

Imprint
© 2014 Smashing Magazine GmbH, Freiburg, Germany
ISBN (PDF): 978-3-94454087-0
Cover Design: Veerle Pieters
eBook Strategy and Editing: Vitaly Friedman
Technical Editing: Cosima Mielke
Planning and Quality Control: Vitaly Friedman, Iris Lješnjanin
Tools: Elja Friedman
Syntax Highlighting: Prism by Lea Verou
Idea & Concept: Smashing Magazine GmbH

IMPRINT

2

About This Book
Slow loading times break the user experience of any web-
site—no matter how well crafted it might be. In fact, it
only takes three seconds until users lose their interest in
a site if they don’t get a response immediately. If another
site happens to be 250ms faster than yours, then users are
more inclined to switch to a competitor’s website in no
time. Web fonts, heavy JavaScript, third-party widgets —
all of them can sum up to become a real performance bot-
tleneck. Nevertheless, tracking that down does not only
improve loading times but also results in a much snappi-
er experience and a higher user engagement.

In this eBook, we’ve compiled an entire selection of
front-end and server-side techniques that will help you
tackle such bottlenecks. Find out how to speed up exist-
ing websites, build high-performance sites (for both mo-
bile and desktop), and prepare them for heavy-load situa-
tions. Furthermore, you’ll learn more about how perfor-
mance improvements and a 97–99 Google PageSpeed
score were achieved on Smashing Magazine, as well as
how optimization strategies can enhance real-life projects
by taking a closer look at Pinterest’s paint performance
case study. With the help of this eBook, you’ll notice that
it’s high time to dig deeper into your own site and exam-
ine it closely. Why don’t you polish it up and make it even
better than it already is!

3

TABLE OF CONTENTSTABLE OF CONTENTS

Improving Smashing Magazine’s Performance:
A Case Study.. 5
How To Speed Up Your WordPress Website50
You May Be Losing Users If Responsive Web Design Is
Your Only Mobile Strategy ... 64
How To Make Your Websites Faster On Mobile
Devices ... 86
Creating High-Performance Mobile Websites115
Don’t Get Crushed By The Load: Optimization
Techniques And Strategies... 137
Speed Up Your Mobile Website With Varnish................. 157
Cache Invalidation Strategies With Varnish Cache........169
Gone In 60 Frames Per Second: A Pinterest Paint
Performance Case Study... 179
About The Authors ... 205

IMPRINT

4

Improving Smashing
Magazine’s Performance: A
Case Study

BY VITALY FRIEDMANBY VITALY FRIEDMAN ❧❧

Improvement is a matter of steady, ongoing iteration.
When we redesigned Smashing Magazine back in 2012,
our main goal was to establish trustworthy branding that
would reflect the ambitious editorial direction of the
magazine. We did that primarily by focusing on crafting
a delightful reading experience. Over the years, our focus
hasn’t changed a bit; however, that very asset that helped
to establish our branding turned into a major perfor-
mance bottleneck.

Good Old-Fashioned Website Decay
Looking back at the early days of our redesign, some of
our decisions seem to be quick’n’dirty fixes rather than
sound long-term solutions. Our advertising constraints
pushed us to compromises. Legacy browsers drove us to
dependencies on (relatively) heavy JavaScript libraries.
Our technical infrastructure led us to heavily customized
WordPress plugins and complex PHP logic. With every
new feature added, our technical debt grew, and our style
sheets, markup and JavaScript weren’t getting any leaner.

Sound familiar? Admittedly, responsive web design as
a technique often gets a pretty bad rap for bloating web-
sites and making them difficult to maintain. (Not that

5

non-responsive websites are any different, but that’s an-
other story.) In practice, all assets on a responsive website
will show up pretty much everywhere1: be it a slow smart-
phone, a quirky tablet or a fancy laptop with a Retina
screen. And because media queries merely provide the
ability to respond to screen dimensions—and do not,
rather, have a more local, self-contained scope—adding a
new feature and adjusting the reading experience poten-
tially means going through each and every media query
to prevent inconsistencies and fix layout issues.

“MOBILE FIRST” MEANS “ALWAYS MOBILE“MOBILE FIRST” MEANS “ALWAYS MOBILE
FIRST”FIRST”

When it comes to setting priorities for the content and
functionality on a website, “mobile first” is one of those
difficult yet incredibly powerful constraints that help you
focus on what really matters, and identify critical compo-
nents of your website. We discovered that designing mo-
bile first is one thing; building mobile first is an entirely
different story. In our case, both the design and develop-
ment phases were heavily mobile first, which helped us
to focus tightly on the content and its presentation. But
while the design process was quite straightforward, im-
plementation proved to be quite difficult.

Because the entire website was built mobile first, we
quickly realized that adding or changing components on
the page would entail going through the mobile-first ap-

1. http://www.guypo.com/mobile/
performance-implications-of-responsive-design-book-contribution/

IMPROVING SMASHING MAGAZINE’S PERFORMANCE: A CASE STUDY

6

http://www.guypo.com/mobile/performance-implications-of-responsive-design-book-contribution/
http://www.guypo.com/mobile/performance-implications-of-responsive-design-book-contribution/
http://www.guypo.com/mobile/performance-implications-of-responsive-design-book-contribution/
http://www.guypo.com/mobile/performance-implications-of-responsive-design-book-contribution/
http://www.guypo.com/mobile/performance-implications-of-responsive-design-book-contribution/

proach for every single (minor and major) design deci-
sion. We’d design a new component in a mobile view
first, and then design an “extended” view for the situa-
tions when more space is available. Often that meant ad-
justing media queries with every single change, and more
often it meant adding new stuff to style sheets and to the
markup to address new issues that came up.

We found ourselves trapped: development and mainte-
nance were taking a lot of time, the code base was full of
minor and major fixes, and the infrastructure was becom-
ing too slow. We ended up with a code base that had be-

Shortly after the new SmashingMag redesign went live, we ran into per-
formance issues. An article by Tim Kadlec from 20122 shows just that.

2. http://timkadlec.com/2012/01/work-to-be-done/

7

http://timkadlec.com/2012/01/work-to-be-done/
http://timkadlec.com/2012/01/work-to-be-done/
http://timkadlec.com/2012/01/work-to-be-done/
http://timkadlec.com/2012/01/work-to-be-done/
http://timkadlec.com/2012/01/work-to-be-done/

come bloated before the redesign was even released
—very bloated3, in fact.

Performance Issues
In mid-2013, our home page weighed 1.4 MB and pro-
duced 90 HTTP requests. It just wasn’t performing well.
We wanted to create a remarkable reading experience on
the website while avoiding the flash of unstyled text
(FOUT), so web fonts were loaded in the header and,
hence, were blocking the rendering of content (actually
it’s correct behaviour according to the spec4, designed to
avoid multiple repaints and reflows.) jQuery was required
for ads to be displayed, and a few JavaScripts depended
on jQuery, so they all were blocking rendering as well.
Ads were loaded and rendered before the content to ensure
that they appeared as quickly as possible.

Images delivered by our ad partners were usually
heavy and unoptimized, slowing down the page further.
We also loaded Respond.js and Modernizr to deal with
legacy browsers and to enhance the experience for smart
browsers. As a result, articles were almost inaccessible on
slow and unstable networks, and the start rendering time
on mobile was disappointing at best.

It wasn’t just the front-end that was showing its age
though. The back-end wasn’t getting any better either. In
2012 we were playing with the idea of having fully inde-
pendent sections of the magazine—sections that would

3. http://timkadlec.com/2012/01/work-to-be-done/
4. http://www.w3.org/TR/resource-priorities/#intro-download-priority

IMPROVING SMASHING MAGAZINE’S PERFORMANCE: A CASE STUDY

8

http://timkadlec.com/2012/01/work-to-be-done/
http://timkadlec.com/2012/01/work-to-be-done/
http://timkadlec.com/2012/01/work-to-be-done/
http://www.w3.org/TR/resource-priorities/#intro-download-priority
http://www.w3.org/TR/resource-priorities/#intro-download-priority
http://www.w3.org/TR/resource-priorities/#intro-download-priority
http://timkadlec.com/2012/01/work-to-be-done/
http://timkadlec.com/2012/01/work-to-be-done/
http://www.w3.org/TR/resource-priorities/#intro-download-priority
http://www.w3.org/TR/resource-priorities/#intro-download-priority

live their own lives, evolving and growing over time as in-
dependent WordPress installations, with custom features
and content types that wouldn’t necessarily be shared
across all sections.

Because WordPress multi-install wasn’t available at the
time, we ended up with six independent, autonomous
WordPress installs with six independent, autonomous
style sheets. Those installs were connected to 6 × 2 data-

Yes, we do enjoy a quite savvy user base, so optimization for IE8 is really
not an issue.

9

bases (a media server and a static content server). We ran
into dilemmas. For example, what if an author wrote for
two sections and we’d love to show their articles from
both sections on one single author’s bio page? Well, we’d
need to somehow pull articles from both installs and add
redirects for each author’s page to that one unified page,
or should we just be using one of those pages as a “host”?
Well, you know where this is going: increasing complexi-
ty and increasing maintenance costs. In the end, the sec-
tions didn’t manage to evolve significantly—at least not
in terms of content—yet we had already customized tech-
nical foundation of each section, adding to the CSS dust
and PHP complexity.

(Because we had outsourced WordPress tasks, some
plugins depended on each other. So, if we were to deacti-
vate one, we might have unwittingly disabled two or
three others in the process, and they would have to be
turned back on in a particular order to work properly.
There were even differences in the HTML outputted by
the PHP templates behind the curtains, such as classes
and IDs that differed from one installation to the next. It’s
no surprise that this setup made development a bit frus-
trating.)

The traffic was stagnant, readers kept complaining
about the performance on the site and only a very small
portion of users visited more than 2 pages per visit. The
visual feedback when browsing the site was visible and
surely wasn’t instant, and this lag has been driving read-
ers away from the site to Instapaper and Pocket—both on
mobile and desktop. We knew that because we asked our

IMPROVING SMASHING MAGAZINE’S PERFORMANCE: A CASE STUDY

10

readers, and the feedback was quite clear (and a bit frus-
trating).

It was time to push back—heavily, with a major refac-
toring of the code base. We looked closely under the
hood, discovering a few pretty scary (and nasty) things,
and started fixing issues, one by one. It took us quite a bit
of time to make things right, and we learned quite a few
things along the way.

Switching Gears
Up until mid-2013, we weren’t using a CSS preprocessor,
nor any build tools. Good long-term solutions require a
good long-term foundation, so the first issues we tackled
were tooling and the way the code base was organized.
Because a number of people had been working on the
code base over the years, some things proved to be rather
mysterious… or challenging, to say the least.

We started with a code inventory, and we looked thor-
oughly at every single class, ID and CSS selector. Of
course, we wanted to build a system of modular compo-
nents, so the first task was to turn our seven large CSS
files into maintainable, well-documented and easy-to-
read modules. At the time, we’d chosen LESS, for no par-
ticular reason, and so our front-end engineer Marco5

started to rewrite CSS and build a modular, scalable archi-
tecture. Of course, we could very well have used Sass in-
stead, but Marco felt quite comfortable with LESS at the
time.

5. https://twitter.com/nice2meatu

11

https://twitter.com/nice2meatu
https://twitter.com/nice2meatu
https://twitter.com/nice2meatu
https://twitter.com/nice2meatu
https://twitter.com/nice2meatu

With a new CSS architecture, Grunt6 as a build tool
and a few7 time-saving8 Grunt9 tasks10, the task of main-
taining the entire code base became much easier. We set
up a brand new testing environment, synced up every-
thing with GitHub, assigned roles and permissions, and
started digging. We rewrote selectors, reauthored
markup, and refactored and optimized JavaScript. And
yes, it took us quite some time to get things in order, but
it really wouldn’t have been so difficult if we hadn’t had a
number of very different stylesheets to deal with.

THE BIG BACK-END CLEANUPTHE BIG BACK-END CLEANUP

With the introduction of Multisite, creating a single
WordPress installation from our six separate installations
became a necessary task for our friends at Inpsyde11. Over
the course of five months, Christian Brückner and
Thomas Herzog cleaned up the PHP templates, kicked
unnecessary plugins into orbit, rewrote plugins we had to
keep and added new ones where needed. They cleared the
databases of all the clutter that the old plugins had creat-
ed—one of the databases weighed in at 70 GB (no, that’s
not a typo; we do mean gigabytes)—merged all of the
databases into one, and then created a single fresh and,
most importantly, maintainable WordPress Multisite in-
stallation.

6. http://www.smashingmagazine.com/2013/10/29/get-up-running-grunt/
7. https://github.com/gruntjs/grunt-contrib-less
8. https://github.com/nDmitry/grunt-autoprefixer
9. https://github.com/gruntjs/grunt-contrib-cssmin

10. https://github.com/gruntjs/grunt-contrib-watch
11. http://inpsyde.com/en/

IMPROVING SMASHING MAGAZINE’S PERFORMANCE: A CASE STUDY

12

http://www.smashingmagazine.com/2013/10/29/get-up-running-grunt/
http://www.smashingmagazine.com/2013/10/29/get-up-running-grunt/
http://www.smashingmagazine.com/2013/10/29/get-up-running-grunt/
https://github.com/gruntjs/grunt-contrib-less
https://github.com/gruntjs/grunt-contrib-less
https://github.com/gruntjs/grunt-contrib-less
https://github.com/nDmitry/grunt-autoprefixer
https://github.com/nDmitry/grunt-autoprefixer
https://github.com/nDmitry/grunt-autoprefixer
https://github.com/gruntjs/grunt-contrib-cssmin
https://github.com/gruntjs/grunt-contrib-cssmin
https://github.com/gruntjs/grunt-contrib-cssmin
https://github.com/gruntjs/grunt-contrib-watch
https://github.com/gruntjs/grunt-contrib-watch
https://github.com/gruntjs/grunt-contrib-watch
http://inpsyde.com/en/
http://inpsyde.com/en/
http://inpsyde.com/en/
http://www.smashingmagazine.com/2013/10/29/get-up-running-grunt/
http://www.smashingmagazine.com/2013/10/29/get-up-running-grunt/
https://github.com/gruntjs/grunt-contrib-less
https://github.com/gruntjs/grunt-contrib-less
https://github.com/nDmitry/grunt-autoprefixer
https://github.com/nDmitry/grunt-autoprefixer
https://github.com/gruntjs/grunt-contrib-cssmin
https://github.com/gruntjs/grunt-contrib-cssmin
https://github.com/gruntjs/grunt-contrib-watch
https://github.com/gruntjs/grunt-contrib-watch
http://inpsyde.com/en/
http://inpsyde.com/en/

The speed boost from those optimizations was re-
markable. We are talking about 400 to 500 milliseconds
of improvement by avoiding sub-domain redirects and
unifying the code base and the back-end code. Those redi-
rects12 are indeed a major performance culprit, and just
avoiding them is one of those techniques that usually
boost performance significantly because you avoid full
DNS lookups, improve time to first byte and reduce
round trips on the network.

Thomas and Christian also refactored our entire
WordPress theme according to the coding standard of
their own theme architecture, which is basically a sophis-
ticated way of writing PHP based on the WordPress stan-
dard. They wrote custom drop-ins that we use to display
content at certain points in the layout. Writing the PHP
strictly according to WordPress’ official API felt like get-
ting out of a horse-drawn carriage and into a race car. All
modifications were done without ever touching Word-
Press’ core, which is wonderful because we’ll never have
to fear updating WordPress itself anymore.

We migrated the installations during a slow weekend
in mid-April 2014. It was a huge undertaking, and our
server had a few hiccups during the process. We brought
together over 2500 articles, including about 15,000 im-
ages, all spread over six databases, which also had a few
major inconsistencies. While it was a very rough start at
first—a lot of redirects had to be set up, caching issues on
our server piled up, and some articles got lost between

12. https://twitter.com/markodugonjic/statuses/478980625215782912

13

https://twitter.com/markodugonjic/statuses/478980625215782912
https://twitter.com/markodugonjic/statuses/478980625215782912
https://twitter.com/markodugonjic/statuses/478980625215782912
https://twitter.com/markodugonjic/statuses/478980625215782912
https://twitter.com/markodugonjic/statuses/478980625215782912
https://twitter.com/markodugonjic/statuses/478980625215782912

the old and new installations—the result was well worth
the effort.

Our editorial team, primarily Iris13, Melanie14 and
Markus15, worked very hard to bring those lost articles
back to life by analyzing our 404s with Google Webmas-
ter Tools. We spent a few weekends to ensure that every
single article was recovered and remains accessible. Los-
ing articles, including their comments, was simply unac-
ceptable.

We’ve also marked a few millions spam comments across all the sections
of the magazine. And before you ask: no, we did not import them into the

new install.

13. https://twitter.com/smash_it_on
14. https://twitter.com/mel_in_media
15. https://twitter.com/indysigner

IMPROVING SMASHING MAGAZINE’S PERFORMANCE: A CASE STUDY

14

https://twitter.com/smash_it_on
https://twitter.com/smash_it_on
https://twitter.com/smash_it_on
https://twitter.com/mel_in_media
https://twitter.com/mel_in_media
https://twitter.com/mel_in_media
https://twitter.com/indysigner
https://twitter.com/indysigner
https://twitter.com/indysigner
https://twitter.com/smash_it_on
https://twitter.com/smash_it_on
https://twitter.com/mel_in_media
https://twitter.com/mel_in_media
https://twitter.com/indysigner
https://twitter.com/indysigner

We know well how much time it takes for a good arti-
cle to get published, and we have a lot of respect for au-
thors and their work, and ensuring that the content re-
mains online was a matter of respect for the work pub-
lished. It took us a few weeks to get there and it wasn’t
the most enjoyable experience for sure, but we used the
opportunity to introduce more consistency in our infor-
mation architecture and to adjust tags and categories ap-
propriately. (Ah, if you do happen to find an article that
has gotten lost along the way, please do let us know16 and
we’ll fix it right away. Thanks!)

Front-End Optimization
In April 2014, once the new system was in place and had
been running smoothly for a few days, we rewrote the
LESS files based on what was left of all of the installs.
Streamlining the classes for posts and pages, getting rid
of all unneeded IDs, shortening selectors by lowering
their specificity, and rooting out anything in the CSS we
could live without crunched the CSS from 91 KB down to
a mere 45 KB.

Once the CSS code base was in proper shape, it was
time to reconsider how assets are loaded on the page and
how we can improve the start rendering time beyond
having clean, well-structured code base. Given the night-
mare we experienced with the back-end previously, you
might assume that improving performance now would
have been a complex, time-consuming task, but actually it

16. http://www.twitter.com/smashingmag

15

http://www.twitter.com/smashingmag
http://www.twitter.com/smashingmag
http://www.twitter.com/smashingmag
http://www.twitter.com/smashingmag
http://www.twitter.com/smashingmag

was quite a bit easier than that. Basically, it was just a
matter of getting our priorities right by optimizing the
critical rendering path.

The key to improving performance was to focus on
what matters most: the content, and the fastest way for
readers to actually start reading our articles on their de-
vices. So over a course of a few months we kept repriori-
tizing. With every update, we introduced mini-optimiza-
tions based on a very simple, almost obvious principle:
optimize the delivery of content, and defer the
rest—without any compromises, anywhere.

Our optimizations were heavily influenced by the
work done by Scott Jehl17, as well as The Guardian18 and
the BBC19 teams (both of which open-sourced their work).
While Scott has been sharing valuable insight20 into the
front-end techniques that Filament Group was using, the
BBC and The Guardian helped us to define and refine the
concept of the core experience on the website and use it
as a baseline. A shared main goal was to deliver the con-
tent as fast as possible to as many people as possible re-
gardless of their device or network capabilities, and en-
hance the experience with progressive enhancement for
capable browsers.

However, historically we haven’t had a lot of
JavaScript or complex interactions on Smashing Maga-
zine, so we didn’t feel that it was necessary to introduce

17. https://github.com/scottjehl
18. https://github.com/guardian
19. https://github.com/BBC-News
20. http://filamentgroup.com/lab/performance-rwd.html

IMPROVING SMASHING MAGAZINE’S PERFORMANCE: A CASE STUDY

16

https://github.com/scottjehl
https://github.com/scottjehl
https://github.com/scottjehl
https://github.com/guardian
https://github.com/guardian
https://github.com/guardian
https://github.com/BBC-News
https://github.com/BBC-News
https://github.com/BBC-News
http://filamentgroup.com/lab/performance-rwd.html
http://filamentgroup.com/lab/performance-rwd.html
http://filamentgroup.com/lab/performance-rwd.html
https://github.com/scottjehl
https://github.com/scottjehl
https://github.com/guardian
https://github.com/guardian
https://github.com/BBC-News
https://github.com/BBC-News
http://filamentgroup.com/lab/performance-rwd.html
http://filamentgroup.com/lab/performance-rwd.html

complex loading logic with JavaScript preloaders. Howev-
er, being a content-focused website, we did want to re-
duce the time necessary for the articles to start displaying
as far as humanly possible.

PERFORMANCE BUDGET: SPEED INDEX <= 1000PERFORMANCE BUDGET: SPEED INDEX <= 1000

How fast is fast enough?21 Well, that’s a tough question to
answer. In general, it’s quite difficult to visualize perfor-
mance and explain why every millisecond counts — un-
less you have hard data.

At the same time, falling into trap of absolutes and rely-
ing on not truly useful performance metrics is easy. In
the past, the most commonly cited performance metric

A nice way of visualizing performance is to use WebPageTest to generate
an actual video of the page loading and run a test between two competing
websites. Besides, the Speed Index metric22 often proves to be very useful.

21. http://timkadlec.com/2014/01/fast-enough/
22. https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/

speed-index

17

http://timkadlec.com/2014/01/fast-enough/
http://timkadlec.com/2014/01/fast-enough/
http://timkadlec.com/2014/01/fast-enough/
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
http://timkadlec.com/2014/01/fast-enough/
http://timkadlec.com/2014/01/fast-enough/
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index

was average loading time. However, on its own, average
loading time isn’t that helpful because it doesn’t tell you
much about when a user can actually start using the web-
site. This is why talking about “fast enough” is often so
tricky.

Different components require different amounts of
time to load, yet some components of the page are more
important than others. E.g. you don’t need to load the foot-
er content fast, but it’s a good idea to render the visible por-
tion of the page fast. You know where it’s heading: of
course, we are talking about the “above the fold” view
here. As Ilya Grigorik once said23, “We don’t need to ren-
der the entire page in one second, [just] the above the fold
content.” To achieve that, according to Scott’s research
and Google’s test results, it’s helpful to set ambitious per-
formance goals:

• On WebPageTest24, aim for a Speed Index25 value of un-
der 1000.

• Ensure that all HTML, CSS and JavaScript fit within the
first 14 KB.

What does it mean and why are they important? Accord-
ing to HCI research, “for an application to feel instant, a
perceptible response to user input must be provided with-
in hundreds of milliseconds26. After a second or more, the

23. http://www.lukew.com/ff/entry.asp?1756
24. http://www.webpagetest.org/
25. https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/

speed-index

IMPROVING SMASHING MAGAZINE’S PERFORMANCE: A CASE STUDY

18

http://www.lukew.com/ff/entry.asp?1756
http://www.lukew.com/ff/entry.asp?1756
http://www.lukew.com/ff/entry.asp?1756
http://www.webpagetest.org/
http://www.webpagetest.org/
http://www.webpagetest.org/
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
http://chimera.labs.oreilly.com/books/1230000000545/ch10.html#SPEED_PERFORMANCE_HUMAN_PERCEPTION
http://chimera.labs.oreilly.com/books/1230000000545/ch10.html#SPEED_PERFORMANCE_HUMAN_PERCEPTION
http://chimera.labs.oreilly.com/books/1230000000545/ch10.html#SPEED_PERFORMANCE_HUMAN_PERCEPTION
http://chimera.labs.oreilly.com/books/1230000000545/ch10.html#SPEED_PERFORMANCE_HUMAN_PERCEPTION
http://www.lukew.com/ff/entry.asp?1756
http://www.lukew.com/ff/entry.asp?1756
http://www.webpagetest.org/
http://www.webpagetest.org/
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index

user’s flow and engagement with the initiated task feels
broken.” With the first goal, we are trying to ensure an in-
stant response on our website. It refers to the so-called
Speed Index metric for the start rendering time—the aver-
age time (in ms) at which visible parts of the page are dis-
played, or become accessible. So the first goal basically re-
flects that a page starts rendering under 1000ms, and yes,
it’s a quite difficult challenge to take on.

Ilya Grigorik’s book High Performance Browser Networking27 is a very
helpful guide with useful guidelines and advice on making websites fast.

And it’s available as a free HTML book, too.

26. http://chimera.labs.oreilly.com/books/1230000000545/
ch10.html#SPEED_PERFORMANCE_HUMAN_PERCEPTION

27. http://chimera.labs.oreilly.com/books/1230000000545

19

http://chimera.labs.oreilly.com/books/1230000000545
http://chimera.labs.oreilly.com/books/1230000000545
http://chimera.labs.oreilly.com/books/1230000000545
http://chimera.labs.oreilly.com/books/1230000000545/ch10.html#SPEED_PERFORMANCE_HUMAN_PERCEPTION
http://chimera.labs.oreilly.com/books/1230000000545/ch10.html#SPEED_PERFORMANCE_HUMAN_PERCEPTION
http://chimera.labs.oreilly.com/books/1230000000545
http://chimera.labs.oreilly.com/books/1230000000545

The second goal can help in achieving the first one. The
value of 14 KB has been measured empirically28 by Google
and is the threshold for the first package exchanged be-
tween a server and client via towers on a cellular connec-
tion. You don’t need to include images within 14 Kb, but
you might want to deliver the markup, style sheets and
any JavaScript required to render the visible portion of
the page in that threshold. Of course, in practice this val-
ue can only realistically be achieved with gzip compres-
sion.

By combining the two goals, we basically defined a
performance budget that we set for the website—a
threshold for what was acceptable. Admittedly, we didn’t
concern ourselves with the start rendering time on differ-
ent devices on various networks, mainly because we real-
ly wanted to push back as far as possible everything that
isn’t required to start rendering the page. So, the ideal re-
sult would be a Speed Index value that is way lower than
the one we had set—as low as possible, actually—in all
settings and on all connections, both shaky and stable,
slow and fast. This might sound naive, but we wanted to
figure out how fast we could be, rather than how fast we
should be. We did measure start rendering time for first
and subsequent page loads, but we did that much later,
after optimizations had already been done, and just to
keep track of issues on the front-end.

Our next step would be to integrate Tim Kadlec’s Perf-
Budget Grunt task29 to incorporate the performance bud-

28. https://www.youtube.com/watch?v=YV1nKLWoARQ
29. http://timkadlec.com/2014/05/performance-budgeting-with-grunt/

IMPROVING SMASHING MAGAZINE’S PERFORMANCE: A CASE STUDY

20

https://www.youtube.com/watch?v=YV1nKLWoARQ
https://www.youtube.com/watch?v=YV1nKLWoARQ
https://www.youtube.com/watch?v=YV1nKLWoARQ
http://timkadlec.com/2014/05/performance-budgeting-with-grunt/
http://timkadlec.com/2014/05/performance-budgeting-with-grunt/
http://timkadlec.com/2014/05/performance-budgeting-with-grunt/
http://timkadlec.com/2014/05/performance-budgeting-with-grunt/
https://www.youtube.com/watch?v=YV1nKLWoARQ
https://www.youtube.com/watch?v=YV1nKLWoARQ
http://timkadlec.com/2014/05/performance-budgeting-with-grunt/
http://timkadlec.com/2014/05/performance-budgeting-with-grunt/

get right into the build process and, thus, run every new
commit against WebPagetest’s performance benchmark.
If it fails, we know that a new feature has slowed us
down, so we probably have to reconsider how it’s imple-
mented to fit it within our budget, or at least we know
where we stand and can have meaningful discussions
about its impact on the overall performance.

PRIORITIZATION AND SEPARATION OFPRIORITIZATION AND SEPARATION OF
CONCERNSCONCERNS

If you’ve been following The Guardian‘s work recently,
you might be familiar with the strict separation of con-
cerns that they introduced30 during the major 2013 rede-
sign. The Guardian separated31 its entire content into
three main groups:

• Core content
Essential HTML and CSS, usable non-JavaScript-en-
hanced experience

• Enhancement
JavaScript, geolocation, touch support, enhanced CSS,
web fonts, images, widgets

• Leftovers
Analytics, advertising, third-party content

30. https://speakerdeck.com/andyhume/
anatomy-of-a-responsive-page-load-whiskyweb-2013

31. https://vimeo.com/77967591

21

https://speakerdeck.com/andyhume/anatomy-of-a-responsive-page-load-whiskyweb-2013
https://speakerdeck.com/andyhume/anatomy-of-a-responsive-page-load-whiskyweb-2013
https://speakerdeck.com/andyhume/anatomy-of-a-responsive-page-load-whiskyweb-2013
https://vimeo.com/77967591
https://vimeo.com/77967591
https://vimeo.com/77967591
https://speakerdeck.com/andyhume/anatomy-of-a-responsive-page-load-whiskyweb-2013
https://speakerdeck.com/andyhume/anatomy-of-a-responsive-page-load-whiskyweb-2013
https://vimeo.com/77967591
https://vimeo.com/77967591

Once you have defined, confirmed and agreed upon these
priorities, you can push performance optimization quite
far. Just by being very specific about each type of content
you have and by clearly defining what “core content” is,
you are able to load Core content as quickly as possible,
then load Enhancements once the page starts rendering (af-
ter the DOMContentLoaded event fires), and then load Left-
overs once the page has fully rendered (after the load
event fires).

The main principle here of course is to strictly sepa-
rate the loading of assets throughout these three phases,
so that the loading of the Core content should never be
blocked by any resources grouped in Enhancement or Left-
overs (we haven’t achieved the perfect separation just yet,
but we are on it). In other words, you try to shorten the

A strict separation of concerns, or loading priorities, as defined by The
Guardian team.

