it could have been an amazing learning opportunity for
junior writers in particular. Instead, we were scrambling to write
and rewrite messages without much strategic thought.

We were being a bad friend. At Wix, we have the mantra, “Write it
like you’re talking to a friend.” We really believe in empathizing with
the user, and being a friend with them throughout their process. But
it turns out that we were more like that friend who loves to gossip
but doesn’t pick up the phone when life gets hard. That is not the
friend we want to be, so we had to really dig deep and admit that we
weren’t doing the best we could.

When we work together, we build better products. It’s cheesy,
but it’s true.

What We’ve Changed in Our Process

Established a cross-functional team to focus on error handling.
This team is made up of senior product managers, front-end and
back-end developers, UX designers, and UX writers. Their goal is
to make sure proper error handling is part of the product life cycle,
not an afterthought.

View it as a shared responsibility. Everyone is responsible for
making sure we’re handling errors properly. Product managers
are expected to place more emphasis on errors and edge cases,

299Wix: When Life Gives You Lemons, Write Better Error Messages

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

not just happy flows. Developers are expected to investigate and
document errors according to platform-specific guidelines. Data
scientists are expected to do better analysis on errors so we can
track the events properly.

Wix Key Takeaways
Effective error handling requires clear, empathetic, and

actionable error messages, and it’s a collaborative effort

that involves the entire team to enhance user experience.

 Avoid bad practices in error messages: Bad error messages use
inappropriate tone, technical jargon, pass blame, or are too
generic. These practices can confuse or frustrate users.

 Characteristics of good error messages: Good error messages
explain what happened and why, provide reassurance, display
empathy, help users fix the issue, and offer a way to contact
customer care if needed.

 Cross-functional collaboration: Changing thousands of error
messages at Wix required collaboration across disciplines, in-
cluding developers, product managers, designers, and writers.

 Learning from mistakes: The reactive approach to changing
error messages was a missed learning opportunity. Being pro-
active and strategic could have provided valuable experience,
especially for junior writers.

 Ongoing review and empowerment: Wix established ongoing
review processes and empowered UX writers to challenge ge-
neric errors, viewing error handling as a shared responsibility
and part of the product life cycle

Success at Scale300

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Review errors one month after launch. Sometimes, especial-
ly with a brand new product, we don’t even know what errors to
expect. So we might have to launch with generic errors, but now we
have a procedure where we review the errors occurring one month
after launch. This allows us to see what really are the biggest errors
and write content specifically for those.

Ongoing review process. As writers, we know everything can
always be optimized. So we’re constantly reviewing our errors, even
the ones we just updated recently.

UX writers are empowered to challenge generic errors. In case
a product manager or developer ever says, “Let’s just use this gener-
ic error message in all
cases,” we now have the
power to say no. The
CEO of the company has
said generic errors are
not acceptable, so we’re
not going to write them without more investigation and understand-
ing of the problem. The power lies with us!

All in all, we changed thousands of error messages by working togeth-
er with our colleagues. It was hard work and we all had a drink or two
at the end of it. But it was the right thing to do for our users, and the
only way to truly live up to our value of putting the user first.

As writers, we know everything

can always be optimized. So we’re

constantly reviewing our errors, even

the ones we just updated recently.

301Wix: When Life Gives You Lemons, Write Better Error Messages

Our Latest Books
Crafted with care for you, and for the Web!

Smashing LibrarySmashing Library
Expert authors & timely topics
for truly Smashing Readers.

See all of our titles at smashed.by/library

TypeScript in
50 Lessons

by Stefan Baumgartner

The Ethical Design
Handbook

by Trine Falbe,
Martin Michael Frederiksen
and Kim Andersen

Click!
How to Encourage
Clicks Without
Shady Tricks

by Paul Boag

Image
Optimization

by Addy Osmani

How to Encourage Clicks

Without Shady Tricks

by Paul Boag

b
y P

aul B
oag

H
o

w
 to

 E
n

c
o

u
ra

g
e

 C
lic

ks

W
ith

o
u

t S
h

a
d

y Tric
ks

Paul Boag has been working in the web since 1993. He is a user

experience strategist who helps companies make use of digital to better

serve connected consumers. Paul also hosts the award-winning user

experience podcast at boagworld.com. He is a regular speaker at

conferences and author of four other books including Digital Adaptation.