IMPROVING SMASHING MAGAZINE’S PERFORMANCE: A CASE STUDY

22

critical rendering path that is required for the content to
start displaying by pushing the content down the line as
fast as possible and deferring pretty much everything
else.

We followed this same separation of concerns, group-
ing our content types into the same categories and identi-
fying what’s critical, what’s important and what’s sec-
ondary. In our case, we identified and separated content
in this way:

• Core content
Only essential HTML and CSS

• Enhancement
JavaScript, code syntax highlighter, full CSS, web fonts,
comment ratings

• Leftovers
Analytics, advertising, Gravatars

Once you have this simple content/functionality priority
list, improving performance is becoming just a matter of
adding a few snippets for loading assets to properly re-
flect those priorities. Even if your server logic forces you
to load all assets on all devices, by focusing on content de-
livery first, you ensure that the content is accessible
quickly, while everything else is deferred and loaded in
the background, after the page has started rendering.
From a strategic perspective, the list also reflects your
technical debt, as well as critical issues that slow you
down. Indeed, we had quite a list of issues to deal with al-
ready at this point, so it transformed fairly quickly into a

23

list of content priorities. And a rather tricky issue sat
right at the top of that list: good ol’ web fonts.

Deferring Web Fonts
Despite the fact that the proportion of Smashing Maga-
zine’s readers on mobile has always been quite modest
(just around 15%—mainly due to the length of articles), we
never considered mobile as an afterthought, but we never
pushed user experience on mobile either. And when we
talk about user experience on mobile, we mostly talk
about speed, since typography was pretty much well de-
signed from day one.

We had conversations during the 2012 redesign about
how to deal with fonts, but we couldn’t find a solution
that made everybody happy. The visual appearance of
content was important, and because the new Smashing
Magazine was all about beautiful, rich typography, not
loading web fonts at all on mobile wasn’t really an option.

With the redesign back then, we switched to Skolar
for headings and Proxima Nova for body copy, delivered
by Fontdeck. Overall, we had three fonts for each type-
face—Regular, Italic and Bold—totalling in six font files
to be delivered over the network. Even after our dear
friends at Fontdeck subsetted and optimized the fonts,
the assets were quite heavy with over 300 KB in total, and
because we wanted to avoid the frequent flash of un-
styled text (FOUT), we had them loaded in the header of
every page. Initially we thought that the fonts would reli-
ably be cached in HTTP cache, so they wouldn’t be re-
trieved with every single page load. Yet it turned out that

IMPROVING SMASHING MAGAZINE’S PERFORMANCE: A CASE STUDY

24

HTTP cache was quite unreliable: the fonts showed up in
the waterfall loading chart every now and again for no
apparent reason, both on desktop and on mobile.

The biggest problem, of course, was that the fonts
were blocking rendering32. Even if the HTML, CSS and
JavaScript had already loaded completely, the content
wouldn’t appear until the fonts had loaded and rendered.
So you had this beautiful experience of seeing link under-
lines first, then a few keywords in bold here and there,
then subheadings in the middle of the page and then fi-
nally the rest of the page. In some cases, when Fontdeck
had server issues, the content didn’t appear at all, even
though it was already sitting in the DOM, waiting to be
displayed.

In his article, Web Fonts and the Critical Path33, Ian Feather provides a
very detailed overview of the FOUT issues and font loading solutions. We

tested them all.

32. http://ianfeather.co.uk/web-fonts-and-the-critical-path/
33. http://ianfeather.co.uk/web-fonts-and-the-critical-path/

25

http://ianfeather.co.uk/web-fonts-and-the-critical-path/
http://ianfeather.co.uk/web-fonts-and-the-critical-path/
http://ianfeather.co.uk/web-fonts-and-the-critical-path/
http://ianfeather.co.uk/web-fonts-and-the-critical-path/
http://ianfeather.co.uk/web-fonts-and-the-critical-path/
http://ianfeather.co.uk/web-fonts-and-the-critical-path/
http://ianfeather.co.uk/web-fonts-and-the-critical-path/
http://ianfeather.co.uk/web-fonts-and-the-critical-path/
http://ianfeather.co.uk/web-fonts-and-the-critical-path/
http://ianfeather.co.uk/web-fonts-and-the-critical-path/

We experimented with a few solutions before settling on
what turned out to be perhaps the most difficult one. At
first, we looked into using Typekit and Google’s Web-
FontLoader34, an asynchronous script which gives you
more granular control of what appears on the page while
the fonts are being loaded. Basically, the script adds a few
classes to the body element, which allows you to specify
the styling of content in CSS during the loading and after
the fonts have loaded. So you can be very precise about
how the content is displayed in fallback fonts first, before
users see the switch from fallback fonts to web fonts.

We added fallback fonts declarations and ended up
with pretty verbose CSS font stacks, using iOS fonts, An-
droid fonts, Windows Phone fonts and good ol’ web-safe
fonts as fallbacks—we are still using these font stacks to-
day. E.g. we used this cascade for the main headings (it
reflects the order of popularity of mobile operating sys-
tems in our analytics):

h2 {

font-family: "Skolar Bold",

AvenirNext-Bold, "Avenir Bold",

"Roboto Slab", "Droid Serif",

"Segoe UI Bold",

Georgia, "Times New Roman", Times, serif;

}

So readers would see a mobile OS font (or any other fall-
back font first), and it probably would be a font that they

34. https://github.com/typekit/webfontloader

IMPROVING SMASHING MAGAZINE’S PERFORMANCE: A CASE STUDY

26

https://github.com/typekit/webfontloader
https://github.com/typekit/webfontloader
https://github.com/typekit/webfontloader
https://github.com/typekit/webfontloader
https://github.com/typekit/webfontloader
https://github.com/typekit/webfontloader

are quite familiar with on their device, and then once the
fonts have loaded, they would see a switch, triggered by
WebFontLoader. However, we discovered that after
switching to WebFontLoader, we started seeing FOUT
way too often, with HTTP cache being quite unreliable
again, and that permanent switch from a fallback font to
the web font being quite annoying, basically ruining the
reading experience.

So we looked for alternatives. One solution was to in-
clude the @font-face directive only on larger screens by
wrapping it in a media query, thus avoiding loading web
fonts on mobile devices and in legacy browsers altogeth-
er. (In fact, if you declare web fonts in a media query, they
will be loaded only when the media query matches the
screen size. So no performance hit there.) Obviously it
helped us improve performance on mobile devices in no
time, but we didn’t feel right with having a “simplified”
reading experience on mobile devices. So it was a no-go,
too.

What else could we do? The only other option was to
improve the caching of fonts. We couldn’t do much with
HTTP cache, but there was one option we hadn’t looked
into: storing fonts in AppCache or localStorage. Jake
Archibald’s article on the beautiful complexity of App-
Cache35 led us away from AppCache to experiment with
localStorage, a technique36 that The Guardian’s team was
using at the time.

35. http://alistapart.com/article/application-cache-is-a-douchebag
36. https://github.com/ahume/webfontjson

27

http://alistapart.com/article/application-cache-is-a-douchebag
http://alistapart.com/article/application-cache-is-a-douchebag
http://alistapart.com/article/application-cache-is-a-douchebag
http://alistapart.com/article/application-cache-is-a-douchebag
https://github.com/ahume/webfontjson
https://github.com/ahume/webfontjson
https://github.com/ahume/webfontjson
http://alistapart.com/article/application-cache-is-a-douchebag
http://alistapart.com/article/application-cache-is-a-douchebag
https://github.com/ahume/webfontjson
https://github.com/ahume/webfontjson

Now, offline caching comes with one major require-
ment: you need to have the actual font files to be able to
cache them locally in the client’s browser. And you can’t
cache a lot because localStorage space is very limited37,
sometimes with just 5Mb available per domain. Luckily,
the Fontdeck guys were very helpful and forthcoming
with our undertaking, so despite the fact that font deliv-
ery services usually require you to load files and have a
synchronous or asynchronous callback to count the num-
ber of impressions, Fontdeck has been perfectly fine with
us grabbing WOFF-files from Google Chrome’s cache and
setting up a “flat” pricing based on the number of page
impressions in recent history.

So we grabbed the WOFF files and embedded them,
base64-encoded, in a single CSS file, moving from six ex-
ternal HTTP-requests with about 50 KB file each to at
most one HTTP request on the first load and 400 KB of
CSS. Obviously, we didn’t want this file to be loaded on
every visit. So if localStorage is available on the user’s ma-
chine, we store the entire CSS file in localStorage, set a
cookie and switch from the fallback font to the web font.
This switch usually happens once at most because for the
consequent visits, we check whether the cookie has been
set and, if so, retrieve the fonts from localStorage (caus-
ing about 50ms in latency) and display the content in the
web font right away. Just before you ask: yes, read/write
to localStorage is much slower than retrieving files from

37. http://www.html5rocks.com/en/tutorials/offline/quota-research/

IMPROVING SMASHING MAGAZINE’S PERFORMANCE: A CASE STUDY

28

http://www.html5rocks.com/en/tutorials/offline/quota-research/
http://www.html5rocks.com/en/tutorials/offline/quota-research/
http://www.html5rocks.com/en/tutorials/offline/quota-research/
https://github.com/addyosmani/basket.js/issues/24
https://github.com/addyosmani/basket.js/issues/24
http://www.html5rocks.com/en/tutorials/offline/quota-research/
http://www.html5rocks.com/en/tutorials/offline/quota-research/

HTTP cache38, but it proved to be a bit more reliable in
our case.

If the browser doesn’t support localStorage, we include
fonts with good ol’ link href and, well, frankly just hope
for the best—that the fonts will be properly cached and
persist in the user’s browser cache. For browsers that
don’t support WOFF40 (IE8, Opera Mini, Android <= 4.3),
we provide external URLs to fonts with older font mime
types, hosted on Fontdeck.

Now, if localStorage is available, we still don’t want it
to be blocking the rendering of the content. And we don’t
want to see FOUT every single time a user loads the page.

Yes, localStorage is much slower than HTTP cache39, but it’s more reliable.
Storing fonts in localStorage isn’t the perfect solution, but it helped us im-

prove performance dramatically.

38. https://github.com/addyosmani/basket.js/issues/24
39. https://github.com/addyosmani/basket.js/issues/24
40. http://caniuse.com/#search=woff

29

https://github.com/addyosmani/basket.js/issues/24
https://github.com/addyosmani/basket.js/issues/24
https://github.com/addyosmani/basket.js/issues/24
https://github.com/addyosmani/basket.js/issues/24
https://github.com/addyosmani/basket.js/issues/24
https://github.com/addyosmani/basket.js/issues/24
http://caniuse.com/#search=woff
http://caniuse.com/#search=woff
http://caniuse.com/#search=woff
http://caniuse.com/#search=woff
https://github.com/addyosmani/basket.js/issues/24
https://github.com/addyosmani/basket.js/issues/24
https://github.com/addyosmani/basket.js/issues/24
https://github.com/addyosmani/basket.js/issues/24
http://caniuse.com/#search=woff
http://caniuse.com/#search=woff

That’s why we have a little JavaScript snippet in the head-
er before the body element: it checks whether a cookie
has been set and, if not, we load web fonts asynchronous-
ly after the page has started rendering. Of course, we
could have avoided the switch by just storing the fonts in
localStorage on the first visit and have no switch during
the first visit, but we decided that one switch is accept-
able, because our typography is important to our identity.

The script was written, tested and documented by our
good friend Horia Dragomir41. Of course, it’s available as a
gist on GitHub42:

<script type="text/javascript">

(function () {

"use strict";

// once cached, the css file is stored on the client

// forever unless the URL below is changed. Any change

// will invalidate the cache

var css_href = './web-fonts.css';

// a simple event handler wrapper

function on(el, ev, callback) {

if (el.addEventListener) {

el.addEventListener(ev, callback, false);

} else if (el.attachEvent) {

el.attachEvent("on" + ev, callback);

}

}

41. https://twitter.com/hdragomir
42. https://gist.github.com/hdragomir/8f00ce2581795fd7b1b7

IMPROVING SMASHING MAGAZINE’S PERFORMANCE: A CASE STUDY

30

https://twitter.com/hdragomir
https://twitter.com/hdragomir
https://twitter.com/hdragomir
https://gist.github.com/hdragomir/8f00ce2581795fd7b1b7
https://gist.github.com/hdragomir/8f00ce2581795fd7b1b7
https://gist.github.com/hdragomir/8f00ce2581795fd7b1b7
https://gist.github.com/hdragomir/8f00ce2581795fd7b1b7
https://twitter.com/hdragomir
https://twitter.com/hdragomir
https://gist.github.com/hdragomir/8f00ce2581795fd7b1b7
https://gist.github.com/hdragomir/8f00ce2581795fd7b1b7

// if we have the fonts in localStorage or if we've

// cached them using the native browser cache

if ((window.localStorage &&

localStorage.font_css_cache) ||

document.cookie.indexOf('font_css_cache') > -1){

// just use the cached version

injectFontsStylesheet();

} else {

// otherwise, don't block the loading of the page;

// wait until it's done.

on(window, "load", injectFontsStylesheet);

}

// quick way to determine whether a css file has

// been cached locally

function fileIsCached(href) {

return window.localStorage &&

localStorage.font_css_cache &&

(localStorage.font_css_cache_file === href);

}

// time to get the actual css file

function injectFontsStylesheet() {

// if this is an older browser

if (!window.localStorage ||

!window.XMLHttpRequest) {

var stylesheet = document.createElement('link');

stylesheet.href = css_href;

stylesheet.rel = 'stylesheet';

stylesheet.type = 'text/css';

31

document.getElementsByTagName('head')[0]

.appendChild(stylesheet);

// just use the native browser cache

// this requires a good expires header on the

// server

document.cookie = "font_css_cache";

// if this isn't an old browser

} else {

// use the cached version if we already have it

if (fileIsCached(css_href)) {

injectRawStyle(localStorage.font_css_cache);

// otherwise, load it with ajax

} else {

var xhr = new XMLHttpRequest();

xhr.open("GET", css_href, true);

on(xhr, 'load', function () {

if (xhr.readyState === 4) {

// once we have the content, quickly inject

// the css rules

injectRawStyle(xhr.responseText);

// and cache the text content for further use

// notice that this overwrites anything that

// might have already been previously cached

localStorage.font_css_cache =

xhr.responseText;

localStorage.font_css_cache_file = css_href;

}

});

xhr.send();

IMPROVING SMASHING MAGAZINE’S PERFORMANCE: A CASE STUDY

32

}

}

}

// this is the simple utitily that injects the cached

// or loaded css text

function injectRawStyle(text) {

var style = document.createElement('style');

style.innerHTML = text;

document.getElementsByTagName('head')[0]

.appendChild(style);

}

}());

</script>

During the testing of the technique, we discovered a few
surprising problems. Because the cache isn’t persistent in
WebViews, fonts do load asynchronously in applications
such as Tweetdeck and Facebook, yet they don’t remain
in the cache once the window is closed. In other words,
with every WebViews visit, the fonts are re-downloaded.
Some old Blackberry devices seemed to clear cookies and
delete the cache when the battery is running out. And de-
pending on the configuration of the device, sometimes
fonts do not persist in mobile Safari either.

Still, once the snippet was in place, articles started ren-
dering much faster. By deferring the loading of Web
fonts and storing them in localStorage, we’ve avoided
around 700ms delay, and thus shortened the critical path
significantly by avoiding the latency for retrieving all the

33

fonts. The result was quite impressive for the first load of
an uncached page, and it was even more impressive for
concurrent visits since we were able to reduce the latency
caused by Web fonts to just 40 to 50 ms. In fact, if we had
to mention just one improvement to performance on the
website, deferring web fonts is by far the most effective.

At this point, we haven’t even considered using the
new WOFF2 format43 for fonts just yet. Currently sup-
ported in Chrome and Opera, it promises a better com-
pression for font files and it already showed remarkable
results. In fact, The Guardian was able to cut down on
200ms latency and 50 KB of the file weight44 by switch-
ing to WOFF2, and we intend to look into moving to
WOFF2 soon as well.

Of course, grabbing WOFFs might not always be an
option for you, but it wouldn’t hurt just to talk to type
foundries to see where you stand or to work out a deal to
host fonts “locally.” Otherwise, tweaking WebFontLoader
for Typekit and Fontdeck is definitely worth considering.

Dealing With JavaScript
With the goal of removing all unnecessary assets from
the critical rendering path, the second target we decided
to deal with was JavaScript. And it’s not like we particu-
larly dislike JavaScript for some reason, but we always
tend to prefer non-JavaScript solutions to JavaScript ones.

43. https://gist.github.com/sergejmueller/cf6b4f2133bcb3e2f64a
44. https://twitter.com/patrickhamann/status/497767778703933442

IMPROVING SMASHING MAGAZINE’S PERFORMANCE: A CASE STUDY

34

https://gist.github.com/sergejmueller/cf6b4f2133bcb3e2f64a
https://gist.github.com/sergejmueller/cf6b4f2133bcb3e2f64a
https://gist.github.com/sergejmueller/cf6b4f2133bcb3e2f64a
https://twitter.com/patrickhamann/status/497767778703933442
https://twitter.com/patrickhamann/status/497767778703933442
https://twitter.com/patrickhamann/status/497767778703933442
https://twitter.com/patrickhamann/status/497767778703933442
https://gist.github.com/sergejmueller/cf6b4f2133bcb3e2f64a
https://gist.github.com/sergejmueller/cf6b4f2133bcb3e2f64a
https://twitter.com/patrickhamann/status/497767778703933442
https://twitter.com/patrickhamann/status/497767778703933442

In fact, if we can avoid JavaScript or replace it with CSS,
then we’ll always explore that option.

Back in 2012, we weren’t using a lot of scripts on the
page, yet displaying advertising via OpenX depended on
jQuery, which made it way too easy to lazily approach
simple, straightforward tasks with ready-to-use jQuery
plugins. At the time, we also used Respond.js to emulate
responsive behaviour in legacy browsers. However, Inter-
net Explorer 8 usage has dropped significantly between
2012 and 2014: with 4.7% before the redesign, it was now
1.43%, with a dropping tendency every single month. So
we decided to deliver a fixed-width layout with a specific
IE8.css stylesheet to those users, and removed Respond.js
altogether.

As a strategic decision, we decided to defer the loading
of all JavaScripts until the page has started rendering and
we looked into replacing jQuery with lightweight modu-
lar JavaScript components.

jQuery was tightly bound to ads, and ads were sup-
posed to start displaying as fast as possible, so to make it
happen, we had to deal with advertising first. The deci-
sion to defer the loading of ads wasn’t easy to get agree-
ment on, but we managed to make a convincing argu-
ment that better performance would increase click rates
because users would see the content sooner. That is, on
every page, readers would be attracted by the high-quality
content and then, when the ads kick in, would pay atten-
tion to those squares in the sidebar as well.

35

Florian Sander45, our partner in crime when it comes
to advertising, rewrote the script for our banner ads so
that banners would be loaded only after the content has
started rendering, and only then the advertising spots
would be put into place. Florian was able to get rid of two
render-blocking HTTP-requests that the ad-script normal-
ly generated, and we were able to remove the dependency
on jQuery by rewriting the script in vanilla JavaScript.

Obviously, because the sidebar’s ad content is generat-
ed on the fly and is loaded after the render tree has been
constructed, we started seeing reflows (this still happens
when the page is being constructed). Because we used to
load ads before the content, the entire page (with pretty
much everything) used to load at once. Now, we’ve
moved to a more modular structure, grouping together
particular parts of the page and queuing them to load af-
ter each other. Obviously, this has made the overall expe-
rience on the site a bit noisier because there are a few
jumps here and there, in the sidebar, in the comments
and in the footer. That was a compromise we went for,
and we are working on a solution to reserve space for
“jumping” elements to avoid reflows as the page is being
loaded.

DEFERRING NON-CRITICAL JAVASCRIPTDEFERRING NON-CRITICAL JAVASCRIPT

When the prospect of removing jQuery altogether be-
came tangible as a long-term goal, we started working
step by step to decouple jQuery dependencies from the li-

45. http://www.kreativrauschen.de/

IMPROVING SMASHING MAGAZINE’S PERFORMANCE: A CASE STUDY

36

http://www.kreativrauschen.de/
http://www.kreativrauschen.de/
http://www.kreativrauschen.de/
http://www.kreativrauschen.de/
http://www.kreativrauschen.de/

brary. We rewrote the script to generate footnotes for the
print style sheet (later replacing it with a PHP solution),
rewrote the functionality for rating comments, and
rewrote a few other scripts. Actually, with our savvy user
base and a solid share of smart browsers, we were able to
move to vanilla JavaScript quite quickly. Moreover, we
could now move scripts from the header to the footer to
avoid blocking construction of the DOM tree. In mid-July,
we removed jQuery from our code base entirely.

We wanted full control of what is loaded on the page
and when. Specifically, we wanted to ensure that no
JavaScript blocks the rendering of content at any point.
So, we use the Defer Loading JavaScript46 script to load
JavaScript after the load event by injecting the JavaScript
after the DOM and CSSOM have already been construct-
ed and the page has been painted. Here’s the snippet that
we use on the website, with the defer.js script (which is
loaded asynchronously after the load event):

function downloadJSAtOnload() {

var element = document.createElement("script");

element.src = "defer.js";

document.body.appendChild(element);

}

if (window.addEventListener)

window.addEventListener("load", downloadJSAtOnload,

false);

else if (window.attachEvent)

46. http://www.feedthebot.com/pagespeed/defer-loading-javascript.html

37

http://www.feedthebot.com/pagespeed/defer-loading-javascript.html
http://www.feedthebot.com/pagespeed/defer-loading-javascript.html
http://www.feedthebot.com/pagespeed/defer-loading-javascript.html
http://www.feedthebot.com/pagespeed/defer-loading-javascript.html
http://www.feedthebot.com/pagespeed/defer-loading-javascript.html

window.attachEvent("onload", downloadJSAtOnload);

else

window.onload = downloadJSAtOnload;

However, because script-injected asynchronous scripts
are considered harmful47 and slow (they block the brows-
er’s speculative parser), we might be looking into using
the good ol’ defer and async attributes instead. In the
past, we couldn’t use async for every script because we
needed jQuery to load before its dependencies; so, we
used defer, which respects the loading order of scripts.
With jQuery out of the picture, we can now load scripts
asynchronously, and fast. Actually by the time you read
this chapter, we might already be using async.

Basically, we just deferred the loading of all
JavaScripts that we identified previously, such as syntax
highlighter and comment ratings, and cleared a path in
the header for HTML and CSS.

Inlining Critical CSS
That wasn’t good enough, though. Performance did im-
prove dramatically; however, even with all of these opti-
mizations in place, we didn’t hit that magical Speed Index
value of under 1000. In light of the ongoing discussion
about inline CSS and above-the-fold CSS, as recommend-
ed by Google48, we looked into more radical ways to deliv-

47. https://www.igvita.com/2014/05/20/
script-injected-async-scripts-considered-harmful/

48. https://developers.google.com/web/fundamentals/performance/
critical-rendering-path/page-speed-rules-and-recommendations

IMPROVING SMASHING MAGAZINE’S PERFORMANCE: A CASE STUDY

38

https://www.igvita.com/2014/05/20/script-injected-async-scripts-considered-harmful/
https://www.igvita.com/2014/05/20/script-injected-async-scripts-considered-harmful/
https://www.igvita.com/2014/05/20/script-injected-async-scripts-considered-harmful/
https://www.igvita.com/2014/05/20/script-injected-async-scripts-considered-harmful/
https://developers.google.com/web/fundamentals/performance/critical-rendering-path/page-speed-rules-and-recommendations
https://developers.google.com/web/fundamentals/performance/critical-rendering-path/page-speed-rules-and-recommendations
https://developers.google.com/web/fundamentals/performance/critical-rendering-path/page-speed-rules-and-recommendations
https://developers.google.com/web/fundamentals/performance/critical-rendering-path/page-speed-rules-and-recommendations
https://www.igvita.com/2014/05/20/script-injected-async-scripts-considered-harmful/
https://www.igvita.com/2014/05/20/script-injected-async-scripts-considered-harmful/
https://developers.google.com/web/fundamentals/performance/critical-rendering-path/page-speed-rules-and-recommendations
https://developers.google.com/web/fundamentals/performance/critical-rendering-path/page-speed-rules-and-recommendations

er content quickly. To avoid an HTTP request when load-
ing CSS, we measured how fast the website would be if
we were to load critical CSS inline and then load the rest
of the CSS once the page has rendered.

But what exactly is critical CSS? And how do you extract
it from a potentially complex code base? As Scott Jehl
points out50, critical CSS is the subset of CSS that is need-
ed to render the top portion of the page across all break-
points. What does that mean? Well, you would decide on
a certain height that you would consider to be “above the
fold” content—it could be 600, 800 or 1200 pixels or any-
thing else—and you would collect into their own style

Scott Jehl’s article49 explains how exactly to extract and inline critical CSS.

49. http://www.filamentgroup.com/lab/performance-rwd.html
50. http://www.filamentgroup.com/lab/performance-rwd.html

39

http://www.filamentgroup.com/lab/performance-rwd.html
http://www.filamentgroup.com/lab/performance-rwd.html
http://www.filamentgroup.com/lab/performance-rwd.html
http://www.filamentgroup.com/lab/performance-rwd.html
http://www.filamentgroup.com/lab/performance-rwd.html
http://www.filamentgroup.com/lab/performance-rwd.html
http://www.filamentgroup.com/lab/performance-rwd.html
http://www.filamentgroup.com/lab/performance-rwd.html
http://www.filamentgroup.com/lab/performance-rwd.html
http://www.filamentgroup.com/lab/performance-rwd.html
http://www.filamentgroup.com/lab/performance-rwd.html

sheet all of the styles that specify how to render content
within that height across all screen widths.

Then you inline those styles in the head, and thus give
the browser everything it needs to start render that visi-
ble portion of the page—within one single HTTP request.
You’ve heard it a few times by now: everything else is de-
ferred after the first initial rendering. You avoid an
HTTP-request, and you load the full CSS asynchronously,
so once the user starts scrolling, the full CSS will (hope-
fully) already have loaded.

Visually speaking, content will appear to render more
quickly, but there will also be more reflowing and jump-
ing on the page. So, if a user has followed a link to a par-
ticular comment below the “fold”, then they will see a few
reflows as the website is being constructed because the
page is rendered with critical CSS first (there is just so
much we can fit within 14 KB!) and adjusted later with the
complete CSS. Of course, inline CSS isn’t cached; so, if
you have critical CSS and load the complete CSS on ren-
dering, it’s useful to set a cookie, so that inline styles
aren’t inlined with every single load. The drawback of
course is that you might have duplicate CSS because you
would be defining styles both inline and in the full CSS,
unless you’re able to strictly separate them.

Because we had just refactored our CSS code base,
identifying critical CSS wasn’t very difficult. Obviously,
there are smart51 tools52 that analyze the markup and CSS,
identify critical CSS styles and export them into a sepa-

51. http://css-tricks.com/authoring-critical-fold-css/
52. https://github.com/addyosmani/above-the-fold-css-tools

IMPROVING SMASHING MAGAZINE’S PERFORMANCE: A CASE STUDY

40

http://css-tricks.com/authoring-critical-fold-css/
http://css-tricks.com/authoring-critical-fold-css/
http://css-tricks.com/authoring-critical-fold-css/
https://github.com/addyosmani/above-the-fold-css-tools
https://github.com/addyosmani/above-the-fold-css-tools
https://github.com/addyosmani/above-the-fold-css-tools
http://css-tricks.com/authoring-critical-fold-css/
http://css-tricks.com/authoring-critical-fold-css/
https://github.com/addyosmani/above-the-fold-css-tools
https://github.com/addyosmani/above-the-fold-css-tools

rate file during the build process, but we were able to do it
manually. Again, you have to keep in mind that 14 Kb is
your budget for HTML and CSS, so in the end we had to
rename a few classes here and there, and compress CSS
as well.

We analyzed the first 800px, checking the inspector
for the CSS that was needed and separating our style
sheet into two files—and actually that was pretty much
it. One of those files, above-the-fold.css, is minified and
compressed, and its content is placed inline in the head of
our document as early as possible—not blocking render-
ing. The other file, our full CSS file, is then loaded with
JavaScript after the content has loaded, and if JavaScript
isn’t available for some reason or the user is on a legacy
browser, we’ve put a full CSS file inside noscript tag at
the end of the head, so they don’t get an unstyled HTML
page.

Was It All Worth It?
Because we’ve just implemented these optimizations, we
haven’t been able to measure their impact on traffic, but
we’ll publish these results later as well. Obviously, we did
notice a quite remarkable technical improvement though.
By deferring and caching web fonts, inlining CSS and op-
timizing the critical rendering path for the first 14Kb, we
were able to achieve dramatic improvements in loading
times. The start rendering time started circling around 1s
for an uncached page on 3G and was around 700ms (in-
cluding latency!) on subsequent loads.

41

On average, Smashing Magazine’s front page makes 45
HTTP-requests and has 440 KB in bandwidth on the first
uncached load. Because we heavily cache everything but
ads, subsequent visits have around 15 HTTP requests and
180 KB of traffic. The First Byte time is still around
300–600ms (which is a lot), yet Start Render time is usual-
ly under 0.7s55 on a DSL connection in Amsterdam (for
the very first, uncached load), and usually under 1.7s on a
slow 3G56. On a fast cable connection, the site starts ren-
dering within 0.8s57, and on a fast 3G, within 1.1s58. Obvi-
ously, the results vary significantly depending on the

We’ve been using WebPageTest53 a lot for running tests. Our waterfall
chart was becoming better over time and reflected the priorities we had de-

fined earlier. Large view.54

53. http://www.webpagetest.org/
54. http://www.webpagetest.org/result/140904_H4_T5R/1/details/
55. http://www.webpagetest.org/result/140904_ZJ_T62/
56. http://www.webpagetest.org/result/140904_Y5_SXS/
57. http://www.webpagetest.org/result/140904_DB_T5Y/
58. http://www.webpagetest.org/result/140904_H4_T5R/

IMPROVING SMASHING MAGAZINE’S PERFORMANCE: A CASE STUDY

42

http://www.webpagetest.org/
http://www.webpagetest.org/
http://www.webpagetest.org/
http://www.webpagetest.org/result/140904_H4_T5R/1/details/
http://www.webpagetest.org/result/140904_H4_T5R/1/details/
http://www.webpagetest.org/result/140904_H4_T5R/1/details/
http://www.webpagetest.org/result/140904_ZJ_T62/
http://www.webpagetest.org/result/140904_ZJ_T62/
http://www.webpagetest.org/result/140904_ZJ_T62/
http://www.webpagetest.org/result/140904_Y5_SXS/
http://www.webpagetest.org/result/140904_Y5_SXS/
http://www.webpagetest.org/result/140904_Y5_SXS/
http://www.webpagetest.org/result/140904_Y5_SXS/
http://www.webpagetest.org/result/140904_DB_T5Y/
http://www.webpagetest.org/result/140904_DB_T5Y/
http://www.webpagetest.org/result/140904_DB_T5Y/
http://www.webpagetest.org/result/140904_DB_T5Y/
http://www.webpagetest.org/result/140904_H4_T5R/
http://www.webpagetest.org/result/140904_H4_T5R/
http://www.webpagetest.org/result/140904_H4_T5R/
http://www.webpagetest.org/
http://www.webpagetest.org/
http://www.webpagetest.org/result/140904_H4_T5R/1/details/
http://www.webpagetest.org/result/140904_H4_T5R/1/details/
http://www.webpagetest.org/result/140904_ZJ_T62/
http://www.webpagetest.org/result/140904_ZJ_T62/
http://www.webpagetest.org/result/140904_Y5_SXS/
http://www.webpagetest.org/result/140904_Y5_SXS/
http://www.webpagetest.org/result/140904_DB_T5Y/
http://www.webpagetest.org/result/140904_DB_T5Y/
http://www.webpagetest.org/result/140904_H4_T5R/
http://www.webpagetest.org/result/140904_H4_T5R/

First Byte time which we can’t improve just yet, at the
time of writing. That’s the only asset that introduces un-
predictability into the loading process, and as such has a
decisive impact on the overall performance.

Just by following basic guidelines by our colleagues
mentioned above and Google’s recommendations, we
were able to achieve the 97–99 Google PageSpeed score59

both on desktop and on mobile. The score varies depend-
ing on the quality and the optimization level of advertis-
ing assets displayed randomly in the sidebar. Again, the
main culprit is the server’s response time—not for long,
though.

By the way, Scott Jehl has also published a wonderful
article on the front-end techniques60 FilamentGroup uses
to extract critical CSS and load it inline while loading the
full CSS afterwards and avoid downloading overheads.
Patrick Hamann’s talk on “Breaking News at 1000ms”61

explains a few techniques that The Guardian is using to
hit the SpeedIndex 1000 mark. Definitely worth reading
and watching, and indeed quite similar to what we imple-
mented on this very site as well.

59. https://developers.google.com/speed/pagespeed/insights/
?url=http%3A%2F%2Fwww.smashingmagazine.com&tab=desktop

60. http://filamentgroup.com/lab/performance-rwd.html
61. https://www.youtube.com/watch?v=dfweWyVScaI

43

https://developers.google.com/speed/pagespeed/insights/?url=http%3A%2F%2Fwww.smashingmagazine.com&tab=desktop
https://developers.google.com/speed/pagespeed/insights/?url=http%3A%2F%2Fwww.smashingmagazine.com&tab=desktop
https://developers.google.com/speed/pagespeed/insights/?url=http%3A%2F%2Fwww.smashingmagazine.com&tab=desktop
http://filamentgroup.com/lab/performance-rwd.html
http://filamentgroup.com/lab/performance-rwd.html
http://filamentgroup.com/lab/performance-rwd.html
http://filamentgroup.com/lab/performance-rwd.html
https://www.youtube.com/watch?v=dfweWyVScaI
https://www.youtube.com/watch?v=dfweWyVScaI
https://www.youtube.com/watch?v=dfweWyVScaI
https://developers.google.com/speed/pagespeed/insights/?url=http%3A%2F%2Fwww.smashingmagazine.com&tab=desktop
https://developers.google.com/speed/pagespeed/insights/?url=http%3A%2F%2Fwww.smashingmagazine.com&tab=desktop
http://filamentgroup.com/lab/performance-rwd.html
http://filamentgroup.com/lab/performance-rwd.html
https://www.youtube.com/watch?v=dfweWyVScaI
https://www.youtube.com/watch?v=dfweWyVScaI

After a few optimizations, we achieved a Google PageSpeed score of 99 on
mobile62. We got a Google PageSpeed score of 99 on the desktop63 as well.

IMPROVING SMASHING MAGAZINE’S PERFORMANCE: A CASE STUDY

44

https://developers.google.com/speed/pagespeed/insights/?url=http%3A%2F%2Fwww.smashingmagazine.com&tab=mobile
https://developers.google.com/speed/pagespeed/insights/?url=http%3A%2F%2Fwww.smashingmagazine.com&tab=mobile
https://developers.google.com/speed/pagespeed/insights/?url=http%3A%2F%2Fwww.smashingmagazine.com&tab=mobile
https://developers.google.com/speed/pagespeed/insights/?url=http%3A%2F%2Fwww.smashingmagazine.com&tab=mobile
https://developers.google.com/speed/pagespeed/insights/?url=http%3A%2F%2Fwww.smashingmagazine.com&tab=desktop
https://developers.google.com/speed/pagespeed/insights/?url=http%3A%2F%2Fwww.smashingmagazine.com&tab=desktop
https://developers.google.com/speed/pagespeed/insights/?url=http%3A%2F%2Fwww.smashingmagazine.com&tab=desktop

Work To Be Done
While the results we were able to achieve are quite satis-
factory, there is still a lot of work to be done. For example,
we haven’t considered optimizing the delivery of images
just yet, and are now adjusting our editorial process to in-
tegrate the new picture element and srcset/sizes with
Picturefill 2.1.064, to make the loading even faster on mo-
bile devices. At the moment, all images have a fixed width
of 500px and are basically scaled down on smaller views.
Every image is optimized and compressed, but we don’t
deliver different images for different devices—and no,
we aren’t delivering any Retina images at all. That is all
about to change soon.

While Smashing Magazine’s home page is well opti-
mized, some pages and articles still perform poorly. Arti-
cles with many comments are quite slow because we use
Gravatar.com65 for comments. Because each Gravatar
URL is unique, each comment generates one HTTP re-
quest, slowing down the loading of the overall page. We
are going to defer the loading of Gravatars and cache
them locally with a Gravatar Cache WordPress plugin66.
We might have already done it by the time you read this.

We’re playing around with DNS prefetching and
HTML5 preloading to resolve DNS lookups way ahead of

62. https://developers.google.com/speed/pagespeed/insights/
?url=http%3A%2F%2Fwww.smashingmagazine.com&tab=mobile

63. https://developers.google.com/speed/pagespeed/insights/
?url=http%3A%2F%2Fwww.smashingmagazine.com&tab=desktop

64. http://scottjehl.github.io/picturefill/
65. https://en.gravatar.com/
66. https://wordpress.org/plugins/fv-gravatar-cache/

45

http://scottjehl.github.io/picturefill/
http://scottjehl.github.io/picturefill/
http://scottjehl.github.io/picturefill/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://wordpress.org/plugins/fv-gravatar-cache/
https://wordpress.org/plugins/fv-gravatar-cache/
https://wordpress.org/plugins/fv-gravatar-cache/
https://developers.google.com/speed/pagespeed/insights/?url=http%3A%2F%2Fwww.smashingmagazine.com&tab=mobile
https://developers.google.com/speed/pagespeed/insights/?url=http%3A%2F%2Fwww.smashingmagazine.com&tab=mobile
https://developers.google.com/speed/pagespeed/insights/?url=http%3A%2F%2Fwww.smashingmagazine.com&tab=desktop
https://developers.google.com/speed/pagespeed/insights/?url=http%3A%2F%2Fwww.smashingmagazine.com&tab=desktop
http://scottjehl.github.io/picturefill/
http://scottjehl.github.io/picturefill/
https://en.gravatar.com/
https://en.gravatar.com/
https://wordpress.org/plugins/fv-gravatar-cache/
https://wordpress.org/plugins/fv-gravatar-cache/

time (for example, for Gravatars and advertising). Howev-
er, we are being careful and hesitant here because we
don’t want to create a loading overhead for users on slow
or expensive connections. Besides, we’ve added third-par-
ty meta data67 to make our articles a bit easier to share.
So, if you link to an article on Facebook, Facebook will
pull optimized images, a description and a title from our
meta data, which is crafted individually for each article.
We’ve also happily noticed that article pages scroll
smoothly at 60fps68, and that with relatively large images
and ads.

Yes, we can use SPDY today69. We just need to install SPDY Nginx Mod-
ule70 or Apache SPDY Module71. This is what we are going to tackle next.

67. http://alistapart.com/article/
like-able-content-spread-your-message-with-third-party-metadata

68. http://jankfree.org
69. http://caniuse.com/#search=SPDY
70. http://nginx.org/en/docs/http/ngx_http_spdy_module.html
71. https://code.google.com/p/mod-spdy/

IMPROVING SMASHING MAGAZINE’S PERFORMANCE: A CASE STUDY

46

http://alistapart.com/article/like-able-content-spread-your-message-with-third-party-metadata
http://alistapart.com/article/like-able-content-spread-your-message-with-third-party-metadata
http://alistapart.com/article/like-able-content-spread-your-message-with-third-party-metadata
http://alistapart.com/article/like-able-content-spread-your-message-with-third-party-metadata
http://jankfree.org
http://jankfree.org
http://jankfree.org
http://caniuse.com/#search=SPDY
http://caniuse.com/#search=SPDY
http://caniuse.com/#search=SPDY
http://nginx.org/en/docs/http/ngx_http_spdy_module.html
http://nginx.org/en/docs/http/ngx_http_spdy_module.html
http://nginx.org/en/docs/http/ngx_http_spdy_module.html
http://nginx.org/en/docs/http/ngx_http_spdy_module.html
https://code.google.com/p/mod-spdy/
https://code.google.com/p/mod-spdy/
https://code.google.com/p/mod-spdy/
http://alistapart.com/article/like-able-content-spread-your-message-with-third-party-metadata
http://alistapart.com/article/like-able-content-spread-your-message-with-third-party-metadata
http://jankfree.org
http://jankfree.org
http://caniuse.com/#search=SPDY
http://caniuse.com/#search=SPDY
http://nginx.org/en/docs/http/ngx_http_spdy_module.html
http://nginx.org/en/docs/http/ngx_http_spdy_module.html
https://code.google.com/p/mod-spdy/
https://code.google.com/p/mod-spdy/

Despite all of our optimizations, the main issue still
hasn’t been resolved: very slow servers and the First Byte
response times. We’ve been experiencing difficulties
with our current server setup and architecture but are
tied with a long-term contract, yet we will be moving to a
new server soon. We’ll take that opportunity to also move
to SPDY72 on the server, a predecessor of HTTP 2.0 (which
is well supported in major browsers73, by the way), and
we are looking into using a content delivery network as
well.

PERFORMANCE OPTIMIZATION STRATEGYPERFORMANCE OPTIMIZATION STRATEGY

To sum up, optimizing the performance of Smashing
Magazine was quite an effort to figure out, yet many as-
pects of optimization can be achieved very quickly. In
particular, front-end optimization is quite easy and
straightforward as long as you have a shared understand-
ing of priorities. Yes, that’s right: you optimize content
delivery, and defer everything else.

Strategically speaking, the following could be your
performance optimization roadmap:

• Remove blocking scripts from the header of the page.

• Identify and defer non-critical CSS and JavaScript.

• Identify critical CSS and load it inline in the head, and
then load the full CSS after rendering. (Make sure to set a

72. https://developers.google.com/speed/spdy/
73. http://caniuse.com/#search=SPDY

47

https://developers.google.com/speed/spdy/
https://developers.google.com/speed/spdy/
https://developers.google.com/speed/spdy/
http://caniuse.com/#search=SPDY
http://caniuse.com/#search=SPDY
http://caniuse.com/#search=SPDY
https://developers.google.com/speed/spdy/
https://developers.google.com/speed/spdy/
http://caniuse.com/#search=SPDY
http://caniuse.com/#search=SPDY

cookie to prevent inline styles from loading with every
page load.)

• Keep all critical HTML and CSS to under 14 KB, and aim
for a Speed Index of under 1000.

• Defer the loading of Web fonts and store them in local-
Storage or AppCache.

• Consider using WOFF2 to further reduce latency and file
size of the web fonts.

• Replace JavaScript libraries with leaner JavaScript mod-
ules.

• Avoid unnecessary libraries, and look into options for re-
moving Respond.js and Modernizr; for example, by “cut-
ting the mustard74” to separate browsers into buckets.
Legacy browsers could get a fixed-width layout. Clever
SVG fallbacks75 also exist.

That’s basically it. By following these guidelines, you can
make your responsive website really, really fast.

Conclusion
Yes, finding just the right strategy to make this very web-
site fast took a lot of experimentation, blood, sweat and
cursing. Our discussions kept circling around next steps
and on critical and not-so-critical components and some-

74. http://responsivenews.co.uk/post/18948466399/cutting-the-mustard
75. http://css-tricks.com/svg-fallbacks/

IMPROVING SMASHING MAGAZINE’S PERFORMANCE: A CASE STUDY

48

http://responsivenews.co.uk/post/18948466399/cutting-the-mustard
http://responsivenews.co.uk/post/18948466399/cutting-the-mustard
http://responsivenews.co.uk/post/18948466399/cutting-the-mustard
http://responsivenews.co.uk/post/18948466399/cutting-the-mustard
http://css-tricks.com/svg-fallbacks/
http://css-tricks.com/svg-fallbacks/
http://css-tricks.com/svg-fallbacks/
http://css-tricks.com/svg-fallbacks/
http://responsivenews.co.uk/post/18948466399/cutting-the-mustard
http://responsivenews.co.uk/post/18948466399/cutting-the-mustard
http://css-tricks.com/svg-fallbacks/
http://css-tricks.com/svg-fallbacks/

times we had to take three steps back in order to pivot in
a different direction. But we learned a lot along the way,
and we have a pretty clear idea of where we are heading
now, and, most importantly, how to get there.

So here you have it. A little story about the things that
happened on this little website over the last year. If you
notice any issues, please let us know on Twitter @smash-
ingmag76 and we’ll hunt them down for good.

Ah, and thanks for keeping us reading throughout all
these years. It means a lot. You are quite smashing indeed.
You should know that.❧

A big “thank you” to Patrick Hamann and Jake Archibald for the
technical review of the article as well as Andy Hume and Tim
Kadlec for their fantastic support throughout the years. Also a
big “thank you” to our front-end engineer, Marco, for his help
with the article and for his thorough and tireless front-end work,
which involved many experiments, failures and successes along
the way. Also, kind thanks to the Inpsyde team and Florian
Sander for technical implementations.

A final thank you goes out to Iris, Melanie, Cosima and
Markus for keeping an eye out for those nasty bugs and looking
after the content on the website. Without you, this website
wouldn’t exist. And thank you for having my back all this time. I
respect and value every single bit of it. You rock.

76. http://www.twitter.com/smashingmag

49

http://www.twitter.com/smashingmag
http://www.twitter.com/smashingmag
http://www.twitter.com/smashingmag
http://www.twitter.com/smashingmag
http://www.twitter.com/smashingmag
http://www.twitter.com/smashingmag

How To Speed Up Your
WordPress Website

BY MARCUS TAYLORBY MARCUS TAYLOR ❧❧

A few months ago, I ran an experiment to see how much
faster I could make one of my websites in less than two
hours of work. After installing a handful of WordPress
plugins and fixing a few simple errors, I had improved
the website’s loading speed from 1.61 seconds to 583 mil-
liseconds. That’s a 70.39% improvement, without having
made any visual changes to the website.

According to a 2009 Akamai study77, 47% of visitors ex-
pect a page to load in under 2 seconds, and 57% of visitors
will abandon a page that takes more than 3 seconds to
load. Since this study, no shortage of case studies have
confirmed that loading time affects sales.

In 2006, Amazon reported that a 100-millisecond in-
crease in page speed translated to a 1% increase in its rev-
enue. Just a few years later, Google announced in a blog
post78 that its algorithm takes page speed into account
when ranking websites.

77. http://www.akamai.com/html/about/press/releases/2009/press_091409.html
78. http://googlewebmastercentral.blogspot.com.au/2010/04/

using-site-speed-in-web-search-ranking.html

HOW TO SPEED UP YOUR WORDPRESS WEBSITE

50

http://www.akamai.com/html/about/press/releases/2009/press_091409.html
http://www.akamai.com/html/about/press/releases/2009/press_091409.html
http://www.akamai.com/html/about/press/releases/2009/press_091409.html
http://googlewebmastercentral.blogspot.com.au/2010/04/using-site-speed-in-web-search-ranking.html
http://googlewebmastercentral.blogspot.com.au/2010/04/using-site-speed-in-web-search-ranking.html
http://googlewebmastercentral.blogspot.com.au/2010/04/using-site-speed-in-web-search-ranking.html
http://googlewebmastercentral.blogspot.com.au/2010/04/using-site-speed-in-web-search-ranking.html
http://www.akamai.com/html/about/press/releases/2009/press_091409.html
http://www.akamai.com/html/about/press/releases/2009/press_091409.html
http://googlewebmastercentral.blogspot.com.au/2010/04/using-site-speed-in-web-search-ranking.html
http://googlewebmastercentral.blogspot.com.au/2010/04/using-site-speed-in-web-search-ranking.html

Below are twelve quick fixes that will dramatically im-
prove your website’s loading time, including:

• identifying which plugins are slowing down your web-
site;

• automatically compressing Web pages, images,
JavaScript and CSS files;

• keeping your website’s database clean;

• setting up browser caching the right way.

Lay The Foundation
When your house is sinking into the ground, you don’t
polish the windows—you fix the foundations. The same
goes for your website. If it’s hosted on a sluggish server
or has a bloated theme, quick fixes won’t help. You’ll need
to fix the foundation.

So, how can you speed up your WordPress website?

51

So, let’s start with what makes for a good foundation
and how to set ourselves up for a website that runs at
lightening speed.

CHOOSE A GOOD HOSTCHOOSE A GOOD HOST

Your Web hosting company and hosting package have a
huge impact on the speed of your website, among many
other important performance-related things. I used to be
sucked in by the allure of free or cheap hosting, but with
the wisdom of hindsight, I’ve learned that hosting isn’t an
area to skimp on.

To put this into perspective, two of my clients have
similar websites but very different hosting providers.
One uses WPEngine (an excellent hosting company), and
the other hosts their website on a cheap shared server.

The DNS response time (i.e. the time it takes for the
browser to connect to the hosting server) of the client us-
ing WPEngine is 7 milliseconds. The client using the
cheap shared hosting has a DNS response time of 250
milliseconds.

If you want your website to run quickly, start with a
good hosting company79 and package.

CHOOSE A GOOD THEMECHOOSE A GOOD THEME

Unfortunately, not all WordPress themes are created
equal. While some are extremely fast and well coded, oth-
ers are bloated with hundreds of bells and whistles under
the pretence of being “versatile and customizable.”

79. http://www.ventureharbour.com/web-hosting-guide/

HOW TO SPEED UP YOUR WORDPRESS WEBSITE

52

http://www.ventureharbour.com/web-hosting-guide/
http://www.ventureharbour.com/web-hosting-guide/
http://www.ventureharbour.com/web-hosting-guide/
http://www.ventureharbour.com/web-hosting-guide/
http://www.ventureharbour.com/web-hosting-guide/
http://www.ventureharbour.com/web-hosting-guide/

A few years ago, Julian Fernandes of Synthesis ran an
interesting case study in which he updated his theme
from WordPress’ default to the Genesis framework, mon-
itoring page speed. He noticed that just by changing the
theme to Genesis, his loading time improved from 630 to
172 milliseconds.

When you choose a theme, check the page speed of
the theme’s demo, using a tool such as Pingdom, to see
how quickly it runs with nothing added to it. This should
give you an idea of how well coded it is.

USE A CONTENT DELIVERY NETWORKUSE A CONTENT DELIVERY NETWORK

I recently started using a content delivery network (CDN)
for one of my websites and noticed a 55% reduction in
bandwidth usage and a huge improvement in page-load-
ing speed.

A CDN hosts your files across a huge network of
servers around the world. If a user from Argentina visits
your website, then they would download files from the
server closest to them geographically. Because your band-
width is spread across so many different servers, the load
on any single server is reduced.

Setting up a CDN can take a few hours, but it’s usually
one of the quickest ways to dramatically improve page-
loading speed.

12 Quick Fixes To Speed Up WordPress
Now that our foundation is solid, we can begin fine-tun-
ing our website.

53

A good way to start speeding up a website is to look at
what can be removed. More often than not, a website is
slow not because of what it lacks but because of what it
already has.

1. IDENTIFY PLUGINS THAT ARE SLOWING YOU1. IDENTIFY PLUGINS THAT ARE SLOWING YOU
DOWNDOWN

P380 is one of my favourite diagnostic plugins because it
shows you the impact of your other plugins on page-load-
ing time. This makes it easy to spot any plugins that are
slowing down your website.

A common culprit is social-sharing plugins, most of
which bloat page-loading times and can easily be replaced
by embedding social buttons into the theme’s source
code.

Once you’re aware of which plugins are slowing down
your website, you can make an informed decision about

80. https://wordpress.org/plugins/p3-profiler/

HOW TO SPEED UP YOUR WORDPRESS WEBSITE

54

https://wordpress.org/plugins/p3-profiler/
https://wordpress.org/plugins/p3-profiler/
https://wordpress.org/plugins/p3-profiler/
https://wordpress.org/plugins/p3-profiler/
https://wordpress.org/plugins/p3-profiler/

whether to keep them, replace them or remove them en-
tirely.

2. COMPRESS YOUR WEBSITE2. COMPRESS YOUR WEBSITE

When you compress a file on your computer as a ZIP file,
the total size of the file is reduced, making it both easier
and faster to send to someone. Gzip works in exactly the
same way but with your Web page files.

Once installed, Gzip automatically compresses your
website’s files as ZIP files, saving bandwidth and speed-
ing up page-loading times. When a user visits your web-
site, their browser will automatically unzip the files and
show their contents. This method of transmitting content
from the server to the browser is far more efficient and
saves a lot of time.

There is virtually no downside to installing Gzip, and the
increase in speed can be quite dramatic. As we can see in

55

the screenshot above, MusicLawContracts.com81 goes
from 68 KB to only 13 KB with Gzip installed.

While some plugins will add Gzip to your website
with the click of a button, installing it manually is actual-
ly very simple. Open your .htaccess file (found in the
root directory on your server), and add the following code
to it:

AddOutputFilterByType DEFLATE text/plain

AddOutputFilterByType DEFLATE text/html

AddOutputFilterByType DEFLATE text/xml

AddOutputFilterByType DEFLATE text/css

AddOutputFilterByType DEFLATE application/xml

AddOutputFilterByType DEFLATE application/xhtml+xml

AddOutputFilterByType DEFLATE application/rss+xml

AddOutputFilterByType DEFLATE application/javascript

AddOutputFilterByType DEFLATE application/x-javascript

Once you’ve added this snippet of code to .htaccess, test
whether Gzip is working on your website by running
Check Gzip Compression82. If for whatever reason the
code above doesn’t work, try one of the other methods
that Patrick Sexton describes in his article “Enable
Gzip83.”

81. http://www.musiclawcontracts.com
82. http://checkgzipcompression.com/
83. http://www.feedthebot.com/pagespeed/enable-compression.html

HOW TO SPEED UP YOUR WORDPRESS WEBSITE

56

http://www.musiclawcontracts.com
http://www.musiclawcontracts.com
http://www.musiclawcontracts.com
http://checkgzipcompression.com/
http://checkgzipcompression.com/
http://checkgzipcompression.com/
http://www.feedthebot.com/pagespeed/enable-compression.html
http://www.feedthebot.com/pagespeed/enable-compression.html
http://www.feedthebot.com/pagespeed/enable-compression.html
http://www.feedthebot.com/pagespeed/enable-compression.html
http://www.musiclawcontracts.com
http://www.musiclawcontracts.com
http://checkgzipcompression.com/
http://checkgzipcompression.com/
http://www.feedthebot.com/pagespeed/enable-compression.html
http://www.feedthebot.com/pagespeed/enable-compression.html

3. COMPRESS IMAGES3. COMPRESS IMAGES

Images take up the majority of bandwidth on most web-
sites. WP Smush.it84 is another great plugin that auto-
matically compresses images as you upload them to the
media library. All compression is “lossless,” meaning that
you won’t notice any difference in the quality of images.

One nice thing about WP Smush.it is that it works
retroactively. If thousands of images are saved in your
media library, you can run them all through the plugin,
compressing them to a more manageable size.

4. LEVERAGE BROWSER CACHING4. LEVERAGE BROWSER CACHING

Browser caching is a tricky issue. A handful of great
caching plugins are available, but if set up incorrectly,
they could cause more harm than good85.

Expires headers tell the browser whether to request a
particular file from the server or from the browser’s
cache. Of course, this only works if the user already has a
version of your Web page stored in their cache; so, the
technique will speed up the website only for those who
have already visited your website.

Expires headers speed up a website in two ways. First,
they reduce the need for returning visitors to download
the same files from your server twice. Secondly, they re-
duce the number of HTTP requests made.

To do this with a plugin, I recommend using WP Su-
per Cache86. However, following an installation guide87 is

84. https://wordpress.org/plugins/wp-smushit/
85. http://www.smashingmagazine.com/2014/03/21/

wordpress-performance-improvements-that-can-go-wrong/

57

https://wordpress.org/plugins/wp-smushit/
https://wordpress.org/plugins/wp-smushit/
https://wordpress.org/plugins/wp-smushit/
http://www.smashingmagazine.com/2014/03/21/wordpress-performance-improvements-that-can-go-wrong/
http://www.smashingmagazine.com/2014/03/21/wordpress-performance-improvements-that-can-go-wrong/
http://www.smashingmagazine.com/2014/03/21/wordpress-performance-improvements-that-can-go-wrong/
https://wordpress.org/plugins/wp-super-cache/
https://wordpress.org/plugins/wp-super-cache/
https://wordpress.org/plugins/wp-super-cache/
https://wordpress.org/plugins/wp-super-cache/
http://www.wpbeginner.com/beginners-guide/how-to-install-and-setup-wp-super-cache-for-beginners/
http://www.wpbeginner.com/beginners-guide/how-to-install-and-setup-wp-super-cache-for-beginners/
http://www.wpbeginner.com/beginners-guide/how-to-install-and-setup-wp-super-cache-for-beginners/
https://wordpress.org/plugins/wp-smushit/
https://wordpress.org/plugins/wp-smushit/
http://www.smashingmagazine.com/2014/03/21/wordpress-performance-improvements-that-can-go-wrong/
http://www.smashingmagazine.com/2014/03/21/wordpress-performance-improvements-that-can-go-wrong/

strongly recommended to ensure that you set it up cor-
rectly. Alternatively, you could add expires headers by
adding the following code to your .htaccess file.

#

associate .js with “text/javascript” type (if not present

in mime.conf)

#

AddType text/javascript .js

#

configure mod_expires

#

URL: http://httpd.apache.org/docs/2.2/mod/mod_expires.html

#

ExpiresActive On

ExpiresDefault “access plus 1 seconds”

ExpiresByType image/x-icon “access plus 2692000 seconds”

ExpiresByType image/jpeg “access plus 2692000 seconds”

ExpiresByType image/png “access plus 2692000 seconds”

ExpiresByType image/gif “access plus 2692000 seconds”

ExpiresByType application/x-shockwave-flash “access plus

2692000 seconds”

ExpiresByType text/css “access plus 2692000 seconds”

ExpiresByType text/javascript “access plus 2692000 seconds”

ExpiresByType application/x-javascript “access plus 2692000

86. https://wordpress.org/plugins/wp-super-cache/
87. http://www.wpbeginner.com/beginners-guide/

how-to-install-and-setup-wp-super-cache-for-beginners/

HOW TO SPEED UP YOUR WORDPRESS WEBSITE

58

https://wordpress.org/plugins/wp-super-cache/
https://wordpress.org/plugins/wp-super-cache/
http://www.wpbeginner.com/beginners-guide/how-to-install-and-setup-wp-super-cache-for-beginners/
http://www.wpbeginner.com/beginners-guide/how-to-install-and-setup-wp-super-cache-for-beginners/

seconds”

ExpiresByType text/html “access plus 600 seconds”

ExpiresByType application/xhtml+xml “access plus 600 seconds”

#

configure mod_headers

#

URL: http://httpd.apache.org/docs/2.2/mod/mod_headers.html

#

Header set Cache-Control “max-age=2692000, public”

Header set Cache-Control “max-age=600, private,

must-revalidate”

Header unset ETag

Header unset Last-Modified

5. CLEAN UP THE DATABASE5. CLEAN UP THE DATABASE

I’m a big fan of how often WordPress autosaves every-
thing, but the disadvantage is that your database will get
filled with thousands of post revisions, trackbacks, ping-
backs, unapproved comments and trashed items pretty
quickly.

The solution to this is a fantastic plugin called WP-Op-
timize88, which routinely clears out your database’s trash,
keeping the database efficient and filled only with what

88. https://wordpress.org/plugins/wp-optimize/

59

https://wordpress.org/plugins/wp-optimize/
https://wordpress.org/plugins/wp-optimize/
https://wordpress.org/plugins/wp-optimize/
https://wordpress.org/plugins/wp-optimize/
https://wordpress.org/plugins/wp-optimize/
https://wordpress.org/plugins/wp-optimize/

needs to be kept. Of course, when doing anything to your
database, always back up first.

6. MINIFY CSS AND JAVASCRIPT FILES6. MINIFY CSS AND JAVASCRIPT FILES

If you’ve installed more than a handful of plugins,
chances are that your website links to 10 to 20 individual
style sheets and JavaScript files on every page. This is not
ideal. Putting all JavaScript into one JavaScript file and all
CSS in one CSS file is considerably more efficient.