This is a gentle and timeless journey through the

tenets of TypeScript. If you’re a JavaScript programmer

looking for a clear primer text to help you become

immediately productive with TypeScript, this is the

book you’re looking for. It’s filled with practical

examples and clear technical explanations.”

—Natalie Marleny
Natalie Marleny, Application Engineer

Stefan walks you through everything from basic types

to advanced concepts like the infer keyword in a clear

and easy to understand way. The book is packed with

many real-world examples and great tips, transforming

you into a TypeScript expert by the end of it.

Highly recommended read!”

—Marvin Hagemeister

Marvin Hagemeister, Creator of Preact-Devtools

Stefan Baumgartner is a software architect

based in Austria. He has published online

since the late 1990s, writing for Manning,

Smashing Magazine, and A List Apart.

He organizes ScriptConf, TSConf:EU, and

DevOne in Linz, and co-hosts the German-

language Working Draft podcast.

9 78394
5 74990

6

“

“

Trine Falbe Kim Andersen Martin Michael Frederiksen

Touch Design
for Mobile
Interfaces

by Steven Hoober

Understanding
Privacy

by Heather Burns

Understanding

Privacy
Heather Burns

put

your

users

first

a

better

web

and

make

Understanding

Privacy

how

to

put

your

users

first

a

better

web

and

build

Heather Burns

Heather Burns is a tech policy professional and

advocate for an open Internet which upholds

the human rights to privacy, accessibility, and

freedom of expression. She has educated

thousands of professionals on a healthy

approach to protecting people and their data.

Privacy can seem complicated but it doesn’t need to be.

Heather covers all you need to know with astonishing

clarity. This book gives you all you need to understand

and handle privacy work, and makes for great teaching

material that experts can rely on.”
—Robin Berjon,

Robin Berjon, berjon.com

“

No more excuses for overlooking privacy: Heather’s

guide is an essential toolbox for user-centric product

developers and for anyone interested in building a

better web. Expect the full sweep, from historical

context and core concepts in US and EU privacy

practice, to practical tips and advice – dispensed in

highly readable style.”
—Natasha Lomas,

Natasha Lomas, TechCrunch

“

Heather’s broad knowledge, experience, and ability to

articulate these complex matters is nothing short of

astounding. I’ve learned an amazing amount from her.

She always informs and entertains, and she does so

from the heart.” —Mike Little,
Mike Little, Co-Founder of WordPress

“

U
nd

erstand
ing

 P
rivacy

H
eather

B
urns

The world is a miracle. So are you.

Thanks for being smashing.

Case studies from the web’s finest products
Curated by Addy Osmani

A
ddy

O
sm

ani

“It's rare to find one resource with this many real-world case studies.
I highly recommend the book for any web developer. A true gem!”

– Ahmad Shadeed, Design Engineer

Provide an inclusive
web experience.

ACCESSIBILITY

Optimize and sustain
high site speeds.

PERFORMANCE
Build reliable, installable,
feature- rich applications.

CAPABILITIES

Create a culture where
people and projects thrive.

DEVELOPER EXPERIENCE

SUCCESS AT SCALE

Addy Osmani is an engineering leader
working on Google Chrome. He leads up
Chrome’s Developer Experience organization,
helping reduce the friction for developers to
build great user experiences.

9 783910 835009

is a curated collection of case studies from

successful large-scale web projects.

Discover practical takeaways and insights to

achieve great results for projects large and small.

SUCCESS AT SCALE

Provide an inclusive
web experience.

ACCESSIBILITY

Optimize and sustain
high site speeds.

PERFORMANCE
Build reliable, installable,
feature- rich applications.

CAPABILITIES

Create a culture where
people and projects thrive.

DEVELOPER EXPERIENCE

	SAS-paginated-cover.pdf
	SAS-Front-Matter-PRINT-sample.pdf
	SAS-Performance-PRINT-sample.pdf
	SAS-Capabilities-PRINT-sample.pdf
	SAS-Accessibility-PRINT-sample.pdf
	SAS-DevEx-PRINT-sample.pdf
	SAS-paginated-back-cover.pdf