This is where minification comes in. Plugins such as
Better WordPress Minify89 will combine all of your style
sheets and JavaScript files into one, reducing the number
of requests that the browser needs to make.

I prefer Better WordPress Minify because it’s less ag-
gressive than some of the other plugins that do the same
thing (some of which cause problems, as Hristo Pand-
jarov outlines90).

7. TURN OFF PINGBACKS AND TRACKBACKS7. TURN OFF PINGBACKS AND TRACKBACKS

Pingbacks and trackbacks are methods used by Word-
Press to alert other blogs that your posts link to. While
sometimes interesting, they can be a drain on page speed
and are usually better turned off. You can turn them off
under the “Discussion” tab in “Settings.”

89. https://wordpress.org/plugins/bwp-minify/
90. http://www.smashingmagazine.com/2014/03/21/

wordpress-performance-improvements-that-can-go-wrong/

HOW TO SPEED UP YOUR WORDPRESS WEBSITE

60

https://wordpress.org/plugins/bwp-minify/
https://wordpress.org/plugins/bwp-minify/
https://wordpress.org/plugins/bwp-minify/
http://www.smashingmagazine.com/2014/03/21/wordpress-performance-improvements-that-can-go-wrong/
http://www.smashingmagazine.com/2014/03/21/wordpress-performance-improvements-that-can-go-wrong/
http://www.smashingmagazine.com/2014/03/21/wordpress-performance-improvements-that-can-go-wrong/
http://www.smashingmagazine.com/2014/03/21/wordpress-performance-improvements-that-can-go-wrong/
https://wordpress.org/plugins/bwp-minify/
https://wordpress.org/plugins/bwp-minify/
http://www.smashingmagazine.com/2014/03/21/wordpress-performance-improvements-that-can-go-wrong/
http://www.smashingmagazine.com/2014/03/21/wordpress-performance-improvements-that-can-go-wrong/

8. SPECIFY IMAGE DIMENSIONS AND8. SPECIFY IMAGE DIMENSIONS AND
CHARACTER SETSCHARACTER SETS

Before a visitor’s browser can display your Web page, it
has to figure out how to lay out the content around the
images. Without knowing the size of these images, the
browser has to figure it out, causing it to work harder and
take longer.

Specifying image dimensions saves the browser from
having to go through this step, speeding things up.

For the same reason, specifying a character set in your
HTTP response headers is useful, so that the browser
doesn’t have to spend extra time working out which one
you’re using. Simply add the character set to your web-
site’s head section.

9. MOVE CSS TO THE TOP AND JAVASCRIPT TO9. MOVE CSS TO THE TOP AND JAVASCRIPT TO
THE BOTTOMTHE BOTTOM

Linking to your style sheets as close to the top of the page
as possible is widely recommended because browsers
won’t render a page before rendering the CSS file.
JavaScript, on the other hand, should be as close to the
bottom of the footer as possible because it prevents
browsers from parsing anything after it until it has full
loaded.

In the majority of cases, this simple fix will improve
page-loading speed by forcing files to be downloaded in
the optimal order. But it can cause issues on websites that
rely heavily on JavaScript and that require JavaScript files
to load before the user sees any of the page.

61

10. USE CSS SPRITES10. USE CSS SPRITES

A sprite is essentially one large image file that contains all
of your individual images next to each other. Using CSS,
you can hide everything in the image except for the sec-
tion you need, by specifying a set of coordinates.

CSS sprites speed up a website because loading one
big image is much faster than loading a lot of small im-
ages.

The easiest solution is SpriteMe91, a tool that turns all of
your images into a CSS sprite.

Remember that Safari does not load large sprites, so
use William Malone’s calculator92 to identify whether
your sprite is too large.

91. http://spriteme.org/
92. http://www.williammalone.com/articles/

html5-javascript-ios-maximum-sprite-frames/

HOW TO SPEED UP YOUR WORDPRESS WEBSITE

62

http://spriteme.org/
http://spriteme.org/
http://spriteme.org/
http://www.williammalone.com/articles/html5-javascript-ios-maximum-sprite-frames/
http://www.williammalone.com/articles/html5-javascript-ios-maximum-sprite-frames/
http://www.williammalone.com/articles/html5-javascript-ios-maximum-sprite-frames/
http://spriteme.org/
http://spriteme.org/
http://www.williammalone.com/articles/html5-javascript-ios-maximum-sprite-frames/
http://www.williammalone.com/articles/html5-javascript-ios-maximum-sprite-frames/

11. ENABLE KEEP ALIVE11. ENABLE KEEP ALIVE

HTTP Keep Alive refers to the message that is sent be-
tween the client’s machine and the Web server asking for
permission to download a file. Enabling Keep Alive allows
the client’s machine to download multiple files without
having to repeatedly ask for permission, thus saving
bandwidth.

To enable Keep Alive, simply copy and paste the code
below into your .htaccess file.

Header set Connection keep-alive

12. REPLACE PHP WITH STATIC HTML WHERE12. REPLACE PHP WITH STATIC HTML WHERE
APPROPRIATEAPPROPRIATE

PHP is great for making a website efficient and reducing
the need to enter the same information multiple times.
However, calling information through PHP uses up serv-
er resources and should be replaced with static HTML
where it doesn’t save any time.

Conclusion
In the next 12 months, mobile Internet usage is expected
to overtake desktop usage. This shift towards Internet-en-
abled mobile devices means that having a fast website
has never been as important as it is today. Users now ex-
pect websites to be lightening fast, and developers who
don’t comply will ultimately lose out to developers who
invest in delivering a great experience.❧

63

You May Be Losing Users If
Responsive Web Design Is
Your Only Mobile Strategy

MAXIMILIANO FIRTMANMAXIMILIANO FIRTMAN ❧❧

You resize the browser and a smile creeps over your face.
You’re happy: You think you are now mobile-friendly,
that you have achieved your goals for the website. Let me
be a bit forward before getting into the discussion: You
are losing users and probably money if responsive web
design is your entire goal and your only solution for mo-
bile. The good news is that you can do it right.

In this chapter, we’ll cover the relationship between
the mobile web and responsive design, starting with how
to apply responsive design intelligently, why perfor-
mance is so important in mobile, why responsive design
should not be your website’s goal, and ending with the
performance issues of the technique to help us under-
stand the problem.

Designers and developers have been oversimplifying
the problem of mobile since 2000, and some people now
think that responsive web design is the answer to all of
our problems.

We need to understand that, beyond any other goal, a
mobile web experience must be lightning fast. Delivering
a fast, usable and compatible experience to all mobile de-
vices has always been a challenge, and it’s no different
when you are implementing a responsive technique. Em-
bracing performance from the beginning is easier.

YOU MAY BE LOSING USERS IF RESPONSIVE WEB DESIGN IS YOUR ONLY
MOBILE STRATEGY

64

Responsive web design is great, but it’s not a silver
bullet. If it’s your only weapon for mobile, then a perfor-
mance problem might be hindering your conversion rate.
Around 11% of the websites are responsive93, and the num-
ber is growing every month, so now is the time to talk
about this.

According to Guy Podjarny’s research94, 72% of respon-
sive websites deliver the same number of bytes regardless
of screen size, even on slow mobile network connections.
Not all users will wait for your website to load.

With just a basic understanding of the problem, we
can minimize this loss.

MOBILE WEBSITES ARE FROM THE PASTMOBILE WEBSITES ARE FROM THE PAST

I’m not saying that you should not design responsively or
that you should go with an m.* subdomain. In fact, with
social sharing everywhere now, assigning one URL per
document, regardless of device, is smart. But this doesn’t
mean that a single URL should always deliver the same
document or that every device should download the same
resources.

Let me quote Ethan Marcotte95, who coined the term
“responsive web design”:

Most importantly, responsive web design isn’t intended
to serve as a replacement for mobile web sites.
— Ethan Marcotte

93. http://www.guypo.com/mobile/rwd-ratio-in-top-100000-websites-refined/
94. http://www.guypo.com/uncategorized/real-world-rwd-performance-take-2/
95. http://www.abookapart.com/products/responsive-web-design

65

http://www.guypo.com/mobile/rwd-ratio-in-top-100000-websites-refined/
http://www.guypo.com/mobile/rwd-ratio-in-top-100000-websites-refined/
http://www.guypo.com/mobile/rwd-ratio-in-top-100000-websites-refined/
http://www.guypo.com/uncategorized/real-world-rwd-performance-take-2/
http://www.guypo.com/uncategorized/real-world-rwd-performance-take-2/
http://www.guypo.com/uncategorized/real-world-rwd-performance-take-2/
http://www.abookapart.com/products/responsive-web-design
http://www.abookapart.com/products/responsive-web-design
http://www.abookapart.com/products/responsive-web-design
http://www.guypo.com/mobile/rwd-ratio-in-top-100000-websites-refined/
http://www.guypo.com/mobile/rwd-ratio-in-top-100000-websites-refined/
http://www.guypo.com/uncategorized/real-world-rwd-performance-take-2/
http://www.guypo.com/uncategorized/real-world-rwd-performance-take-2/
http://www.abookapart.com/products/responsive-web-design
http://www.abookapart.com/products/responsive-web-design

Responsive, Mobile And Fast
We can gain the benefits of responsive design without af-
fecting performance on mobile if we use certain other
techniques as well. Responsive web design was never
meant to “solve” performance, which is why we can’t
blame the technique itself. However, believing that it will
solve all of your problems, as many seem to do, would be
wrong.

Designing responsively is important because we need
to deal with a range of viewport sizes across desktop and
mobile. But thinking only of screen size underestimates
mobile devices. While the line between desktop and mo-
bile is getting blurrier, different possibilities are still open
to us based on the device type. And we can’t decide on
functionality using media queries yet.

Some commentators have called this “responsible re-
sponsive web design,” while others consider it responsive
web design with a modern vision. Without getting into
semantics, we do need to understand and be aware of the
problem.

While there is no silver bullet and no solutions that
can be applied to every type of document, we can use a
couple of tricks to improve our existing responsive solu-
tions and maximize performance:

• Deliver each document to all devices with the same URL
and the same content, but not necessarily with the same
structure.

• When starting from scratch, follow a mobile-first ap-
proach.

YOU MAY BE LOSING USERS IF RESPONSIVE WEB DESIGN IS YOUR ONLY
MOBILE STRATEGY

66

• Test on real devices what happens when resources are
loaded and when display: none is applied. Don’t rely on
resizing your desktop browser.

• Use optimization tools to measure and improve perfor-
mance.

• Deliver responsive images via JavaScript while we wait
for a better solution from browser vendors (such as src-
set).

• Load only the JavaScript that you need for the current de-
vice with conditional loading, and probably after the on-
load event.

• Inline the initial view of a document for mobile devices,
or deliver above-the-fold content first.

• Apply a smart responsive solution with one or more of
these techniques: conditional loading, responsiveness ac-
cording to group, and a server-side layer (such as an adap-
tive approach).

CONDITIONAL LOADINGCONDITIONAL LOADING

Don’t always rely on media queries in CSS because
browsers will load and parse all of the selectors and styles
for all devices (more on this later). This means that a mo-
bile phone would download and parse the CSS for larger
screens. And because CSS blocks rendering, you would be
wasting precious milliseconds over a cellular connection.

Replace CSS media queries with a JavaScript
matchMedia query on devices whose context you know
will not change. For example, we know that an iPhone

67

cannot convert to the size of an iPad dynamically, so we
would just load the CSS for it that we really need.

We can also use feature detection, such as with Mod-
ernizr96, to make smarter decisions about the UI and
functionality based not only on screen dimension.

RESPONSIVENESS ACCORDING TO GROUPRESPONSIVENESS ACCORDING TO GROUP

While we can rely on a single HTML base and responsive
design for all screens when dealing with simple docu-
ments, delivering the same HTML to desktops and smart-
phones is not always the best solution. Why? Again, be-
cause of performance on mobile.

Even if we store the same document server-side, we
can deliver differences to the client based on the device
group. For example, we could deliver a big floating menu
to screens 6 inches and bigger and a small hamburger
menu to screens smaller than 6 inches. Within each
group, we could use responsive techniques to adapt to
different scenarios, such as switching between portrait
and landscape mode or varying between iPhones (320
pixels wide), 5-inch Android devices (360 pixels) and ph-
ablets (400 pixels and up).

SERVER-SIDE LAYERSERVER-SIDE LAYER

The last optional part of a smarter responsive solution is
the server. Server-side feature detection and decisions are

96. http://modernizr.com/

YOU MAY BE LOSING USERS IF RESPONSIVE WEB DESIGN IS YOUR ONLY
MOBILE STRATEGY

68

http://modernizr.com/
http://modernizr.com/
http://modernizr.com/
http://modernizr.com/
http://modernizr.com/
http://modernizr.com/

not new to the mobile web. Libraries such as WURFL97

and Device Atlas98 have been on the market for years.
Mixing responsive design with server-side compo-

nents is not new. Known sometimes as responsive design
and server-side components99 (RESS) and sometimes as
adaptive design, it improves responsive design in speed
and usability, while keeping a single code base for every-
one server-side.

Unfortunately, these techniques haven’t gained much
traction in the community over the last few years. Just
look at any blog or magazine for developers and compare
mentions of “RESS” and “adaptive” to “responsive.”
There’s a reason for that: We are front-end professionals.
Anything that involves the server looks like a problem to
us, and we don’t want that.

In some cases, the front-end designer will be in con-
trol of a script on the server; in other cases, a remote de-
velopment team will manage it, and the designer won’t
want to deal with the team every time they want to make
a small change to the UI. I know the feeling.

That’s why it might be time to think of a new architec-
ture layer in large projects, whereby a front-end engineer
can make decisions server-side without affecting the
back-end architecture. Node.js is an excellent candidate
for this platform, being a server-side layer between the
current enterprise back-end infrastructure and the front
end.

97. http://www.scientiamobile.com/
98. https://deviceatlas.com/
99. http://www.lukew.com/ff/entry.asp?1392

69

http://www.scientiamobile.com/
http://www.scientiamobile.com/
http://www.scientiamobile.com/
https://deviceatlas.com/
https://deviceatlas.com/
https://deviceatlas.com/
http://www.lukew.com/ff/entry.asp?1392
http://www.lukew.com/ff/entry.asp?1392
http://www.lukew.com/ff/entry.asp?1392
http://www.lukew.com/ff/entry.asp?1392
http://www.scientiamobile.com/
http://www.scientiamobile.com/
https://deviceatlas.com/
https://deviceatlas.com/
http://www.lukew.com/ff/entry.asp?1392
http://www.lukew.com/ff/entry.asp?1392

In this new layer, the front-end engineer would be in
charge of decisions based on the current context that
would make the experience fast, responsive and usable
on all the devices, without touching the back-end archi-
tecture.

Responsive Design, Performance And
Technical Data
You might have some doubts by this point. Let’s review
some technical details to allay your concerns.

Responsive design usually entails delivering the same
HTML document to all devices and using media queries
to load different CSS and image files. You might have a
slightly different idea of what it means, but that is usual-
ly how it is implemented.

You might also think that mobile networks today are
fast enough to deliver a great experience. After all, 4G is
fast, and devices are getting faster.

Well, let’s see some data before drawing conclusions.

CELLULAR CONNECTIONSCELLULAR CONNECTIONS

4G networks are not available everywhere, and even if
the whole world was on a 4G network today, the situation
might not be what you expect. Less than 3% of mobile
phones100 out there are on a 4G connection. Taking only
the US, the number of 4G users has reached approximate-

100. http://www.4gamericas.org/index.cfm?fuseaction=page&pageid=2253

YOU MAY BE LOSING USERS IF RESPONSIVE WEB DESIGN IS YOUR ONLY
MOBILE STRATEGY

70

http://www.4gamericas.org/index.cfm?fuseaction=page&pageid=2253
http://www.4gamericas.org/index.cfm?fuseaction=page&pageid=2253
http://www.4gamericas.org/index.cfm?fuseaction=page&pageid=2253
http://www.4gamericas.org/index.cfm?fuseaction=page&pageid=2253
http://www.4gamericas.org/index.cfm?fuseaction=page&pageid=2253
http://www.4gamericas.org/index.cfm?fuseaction=page&pageid=2253

ly 22%, and even those lucky users are not on 4G 40% of
the time101.

We usually think of mobile network speeds in terms
of bandwidth. With 3G, we get up to 5 Mbps; with 4G, we
get up to 50 Mbps. But that’s not usually the most impor-
tant factor in a mobile web browsing experience. While
more bandwidth is useful for transferring big files (such
as a YouTube video), it doesn’t add much value when
you’re downloading a lot of small files and the latency is
high and fixed. Latency is the round-trip time that the
first byte of every package takes to get to a device after a
request.

Cellular networks have more latency than other con-
nections. While the latency on a DSL connection in a US
home is between 20 and 45 milliseconds, on 3G it can be
between 150 and 450 milliseconds, and on 4G between
100 and 180. In other words, latency is 5 to 10 times higher
on a cellular connection than on a home network.

Other issues include the latency when there is a
change in radio state, the dead time when a phone turns
on the radio to get more data after having been asleep, the
lower available memory on average devices and, of
course, battery and CPU usage.

RESPONSIVE DESIGN ON CELLULARRESPONSIVE DESIGN ON CELLULAR
NETWORKSNETWORKS

Consider a real case. Keynote, a company that offers per-
formance solutions, has published data on the website

101. http://opensignal.com/reports/state-of-lte-q1-2014/

71

http://opensignal.com/reports/state-of-lte-q1-2014/
http://opensignal.com/reports/state-of-lte-q1-2014/
http://opensignal.com/reports/state-of-lte-q1-2014/
http://opensignal.com/reports/state-of-lte-q1-2014/
http://blogs.keynote.com/the_watch/2014/02/you-can-run-but-you-cant-hide-from-performance.html
http://opensignal.com/reports/state-of-lte-q1-2014/
http://opensignal.com/reports/state-of-lte-q1-2014/

performance of top Super Bowl 2014 advertisers102. The
data speaks for itself: On a wired or Wi-Fi connection, the
loading times range from 1 to 10 seconds, while on a cellu-
lar connection, the loading times range from 5 to 60 sec-
onds. Think about that: one full minute to load a website
being advertised in the Super Bowl!

Website performance of the top Super Bowl 2014 advertisers.

102. http://blogs.keynote.com/the_watch/2014/02/
you-can-run-but-you-cant-hide-from-performance.html

YOU MAY BE LOSING USERS IF RESPONSIVE WEB DESIGN IS YOUR ONLY
MOBILE STRATEGY

72

http://blogs.keynote.com/the_watch/2014/02/you-can-run-but-you-cant-hide-from-performance.html
http://blogs.keynote.com/the_watch/2014/02/you-can-run-but-you-cant-hide-from-performance.html
http://blogs.keynote.com/the_watch/2014/02/you-can-run-but-you-cant-hide-from-performance.html
http://blogs.keynote.com/the_watch/2014/02/you-can-run-but-you-cant-hide-from-performance.html
http://blogs.keynote.com/the_watch/2014/02/you-can-run-but-you-cant-hide-from-performance.html

The same report shows that 43% of those websites offer a
mobile-specific version, with an average size of 862 KB;
50% deliver a responsive solution, with an average size of
3211 KB (nearly four times larger); and 7% offer only the
desktop version to mobile devices. So, by default, respon-
sive websites are larger than mobile-specific websites.

Of course, responsive design can look different, but,
unfortunately, the average responsive website out there
looks like these ones of Super Bowl advertisers.

CLOUD-BASED BROWSERSCLOUD-BASED BROWSERS

If you still doubt that performance is a problem on the
mobile web, consider that browser vendors are creating
cloud-based browsers to help users—including Opera Mi-
ni, the Asia-based UC Browser (which commands 11% of
the global market share, according to StatCounter103),
Amazon Fire’s Silk and now Google Chrome (through a
settings option).

These vendors compress every website and resource
in the cloud, and then the browser downloads an opti-
mized version to the mobile device. They do it because
they know that performance matters a lot to the user’s
happiness.

UNDERESTIMATING THE MOBILE WEBUNDERESTIMATING THE MOBILE WEB

The web community has always underestimated the im-
portance of mobile browsers. I’m used to hearing people
say that the mobile web today is just Safari for iOS and

103. http://gs.statcounter.com/#mobile_browser-ww-monthly-201303-201403

73

http://gs.statcounter.com/#mobile_browser-ww-monthly-201303-201403
http://gs.statcounter.com/#mobile_browser-ww-monthly-201303-201403
http://gs.statcounter.com/#mobile_browser-ww-monthly-201303-201403
http://gs.statcounter.com/#mobile_browser-ww-monthly-201303-201403
http://gs.statcounter.com/#mobile_browser-ww-monthly-201303-201403

Chrome for Android and that, for responsive design, we
need only care about viewports that are 320 pixels wide.
It’s far more complex than that.

Today, more than 10 browsers have a market share
over 1%. Even if you want to consider only the default
browsers on iOS and Android, it’s not so simple. Roughly
speaking104, 50% of mobile users browse the web on iOS,
38% on Android, 3% on Windows Phone, 5% with Opera
Mini (on various operating systems) and 4% on other
platforms.

On Android, 64% of users today browse with Android’s
stock browser, which is not the same as Google Chrome
and which exists in different versions. Moreover, some of
Samsung’s latest Galaxy devices have a version of the An-
droid browser with a customized engine.

In terms of viewport size, we are dealing today with
pixel widths of 320, 360, 400 and 540 with Android smart-
phones alone. My suggestion, then, is never to underesti-
mate the mobile web, and to learn its unique characteris-
tics.

ABOVE-THE-FOLD CONTENT IN 1 SECONDABOVE-THE-FOLD CONTENT IN 1 SECOND

On a mobile device, we can consider a website to be fast
when content above the fold (i.e. the content that is visi-
ble without scrolling) is rendered in 1 second or less. I
know, 1 second seems awfully fast—especially consider-
ing that at least half of that time is taken up by the cellu-
lar connection—but it has been proven to be possible. A

104. http://firt.mobi/velocity

YOU MAY BE LOSING USERS IF RESPONSIVE WEB DESIGN IS YOUR ONLY
MOBILE STRATEGY

74

http://firt.mobi/velocity
http://firt.mobi/velocity
http://firt.mobi/velocity
http://firt.mobi/velocity
http://firt.mobi/velocity
http://firt.mobi/velocity

1-second response keeps users engaged with the content,
thereby increasing the conversion rate and reducing
abandonments.

To achieve a 1-second response time, above-the-fold
content needs to be received in one round trip over the
transmission control protocol (TCP)—remember that the
average 3G connection has almost half a second of laten-
cy. Because of a TCP feature known as a “slow start,” that
first response should be no more than about 14 KB in or-
der to avoid a second package. This means that at least
the HTML and CSS for the above-the-fold content should
fit in a single 14 KB HTTP response. If we achieve that,
then we’ll have achieved the perception of a 1-second
loading time.

This rule is not written in stone and will vary based on
your content. However, because content that appears
above the fold will usually not be the same on a mobile
screen as on a desktop screen, achieving this goal of 1 sec-
ond with a responsive design is very difficult. It’s possi-
ble, but combining techniques makes it much easier.

ONE HTML FOR ALLONE HTML FOR ALL

A typical responsive design delivers a single HTML docu-
ment to all devices: televisions, desktops, tablets, smart-
phones and feature phones. It sounds great, but we live in
a world that has cellular and other problems. Your re-
sponsive HTML might render correctly on mobile de-
vices, but it’s not as fast as it should be, and that is affect-
ing your conversion rate.

75

If a single display: none appears in any of your CSS,
then your website is not as fast as it could be. On a web-
site that has been designed from scratch to be semantic,
then the responsive overload would be almost nil; on a
website whose HTML includes 40 external scripts,
jQuery plugins and fancy libraries, mostly for the benefit
of big screens, then the responsive overload would be at
the high end. When the same HTML is used, then the
same external resources would be declared for all devices.

This isn’t to say that responsive design alone can’t be
done, just that the website won’t be optimized by default.
If you are sensitive to performance, then your responsive
solution might look different than the usual.

Let’s review Starbucks’ website. Its home page is re-
sponsive and looks great in the three viewports we tested
(see the screenshots below). But upon checking the inter-
nals, we see that all versions load the same 33 external
JavaScript files and 6 CSS files. Does a mobile device with
3G latency deserve 39 external files just to get the view
shown below?

You might be thinking, “Hey, blame the implementa-
tion, not the technique105.” You’re right. This article is not
against responsive web design. It’s against aiming for re-
sponsiveness in a way that leads to a weak implementa-
tion, and it’s against prioritizing responsiveness over per-
formance, as we see with Starbucks. It looks great when
you resize the browser, but that’s not all that is important.
Performance also matters a lot to mobile users.

105. http://timkadlec.com/2012/10/blame-the-implementation-not-the-technique/

YOU MAY BE LOSING USERS IF RESPONSIVE WEB DESIGN IS YOUR ONLY
MOBILE STRATEGY

76

http://timkadlec.com/2012/10/blame-the-implementation-not-the-technique/
http://timkadlec.com/2012/10/blame-the-implementation-not-the-technique/
http://timkadlec.com/2012/10/blame-the-implementation-not-the-technique/
http://timkadlec.com/2012/10/blame-the-implementation-not-the-technique/
http://timkadlec.com/2012/10/blame-the-implementation-not-the-technique/
http://timkadlec.com/2012/10/blame-the-implementation-not-the-technique/

If your responsive website has performance problems,
then the fault may lie with how you’ve framed the goal. If
you have the budget for responsive design, then you
must also have the budget for performance.

The Starbuck’s website in different states.

77

LOADING RESOURCESLOADING RESOURCES

Media queries are implemented in different ways, usual-
ly as one of the following:

• a single CSS file with multiple @media declarations,

• multiple CSS files linked to from the main page via media
attributes.

In the first case, every device would load the CSS intend-
ed for all devices because there would be just one CSS
group. Hundreds of selectors that will never be used are
transferred and parsed by the browser anyway.

You might think that multiple external files are better
because the browser would load the resources based on
breakpoints. This is what we’re taught in tutorials in
blogs, magazines, books and training courses.

<link rel="stylesheet" href="desktop.css"

media="(min-width: 801px)">

<link rel="stylesheet" href="tablet.css"

media="(min-width: 401px) and (max-width: 800px)">

<link rel="stylesheet" href="mobile.css"

media="(max-width: 400px)">

Well, you’d be wrong. All browsers will load all external
CSS, regardless of context. The screenshot below shows
an iPhone downloading all of the CSS files excerpted
above, even ones not intended for it.

YOU MAY BE LOSING USERS IF RESPONSIVE WEB DESIGN IS YOUR ONLY
MOBILE STRATEGY

78

Why do browsers download all CSS files? Suppose you
have one CSS file for portrait orientation and another for
landscape. We wouldn’t want browsers to load CSS on the
fly when the orientation changes, in case a couple of mil-
liseconds go by without any CSS being used. We’d want
the browser to preload both files. That’s what happens
when you define media queries based on screen dimen-
sions.

Can the dimensions of mobile browsers be changed?
Mostly not yet, but vendors are preparing their mobile
browsers to be resized like desktop browsers, which is
why the browsers usually load all CSS declarations re-
gardless of whether their width matches the media query.

While stretchable viewports don’t exist on mobile de-
vices (yet), some viewports resize in certain situations:

• when the orientation changes in certain browsers,

• when the viewport declaration changes dynamically,

• when offset content is added after onload,

Browser will load all external CSS files, regardless of the context.

79

• when external mirroring is supported,

• when more than one app is open at the same time on
some Samsung Android devices (in multi-window mode).

Browsers that are optimized for these changes in context
will preload all resources that they might need.

While browsers might be smarter about this in the
near future, we’re left with a problem now: We are deliv-
ering more resources than are needed and, thus, penaliz-
ing mobile users for no reason.

The Real Problem: Responsive Design As A
Goal
As Lyza Danger Gardner says in “What We Mean When
We Say ‘Responsive’106,” designers define “responsive”
differently, which can lead to communication problems.

Let’s get to the root. The term first appeared in a 2010
post by Ethan Marcotte107, followed by a book with the
same name. Ethan defines it as providing an optimal
viewing experience across a wide range of devices using
three techniques: fluid grids, flexible images and media
queries.

Nothing is wrong with that definition. The problem is
when we set it as the goal of a website without under-
standing the broader goals that we need to achieve.

106. http://alistapart.com/column/what-we-mean-when-we-say-responsive
107. http://alistapart.com/article/responsive-web-design/

YOU MAY BE LOSING USERS IF RESPONSIVE WEB DESIGN IS YOUR ONLY
MOBILE STRATEGY

80

http://alistapart.com/column/what-we-mean-when-we-say-responsive
http://alistapart.com/column/what-we-mean-when-we-say-responsive
http://alistapart.com/column/what-we-mean-when-we-say-responsive
http://alistapart.com/column/what-we-mean-when-we-say-responsive
http://alistapart.com/article/responsive-web-design/
http://alistapart.com/article/responsive-web-design/
http://alistapart.com/article/responsive-web-design/
http://alistapart.com/column/what-we-mean-when-we-say-responsive
http://alistapart.com/column/what-we-mean-when-we-say-responsive
http://alistapart.com/article/responsive-web-design/
http://alistapart.com/article/responsive-web-design/

When you set responsive design as a goal, it becomes
easy to lose perspective. What is the real problem you are
trying to solve? Is being responsive really a problem?
Probably not. But do you understand “being responsive”
to mean “being mobile-compatible”? If so, then you might
be making some mistakes.

The ultimate goal for a website should be “happy
users,” which will lead to more conversions, whatever a
conversion might be, whether it’s getting a visitor to
spread the word, providing information or making a sale.
Users won’t be happy without a high-performing website.

The direct impact of performance on conversions, par-
ticular in mobile, has been proven many times. If this is
the first time you are hearing about this, just check any of
Steve Souders108’ expert books about optimizing web per-
formance.

When you know your goals, you can decide which
tools and techniques are best to achieve them. This is
when you analyze where and how to use a responsive ap-
proach. You use responsive design—you don’t achieve it.

RESPONSIVE VS. USERSRESPONSIVE VS. USERS

The New York Times redesigned its website109 a couple of
months ago with the goal of keeping “you in mind.”
Meanwhile, thousands of other big companies present
their new responsive websites with pride.

108. http://stevesouders.com
109. http://www.nytimes.com/redesign/

81

http://stevesouders.com
http://stevesouders.com
http://stevesouders.com
http://www.nytimes.com/redesign/
http://www.nytimes.com/redesign/
http://www.nytimes.com/redesign/
http://stevesouders.com
http://stevesouders.com
http://www.nytimes.com/redesign/
http://www.nytimes.com/redesign/

The New York Times follows responsive design in dif-
ferent ways, but some people complained that it still uses
a separate mobile version, instead of adapting the layout
based on the same HTML. An article even came out titled
“The Latest New York Times Web App Misses the Point
of Responsive Design110.”

Who said that responsive web design means supporting
all possible screen sizes with the same HTML? Sure, this
is a common understanding, but that rule isn’t written
anywhere. It’s just our need to simplify the problem that
has led to it.

The New York Times follows responsive design in different ways.

110. http://readwrite.com/2013/12/05/
new-york-times-responsive-web-app-todays-paper

YOU MAY BE LOSING USERS IF RESPONSIVE WEB DESIGN IS YOUR ONLY
MOBILE STRATEGY

82

http://readwrite.com/2013/12/05/new-york-times-responsive-web-app-todays-paper
http://readwrite.com/2013/12/05/new-york-times-responsive-web-app-todays-paper
http://readwrite.com/2013/12/05/new-york-times-responsive-web-app-todays-paper
http://readwrite.com/2013/12/05/new-york-times-responsive-web-app-todays-paper
http://readwrite.com/2013/12/05/new-york-times-responsive-web-app-todays-paper
http://readwrite.com/2013/12/05/new-york-times-responsive-web-app-todays-paper

In recent months, companies have said things along
the lines of, “We’ve applied a new responsive design, and
now our mobile conversions have increased by 100%.” But
did conversions increase because the website was made
to be responsive, or are users realizing that the website is
now responsive and so are happier and convert more?

People convert more because their experience on mo-
bile devices is now better and faster than whatever solu-
tion was in place before (whether it was a crude mobile
version or a crammed-in desktop layout). So, yes, respon-
siveness is better than nothing and better than an old mo-
bile implementation. But a separate mobile website with
the same design or even a smarter solution done with
other techniques would achieve the same conversion rate
or better.

Conclusion

Your visitors don’t give a sh*t if your site is responsive.
— Brad Frost

Brad Frost111 is completely right. Users want something
fast and easy to use. They don’t usually resize the brows-
er, and they don’t even understand what “responsive”
means.

It’s a bitter truth, and it doesn’t quite apply to all web-
sites. But it’s better than thinking, “We can relax. Our
website is responsive. We’ve taken care of mobile.” Some-

111. http://bradfrostweb.com/blog/web/responsive-web-design-missing-the-point/

83

http://bradfrostweb.com/blog/web/responsive-web-design-missing-the-point/
http://bradfrostweb.com/blog/web/responsive-web-design-missing-the-point/
http://bradfrostweb.com/blog/web/responsive-web-design-missing-the-point/
http://bradfrostweb.com/blog/web/responsive-web-design-missing-the-point/
http://bradfrostweb.com/blog/web/responsive-web-design-missing-the-point/

times, even when not relevant to the situation, saying
that responsive design is “bad for performance112” can be
good because it helps to spread the word on why perfor-
mance is so important.

The New York Times is right: The goal is the user. It’s
not a tool or a technique or even the designer’s happiness.

FURTHER RESOURCESFURTHER RESOURCES

• “Responsive Web Design: Missing the Point113,” Brad
Frost

• “RESS: Responsive Design + Server-Side Components114,”
Luke Wroblewski

• “What We Mean When We Say ‘Responsive’115,” Lyza
Danger Gardner, A List Apart

• “You Can Run, But You Can’t Hide From Performance116,”
Aaron Rudger, Keynote

• “Real-World RWD Performance: Take 2117,” Guy Podjarny

• “Blame the Implementation, Not the Technique118,” Tim
Kadlec

112. http://timkadlec.com/2014/07/
rwd-is-bad-for-performance-is-good-for-performance/

113. http://bradfrostweb.com/blog/web/responsive-web-design-missing-the-point/
114. http://www.lukew.com/ff/entry.asp?1392
115. http://alistapart.com/column/what-we-mean-when-we-say-responsive
116. http://blogs.keynote.com/the_watch/2014/02/

you-can-run-but-you-cant-hide-from-performance.html
117. http://www.guypo.com/uncategorized/real-world-rwd-performance-take-2/
118. http://timkadlec.com/2012/10/blame-the-implementation-not-the-technique/

YOU MAY BE LOSING USERS IF RESPONSIVE WEB DESIGN IS YOUR ONLY
MOBILE STRATEGY

84

http://timkadlec.com/2014/07/rwd-is-bad-for-performance-is-good-for-performance/
http://timkadlec.com/2014/07/rwd-is-bad-for-performance-is-good-for-performance/
http://timkadlec.com/2014/07/rwd-is-bad-for-performance-is-good-for-performance/
http://bradfrostweb.com/blog/web/responsive-web-design-missing-the-point/
http://bradfrostweb.com/blog/web/responsive-web-design-missing-the-point/
http://bradfrostweb.com/blog/web/responsive-web-design-missing-the-point/
http://www.lukew.com/ff/entry.asp?1392
http://www.lukew.com/ff/entry.asp?1392
http://www.lukew.com/ff/entry.asp?1392
http://alistapart.com/column/what-we-mean-when-we-say-responsive
http://alistapart.com/column/what-we-mean-when-we-say-responsive
http://alistapart.com/column/what-we-mean-when-we-say-responsive
http://blogs.keynote.com/the_watch/2014/02/you-can-run-but-you-cant-hide-from-performance.html
http://blogs.keynote.com/the_watch/2014/02/you-can-run-but-you-cant-hide-from-performance.html
http://blogs.keynote.com/the_watch/2014/02/you-can-run-but-you-cant-hide-from-performance.html
http://www.guypo.com/uncategorized/real-world-rwd-performance-take-2/
http://www.guypo.com/uncategorized/real-world-rwd-performance-take-2/
http://www.guypo.com/uncategorized/real-world-rwd-performance-take-2/
http://timkadlec.com/2012/10/blame-the-implementation-not-the-technique/
http://timkadlec.com/2012/10/blame-the-implementation-not-the-technique/
http://timkadlec.com/2012/10/blame-the-implementation-not-the-technique/
http://timkadlec.com/2014/07/rwd-is-bad-for-performance-is-good-for-performance/
http://timkadlec.com/2014/07/rwd-is-bad-for-performance-is-good-for-performance/
http://bradfrostweb.com/blog/web/responsive-web-design-missing-the-point/
http://bradfrostweb.com/blog/web/responsive-web-design-missing-the-point/
http://www.lukew.com/ff/entry.asp?1392
http://www.lukew.com/ff/entry.asp?1392
http://alistapart.com/column/what-we-mean-when-we-say-responsive
http://alistapart.com/column/what-we-mean-when-we-say-responsive
http://blogs.keynote.com/the_watch/2014/02/you-can-run-but-you-cant-hide-from-performance.html
http://blogs.keynote.com/the_watch/2014/02/you-can-run-but-you-cant-hide-from-performance.html
http://www.guypo.com/uncategorized/real-world-rwd-performance-take-2/
http://www.guypo.com/uncategorized/real-world-rwd-performance-take-2/
http://timkadlec.com/2012/10/blame-the-implementation-not-the-technique/
http://timkadlec.com/2012/10/blame-the-implementation-not-the-technique/

• “‘RWD Is Bad for Performance’ Is Good for Perfor-
mance119,” Tim Kadlec❧

119. http://timkadlec.com/2014/07/
rwd-is-bad-for-performance-is-good-for-performance/

85

http://timkadlec.com/2014/07/rwd-is-bad-for-performance-is-good-for-performance/
http://timkadlec.com/2014/07/rwd-is-bad-for-performance-is-good-for-performance/
http://timkadlec.com/2014/07/rwd-is-bad-for-performance-is-good-for-performance/
http://timkadlec.com/2014/07/rwd-is-bad-for-performance-is-good-for-performance/
http://timkadlec.com/2014/07/rwd-is-bad-for-performance-is-good-for-performance/
http://timkadlec.com/2014/07/rwd-is-bad-for-performance-is-good-for-performance/

How To Make Your
Websites Faster On Mobile
Devices

BY JOHAN JOHANSSONBY JOHAN JOHANSSON ❧❧

A recent study120 (PDF) found that more than 80% of peo-
ple are disappointed with the experience of browsing
Web on mobile devices and would use their smartphones
more if the browsing experience improved.

This isn’t surprising when 64% of smartphone users
expect websites to load in 4 seconds or less, while the av-
erage website takes more than twice that amount, at 9
seconds. This chapter explains techniques you can use to
make your websites faster on mobile devices.

User experience on mobile devices usually has room for improvement.
(Image: Phil Campbell121)

120. http://www.keynote.com/docs/reports/Keynote-2012-Mobile-User-Survey.pdf
121. http://www.flickr.com/photos/clanlife/6369792721/

HOW TO MAKE YOUR WEBSITES FASTER ON MOBILE DEVICES

86

http://www.keynote.com/docs/reports/Keynote-2012-Mobile-User-Survey.pdf
http://www.keynote.com/docs/reports/Keynote-2012-Mobile-User-Survey.pdf
http://www.keynote.com/docs/reports/Keynote-2012-Mobile-User-Survey.pdf
http://www.gomez.com/resources/whitepapers/survey-report-what-users-want-from-mobile/
http://www.flickr.com/photos/clanlife/6369792721/
http://www.flickr.com/photos/clanlife/6369792721/
http://www.flickr.com/photos/clanlife/6369792721/
http://www.keynote.com/docs/reports/Keynote-2012-Mobile-User-Survey.pdf
http://www.keynote.com/docs/reports/Keynote-2012-Mobile-User-Survey.pdf
http://www.flickr.com/photos/clanlife/6369792721/
http://www.flickr.com/photos/clanlife/6369792721/

Download Speeds For Mobile Users
Let’s start by looking at what influences the loading speed
of a website on a smartphone.

The most obvious factor is the connection speeds of
smartphones. In the best-case scenario, mobile users con-
nect to the Internet over 3G and 4G networks, with 4G
networks being faster. In the US, 57% of users are on 3G,
and 27% are on 4G. In Canada, 4G penetration is even
lower. In the UK, 4G only recently became available.

According to a study by PCWorld122, the average
download speed for 3G networks in the US is 2 Mbps, and
6.2 Mbps for 4G networks. A study by Ofcom found that
the average download speed for 3G in the UK to be 2.1
Mbps. Outside of North America and Europe, connection
speeds are generally slower. Because 1 Mbps equals 122
KB/s (or 0.12 MB/s), this translates into the following:

• 244 KB/s on average for 3G users (0.24 MB/s),

• 756 KB/s on average for 4G users (0.76 MB/s).

If you multiply that by the 4 seconds that mobile users
are expecting to wait, this means the website could be a
maximum of 1 MB for 3G users and 3 MB for 4G users.

However, download speed is not the bottleneck. The
bottleneck is the network latency123, smartphone’s memo-
ry and CPU. Even if the phone can download 1 MB in 4

122. http://www.pcworld.com/article/254888/
3g_4g_performance_map_data_speeds_for_atandt_sprint_t_mobile_and_verizon.html

123. http://www.igvita.com/2012/07/19/
latency-the-new-web-performance-bottleneck/

87

http://www.pcworld.com/article/254888/3g_4g_performance_map_data_speeds_for_atandt_sprint_t_mobile_and_verizon.html
http://www.pcworld.com/article/254888/3g_4g_performance_map_data_speeds_for_atandt_sprint_t_mobile_and_verizon.html
http://www.pcworld.com/article/254888/3g_4g_performance_map_data_speeds_for_atandt_sprint_t_mobile_and_verizon.html
http://www.3g.co.uk/PR/May2011/3g-mobile-broadband-performance-fiqures-for-uk.html
http://www.igvita.com/2012/07/19/latency-the-new-web-performance-bottleneck/
http://www.igvita.com/2012/07/19/latency-the-new-web-performance-bottleneck/
http://www.igvita.com/2012/07/19/latency-the-new-web-performance-bottleneck/
http://www.pcworld.com/article/254888/3g_4g_performance_map_data_speeds_for_atandt_sprint_t_mobile_and_verizon.html
http://www.pcworld.com/article/254888/3g_4g_performance_map_data_speeds_for_atandt_sprint_t_mobile_and_verizon.html
http://www.igvita.com/2012/07/19/latency-the-new-web-performance-bottleneck/
http://www.igvita.com/2012/07/19/latency-the-new-web-performance-bottleneck/

seconds, the website will take longer to load because the
phone needs to receive and process the code and images.

On a desktop, only 20% of the time it takes to display a
Web page comes from downloading files. The rest of the
time is spent processing HTTP requests and loading style
sheets, script files and images. It takes even longer on a
smartphone because its CPU, memory and cache size are
much smaller than a desktop’s.

How To Minimize Loading Time
Having a fast website is all about making the hard deci-
sions and getting rid of what’s not at the core of your ex-
perience. If it doesn’t add a lot of value, remove it. This is
true for all phases of the development process, but espe-
cially so for planning and coding.

• Reduce Dependencies
Fewer files to download means fewer HTTP requests and
faster loading times.

• Reduce Image Dimensions
On top of the extra download time, precious processing
power and memory are used to resize high-resolution im-
ages.

• Reduce Client-Side Processing
Rethinking the use of JavaScript and keeping it to a mini-
mum are best.

HOW TO MAKE YOUR WEBSITES FASTER ON MOBILE DEVICES

88

How To Reduce Dependencies

LOAD IMAGES THROUGH CSSLOAD IMAGES THROUGH CSS

If you want to hide content images from mobile users, re-
lying on display: none or visibility: hidden won’t
prevent them from being downloaded. We tested the fol-
lowing code:

<div style="display:none;">

</div>

<div style="visibility:hidden;">

</div>

You can see in the two waterfall charts below how con-
tent images set to display: none or visibility: hidden
are still downloaded.

Waterfall chart for display: none and visibility: hidden on
an iPhone 4, iOS 5.0.

Waterfall chart for display: none and visibility: hidden on
a Nexus S.

89

Instead, load them as background images in CSS, and use
media queries to conditionally hide them. The basis for
this technique was originally tested by Jason Grigsby124

and expanded upon by Tim Kadlec. A variant is used on
Amazon’s separate mobile pages125 to conditionally load
device-specific images.

<meta name="viewport" content="width=device-width">

<style>

@media (max-width:600px) {

.image {

display:none;

}

}

@media (min-width:601px) {

.image {

background-image: url(image1.jpg);

}

}

</style>

<div class="image"></div>

You can see in the two waterfall charts below that the im-
age isn’t loaded:

124. http://blog.cloudfour.com/css-media-query-for-mobile-is-fools-gold/
125. http://www.amazon.com/gp/aw/d/0345535421

HOW TO MAKE YOUR WEBSITES FASTER ON MOBILE DEVICES

90

http://blog.cloudfour.com/css-media-query-for-mobile-is-fools-gold/
http://blog.cloudfour.com/css-media-query-for-mobile-is-fools-gold/
http://blog.cloudfour.com/css-media-query-for-mobile-is-fools-gold/
http://timkadlec.com/2012/04/media-query-asset-downloading-results/
http://www.amazon.com/gp/aw/d/0345535421
http://www.amazon.com/gp/aw/d/0345535421
http://www.amazon.com/gp/aw/d/0345535421
http://blog.cloudfour.com/css-media-query-for-mobile-is-fools-gold/
http://blog.cloudfour.com/css-media-query-for-mobile-is-fools-gold/
http://www.amazon.com/gp/aw/d/0345535421
http://www.amazon.com/gp/aw/d/0345535421

KEEP EXTERNAL STYLE SHEETS TO AKEEP EXTERNAL STYLE SHEETS TO A
MINIMUMMINIMUM

If you’ve been using separate style sheets for each break
point, you may want to rethink this. We tested the follow-
ing code:

<link href="extra-small.css" rel="stylesheet" media="screen

and (max-width: 390px)" />

<link href="small.css" rel="stylesheet" media="screen and

(min-width: 391px) and (max-width: 500px)" />

<link href="medium.css" rel="stylesheet" media="screen and

(min-width: 501px) and (max-width: 767px)" />

<link href="large.css" rel="stylesheet" media="screen and

(min-width: 768px)" />

You can see that all four style sheets are downloaded in
portrait mode:

Waterfall chart for an iPhone 4, iOS 5.0.

Waterfall chart for a Nexus S.

Waterfall chart for media queries on an iPhone 4, iOS 5.0.

91

Because they’re all being downloaded anyway, you might
as well combine them all into a single file and reduce the
number of HTTP requests. Alternatively, you could rely
on server-side functions to dynamically insert the correct
style sheet based on the device (a method used on the re-
sponsive WordPress.com126).

A different approach would be to use inline styles.
Amazon’s separate mobile product pages have one exter-
nal 6 KB style sheet, along with some inline styles. This
results in a single additional HTTP request to download
all page styles. Amazon’s desktop version isn’t as effi-
cient, with nine external style sheets, totalling 40 KB
combined.

CSS3 INSTEAD OF IMAGESCSS3 INSTEAD OF IMAGES

Rounded corners, drop shadows, gradient fills, and so
on—these styling features can be used instead of images,
reducing the number of HTTP requests and speeding up
loading time.

Waterfall chart for media queries on a Nexus S.

126. http://wordpress.com

HOW TO MAKE YOUR WEBSITES FASTER ON MOBILE DEVICES

92

http://wordpress.com
http://wordpress.com
http://wordpress.com
http://wordpress.com
http://wordpress.com

Although CSS3 can reduce HTTP requests, it adds to the
processing load. We created a series of simple HTML
files, each containing one basic CSS3 styling feature. You
can see from the chart below that the effect on loading
time is minimal but should still be considered. Notice
how the box-shadow effect has the biggest impact on
loading time.

Amazon’s buttons are created using CSS3; no images are used.

93

DATA URI INSTEAD OF IMAGES OR WEB FONTDATA URI INSTEAD OF IMAGES OR WEB FONT
FILESFILES

The data URI scheme127 is a way to embed data into
HTML or CSS without using any external resources. It
can be used to embed anything onto a Web page, with the
most common usage being to embed images and Web
font files. Its primary benefit is to reduce the number of
HTTP requests.

The way it works is simple. Instead of referencing an
external image file, you would embed the base64-encoded
data directly into the HTML or CSS, using the following
format:

data:[MIME-type][;charset=encoding][;base64],[data]

For example, the following shortcut icon is generated by a
data URI:

Loading times for CSS3 styling features on an iPhone 4, iOS 5.0.

127. http://en.wikipedia.org/wiki/Data_URI_scheme

HOW TO MAKE YOUR WEBSITES FASTER ON MOBILE DEVICES

94

http://en.wikipedia.org/wiki/Data_URI_scheme
http://en.wikipedia.org/wiki/Data_URI_scheme
http://en.wikipedia.org/wiki/Data_URI_scheme
http://en.wikipedia.org/wiki/Data_URI_scheme
http://en.wikipedia.org/wiki/Data_URI_scheme

Here’s the code:

<img alt="" src="

gAAABAAAAAQCAIAAACQkWg2AAACI0lEQVQoz2P48/bFX1Tw58vn3/dv/rp56

dfD238+vocIfl029UOC3dsgS4Y/nz4gq/794sm3VbO+zmr/MqX+S1/l597yb

2vn/rpx6VN14od4+3cBRgx/vn9F1vB9/+bPPeVfJlZ/6S793JwDVPcxL/BjQ

eiHFNf3cbbvgw0Z4JZCwM/Lpz81Zn2qS/1Ul/apOv5jUfiHbP8PSc7vY23fh

5m+C9JjALoVzQ8/zx7+0lH4IcvnQ4bXhwzPD8muINXhZu+C9N/56zB8mdr49

/cfdH9/fPdj36bPLbkgpYH670KNQaoDdV47aTK8j7H+tmXpX6zg95+f545+7

ix656PxzlP5jaf2c2M1hvcRZu8jzb4umfrn6xfs2v78+XFkx9sI2+fass8N1

Rje+eu/dtR+YaD0Jj70296df3/+xKrr593bL91tnmnJMbwwVXtuoAbU+kxD5

pmu4pvYkK9rVvz58B5Tz7dd257pKDAAlT43giEDFZA2NclXAe5fN60DOgZFx

48fb6ICGRCqIchY/bmhKkibivinOdPRLPnQ1cwAUqGrCFQBVIes7ZmmzEtni

9+vXiFr+DR9IsMzHfnXIV5vs5OeqUs/05B+rqcIdBhQ81M1yRfW+r+fPUHRM

LWfAejir+tWATlf1ix/HR34wlL3ub7Scx2F56Yan6ZPQnPS+6oihlc+Tr/fv

4OG+Levv+7d+X700PeDe3/dv4um+tfjhy9drQDa2DKqOJhVKgAAAABJRU5Er

kJggg==" />

The WordPress.com responsive website embeds both im-
ages and fonts. The Boston Globe128’s responsive website,
which loads in just over 4 seconds on a smartphone, also
embeds data.

128. http://www.bostonglobe.com/

95

http://www.bostonglobe.com/
http://www.bostonglobe.com/
http://www.bostonglobe.com/
http://www.bostonglobe.com/
http://www.bostonglobe.com/

Because of the way browsers load data URIs, they could
end up taking longer to load than using external image or
font files. Testing and comparing the two methods is im-
portant to see whether it’s worthwhile.

INLINE SCALABLE VECTOR GRAPHICS (SVG)INLINE SCALABLE VECTOR GRAPHICS (SVG)
INSTEAD OF IMAGESINSTEAD OF IMAGES

Much like data URIs, scalable vector graphics129 (SVG)
can be embedded onto a page to reduce the number of
HTTP requests. For example, the following image is an
inline SVG:

Nearly all graphics and Web fonts on WordPress.com are from data URIs.

129. http://en.wikipedia.org/wiki/Scalable_Vector_Graphics

HOW TO MAKE YOUR WEBSITES FASTER ON MOBILE DEVICES

96

http://en.wikipedia.org/wiki/Scalable_Vector_Graphics
http://en.wikipedia.org/wiki/Scalable_Vector_Graphics
http://en.wikipedia.org/wiki/Scalable_Vector_Graphics
http://en.wikipedia.org/wiki/Scalable_Vector_Graphics
http://en.wikipedia.org/wiki/Scalable_Vector_Graphics

Here’s the code:

<svg version="1.1" id="drop" x="0px" y="0px"

width="17.812px" height="28.664px"

viewBox="296.641 381.688 17.812 28.664"

enable-background="new 296.641 381.688 17.812

28.664"

xml:space="preserve">

<path fill="#EE1C4E" d="M314.428,401.082c-0.443-5.489-5.146-

9.522-7.52-14.186c-0.816-1.597-1.352-5.208-1.352-5.208

s-0.555,3.792-1.388,5.425c-2.233,4.371-7.127,8.999-7.507,

14.047c-0.36,4.794,4.101,9.191,8.896,9.191

C310.49,410.354,314.816,405.941,314.428,401.082z"/>

</svg>

SVG files can be created with a vector graphics editor,
such as Adobe Illustrator. Once created, open the file in a
text editor and drop it into the code (minus any unneces-
sary meta data).

The above code will work in an HTML file, but won’t
work in a style sheet. To embed an SVG file in a style
sheet, first convert it to a data URI. To do this, grab the
SVG code from the text editor (be sure to include the
meta data), encode it in base64, and then embed it using
the following format:

data:image/svg+xml[;base64],[data]

97

Here’s the code:

background-image:url(

lvbj0MS4wIiBlbmNvZGluZz0idXRmLTgiPz4NCjwhLS0gR2VuZXJhdG9yOiBB

ZG9iZSBJbG1c3RyYXRvciAxNS4xLjAsIFNWRyBFeHBvcnQgUGx1Zy1JbiAuIF

NWRyBWZXJzaW9uOA2LjAwIEJ1aWxkIDApICAtLT4NCjwhRE9DVFlQRSBzdmcg

UFVCTElDICItLy9XM0Mv0RURCBTVkcgMS4xLy9FTiIgImh0dHA6Ly93d3cudz

Mub3JnL0dyYoaWNzL1NWRy8LjEvRFREL3N2ZzExLmR0ZCIDQo8c3ZnIHZlcnN

pb249IjEuMSIgaWQ9IkxheWVyXziIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZ

y8yMDAwL3N2ZyIgeG1sbnM6eGxpbms9Ih0dHA6Ly93d3cudzMub3JnLzE5OTk

veGxpbmsiIHg9IjBweCIgeT0iMHB4Ig0KCSB3WR0aD0iMTcuODEycHgiIGhla

WdodD0iMjguNjY0cHgiIHZpZXdCb3g9IjI5Ni42NDEMzgxLjY4OCAxNy44MTI

gMjguNjY0Ig0KCSBlbmFibGUtYmFja2dyb3VuZD0ibmV3ID5Ni42NDEgMzgxL

jY4OCAxNy44MTIgMjguNjY0IiB4bWw6c3BhY2U9InByZXNlcnZlI4NCjxwYXR

oIGZpbGw9IiNFRTFDNEUiIGQ9Ik0zMTQuNDI4LDQwMS4wODJjLTAuNDQzTUuN

Dg5LTUuMTQ2LTkuNTIyLTcuNTItMTQuMTg2Yy0wLjgxNi0xLjU5Ny0xLjM1Mi

0LjIwOC0xLjM1Mi01LjIwOA0KCXMtMC41NTUsMy43OTItMS4zODgsNS40MjVj

LTIuMjzLDQuMzcxLTcuMTI3LDguOTk5LTcuNTA3LDE0LjA0N2MtMC4zNiw0Lj

c5NCw0LjEwMw5LjE5MSw4Ljg5Niw5LjE5MQ0KCUMzMTAuNDksNDEwLjM1NCwz

MTQuODE2LDQwNS45NDEsMzE0LjQyOCw0MDgyeiIvPg0KPC9zdmc+DQo=);

Test this method and compare with external image files
to make sure it actually is faster.

IMAGE SPRITESIMAGE SPRITES

The idea behind sprites is to combine commonly used im-
ages into a single image file, reducing the number of
HTTP requests. For example, if you combine four images
into a single sprite, you’re theoretically reducing HTTP
requests from four to one. The required image is then dis-
played by using the CSS background-position property.

HOW TO MAKE YOUR WEBSITES FASTER ON MOBILE DEVICES

98

Amazon has multiple sprites, some with duplicated im-
ages.

FONT ICONSFONT ICONS

Font icons are fonts consisting of symbols and glyphs
(like Wingdings or Webdings), and can be used instead of
loading an image file. For example, the following icon is
not an image, but rather the letter “H” from Wingdings:

Although Wingdings and Webdings are a bit cheesy, oth-
er more professional Web fonts are available that can be
loaded through the @font-face rule.

One of Amazon’s image sprites.

99

This technique can be used in the same way as image
sprites to reduce HTTP requests. By combining multiple
icons into a single Web font, the number of HTTP re-
quests for all icons can be reduced to one. If the Web font
is embedded using a data URI (as described above), HTTP
requests could be reduced to zero.

This is exactly what WordPress.com does. Here’s the
Web font embedded in its style sheet:

WordPress.com has access to all of these icons without
having to make any extra HTTP requests, because the
icons are part of a Web font embedded in WordPress’
style sheet as a data URI.

As a bonus, font icons can be animated using CSS3
keyframe animation (which would be useful for “loading”
icons).

The primary downside of CSS sprites is that they can
only be one solid color. Amazon’s image sprites include
multi-colored icons, which is why it couldn’t use this
technique.

WordPress.com’s font icons

HOW TO MAKE YOUR WEBSITES FASTER ON MOBILE DEVICES

100

Tools such as IcoMoon130 make it easy to build a cus-
tom Web font. All that’s needed is the SVG file for each of
the icons.

AVOID INLINE FRAMESAVOID INLINE FRAMES

Each inline frame (iframe) results in one more HTTP re-
quest, in addition to any dependencies within the iframe.
Here’s a quick test we did, comparing inline text with a
single iframe containing text only.

Having a single iframe added nearly 0.20 seconds to the
loading time. To keep the website fast, it’s best not to use
them.

CODE FOR MOBILE-FIRSTCODE FOR MOBILE-FIRST

Going mobile-first also applies to front-end development.
By coding for mobile users first and then progressive-

ly enhancing for tablets and desktops, unnecessary de-
pendencies are reduced. Compare this to coding for desk-
top first, where heavy components are loaded by default

Loading times for CSS3 styling features on an iPhone 4, iOS 5.0.

130. http://icomoon.io

101

http://icomoon.io
http://icomoon.io
http://icomoon.io
http://icomoon.io
http://icomoon.io

and then hidden for small screens (known as “graceful
degradation”).

Here’s an example of coding for desktop first:

<style>

.image {

background-image: url(image1.jpg);

}

@media (max-width:390px) {

.image {

display: none;

}

}

</style>

<div class="image"></div>

In the above code, the default is to display the image,
which is then overruled for mobile devices with the me-
dia query.

Here’s an example of coding for mobile first:

<style>

@media (min-width:391px) {

.image {

background-image: url(image1.jpg);

}

}

</style>

HOW TO MAKE YOUR WEBSITES FASTER ON MOBILE DEVICES

102

<div class="image"></div>

By default, the image isn’t displayed, while wider screens
are progressively enhanced using a media query.

SPLIT CONTENT ONTO MULTIPLE PAGESSPLIT CONTENT ONTO MULTIPLE PAGES
(SEPARATE MOBILE WEBSITES)(SEPARATE MOBILE WEBSITES)

Keep your core content on the page, while linking to sec-
ondary content. This will reduce the payload of the
HTML and prevent any associated dependencies from be-
ing downloaded.

Amazon’s mobile product pages have generic product in-
formation, while providing links to “Customer Reviews,”

Amazon splits content onto multiple pages to reduce loading time.

103

“Description & Details” and “New & Used Offers.” This
eliminates HTTP requests for three images, while the
HTML’s size is reduced by 45 KB.

KEEP REDIRECTS TO A MINIMUM (SEPARATEKEEP REDIRECTS TO A MINIMUM (SEPARATE
MOBILE WEBSITES)MOBILE WEBSITES)

Amazon has a single redirect taking the visitor to the sep-
arate mobile page, resulting in a 0.4 second delay. Com-
pare that with Dell’s website, which has two redirects, re-
sulting in a 1.2 second delay.

Waterfall chart for Dell’s website on an iPhone 4, iOS 5.0.

Waterfall chart for Amazon’s website on an iPhone 4, iOS 5.0.

HOW TO MAKE YOUR WEBSITES FASTER ON MOBILE DEVICES

104

How To Reduce Image Dimensions

RESPONSIVE IMAGESRESPONSIVE IMAGES

The idea behind responsive images is to have the visitor
download only those images that are best suited to their
device. In the case of smartphones, this would be lower-
resolution images that can be quickly downloaded and
rendered.

Amazon’s separate mobile product pages use a
responsive-images technique that assigns a particular
background image to a div according to media-query
matches. Here’s Amazon’s code:

<!-- // This meta viewport is inserted for iPhones // -->

<meta name="viewport" content="width=device-width,

user-scalable=no,initial-scale=1.0,maximum-scale=1.0">

<!-- // This meta viewport is inserted for the Nexus S // -->

<meta name="viewport" content="width=device-width">

<style>

@media (max-width:390px) {

#image-container {

max-width: 109px;

}

.image {

background-image: url(image1.jpg);

}

}

@media (max-width:390px) and

105

(-webkit-min-device-pixel-ratio:1.5) {

.image {

background-image: url(image2.jpg);

}

}

@media (max-width:390px) and

(-webkit-min-device-pixel-ratio:2) {

.image {

background-image: url(image3.jpg);

}

}

@media (min-width:391px) and (max-width:500px) {

#image-container {

max-width: 121px;

}

.image {

background-image: url(image4.jpg);

}

}

@media (min-width:391px) and (max-width:500px) and

(-webkit-min-device-pixel-ratio:1.5) {

.image {

background-image: url(image5.jpg);

}

}

@media (min-width:391px) and (max-width:500px) and

(-webkit-min-device-pixel-ratio:2) {

.image {

background-image: url(image6.jpg);

}

HOW TO MAKE YOUR WEBSITES FASTER ON MOBILE DEVICES

106

}

@media (min-width: 501px) and (max-width: 767px) {

#image-container {

max-width: 182px;

}

.image {

background-image: url(image5.jpg);

}

}

@media (min-width: 501px) and (max-width: 767px) and

(-webkit-min-device-pixel-ratio:1.5) {

.image {

background-image: url(image7.jpg);

}

}

@media (min-width: 501px) and (max-width: 767px) and

(-webkit-min-device-pixel-ratio:2) {

.image {

background-image: url(image8.jpg);

}

}

@media (min-width:768px) {

#image-container {

max-width: 303px;

}

.image {

background-image: url(image8.jpg);

}

}

@media (min-width:768px) and

107

(-webkit-min-device-pixel-ratio:1.5) {

.image {

background-image: url(image8.jpg);

}

}

@media (min-width:768px) and

(-webkit-min-device-pixel-ratio:2) {

.image {

background-image: url(image8.jpg);

}

}

</style>

<div id="image-container">

<div class="image">

</div>

</div>

Even though Amazon has a total of eight product images
in its inline styles, only two are downloaded by an iPhone
4 or Nexus S in portrait mode.

A different data-fullsrc responsive-images tech-
nique131 is used on the Boston Globe’s responsive website.
It’s a combination of markup, JavaScript and a server-side
redirect rule:

131. http://www.alistapart.com/articles/
responsive-images-how-they-almost-worked-and-what-we-need/

HOW TO MAKE YOUR WEBSITES FASTER ON MOBILE DEVICES

108

http://www.alistapart.com/articles/responsive-images-how-they-almost-worked-and-what-we-need/
http://www.alistapart.com/articles/responsive-images-how-they-almost-worked-and-what-we-need/
http://www.alistapart.com/articles/responsive-images-how-they-almost-worked-and-what-we-need/
http://www.alistapart.com/articles/responsive-images-how-they-almost-worked-and-what-we-need/
http://www.alistapart.com/articles/responsive-images-how-they-almost-worked-and-what-we-need/
http://www.alistapart.com/articles/responsive-images-how-they-almost-worked-and-what-we-need/

<img alt="" src="mobile-size.r.jpg"

data-fullsrc="desktop-size.jpg" />

The src is the mobile-sized image, ensuring that the web-
site defaults to the smaller version (mobile-first), while
the data-fullsrc is the full-sized image. JavaScript is
used to detect the device’s screen size, which is written to
a cookie. For large screen sizes, JavaScript swaps the
smaller src image with the higher-resolution data-full-
src image. The server also uses Apache rewrite rules to
check for .r. in the image file’s name and displays a
spacer GIF, instead of the smaller mobile image (thus pre-
venting the mobile-sized image from being downloaded
by desktops).

Microsoft132’s responsive website uses Scott Jehl’s Pic-
turefill133 technique:

<div data-picture data-alt="Alternate text here">

<div data-src="image1.png"></div>

<div data-src="image2.png"

data-media="(min-device-pixel-ratio: 2.0)">

</div>

<div data-src="image3.png" data-media="(max-width:

539px)"></div>

<div data-src="image4.png" data-media="(max-width: 539px)

and (min-device-pixel-ratio: 2.0)"></div>

<noscript><img src="image1.png" alt="Alternate

132. http://www.microsoft.com/
133. https://github.com/scottjehl/picturefill

109

http://www.microsoft.com/
http://www.microsoft.com/
http://www.microsoft.com/
https://github.com/scottjehl/picturefill
https://github.com/scottjehl/picturefill
https://github.com/scottjehl/picturefill
https://github.com/scottjehl/picturefill
http://www.microsoft.com/
http://www.microsoft.com/
https://github.com/scottjehl/picturefill
https://github.com/scottjehl/picturefill

text here" /></noscript>

</div>

With this technique, JavaScript sweeps through the
page’s code and finds the divs with the data-picture at-
tribute. It then inserts a new img tag based on the data-
media attribute.

The main benefits of these responsive-image tech-
niques are:

• Small screens download low-resolution images, while
large screens download high-resolution images;

• Only the required images are downloaded, while unneed-
ed images aren’t loaded in the background.

There are a variety of other techniques for implementing
responsive images. Check out these resources for more
details:

• “Responsive IMGs134,” Jason Grigsby, Cloud Four Blog
A three-part series on responsive images.

• “Which Responsive Images Solution Should You Use?135,”
Chris Coyier, CSS-Tricks

134. http://blog.cloudfour.com/responsive-imgs/
135. http://css-tricks.com/which-responsive-images-solution-should-you-use/

HOW TO MAKE YOUR WEBSITES FASTER ON MOBILE DEVICES

110

http://blog.cloudfour.com/responsive-imgs/
http://blog.cloudfour.com/responsive-imgs/
http://blog.cloudfour.com/responsive-imgs/
http://css-tricks.com/which-responsive-images-solution-should-you-use/
http://css-tricks.com/which-responsive-images-solution-should-you-use/
http://css-tricks.com/which-responsive-images-solution-should-you-use/
http://blog.cloudfour.com/responsive-imgs/
http://blog.cloudfour.com/responsive-imgs/
http://css-tricks.com/which-responsive-images-solution-should-you-use/
http://css-tricks.com/which-responsive-images-solution-should-you-use/

How To Reduce Client-Side Processing

KEEP JAVASCRIPT TO A MINIMUMKEEP JAVASCRIPT TO A MINIMUM

With JavaScript disabled in Chrome, Starbucks136’ respon-
sive website takes 3.53 seconds to load on a good broad-
band connection on desktop. With JavaScript enabled, it
takes 4.73 seconds, a 34% increase. JavaScript’s impact on
loading time would be even greater on a smartphone be-
cause of the device’s smaller CPU, memory and cache
size. As a general rule, rethink whether to use JavaScript,
and keep it to a minimum.

A good example of spartan JavaScript is the BBC137’s
mobile website. The website doesn’t use external
JavaScript files—it’s all inline. The inline script is limited
to a few lines and doesn’t have a significant impact on
memory, with the HTML file and all inline JavaScript tak-
ing 0.78 seconds to load.

Much like the BBC, Amazon’s mobile product pages
don’t have external JavaScript files, instead using mini-
mal inline scripts. The HTML file and all inline JavaScript
take 0.75 seconds to load.

Before using a JavaScript framework, consider
whether it’s really necessary. In some cases, using small
bits of JavaScript is more efficient than initiating calls to
a framework.

136. http://www.starbucks.com
137. http://www.bbc.co.uk/mobile

111

http://www.starbucks.com
http://www.starbucks.com
http://www.starbucks.com
http://www.bbc.co.uk/mobile
http://www.bbc.co.uk/mobile
http://www.bbc.co.uk/mobile
http://www.starbucks.com
http://www.starbucks.com
http://www.bbc.co.uk/mobile
http://www.bbc.co.uk/mobile

AVOID WIDGETSAVOID WIDGETS

Widgets can have a surprisingly catastrophic impact on
real loading time. To verify this, we created a series of
simple HTML files, each containing the default embed-
ding code for one widget. You can see in the results below
how bad it gets. Note that this isn’t a perfect test because
these are controlled experiments in a simulated environ-
ment, but it’s interesting nonetheless.

Combining them all on a single page results in a whop-
ping four-second loading time for the widgets alone.

Server-Side Techniques
In addition to optimizing the front end, server-side tech-
niques can also be used to speed up loading times. These
techniques are worth looking into, but won’t be covered
in this chapter:

Loading times for widgets on an iPhone 4, iOS 5.0.

HOW TO MAKE YOUR WEBSITES FASTER ON MOBILE DEVICES

112

• Cache HTTP redirects to speed up repeat visits;

• Merge HTTP redirect chains to reduce the number of
redirects;

• Use HTTP compression to reduce the number of bytes
(Gzip or DEFLATE).

Testing Performance On Mobile Devices
Because of the unpredictability of mobile devices, testing
performance on multiple devices is important. Here are
some free performance-testing tools:

• Mobitest138, Akamai
Generate waterfall charts and HAR files for the iPhone 4
iOS 7, iPad 2 iOS 7, iPad 3 iOS 7, Nexus S, and Motorola
XOOM. Note that test results for the Nexus S were incon-
sistent with our own internal testing. Our server-access
logs showed fewer HTTP requests when we tested on ac-
tual Android 2.x devices.

• “Network Panel139,” Chrome Developer Tools
Generate waterfall charts and HAR files from the Chrome
browser.

Conclusion
To meet the high expectations of mobile users, you need a
mobile-optimized website that loads in 4 seconds or less.

138. http://mobitest.akamai.com/m/index.cgi
139. https://developers.google.com/chrome-developer-tools/docs/network

113

http://mobitest.akamai.com/m/index.cgi
http://mobitest.akamai.com/m/index.cgi
http://mobitest.akamai.com/m/index.cgi
https://developers.google.com/chrome-developer-tools/docs/network
https://developers.google.com/chrome-developer-tools/docs/network
https://developers.google.com/chrome-developer-tools/docs/network
http://mobitest.akamai.com/m/index.cgi
http://mobitest.akamai.com/m/index.cgi
https://developers.google.com/chrome-developer-tools/docs/network
https://developers.google.com/chrome-developer-tools/docs/network

The best way to hit that magic 4-second mark is to mini-
mize the processing load on smartphones by reducing
JavaScript and by optimizing the HTML, CSS and images.

Using the techniques above, you will be well on your
way to building a snappy mobile Web experience!❧

HOW TO MAKE YOUR WEBSITES FASTER ON MOBILE DEVICES

114

Creating High-Performance
Mobile Websites

BY JAMES ROSEWELLBY JAMES ROSEWELL ❧❧

Editor’s Note: This chapter features just one of the many solu-
tions for creating high-performance mobile websites. We suggest
that you review different approaches such as the previous chap-
ter and the articles “Facing The Challenge: Building A Responsive
Web Application140” and “Improve Mobile Support With Server-
Side-Enhanced Responsive Design141” before choosing a particu-
lar solution.

People start to lose interest in a website if they don’t get a
response within three seconds142. Fulfilling this expecta-
tion for mobile phone users requires a different approach
to usage analysis, design and testing.

This chapter expands on the techniques that Johan Jo-
hansson has explained before.

We’ll demonstrate methods to identify how people in-
teract with a website differently on mobile devices, and
the design decisions that can be made based on this un-
derstanding. Our objective is not only to improve Web
performance but to increase the client’s return on invest-
ment.

140. http://www.smashingmagazine.com/2013/06/12/
building-a-responsive-web-application/

141. http://www.smashingmagazine.com/2013/04/09/
improve-mobile-support-with-server-side-enhanced-responsive-design/

142. http://51degrees.mobi/ressinfographic

115

http://www.smashingmagazine.com/2013/06/12/building-a-responsive-web-application/
http://www.smashingmagazine.com/2013/06/12/building-a-responsive-web-application/
http://www.smashingmagazine.com/2013/06/12/building-a-responsive-web-application/
http://www.smashingmagazine.com/2013/06/12/building-a-responsive-web-application/
http://www.smashingmagazine.com/2013/04/09/improve-mobile-support-with-server-side-enhanced-responsive-design/
http://www.smashingmagazine.com/2013/04/09/improve-mobile-support-with-server-side-enhanced-responsive-design/
http://www.smashingmagazine.com/2013/04/09/improve-mobile-support-with-server-side-enhanced-responsive-design/
http://www.smashingmagazine.com/2013/04/09/improve-mobile-support-with-server-side-enhanced-responsive-design/
http://51degrees.mobi/ressinfographic
http://51degrees.mobi/ressinfographic
http://51degrees.mobi/ressinfographic
http://www.smashingmagazine.com/2013/06/12/building-a-responsive-web-application/
http://www.smashingmagazine.com/2013/06/12/building-a-responsive-web-application/
http://www.smashingmagazine.com/2013/04/09/improve-mobile-support-with-server-side-enhanced-responsive-design/
http://www.smashingmagazine.com/2013/04/09/improve-mobile-support-with-server-side-enhanced-responsive-design/
http://51degrees.mobi/ressinfographic
http://51degrees.mobi/ressinfographic

The techniques we’ll demonstrate center on the two
unique characteristics of mobile phones, which are not
going to change any time soon: small batteries and small
screens.

SMALL BATTERIESSMALL BATTERIES

Mobile phones use radios for all communication, and
they have little batteries that need to be carefully man-
aged in order to avoid running out of power. As a result,
radios are shut down very quickly when not in use, in-
creasing the perceived time that a Web page takes to ap-
pear. 2G and 3G radios could require up to two seconds to
establish an operational HTTP connection. If we accept
that users start to lose interest after three seconds, then a
website has only one second to respond. Think of this as
the “golden second.”

Maximizing the “golden second143”.

143. http://51degrees.mobi/ressinfographic

CREATING HIGH-PERFORMANCE MOBILE WEBSITES

116

http://51degrees.mobi/ressinfographic
http://51degrees.mobi/ressinfographic
http://51degrees.mobi/ressinfographic
http://51degrees.mobi/ressinfographic
http://51degrees.mobi/ressinfographic

SMALL SCREENSSMALL SCREENS

In the physical world, content is produced for billboards
and magazines and customized to account for the size
and viewing distance of the medium. In the digital world,
a typical mid-range smartphone has a screen with around
six square inches of real estate. A MacBook Pro with a
15-inch display will have over 100 square inches. Thus,
not only can we optimize website performance by reduc-
ing the amount of content sent to phones, but we can op-
timize business processes to improve the return on in-
vestment for website owners.

The code examples in this chapter are provided in
.NET. Where equivalents are possible in PHP, Java, C or
Python, I’ve made them available in a companion arti-
cle144. I’ll explain why I’ve used .NET at the end of this
chapter.

Maximizing The “Golden Second”
Website designers and developers with high-bandwidth
Wi-Fi and fixed-line connections often used to take band-
width for granted. Responsive Web design (RWD) limits
the creative process by forcing the same content, naviga-
tion and business processes to be presented on every de-
vice, irrespective of its physical capabilities.

Solutions to ensure that we can easily measure perfor-
mance, monitor user behavior based on the characteris-
tics of the device and optimize Web pages for low-band-

144. http://51degrees.mobi/Blogs/tabid/212/EntryId/147/
Understanding-Devices-That-Browse-Your-Website.aspx

117

http://51degrees.mobi/Blogs/tabid/212/EntryId/147/Understanding-Devices-That-Browse-Your-Website.aspx
http://51degrees.mobi/Blogs/tabid/212/EntryId/147/Understanding-Devices-That-Browse-Your-Website.aspx
http://51degrees.mobi/Blogs/tabid/212/EntryId/147/Understanding-Devices-That-Browse-Your-Website.aspx
http://51degrees.mobi/Blogs/tabid/212/EntryId/147/Understanding-Devices-That-Browse-Your-Website.aspx
http://51degrees.mobi/Blogs/tabid/212/EntryId/147/Understanding-Devices-That-Browse-Your-Website.aspx
http://51degrees.mobi/Blogs/tabid/212/EntryId/147/Understanding-Devices-That-Browse-Your-Website.aspx

width devices are required to maximize the golden sec-
ond.

SIMULATING THE REAL WORLDSIMULATING THE REAL WORLD

Essential for mobile Web performance testing is a
method to simulate real-world mobile bandwidth condi-
tions. Many wireless routers that cost less than $100 sup-
port bandwidth limiting. This simply involves limiting
the uplink and downlink bandwidth for LAN-side clients.
If the router doesn’t support this capability out of the box,
then DD-WRT145, an open-source firmware upgrade, may
be used to replace the default operating system on many
popular routers to limit bandwidth.

I use a Linksys E3000 router modified with DD-WRT.
The procedure to upgrade the router is pretty simple, and
full instructions are available on the DD-WRT website.

Limiting bandwidth in the “Quality of Service” options.

145. http://www.dd-wrt.com/site/index

CREATING HIGH-PERFORMANCE MOBILE WEBSITES

118

http://www.dd-wrt.com/site/index
http://www.dd-wrt.com/site/index
http://www.dd-wrt.com/site/index
http://www.dd-wrt.com/site/index
http://www.dd-wrt.com/site/index

Once DD-WRT is installed, go to the “QoS” (quality of ser-
vice) menu, and enable bandwidth limiting. Then, set val-
ues for the uplink and downlink. I prefer 256 kbps for the
downlink and 28 kbps for the uplink to simulate an aver-
age mobile bandwidth connection.

Now the bandwidth of any Wi-Fi or ethernet-cabled
devices that are connected to the router will be artificially
reduced. The actual bandwidth being used over time can
also be monitored.

While this approach doesn’t introduce random drop-outs,
variable bandwidth conditions or the delays associated
with radio wake-up, it is better than performing all of
your testing on a fast low-latency broadband connection.
When introduced at the beginning of the website devel-
opment cycle, it’s an easy way to informally test perfor-
mance during the development process and ensure that
you don’t get any nasty surprises during formal testing.

Monitoring bandwidth using DD-WRT.

119

YOU CAN’T MANAGE WHAT YOU CAN’TYOU CAN’T MANAGE WHAT YOU CAN’T
MEASUREMEASURE

Peter Drucker146, a management consultant, once fa-
mously said, “If you can’t measure something, you can’t
manage it.”

Continually monitoring the content that users view ac-
cording to device characteristics (such as supported ra-
dios or physical screen size) will help you to identify the
content and services that are more or less popular on mo-
bile phones. Perhaps you will see no difference, but un-
less you measure it, there’s no way to know for sure.

Average screen size growth over time.

146. http://en.wikipedia.org/wiki/Peter_Drucker

CREATING HIGH-PERFORMANCE MOBILE WEBSITES

120

http://en.wikipedia.org/wiki/Peter_Drucker
http://en.wikipedia.org/wiki/Peter_Drucker
http://en.wikipedia.org/wiki/Peter_Drucker
http://en.wikipedia.org/wiki/Peter_Drucker
http://en.wikipedia.org/wiki/Peter_Drucker

FEED ME NOW: AN EXAMPLEFEED ME NOW: AN EXAMPLE

A global fast-food franchise wanted to create a mobile-op-
timized version of its big-screen website. Before creating
the first iteration of the mobile-optimized website, it per-
formed analysis to determine which options on the big-
screen website were being accessed by users on small-
screen devices. The main menu, special offers and the
store finder were the most popular, and so a mobile-opti-
mized website was created that focused on these areas.

Work didn’t stop there. Continued analysis revealed
that the store finder was the most popular option. The
mobile home page was altered again to focus on the store
finder. Continued monitoring will show how many visi-
tors choose other options, and the website will be contin-
ually refined to ensure that the most popular outcomes
are catered to in the simplest possible way.

BETTER LOGGINGBETTER LOGGING

Google Analytics provides some information about device
model, but it lacks the detail we need to make informed
decisions based on screen size and input method. Fortu-
nately, a comprehensive device-detection repository
(DDR) can be used to add this information to existing log
files. The following code snippet can be added to a .NET
website to obtain the screen’s physical dimensions in
inches and write the output to a simple CSV file.

// Write a log file containing the current time, and the

// screen size of the requesting device in inches.

File.AppendAllText(

Path.Combine(

121

AppDomain.CurrentDomain.BaseDirectory, String.Format(

"App_Data\Simple_Log_{0:yyyyMMdd}.csv",

DateTime.UtcNow)),

String.Format("{0:s},{1},{2},{3}rn",

DateTime.UtcNow,

Request.Path,

Request.Browser["ScreenInchesWidth"],

Request.Browser["ScreenInchesHeight"]));

The first column is the date and time that the request was
processed. The second is the page being requested. The fi-
nal two columns are the width and height in inches. Once
sufficient data has been captured, the average screen size
in square inches can be calculated and plotted on a chart,
similar to the following:

Comparison of the average sizes of device screens over 20 months.

CREATING HIGH-PERFORMANCE MOBILE WEBSITES

122

The analysis could be narrowed down to individual pages.
Other characteristics about device, operating system and
browser may be added as columns.

Similar code could be used with PHP, Java, Python and
other environments.

EXISTING LOG FILESEXISTING LOG FILES

Sometimes, existing Web pages can’t be altered in the
way shown. In these situations, a DDR may be used to
perform offline analysis of log files containing user
agents. The following .NET code is a functional
command-line program that will parse a space-separated
log file and calculate the average screen size in square
inches for the requests it represents. The first argument
is the log file’s location, the second is the index of the
UserAgent column within the log file.

using System;

using FiftyOne.Foundation.Mobile.Detection.Binary;

using System.IO;

namespace ConsoleApplication

{

class Program

{

static void Main(string[] args)

{

// The number of devices read from the log file.

int count = 0;

123

// The column in the input file the user agent is

// held in.

int column = int.Parse(args[1]);

// Screen dimension variables.

double total = 0, width, height, squareInches;

// Create a provider to determine the device

// capabilities.

var provider =

Reader.Create("51Degrees.mobi.dat");

// Read each line of the log file provided in

// argument 0.

// Assume the value at column 8 is the UserAgent

// string.

using (var reader =

File.OpenText(args[0]))

{

while(reader.EndOfStream == false)

{

var values =

reader.ReadLine().Split(new[] { ' ' });

if (values.Length >= column)

{

// Get the device information based

// on the UserAgent.

var device = provider.GetDeviceInfo(

values[column - 1].Replace("+",

" "));

CREATING HIGH-PERFORMANCE MOBILE WEBSITES

124

if (device != null)

{

// Determine the screen

// dimensions in inches.

double.TryParse(

device.GetFirstPropertyValue

("ScreenInchesWidth"),

out width);

double.TryParse(

device.GetFirstPropertyValue

("ScreenInchesHeight"),

out height);

squareInches = width * height;

// If valid values are available

// (not a desktop/laptop) then

// add the values to the results.

if (squareInches > 0)

{

total += squareInches;

count++;

}

}

}

}

}

Console.WriteLine(

"Average screen size '{0:#.00}'

square inches from '{1}' devices",

total / count,

125

count);

Console.ReadKey();

}

}

}

Analyzing log files is less accurate because HTTP headers
other than User-Agent affect the detection’s results. This
is especially true with Opera Mini and Opera Mobile
browsers, in which a second HTTP header, named
Device-Stock-UA147 is used to provide information about
physical hardware not available in the standard User-
Agent.

WHY MONITOR?WHY MONITOR?

Monitoring enables us to remove unpopular content
from major landing pages, thus improving the perfor-
mance of content that is more important or relevant. The
removed content should still be available via second-level
pages—just not placed on landing pages, where they
would eat up valuable bandwidth and slow down perfor-
mance.

So, how do we create a separate mobile website opti-
mized for performance?

DIVIDE AND CONQUERDIVIDE AND CONQUER

I understand why RWD makes a lot of sense from the
perspective of user interface design. It’s great in situa-

147. http://my.opera.com/ODIN/blog/2012/10/08/introducing-device-stock-ua

CREATING HIGH-PERFORMANCE MOBILE WEBSITES

126

http://my.opera.com/ODIN/blog/2012/10/08/introducing-device-stock-ua
http://my.opera.com/ODIN/blog/2012/10/08/introducing-device-stock-ua
http://my.opera.com/ODIN/blog/2012/10/08/introducing-device-stock-ua
http://my.opera.com/ODIN/blog/2012/10/08/introducing-device-stock-ua
http://my.opera.com/ODIN/blog/2012/10/08/introducing-device-stock-ua

tions in which content, navigation and business-process
requirements are identical between 6-square-inch screens
and 100-square-inch screens and only the layout needs to
be altered.

However, having a separate mobile website makes a lot of
sense when the conditions above aren’t true or when per-
formance is critical.

Separate mobile websites are often implemented in a
way that delivers a poor user experience. Google is now
shining a light148 on these common issues by penalizing
websites with lower search engine rankings. Mistakes in-
clude sending every desktop page to a single mobile
home page, redirecting to application download pages,
preventing the user from accessing the big screen web-
site, and treating all devices with a particular operating
system in the same manner.

These poor implementations have given the concept a
bad reputation. Here’s how to do it simply and properly.

Average device screen size.

148. http://googlewebmastercentral.blogspot.co.uk/2013/06/
changes-in-rankings-of-smartphone_11.html

127

http://googlewebmastercentral.blogspot.co.uk/2013/06/changes-in-rankings-of-smartphone_11.html
http://googlewebmastercentral.blogspot.co.uk/2013/06/changes-in-rankings-of-smartphone_11.html
http://googlewebmastercentral.blogspot.co.uk/2013/06/changes-in-rankings-of-smartphone_11.html
http://googlewebmastercentral.blogspot.co.uk/2013/06/changes-in-rankings-of-smartphone_11.html
http://googlewebmastercentral.blogspot.co.uk/2013/06/changes-in-rankings-of-smartphone_11.html
http://googlewebmastercentral.blogspot.co.uk/2013/06/changes-in-rankings-of-smartphone_11.html

The following .NET web.config section will redirect
the first request from a smartphone to an equivalent page
on the “Smartphone” section of the website. Importantly,
the query string and page name are retained across the
redirection.

<redirect firstRequestOnly="true"

mobileHomePageUrl="~/Mobile/Default.aspx"

timeout="20"

devicesFile="~/App_Data/Devices.dat"

mobilePagesRegex="/(Mobile|Smartphone)/" >

<locations>

<!--Send smartphones to an equivalent version

of the original page, preserving the

page name and query string.-->

<location name="smartphone" url="~/Smartphone/{0}"

matchExpression="(?<=^w+://.+/).+">

<add property="IsSmartphone"

matchExpression="true"/>

</location>

</locations>

</redirect>

In most situations, when redirected to alternative pages,
users should be able to return to the original page if they
wish; perhaps they’re more familiar with the big-screen
version of the website. The firstRequestOnly attribute
ensures that only the first request from the device is redi-
rected. The devicesFile attribute is used to track devices
on which cookies aren’t supported. The timeout attribute

CREATING HIGH-PERFORMANCE MOBILE WEBSITES

128

controls how long the device is remembered (for the pur-
pose of redirection).

The redirection system also has to know which pages
are designed for which type of device. The mobilePages-
Regex attribute is applied to requested URLs. If there is a
match, then the page won’t be eligible for redirection.
This prevents cases of infinite redirections.

The locations element allows for different locations
and associated rules to be configured. The example in-
serts the folder Smartphone into the original URL. The
query string and other URL information are retained
across the redirection. All information that affects the
context of the request must be transferred in order for the
user to receive the content they are expecting.

This simple approach enables a search engine-friend-
ly, Google-compliant, mobile phone-optimized website to
be delivered, with a good user experience and superior
performance. Essential to the process is a DDR that pro-
vides information about the device quickly, consistently
and accurately. Users who change their mobile phone’s
browser settings to surf in desktop mode will be respect-
ed, and the redirection will not occur.

BEWARE OF CLOUDSBEWARE OF CLOUDS

Cloud services are a popular way to easily add features to
a website. But they bring a performance penalty by call-
ing out over the Internet. Ignoring processing time, we’ve
observed an average 200-millisecond delay149 with data
transmission from Amazon Web Service-hosted cloud
services.

129

http://51degrees.mobi/Blogs/tabid/212/EntryId/99/Is-Cloud-Mobile-Detection-Compromising-Your-Mobile-Web-Experience.aspx
http://51degrees.mobi/Blogs/tabid/212/EntryId/99/Is-Cloud-Mobile-Detection-Compromising-Your-Mobile-Web-Experience.aspx
http://51degrees.mobi/Blogs/tabid/212/EntryId/99/Is-Cloud-Mobile-Detection-Compromising-Your-Mobile-Web-Experience.aspx

200 milliseconds is 20% of the golden second. There-
fore, consider carefully where you use cloud services, en-
suring they’re called asynchronously to enable other pro-
cessing to continue while waiting for the response. They
should be avoided for critical path activity, such as deter-
mining information about the requesting device.

Squeezing Content
After video, images, CSS and HTML make up the bulk of
Web traffic. We need methods of optimizing them all.
Video is an article on its own and will have to wait for an-
other day.

IMAGESIMAGES

A popular solution is to provide three versions of the
same image, and select the one that is best for the re-
questing device using JavaScript or CSS3 when the
browser renders the page. This is a great start, but man-
aging different versions of the same image is a pain; the
image is never ideally optimized, and the method puts the
burden of resizing onto the mobile device’s limited CPU
and battery.

There is a better way, using an image optimizer. There
are many great options out there; if you decide to use our
very own image optimizer, you can add it to an ASP.NET
website via the Visual Studio IDE. The following configu-
ration will be added automatically to the web.config.

149. http://51degrees.mobi/Blogs/tabid/212/EntryId/99/
Is-Cloud-Mobile-Detection-Compromising-Your-Mobile-Web-Experience.aspx

CREATING HIGH-PERFORMANCE MOBILE WEBSITES

130

http://51degrees.mobi/Blogs/tabid/212/EntryId/99/Is-Cloud-Mobile-Detection-Compromising-Your-Mobile-Web-Experience.aspx
http://51degrees.mobi/Blogs/tabid/212/EntryId/99/Is-Cloud-Mobile-Detection-Compromising-Your-Mobile-Web-Experience.aspx

<handlers>

<add name="Image" verb="GET" path="P.axd"

type="FiftyOne.Framework.Image.ImageHandler,

FiftyOne.Framework" />

</handlers>

The handler tells Internet information services (IIS) that
the image handler should process any GET requests for
the resource P.axd.

Once enabled in web.config, the following ASP.NET
code will use the image optimizer to define an image ele-
ment with three possible sources—being 240, 480 and
640 pixels wide, respectively.

<mob:Image runat="server" ID="ImageBanner"

CalculateSizeMode="ClientWidth" Style="clear: both; width:

100%">

<mob:AltImage ImageUrl="~/Images/Landscape240.png" />

<mob:AltImage ImageUrl="~/Images/Landscape480.png" />

<mob:AltImage ImageUrl="~/Images/Landscape640.png" />

</mob:Image>

When the image is initially displayed, the server will send
a white 1 × 1-pixel GIF to appear in place of the image.
This is the resulting HTML:

Once the page has loaded, JavaScript is used to work out
the exact dimensions required by the image and request a
precisely sized image from the server. After JavaScript
processing, the HTML above will be transformed to this:

131

The image handler referenced in web.config correlates
the I query string parameter with the sources of the im-
age, so that the best image can be used as the starting
point for resizing on the server. The w query string para-
meter specifies the width of the image required. Multiple
images don’t need to be provided; a single image will
work almost as well.

This approach is easy to implement, and the result is a
precisely sized image, which reduces bandwidth con-
sumption, mobile phone CPU cycles and power consump-
tion.

HTMLHTML

The full Oxford English Dictionary contains 171,476
words. If a computer were to represent each word as a
unique binary number, rather than letters in an alphabet,
then 18 bits (or 3 bytes, if rounded up) would be required.
This technique is why compression algorithms are so ef-
fective.

However, HTML is not very efficient because it’s full
of words for elements, IDs, classes, styles and JavaScript,
without even considering the human-readable words.
Compression reduces this, but it remains an overhead.
This is why popular libraries have minified versions that
appear almost unreadable to humans.

Some of these markup-related words can also be mini-
mized before being sent to the browser by the server,
without losing any of their meaning. Taking the image
example shown earlier, the standard HTML ID attribute

CREATING HIGH-PERFORMANCE MOBILE WEBSITES

132

of the image element in ASP.NET would be ImageBanner.

<mob:Image runat="server" ID="ImageBanner"

CalculateSizeMode="ClientWidth" Style="clear: both; width:

100%">

However, the code sent to the browser would use just B.
For a single element, the performance improvement is
negligible, but on a complex page with hundreds of ele-
ments, the page will transfer more quickly and the brows-
er will be able to process everything that much faster.

INCLUDESINCLUDES

Something else is slightly peculiar about the resulting
HTML from the image example.

The ASP.NET code includes a style attribute that is miss-
ing, and there isn’t a class attribute for the img element.
So, how is the style being applied?

The server-side-minimizing process will identify style
information and create a CSS include for the page, thus
reducing the HTML. If the HTML changes, then the style
information will already have been cached in the browser
and will not need to be downloaded again. The CSS snip-
pet looks like this:

#B{clear:both;width:100%;}

If many elements share the same styling, then their IDs
will be added to the CSS and they’ll share the same infor-
mation.

133

Style information can also be shared across elements
and pages using a server-side style element. The follow-
ing code extends the previous image example to demon-
strate a shared style element.

<mob:Style runat="server" ID="StyleBanner">

<mob:Filter Style="clear: both; width: 100%"/>

</mob:Style>

<mob:Image runat="server" ID="ImageBanner"

CalculateSizeMode="ClientWidth" StyleID="StyleBanner">

The elements can be further extended to apply different
styling based on the capabilities of the device and to opti-
mize style sheets across multiple pages.

This technique will always ensure that only the re-
quired CSS is transferred, thus improving performance
over subsequent requests to the same page, particularly
where there are only minor differences in HTML content.

WHY .NET?WHY .NET?

The techniques and code examples shown for image opti-
mization and dynamic minification of HTML and CSS
content rely on content being altered after the page has
been rendered but before transmission to the browser by
the server. Such preprocessing techniques are relatively
easy to implement in architectures such as ASP.NET Web
forms.

However, they are a lot more complex to implement in
script-based architectures such as PHP. For this reason,
the examples in this chapter are provided in .NET for con-

CREATING HIGH-PERFORMANCE MOBILE WEBSITES

134

sistency. Where I’ve been able to apply the techniques to
other languages, the example code is available in a com-
panion blog150.

Examples
Public Health Foundation Enterprises implemented the
techniques151 shown in this chapter and experienced a
23% increase in successful outcomes during the first
week.

Other performance-aware websites—including
24.com152 (media), ServiceTick153 (analysis), LettingWeb154

(property), AdSupply155 (advertising) and Kitsap Credit
Union156 (finance)—are all optimizing for mobile using
some or all of techniques covered in this chapter.

Summary
We need to consider the return on investment for a web-
site’s owner in order to truly optimize performance. Mon-
itoring differences in the characteristics of devices is the
essential starting point.

We can then deploy solutions such as using separate
mobile websites to split up or change the focus of con-

150. http://51degrees.mobi/Blogs/tabid/212/EntryId/147/
Understanding-Devices-That-Browse-Your-Website.aspx

151. http://51degrees.mobi/Products/CaseStudies/PHFEWIC.aspx
152. http://51degrees.com/Resources/Case-Studies/24com
153. http://51degrees.com/Resources/Case-Studies/ServiceTick
154. http://51degrees.com/Resources/Case-Studies/Lettingweb
155. http://51degrees.com/Resources/Case-Studies/AdSupply
156. http://51degrees.com/Resources/Case-Studies/KITSAP

135

http://51degrees.mobi/Blogs/tabid/212/EntryId/147/Understanding-Devices-That-Browse-Your-Website.aspx
http://51degrees.mobi/Blogs/tabid/212/EntryId/147/Understanding-Devices-That-Browse-Your-Website.aspx
http://51degrees.mobi/Blogs/tabid/212/EntryId/147/Understanding-Devices-That-Browse-Your-Website.aspx
http://51degrees.mobi/Blogs/tabid/212/EntryId/147/Understanding-Devices-That-Browse-Your-Website.aspx
http://51degrees.mobi/Products/CaseStudies/PHFEWIC.aspx
http://51degrees.mobi/Products/CaseStudies/PHFEWIC.aspx
http://51degrees.mobi/Products/CaseStudies/PHFEWIC.aspx
http://51degrees.mobi/Products/CaseStudies/PHFEWIC.aspx
http://51degrees.com/Resources/Case-Studies/24com
http://51degrees.com/Resources/Case-Studies/24com
http://51degrees.com/Resources/Case-Studies/24com
http://51degrees.com/Resources/Case-Studies/ServiceTick
http://51degrees.com/Resources/Case-Studies/ServiceTick
http://51degrees.com/Resources/Case-Studies/ServiceTick
http://51degrees.com/Resources/Case-Studies/Lettingweb
http://51degrees.com/Resources/Case-Studies/Lettingweb
http://51degrees.com/Resources/Case-Studies/Lettingweb
http://51degrees.com/Resources/Case-Studies/AdSupply
http://51degrees.com/Resources/Case-Studies/AdSupply
http://51degrees.com/Resources/Case-Studies/AdSupply
http://51degrees.com/Resources/Case-Studies/KITSAP
http://51degrees.com/Resources/Case-Studies/KITSAP
http://51degrees.com/Resources/Case-Studies/KITSAP
http://51degrees.com/Resources/Case-Studies/KITSAP
http://51degrees.mobi/Blogs/tabid/212/EntryId/147/Understanding-Devices-That-Browse-Your-Website.aspx
http://51degrees.mobi/Blogs/tabid/212/EntryId/147/Understanding-Devices-That-Browse-Your-Website.aspx
http://51degrees.mobi/Products/CaseStudies/PHFEWIC.aspx
http://51degrees.mobi/Products/CaseStudies/PHFEWIC.aspx
http://51degrees.com/Resources/Case-Studies/24com
http://51degrees.com/Resources/Case-Studies/24com
http://51degrees.com/Resources/Case-Studies/ServiceTick
http://51degrees.com/Resources/Case-Studies/ServiceTick
http://51degrees.com/Resources/Case-Studies/Lettingweb
http://51degrees.com/Resources/Case-Studies/Lettingweb
http://51degrees.com/Resources/Case-Studies/AdSupply
http://51degrees.com/Resources/Case-Studies/AdSupply
http://51degrees.com/Resources/Case-Studies/KITSAP
http://51degrees.com/Resources/Case-Studies/KITSAP

tent. And we can squeeze maximum performance out of
mobile phones by minifying images and HTML, remov-
ing jQuery, questioning when to use RWD alone, and oth-
er techniques. Of course, established techniques are criti-
cal, too, such as configuring caching directives and com-
pressing content.

Tweaking our development environment to simulate
real-world conditions will also yield a greater understand-
ing of performance throughout the development process.

OPTIMIZE NOWOPTIMIZE NOW

To get you thinking even more about performance, I’ve
set up a competition to find the world’s heaviest web-
site157. (Editor’s Note: The competition is closed now.) Find
a Web page that performs poorly on a mobile phone and
submit it to the competition. We’ll work out the page’s
weight, and if it’s the heaviest, you’ll win $1000. Mean-
while, implement the techniques covered in this and oth-
er great Smashing Magazine articles to ensure that your
website doesn’t top the list when we weigh in on perfor-
mance!

There’s never been a better time to improve your web-
site’s performance.❧

157. http://51degrees.mobi/Competitions/HeaviestWebSite2013.aspx

CREATING HIGH-PERFORMANCE MOBILE WEBSITES

136

http://51degrees.mobi/Competitions/HeaviestWebSite2013.aspx
http://51degrees.mobi/Competitions/HeaviestWebSite2013.aspx
http://51degrees.mobi/Competitions/HeaviestWebSite2013.aspx
http://51degrees.mobi/Competitions/HeaviestWebSite2013.aspx
http://51degrees.mobi/Competitions/HeaviestWebSite2013.aspx
http://51degrees.mobi/Competitions/HeaviestWebSite2013.aspx

Don’t Get Crushed By The
Load: Optimization
Techniques And Strategies

BY BOBBY PEARSONBY BOBBY PEARSON ❧❧

Despite improvements in broadband158 and wireless In-
ternet159, load is in many ways more of an issue now than
it was five years ago. The proliferation of mobile devices,
increased user expectations160, and the very real risks of
losing customers161 and dropping in search result rankin-
gs162 have laid a heavy burden on developers to optimize
loading time at all costs.

In building websites primarily for the desktop envi-
ronment, the Web development community previously
didn’t spend much time concerning itself with load is-
sues. Selecting the proper image formats and saving our
JPEGs for the Web was about as far as many of us would
go. On the whole, our hardware and software tools are
forgiving enough to accommodate sloppy code. Our pro-
duction environments can handle thousands of visitors

158. http://techcrunch.com/2012/08/09/
akamai-global-average-broadband-speeds-up-by-25-u-s-up-29-to-6-7-mbps/

159. http://www.statista.com/topics/779/mobile-internet/chart/1009/
mobile-internet-traffic-growth/

160. http://www.nytimes.com/2012/03/01/technology/
impatient-web-users-flee-slow-loading-sites.html

161. http://www.topfloortech.com/blog/2012/02/10/
why-slow-loading-websites-lose-customers/

162. http://www.quicksprout.com/2012/12/10/
how-load-time-affects-google-rankings/

137

http://techcrunch.com/2012/08/09/akamai-global-average-broadband-speeds-up-by-25-u-s-up-29-to-6-7-mbps/
http://techcrunch.com/2012/08/09/akamai-global-average-broadband-speeds-up-by-25-u-s-up-29-to-6-7-mbps/
http://techcrunch.com/2012/08/09/akamai-global-average-broadband-speeds-up-by-25-u-s-up-29-to-6-7-mbps/
http://www.statista.com/topics/779/mobile-internet/chart/1009/mobile-internet-traffic-growth/
http://www.statista.com/topics/779/mobile-internet/chart/1009/mobile-internet-traffic-growth/
http://www.statista.com/topics/779/mobile-internet/chart/1009/mobile-internet-traffic-growth/
http://www.statista.com/topics/779/mobile-internet/chart/1009/mobile-internet-traffic-growth/
http://www.nytimes.com/2012/03/01/technology/impatient-web-users-flee-slow-loading-sites.html
http://www.nytimes.com/2012/03/01/technology/impatient-web-users-flee-slow-loading-sites.html
http://www.nytimes.com/2012/03/01/technology/impatient-web-users-flee-slow-loading-sites.html
http://www.topfloortech.com/blog/2012/02/10/why-slow-loading-websites-lose-customers/
http://www.topfloortech.com/blog/2012/02/10/why-slow-loading-websites-lose-customers/
http://www.topfloortech.com/blog/2012/02/10/why-slow-loading-websites-lose-customers/
http://www.quicksprout.com/2012/12/10/how-load-time-affects-google-rankings/
http://www.quicksprout.com/2012/12/10/how-load-time-affects-google-rankings/
http://www.quicksprout.com/2012/12/10/how-load-time-affects-google-rankings/
http://www.quicksprout.com/2012/12/10/how-load-time-affects-google-rankings/
http://techcrunch.com/2012/08/09/akamai-global-average-broadband-speeds-up-by-25-u-s-up-29-to-6-7-mbps/
http://techcrunch.com/2012/08/09/akamai-global-average-broadband-speeds-up-by-25-u-s-up-29-to-6-7-mbps/
http://www.statista.com/topics/779/mobile-internet/chart/1009/mobile-internet-traffic-growth/
http://www.statista.com/topics/779/mobile-internet/chart/1009/mobile-internet-traffic-growth/
http://www.nytimes.com/2012/03/01/technology/impatient-web-users-flee-slow-loading-sites.html
http://www.nytimes.com/2012/03/01/technology/impatient-web-users-flee-slow-loading-sites.html
http://www.topfloortech.com/blog/2012/02/10/why-slow-loading-websites-lose-customers/
http://www.topfloortech.com/blog/2012/02/10/why-slow-loading-websites-lose-customers/
http://www.quicksprout.com/2012/12/10/how-load-time-affects-google-rankings/
http://www.quicksprout.com/2012/12/10/how-load-time-affects-google-rankings/

per day, and our clients tend to have predictably manage-
able traffic.

For all of these reasons and more, Web developers
aren’t conditioned to think very hard about the unique
load requirements of their clients’ websites. Predictability
and complacency can leave our websites vulnerable to
traffic spikes, glacial page loading and even downtime.
We need to include a specification for load requirements
as a regular checklist item when bidding and planning
Web work.

Learn To Love The Content Delivery
Network
Content delivery networks (CDNs) are everywhere. And
they are our friends. A CDN is a network of servers ar-
rayed across the Internet. These servers work in tandem
to serve website content scripts, images, fonts, audio,
video and other files—in a distributed fashion. Using a
CDN to serve content, your website’s files are pushed out
to the edges of the network, several hops and several hun-
dred milliseconds closer to your users.

I highly recommend storing your website’s graphic el-
ements on a CDN. Delivering that 300 KB background
image and multi-image sprite163 on a CDN will dramati-
cally improve your page’s speed and decrease the load on
your server. When my company started its website’s
mobile-optimized redesign, we ran Google’s PageSpeed

163. http://webdesign.tutsplus.com/tutorials/htmlcss-tutorials/
css-sprite-sheets-best-practices-tools-and-helpful-applications/

DON’T GET CRUSHED BY THE LOAD: OPTIMIZATION TECHNIQUES AND
STRATEGIES

138

http://webdesign.tutsplus.com/tutorials/htmlcss-tutorials/css-sprite-sheets-best-practices-tools-and-helpful-applications/
http://webdesign.tutsplus.com/tutorials/htmlcss-tutorials/css-sprite-sheets-best-practices-tools-and-helpful-applications/
http://webdesign.tutsplus.com/tutorials/htmlcss-tutorials/css-sprite-sheets-best-practices-tools-and-helpful-applications/
https://developers.google.com/speed/pagespeed/insights
http://webdesign.tutsplus.com/tutorials/htmlcss-tutorials/css-sprite-sheets-best-practices-tools-and-helpful-applications/
http://webdesign.tutsplus.com/tutorials/htmlcss-tutorials/css-sprite-sheets-best-practices-tools-and-helpful-applications/

Insights164 tool and found numerous problems—the
scores ranged from 70/100 down to 50/100.

One of the best decisions we made was to combine
more than 40 of our images into a single sprite and serve
that sprite over our hosting provider’s cloud files system.
Rather than loading 40+ individual image files as needed,
we have the user load one 275 KB file that is not set to ex-
pire for 10 years. Unless we manually update and purge
the file on our CDN, users will be able to load a cached
version of it from our CDN’s edge nodes (or from their
own browser cache) until 2023. Hopefully, bandwidth
won’t be as big of an issue by then!

The 40-image sprite used by The Ivy Group165.

164. https://developers.google.com/speed/pagespeed/insights

139

https://developers.google.com/speed/pagespeed/insights
https://developers.google.com/speed/pagespeed/insights
https://developers.google.com/speed/pagespeed/insights
http://ivygroup.com/
http://ivygroup.com/
http://ivygroup.com/
https://developers.google.com/speed/pagespeed/insights
https://developers.google.com/speed/pagespeed/insights

By using the CSS background-position property166 to
display most images as sprites from a master image,
we’ve limited the number of HTTP requests. Each div
that contains a sprite has a defined height and width in
the CSS; so, until the master image is loaded, the user is
presented with a blank box.

Find out from your hosting provider whether it offers
CDN services with its hosting packages. Alternatively,
providers such as Rackspace167, BitGravity168 and Edge-
Cast169 are CDN specialists and can serve as an auxiliary

The expiration header for our sprite is set for almost 10 years in the future,
ensuring long-term caching on browsers and CDN edge nodes.

165. http://ivygroup.com/
166. http://www.smashingmagazine.com/2009/04/27/

the-mystery-of-css-sprites-techniques-tools-and-tutorials/
167. http://www.rackspace.com/cloud/files
168. http://www.bitgravity.com/
169. http://www.edgecast.com/

DON’T GET CRUSHED BY THE LOAD: OPTIMIZATION TECHNIQUES AND
STRATEGIES

140

http://www.smashingmagazine.com/2009/04/27/the-mystery-of-css-sprites-techniques-tools-and-tutorials/
http://www.smashingmagazine.com/2009/04/27/the-mystery-of-css-sprites-techniques-tools-and-tutorials/
http://www.smashingmagazine.com/2009/04/27/the-mystery-of-css-sprites-techniques-tools-and-tutorials/
http://www.rackspace.com/cloud/files
http://www.rackspace.com/cloud/files
http://www.rackspace.com/cloud/files
http://www.bitgravity.com/
http://www.bitgravity.com/
http://www.bitgravity.com/
http://www.edgecast.com/
http://www.edgecast.com/
http://www.edgecast.com/
http://www.edgecast.com/
http://ivygroup.com/
http://ivygroup.com/
http://www.smashingmagazine.com/2009/04/27/the-mystery-of-css-sprites-techniques-tools-and-tutorials/
http://www.smashingmagazine.com/2009/04/27/the-mystery-of-css-sprites-techniques-tools-and-tutorials/
http://www.rackspace.com/cloud/files
http://www.rackspace.com/cloud/files
http://www.bitgravity.com/
http://www.bitgravity.com/
http://www.edgecast.com/
http://www.edgecast.com/

service for your existing hosting solution. Rackspace and
BitGravity are both resellers of the Akamai CDN, while
EdgeCast runs its own network. Be sure to ask how the
CDN will bill you. When I was pricing CDNs for a large
file-delivery project, I found some companies will charge
you only for downloads from the core of their network,
not from the edge nodes, while others charge you for all
downloads, regardless of which level of the network re-
sponds to each user request.

A collection of files in the ivygroup CDN container, as viewed in
Cyberduck.

141

To host your website’s resource files on a CDN, first ob-
tain an API user name and key from your provider. Use a
cloud-file browser such as Cyberduck170 to create a CDN
“container” (essentially, a directory) for each project or
client, and upload the files just as you would with an FTP
connection.

Then, copy the container’s public HTTP or HTTPS
path to your clipboard.

Then, simply edit your HTML or CSS code, changing the
file paths to reflect the public CDN links. Below is a sam-
ple block of CSS showing the HTTP public links to
browser-specific style sheets:

The HTTP, HTTPS, Streaming and iOS Streaming public links to the
ivygroup CDN container.

170. http://cyberduck.ch/

DON’T GET CRUSHED BY THE LOAD: OPTIMIZATION TECHNIQUES AND
STRATEGIES

142

http://cyberduck.ch/
http://cyberduck.ch/
http://cyberduck.ch/
http://cyberduck.ch/
http://cyberduck.ch/

<!--[if !(IE)]><!--> <link href="http://bc0b1dd616f981a9b16b

-cd16ce5fde498683e20aaecc086aa721.r81.cf2.rackcdn.com/

style.min.css?v=1.31" rel="stylesheet" /><!--<![endif]-->

<!--[if gte IE 9]>

<link rel="stylesheet" href="http://bc0b1dd616f981a9b16b

-cd16ce5fde498683e20aaecc086aa721.r81.cf2.rackcdn.com/

style.min.css?v=1.31">

<![endif]-->

<!--[if lt IE 9]>

<link rel="stylesheet" type="text/css" media="all"

href="http://bc0b1dd616f981a9b16b-cd16ce5fde498683e20aaecc

086aa721.r81.cf2.rackcdn.com/style-ie.css?v=1.10"/>

<![endif]-->

And here is a sample block of CSS showing how to style a
Twitter button (with a hover effect) using a sprite hosted
on a CDN:

.social-media-block a {

background: url("http://bc0b1dd616f981a9b16b-cd16ce5fde49

8683e20aaecc086aa721.r81.cf2.rackcdn.com/sprite.png")

no-repeat transparent;

float: left;

height: 32px;

margin:0 7px 7px 0;

padding: 0;

width: 32px;

}

.social-media-block a#twitter {

background-position: 252px 667px;

143

}

.social-media-block a#twitter:hover {

background-position: 252px 742px;

}

Single Vs. Multiple Resource Domains
Linking to resource files on a CDN brings up an interest-
ing optimization issue. Web browsers limit the number
of files171 that may be loaded in parallel from a single host.
You’d think, then, that dispersing all of your resource
files across many different host servers would be optimal
(for example, content1.mydomain.com, conten-
t2.mydomain.com, etc.)—this is known as domain shard-
ing172. However, there is a tradeoff, because each host
name requires a new DNS lookup to find the host’s IP ad-
dress, which imposes a cost in loading time. Mobile
browsers that connect via the cellular network tend to ex-
perience longer lookup times than browsers that connect
via traditional cable and DSL modems. It’s a good idea to
evaluate your website once all content and resource files
are in place and to experiment with multiple domains.

Mobify conducted a test last year that indicated that
domain sharding was “at best neutral and, in most cases,
detrimental173” to mobile browsers, but feel free to con-

171. http://gtmetrix.com/
parallelize-downloads-across-hostnames-implementation-guide.html

172. http://gtmetrix.com/parallelize-downloads-across-hostnames.html
173. http://www.mobify.com/blog/

domain-sharding-bad-news-mobile-performance/

DON’T GET CRUSHED BY THE LOAD: OPTIMIZATION TECHNIQUES AND
STRATEGIES

144

http://gtmetrix.com/parallelize-downloads-across-hostnames-implementation-guide.html
http://gtmetrix.com/parallelize-downloads-across-hostnames-implementation-guide.html
http://gtmetrix.com/parallelize-downloads-across-hostnames-implementation-guide.html
http://gtmetrix.com/parallelize-downloads-across-hostnames-implementation-guide.html
http://gtmetrix.com/parallelize-downloads-across-hostnames.html
http://gtmetrix.com/parallelize-downloads-across-hostnames.html
http://gtmetrix.com/parallelize-downloads-across-hostnames.html
http://gtmetrix.com/parallelize-downloads-across-hostnames.html
http://www.mobify.com/blog/domain-sharding-bad-news-mobile-performance/
http://www.mobify.com/blog/domain-sharding-bad-news-mobile-performance/
http://www.mobify.com/blog/domain-sharding-bad-news-mobile-performance/
http://www.mobify.com/blog/domain-sharding-bad-news-mobile-performance/
http://gtmetrix.com/parallelize-downloads-across-hostnames-implementation-guide.html
http://gtmetrix.com/parallelize-downloads-across-hostnames-implementation-guide.html
http://gtmetrix.com/parallelize-downloads-across-hostnames.html
http://gtmetrix.com/parallelize-downloads-across-hostnames.html
http://www.mobify.com/blog/domain-sharding-bad-news-mobile-performance/
http://www.mobify.com/blog/domain-sharding-bad-news-mobile-performance/

duct your own testing. At the very least, minimize the to-
tal number of files loaded per page, avoid linking to URLs
that serve only as redirects to other domains, and use a
standard host name convention (i.e. either
www.mydomain.com/file.jpg or mydomain.com/
file.jpg, not both).

Identify And Anticipate High-Traffic
Periods
Suppose you develop a website for a high-profile event or
for an organization whose business is concentrated
around a few dates every year. Systems that work fine
during the slow periods need to be tested with load in
mind.

This is particularly important to administrators who
use shared hosting and have to impose traffic caps on
their clients’ websites to protect the server. You might set
a traffic cap during the slow period that shuts down the
website during a natural high-volume spike, such as one
towards the end of a registration period for an event. Be
sure to set a generously high traffic cap on any website
for which you expect seasonal or irregular traffic pat-
terns, or, better yet, host in a cloud environment that is
scalable to meet any traffic demand.

I still burn with shame when remembering how I mis-
takenly set a hard, rather than a soft, traffic cap on a char-
ity fundraiser website during the “off-season,” only to
have the website shut down on the weekend of the event
itself. The website had been bouncing along at a stable
traffic rate (about half a gigabyte per month) for months,

145

so I set the cap to 2 GB per month and billed the client ac-
cordingly (admittedly a low figure, but our hosting model
is based on customization and technical support and not
on unlimited, unsupported space on a server farm). The
website drew almost 2 GB of traffic on the Saturday of
the event alone and went down at the worst possible
time.

Don’t let this happen to you! My company learned its
lesson: We now use only soft traffic caps as notifications
of abnormal activity and investigate any notifications on
the same day. Speak with your hosting provider to deter-
mine its preferred means of managing traffic spikes (see
the following section on elasticity and load balancing),
and make sure that you can stand behind whatever pack-
age of products and services you offer to clients.

Scalable, Elastic Architecture On The
Cloud
Beyond server- and client-side software, there is a wealth
of options for how to structure and optimize your web-
site’s hardware infrastructure. Two concepts here are
scalability and elasticity, covered in an educational arti-
cle174 by Cloud IQ’s Guy Fardone. Scalability is the capaci-
ty to increase the load that your website will normally ex-
pect: the number of users supported by the system, the
maximum size of all uploaded files, etc. A scalable solu-
tion is able to be multiplied by a factor of X (for example,

174. http://blog.evolveip.net/index.php/2012/05/24/
cloud-elasticity-and-cloud-scalability-are-not-the-same-thing-2/

DON’T GET CRUSHED BY THE LOAD: OPTIMIZATION TECHNIQUES AND
STRATEGIES

146

http://blog.evolveip.net/index.php/2012/05/24/cloud-elasticity-and-cloud-scalability-are-not-the-same-thing-2/
http://blog.evolveip.net/index.php/2012/05/24/cloud-elasticity-and-cloud-scalability-are-not-the-same-thing-2/
http://blog.evolveip.net/index.php/2012/05/24/cloud-elasticity-and-cloud-scalability-are-not-the-same-thing-2/
http://blog.evolveip.net/index.php/2012/05/24/cloud-elasticity-and-cloud-scalability-are-not-the-same-thing-2/
http://blog.evolveip.net/index.php/2012/05/24/cloud-elasticity-and-cloud-scalability-are-not-the-same-thing-2/
http://blog.evolveip.net/index.php/2012/05/24/cloud-elasticity-and-cloud-scalability-are-not-the-same-thing-2/

“Create three fresh new copies of the system for three
new clients,” or “The client has expanded their user base
to include all employees beyond the 10-user pilot group;
create 1,000 new user accounts each with a 1 GB file
store”). Elasticity is the capacity of the website’s infra-
structure to expand on demand during load spikes.

Many high-profile websites have implemented a
multi-server solution with load balancing. A single load
balancer accepts all client traffic and directs each client to
one of N available Web servers, which in turn are able to
share state information through either a centralized or
asynchronous state-management scheme. MSDN has a
helpful article about load-balancing concepts175 that is
good for beginners (scroll down to figures 2 and 3). Speak
with your cloud hosting provider to see what it can pro-
vide you.

Plan For Load Testing
Last year, my company finished the front-end work for a
digitized collection of documents related to the founding
fathers of the United States, overseen and funded by the
US National Archives. Our client, the University of Vir-
ginia’s University Press, wisely budgeted several months
to load-test the database and document-delivery system
in conjunction with the National Archives’ technical
team.

This made us realize that small Web development
businesses and freelancers, too, often take load testing for

175. http://msdn.microsoft.com/en-us/library/ff648960.aspx

147

http://msdn.microsoft.com/en-us/library/ff648960.aspx
http://msdn.microsoft.com/en-us/library/ff648960.aspx
http://msdn.microsoft.com/en-us/library/ff648960.aspx
http://msdn.microsoft.com/en-us/library/ff648960.aspx
http://msdn.microsoft.com/en-us/library/ff648960.aspx

granted. If a page loads within a few seconds while we’re
developing, what’s the problem? By disregarding loading
issues, the developer, first, misses the opportunity to add
value to the delivered product and, secondly, allows a po-
tential risk to go unmanaged.

Several load-testing services are out there: Load Im-
pact176 and Blitz177 offer free trials and are worth investi-
gating. If you have the technical ability and permission
level, you could also try installing a server-side open-
source load-testing tool such as JMeter178 or ab179 from
Apache. JMeter can test a wide variety of server and ser-
vice types, while ab specializes in HTTP benchmarking. A
reliable load tester that you would be comfortable operat-
ing and in whose results you can be confident would
make a useful addition to your toolbox.

Below is a screenshot of a Blitz load test on my compa-
ny website’s news page. Although the page has a very
high page-speed score of 95—due to optimized images,
browser caching, minified CSS and JavaScript files, de-
ferred loading and a few other tricks (more on those lat-
er!)—it could use some database and memory optimiza-
tion. A single user will start to see formatted content dis-
played on their browser within 0.2 seconds, and the full
page will load within 1.2 seconds. However, the page runs
the risk of throwing errors and timeouts when the num-
ber of concurrent users hits 34.

176. http://loadimpact.com/
177. http://blitz.io/
178. http://jmeter.apache.org/
179. http://httpd.apache.org/docs/2.2/programs/ab.html

DON’T GET CRUSHED BY THE LOAD: OPTIMIZATION TECHNIQUES AND
STRATEGIES

148

http://loadimpact.com/
http://loadimpact.com/
http://loadimpact.com/
http://loadimpact.com/
http://blitz.io/
http://blitz.io/
http://blitz.io/
http://jmeter.apache.org/
http://jmeter.apache.org/
http://jmeter.apache.org/
http://httpd.apache.org/docs/2.2/programs/ab.html
http://httpd.apache.org/docs/2.2/programs/ab.html
http://httpd.apache.org/docs/2.2/programs/ab.html
http://loadimpact.com/
http://loadimpact.com/
http://blitz.io/
http://blitz.io/
http://jmeter.apache.org/
http://jmeter.apache.org/
http://httpd.apache.org/docs/2.2/programs/ab.html
http://httpd.apache.org/docs/2.2/programs/ab.html

PRE-OPTIMIZATION: 6 ERRORS, 16 TIMEOUTS,PRE-OPTIMIZATION: 6 ERRORS, 16 TIMEOUTS,
MAX 3.0-SECOND RESPONSE TIMEMAX 3.0-SECOND RESPONSE TIME

I took steps to remedy this by increasing the MySQL con-
nection pool and by implementing in-memory caching
via memcached. (Note that these are advanced server-ad-
ministration tasks and should not be attempted without
expert assistance.) Increasing our maximum number of
allowed MySQL connections from 100 to 200 failed to

As the number of simultaneous users increases from 0 to 50 over a
30-second period, the response time climbs from 600 milliseconds to just

over 3 seconds.

Green denotes hits; red, errors; and orange, timeouts. The website maxes
out at 9 users per second around the 18-second mark. At 25 seconds, 3 users
per second are experiencing timeouts. At 30 seconds, over 1 user per second

is receiving an error message.

149

change our load-testing results—your mileage may vary.
However, I did have success when I decided to…

Use Memory Caching
Memcached is a fantastic extension that can be used to
selectively store and retrieve query results from memory
and to avoid making repetitive database calls, file-read
operations and other server-side calculations. Other
memory caching extensions are available that are worth
comparing, but they all have some sort of key-value pair
architecture for quick read/write access in memory and a
fixed time-to-live so that data won’t cache persistently
and result in an overflow.

Script Tutorials has two sets of sample code that
demonstrate “How to Use APC Caching180” and “How to
Use Memcache in PHP181.” I selected memcached and suc-
cessfully improved our website’s performance—adding a
single memcache() call in one of my most-used database
functions decreased our total errors during a 30-second
rush from 6 to 1 and our total timeouts from 16 to 7.

180. http://www.script-tutorials.com/how-to-use-apc-caching-with-php/
181. http://www.script-tutorials.com/how-to-use-memcache-with-php/

DON’T GET CRUSHED BY THE LOAD: OPTIMIZATION TECHNIQUES AND
STRATEGIES

150

http://www.script-tutorials.com/how-to-use-apc-caching-with-php/
http://www.script-tutorials.com/how-to-use-apc-caching-with-php/
http://www.script-tutorials.com/how-to-use-apc-caching-with-php/
http://www.script-tutorials.com/how-to-use-memcache-with-php/
http://www.script-tutorials.com/how-to-use-memcache-with-php/
http://www.script-tutorials.com/how-to-use-memcache-with-php/
http://www.script-tutorials.com/how-to-use-memcache-with-php/
http://www.script-tutorials.com/how-to-use-apc-caching-with-php/
http://www.script-tutorials.com/how-to-use-apc-caching-with-php/
http://www.script-tutorials.com/how-to-use-memcache-with-php/
http://www.script-tutorials.com/how-to-use-memcache-with-php/

POST-OPTIMIZATION: 1 ERRORS, 7 TIMEOUTS,POST-OPTIMIZATION: 1 ERRORS, 7 TIMEOUTS,
MAX 2.5-SECOND RESPONSE TIMEMAX 2.5-SECOND RESPONSE TIME

MYSQL QUERY CACHEMYSQL QUERY CACHE

Memcached isn’t the only caching tool at your disposal.
MySQL enables you to access query results directly from
memory using Query Cache182. It has both advantages

After applying memcached to one database function, the maximum re-
sponse time at peak load fell from 3 to 2.5 seconds. The website performs
measurably better during the 0- to 20-second period (between 1 and 35 si-
multaneous users). Note that the y-axis scale is not equal to the y-axis of

the previous “Response Time” graph.

Green denotes hits; red, errors; and orange, timeouts. After applying mem-
cached to one database function, the website experienced a marked de-
crease in errors and timeouts during high usage. Further use of mem-

cached is recommended. Note that the y-axis scale is not equal to the y-axis
of the previous “Hit Rate” graph.

151

http://www.docplanet.org/mysql/mysql-query-cache-in-depth/
http://www.docplanet.org/mysql/mysql-query-cache-in-depth/
http://www.docplanet.org/mysql/mysql-query-cache-in-depth/

and disadvantages when compared to memcached; the
two should not be treated as interchangeable. MySQL
Query Cache is ideal for caching data that is seldom
changed, as Rackspace explains183. Rackspace’s key take-
away is this:

When you use a MySQL database, each time you IN-
SERT, UPDATE, or DELETE a row from the MySQL data-
base, the entire query cache for that table is invalidated.
That means that the next request for every single session
will be a cache miss, and must access the data from disk
on the database server.

Memcached treats every SQL query and result as a
unique key-value pair, so an entire table’s worth of SE-
LECT queries will never be invalidated all at once if any-
thing is changed. MySQL Query Cache recognizes that
any change to any row in a table might affect any further
queries on that table. It’s up to you, with your knowledge
of your application, to determine whether one or both of
these tools are worth implementing.

Test different values of the query_cache_size para-
meter in MySQL Query Cache and of both the cache size
and timeout limit in memcached. There is no “correct”
value for any of these parameters. It’s all based on your
hosting environment, application structure and expected
load.

182. http://www.docplanet.org/mysql/mysql-query-cache-in-depth/
183. http://www.rackspace.com/blog/memcached-more-cache-less-cash/

DON’T GET CRUSHED BY THE LOAD: OPTIMIZATION TECHNIQUES AND
STRATEGIES

152

http://www.rackspace.com/blog/memcached-more-cache-less-cash/
http://www.rackspace.com/blog/memcached-more-cache-less-cash/
http://www.rackspace.com/blog/memcached-more-cache-less-cash/
http://www.docplanet.org/mysql/mysql-query-cache-in-depth/
http://www.docplanet.org/mysql/mysql-query-cache-in-depth/
http://www.rackspace.com/blog/memcached-more-cache-less-cash/
http://www.rackspace.com/blog/memcached-more-cache-less-cash/

Memcached and MySQL caching are relatively ad-
vanced techniques that require some fine-tuning to really
be of any use. So, what about the low-hanging fruit? For-
tunately, some other techniques are quicker and easier to
implement, starting with…

Compressing Resources
Apache has a built-in way to selectively compress files on
request184. In your .htaccess or, preferably, httpd.conf
file, specify which content types should be compressed,
like so:

<ifmodule mod_deflate.c>

AddOutputFilterByType DEFLATE text/html text/plain

text/xml text/css application/x-javascript

application/javascript text/text

</ifmodule>

This specifies that the server should compress all files
recognized as being HTML, XML, CSS, JavaScript and
plain-text content types. Your server might not recognize
other content types that should be compressed, such as
OpenType, EOF and TrueType font files. If that is the
case, you can specifically add those types using mod_mime:

<ifmodule mod_deflate.c>

<ifmodule mod_mime.c>

Addtype font/opentype .otf

Addtype font/eot .eot

184. http://httpd.apache.org/docs/2.2/mod/mod_deflate.html

153

http://httpd.apache.org/docs/2.2/mod/mod_deflate.html
http://httpd.apache.org/docs/2.2/mod/mod_deflate.html
http://httpd.apache.org/docs/2.2/mod/mod_deflate.html
http://httpd.apache.org/docs/2.2/mod/mod_deflate.html
http://httpd.apache.org/docs/2.2/mod/mod_deflate.html
http://httpd.apache.org/docs/2.2/mod/mod_deflate.html

Addtype font/truetype .ttf

</ifmodule>

AddOutputFilterByType DEFLATE text/html text/plain

text/xml text/css application/x-javascript

application/javascript text/text font/opentype

font/truetype font/eot

</ifmodule>

For additional compression steps and methods, check out
Viral Patel’s adventures185 with Gzip, Deflate and PHP
output buffering.

Concatenate Files
Besides compressing resource files, you can also concate-
nate them in a variety of ways. Rob Flaherty documents a
way to concatenate all JavaScript files using PHP code186.
Apache Ant enables you to configure a website build to
concatenate files187 without modifying the website’s code.
Note that this won’t work if you deliver your resource
files over the CDN! They are mutually exclusive tech-
niques.

Optimize JavaScript Loading
One of the simplest things you can do to accelerate your
website’s loading time is to move any <script> tags from

185. http://viralpatel.net/blogs/
compress-php-css-js-javascript-optimize-website-performance/

186. http://www.ravelrumba.com/blog/css-js-concatenation-versioning-php/
187. http://ant.apache.org/manual/Tasks/concat.html

DON’T GET CRUSHED BY THE LOAD: OPTIMIZATION TECHNIQUES AND
STRATEGIES

154

http://viralpatel.net/blogs/compress-php-css-js-javascript-optimize-website-performance/
http://viralpatel.net/blogs/compress-php-css-js-javascript-optimize-website-performance/
http://viralpatel.net/blogs/compress-php-css-js-javascript-optimize-website-performance/
http://www.ravelrumba.com/blog/css-js-concatenation-versioning-php/
http://www.ravelrumba.com/blog/css-js-concatenation-versioning-php/
http://www.ravelrumba.com/blog/css-js-concatenation-versioning-php/
http://ant.apache.org/manual/Tasks/concat.html
http://ant.apache.org/manual/Tasks/concat.html
http://ant.apache.org/manual/Tasks/concat.html
http://viralpatel.net/blogs/compress-php-css-js-javascript-optimize-website-performance/
http://viralpatel.net/blogs/compress-php-css-js-javascript-optimize-website-performance/
http://www.ravelrumba.com/blog/css-js-concatenation-versioning-php/
http://www.ravelrumba.com/blog/css-js-concatenation-versioning-php/
http://ant.apache.org/manual/Tasks/concat.html
http://ant.apache.org/manual/Tasks/concat.html

the <head> to the end of the HTML. As Google Developers
explains188, any JavaScript that defines user interaction or
modifies loaded HTML content (such as onClick and on-
Load events) can be deferred until all other HTML has
loaded. By moving JavaScript references out of the
<head> tag, you cut down the time it takes for a user’s
browser to start loading the <body> and to actually dis-
play the content. The quicker you load the <head> tag and
start displaying content, the better. Letting the user know
that something is happening is preferable to showing a
blank white screen for a second or two while all of those
resource files load.

Assign Load Testing: DIY Or Outsourced?
For large-scale national clients and enterprise applica-
tions, it’s probably more efficient for a small development
firm to outsource load testing to a specialist. The National
Archives client outsourced this work to IBM, which ac-
quired Rational Machines back in 2003 and is an industry
leader in the full range of software testing—load, unit
and accessibility testing, etc.

Take this opportunity to decide on your business’ core
competencies189. Ask yourself, how deep into the bytes
will you venture? On the other hand, if your firm has de-
cided to outsource load testing, please let us know in the
comments section.

188. https://developers.google.com/speed/docs/best-practices/
payload#DeferLoadingJS

189. http://www.webperformance.com/load-testing/blog/2010/03/
should-we-outsource-load-testing-or-do-it-ourselves/

155

https://developers.google.com/speed/docs/best-practices/payload#DeferLoadingJS
https://developers.google.com/speed/docs/best-practices/payload#DeferLoadingJS
https://developers.google.com/speed/docs/best-practices/payload#DeferLoadingJS
https://developers.google.com/speed/docs/best-practices/payload#DeferLoadingJS
http://www.webperformance.com/load-testing/blog/2010/03/should-we-outsource-load-testing-or-do-it-ourselves/
http://www.webperformance.com/load-testing/blog/2010/03/should-we-outsource-load-testing-or-do-it-ourselves/
http://www.webperformance.com/load-testing/blog/2010/03/should-we-outsource-load-testing-or-do-it-ourselves/
http://www.webperformance.com/load-testing/blog/2010/03/should-we-outsource-load-testing-or-do-it-ourselves/
https://developers.google.com/speed/docs/best-practices/payload#DeferLoadingJS
https://developers.google.com/speed/docs/best-practices/payload#DeferLoadingJS
http://www.webperformance.com/load-testing/blog/2010/03/should-we-outsource-load-testing-or-do-it-ourselves/
http://www.webperformance.com/load-testing/blog/2010/03/should-we-outsource-load-testing-or-do-it-ourselves/

Bill Accordingly
As your firm increases its core competencies to include
load-time optimization, CDN content delivery and load
testing, remember to account for the extra value that you
add to your clients in the bottom line. Whether these ser-
vices are line items in your standard contract or not,
you’d be selling yourself short by failing to highlight
them and citing them to justify your rates.

Slow page-loading times translate into frustrated
users190 and lost opportunities191: in sales, interaction,
page visits, advertising impressions, etc. Most clients will
glaze over if you go into too much technical detail, so
keep your conversations focused on results. Discuss met-
rics with your client to figure out what they want out of
the project: few clients will come to you asking to de-
crease their average page-loading time by 25%, but many
will tell you they want to increase sales, receive more user
feedback or attract eyeballs.

Your expertise is worth it.❧

190. http://blog.kissmetrics.com/loading-time/
191. http://blog.tagman.com/2012/03/

just-one-second-delay-in-page-load-can-cause-7-loss-in-customer-conversions/

DON’T GET CRUSHED BY THE LOAD: OPTIMIZATION TECHNIQUES AND
STRATEGIES

156

http://blog.kissmetrics.com/loading-time/
http://blog.kissmetrics.com/loading-time/
http://blog.kissmetrics.com/loading-time/
http://blog.kissmetrics.com/loading-time/
http://blog.tagman.com/2012/03/just-one-second-delay-in-page-load-can-cause-7-loss-in-customer-conversions/
http://blog.tagman.com/2012/03/just-one-second-delay-in-page-load-can-cause-7-loss-in-customer-conversions/
http://blog.tagman.com/2012/03/just-one-second-delay-in-page-load-can-cause-7-loss-in-customer-conversions/
http://blog.kissmetrics.com/loading-time/
http://blog.kissmetrics.com/loading-time/
http://blog.tagman.com/2012/03/just-one-second-delay-in-page-load-can-cause-7-loss-in-customer-conversions/
http://blog.tagman.com/2012/03/just-one-second-delay-in-page-load-can-cause-7-loss-in-customer-conversions/

Speed Up Your Mobile
Website With Varnish

BY RACHEL ANDREWBY RACHEL ANDREW ❧❧

Imagine that you have just written a post on your blog,
tweeted about it and watched it get retweeted by some
popular Twitter users, sending hundreds of people to
your blog at once. Your excitement at seeing so many vis-
itors talk about your post turns to dismay as they start to
tweet that your website is down—a database connection
error is shown.

Or perhaps you have been working hard to generate
interest in your startup. One day, out of the blue, a
celebrity tweets about how much they love your product.
The person’s followers all seem to click at once, and many
of them find that the domain isn’t responding, or when
they try to sign up for the trial, the page times out. De-
spite your apologies on Twitter, many of the visitors
move on with their day, and you lose much of the mo-
mentum of that initial tweet.

These scenarios are fairly common, and I have noticed
in my own work that when content becomes popular via
social networks, the proportion of mobile devices that ac-
cess that content is higher than usual, because many peo-
ple use their mobile devices, rather than desktop applica-
tions, to access Twitter and other social networks. Many
of these mobile users access the Web via slow data con-
nections and crowded public Wi-Fi. So, anything you can
do to ensure that your website loads quickly will benefit
those users.

157

In this chapter, I’ll show you Varnish Web application
accelerator192, a free and simple thing that makes a world
of difference when a lot of people land on your website all
at once.

Introducing The Magic
For the majority of websites, even those whose content is
updated daily, a large number of visitors are served exact-
ly the same content. Images, CSS and JavaScript, which
we expect not to change very much—but also content
stored in a database using a blogging platform or content
management system (CMS)—are often served to visitors
in exactly the same way every time.

Visitors coming to a blog from Twitter would likely
not all be served exactly the same content—including not
only images, JavaScript and CSS, but also content that is
created with PHP and with queries to the database before
being served as a page to the browser. Each request for
that blog’s post would require not only the Web server
that serves the file (for example, Apache), but also PHP
scripts, a connection to the database, and queries run
against database tables.

The number of database connections that can be made
and the number of Apache processes that can run are al-
ways limited. The greater the number of visitors, the less
memory available and the slower each request becomes.
Ultimately, users will start to see database connection er-
rors, or the website will just seem to hang, with pages not

192. https://www.varnish-cache.org/

SPEED UP YOUR MOBILE WEBSITE WITH VARNISH

158

https://www.varnish-cache.org/
https://www.varnish-cache.org/
https://www.varnish-cache.org/
https://www.varnish-cache.org/
https://www.varnish-cache.org/
https://www.varnish-cache.org/

loading as the server struggles to keep up with demand.
This is where an HTTP cache like Varnish comes in.

Instead of requests from browsers directly hitting your
Web server, making the server create and serve the pages
requested, requests would first hit the cache. If the re-
quested page is in the cache, then it is served directly
from memory, never touching Apache or the database. If
the page is not in the cache, then the request is handed
over to Apache as usual, whereupon Apache will create
and serve the page, which is then stored in the cache,
ready for the next request.

Serving a page from memory is a lot faster than serv-
ing it from disk via Apache. In addition, the page never
needs to touch PHP or the database, leaving those
processes free to handle traffic that does require a data-
base connection or some processing. For example, in our
second scenario of a startup being mentioned by a
celebrity, the majority of people clicking through would
check out only a few pages of the website—all of those
pages could be in the cache and served from memory. The
few who go on to sign up would find that the registration
form works well, because the server-side code and data-
base connection are not bogged down by people pouring
in from Twitter.

How Does It Work?
The diagram below shows how a blog post might be
served when all requests go to the Apache Web server.
This example shows five browsers all requesting the
same page, which uses PHP and MySQL.

159

Every HTTP request is served by Apache—images, CSS,
JavaScript and HTML files. If a file is PHP, then it is
parsed by PHP. And if content is required from the data-
base, then a database connection is made, SQL queries are
run, and the page is assembled from the returned data be-
fore being served to the browser via Apache.

If we place Varnish in front of Apache, we would in-
stead see the following:

SPEED UP YOUR MOBILE WEBSITE WITH VARNISH

160

If the page and assets requested are already cached, then
Varnish serves them from memory—Apache, PHP and
MySQL would never be touched. If a browser requests
something that is not cached, then Varnish hands it over
to Apache so that it can do the job detailed above. The key
point is that Apache needs to do that job only once, be-
cause the result is then stored in memory, and when a
second request is made, Varnish can serve it.

The tool has other benefits. In Varnish terminology,
when you configure Apache as your Web server, you are
configuring a “back end.” Varnish allows you to configure
multiple back ends. So, you might want to run two Web
servers—for example, using Apache for PHP pages while
serving static assets (such as CSS files) from nginx. You
can set this up in Varnish, which will pass the request

161

through to the correct server. In this tutorial, we will look
at the simplest use case.

I’m Sold! How Do I Get Started?
Varnish is really easy to install and configure. You will
need root, or sudo, access to your server to install things
on it. Therefore, your website needs to be hosted on a vir-
tual private server (VPS) or the like. You can get a VPS
very inexpensively these days, and Varnish is a big reason
to choose a VPS over shared hosting.

Some CMS’ have plugins that work with Varnish or
that integrate it in the control panel—usually to make
clearing the cache easier. But you can put Varnish in any
CMS or any static website, without any particular inte-
gration with other systems.

I’ll walk you through installing Varnish, assuming
that you already run Apache as a Web server on your sys-
tem. I run Debian Linux, but packages for other distribu-
tions are available. (The paths to files on the system will
vary with the Linux distribution.)

Before starting, check that Apache is serving your
website as expected. If the server is brand new or you are
trying out Varnish on a local virtual machine, make sure
to configure a virtual host and that you can view a test
page on the server using a browser.

Install Varnish
Installation instructions for various platforms are in Var-
nish’s documentation193. I am using Debian Wheezy; so,

SPEED UP YOUR MOBILE WEBSITE WITH VARNISH

162

https://www.varnish-cache.org/docs
https://www.varnish-cache.org/docs
https://www.varnish-cache.org/docs
https://www.varnish-cache.org/docs

as root, I followed the instructions for Debian194. Once
Varnish is installed, you will see the following line in the
terminal, telling you that it has started successfully.

[ok] Starting HTTP accelerator: varnishd.

By default, Apache listens for requests on port 80. This is
where incoming HTTP requests go, because we want Var-
nish to essentially sit in front of Apache. We need to con-
figure Varnish to listen on port 80 and change Apache to
a different port—usually 8080. We then tell Varnish
where Apache is.

Reconfigure Apache
To change the port that Apache listens on, open the file
/etc/apache2/ports.conf as root, and find the follow-
ing lines:

NameVirtualHost *:80

Listen 80

Change these lines to this:

NameVirtualHost *:8080

Listen 8080

If you see the following lines, just change 80 to 8080 in
the same way.

193. https://www.varnish-cache.org/docs
194. https://www.varnish-cache.org/installation/debian

163

https://www.varnish-cache.org/installation/debian
https://www.varnish-cache.org/installation/debian
https://www.varnish-cache.org/installation/debian
https://www.varnish-cache.org/docs
https://www.varnish-cache.org/docs
https://www.varnish-cache.org/installation/debian
https://www.varnish-cache.org/installation/debian

NameVirtualHost 127.0.0.1:80

Listen 80

Save this file and open your default virtual host file,
which should be in /etc/apache2/sites-available. In
this file, find the following line:

<VirtualHost *:80>

Change it to this:

<VirtualHost *:8080>

You will also need to make this change to any other virtu-
al hosts you have set up.

Configure Varnish
Open the file /etc/default/varnish, and scroll down to
the uncommented section that starts with DAEMON_OPTS.
Edit this so that it looks like the following block, which
will make Varnish listen on port 80.

DAEMON_OPTS="-a :80

-T localhost:1234

-f /etc/varnish/default.vcl

-S /etc/varnish/secret

-s malloc,256m"

Open the file /etc/varnish/default.vcl, and check that
the default back end is set to port 8080, because this is
where Apache will be now.

SPEED UP YOUR MOBILE WEBSITE WITH VARNISH

164

backend default {

.host = "127.0.0.1";

.port = "8080";

}

Restart Apache and Varnish as root with the following
commands:

service apache2 restart

service varnish restart

Check that your test website is still available. If it is, then
you’ll probably be wondering how to test that it is being
served from Varnish. There are a few ways to do this. The
simplest is to use cURL. In the command line, type the
following:

curl http://yoursite.com --head

The response should be something like Via: 1.1 varnish.
You can also look at the statistics generated by Var-

nish. In the command line, type varnishstat, and watch
the hit rate increase as you refresh your page in the
browser. Varnish refers to something it can serve as a
“hit” and something it passes to Apache or another back
end as a “miss.”

Another useful tool is varnish-top. Type varnishtop -
i txurl in the command line, and refresh your page in
the browser. This tool shows you which files are being
served by Varnish.

165

Purging The Cache
Now that pages are being cached, if you change an HTML
or CSS file, you won’t see the changes immediately. This
trips me up all of the time. I know that a cache is in front
of Apache, yet every so often I still have that baffled mo-
ment of “Where are my changes?!” Type varnishadm
"ban.url ." in the command line to clear the entire
cache.

You can also control Varnish over HTTP. Plugins are
available, such as Varnish HTTP Purge195 for WordPress,
that you can configure to purge the cache directly from
the administration area.

Some Simple Customizations
You’ll probably want to know a few things about how
Varnish works by default in order to tweak it. Configur-
ing it as described above should cause most basic assets
and pages to be served from the cache, once those assets
have been cached in memory.

Varnish will only cache things that are safe to do so,
and it might not cache some common things that you
think it would. A good example is cookies.

In its default configuration, Varnish will not cache
content if a cookie is set. So, if your website serves differ-
ent content to logged-in users, such as personalized con-
tent, you wouldn’t want to serve everyone content that is
meant for one user. However, you’d probably want to ig-

195. http://wordpress.org/plugins/varnish-http-purge/

SPEED UP YOUR MOBILE WEBSITE WITH VARNISH

166

http://wordpress.org/plugins/varnish-http-purge/
http://wordpress.org/plugins/varnish-http-purge/
http://wordpress.org/plugins/varnish-http-purge/
http://wordpress.org/plugins/varnish-http-purge/
http://wordpress.org/plugins/varnish-http-purge/

nore some cookies, such as for analytics. If the website
does not serve any personalized content, then the only
cookies you would probably care about are those set for
your admin area—it would be inconvenient if Varnish
cached the admin area and you couldn’t see changes.

Let’s edit /etc/varnish/default.vcl. Assuming your
admin area is at /admin, you would add the following:

sub vcl_recv {

if (!(req.url ~ ^/admin/)) {

unset req.http.Cookie;

}

}

Some cookies might be important—for example, logged-
in users should get uncached content. So, you don’t want
to eliminate all cookies. A trip to the land of regular ex-
pressions is required to identify the cookies we’ll need.
Many recipes for doing this can be found with a quick
search online. For analytics cookies, you could add the
following.

sub vcl_recv {

// Remove has_js and Google Analytics __* cookies.

set req.http.Cookie = regsuball(req.http.Cookie,

"(^|;s*)(_[_a-z]+|has_js)=[^;]*", "");

// Remove a ";" prefix, if present.

set req.http.Cookie = regsub(req.http.Cookie, "^;s*", "");

}

Varnish has a section in its documentation on “Cook-
ies196.”

167

https://www.varnish-cache.org/docs/3.0/tutorial/cookies.html
https://www.varnish-cache.org/docs/3.0/tutorial/cookies.html
https://www.varnish-cache.org/docs/3.0/tutorial/cookies.html
https://www.varnish-cache.org/docs/3.0/tutorial/cookies.html

In most cases, configuring Varnish as described above
and removing analytics cookies will dramatically speed
up your website. Once Varnish is up and running and you
are familiar with the logs, you can start to tweak the con-
figuration and get more performance from the cache.

Next Steps
To learn more, go through Varnish’s documentation197.
You should understand enough of Varnish’s basics by
now to try some of the examples. The section on “Achiev-
ing a High Hit Rate198” is well worth a read for the simple
tips on tweaking your configuration.❧

Keep calm and try Varnish to optimize mobile websites.
(Image: Varnish Cache199)

196. https://www.varnish-cache.org/docs/3.0/tutorial/cookies.html
197. https://www.varnish-cache.org/docs/3.0/tutorial/index.html
198. https://www.varnish-cache.org/docs/3.0/tutorial/increasing_your_hitrate.html
199. https://twitter.com/varnishcache

SPEED UP YOUR MOBILE WEBSITE WITH VARNISH

168

https://www.varnish-cache.org/docs/3.0/tutorial/index.html
https://www.varnish-cache.org/docs/3.0/tutorial/index.html
https://www.varnish-cache.org/docs/3.0/tutorial/index.html
https://www.varnish-cache.org/docs/3.0/tutorial/increasing_your_hitrate.html
https://www.varnish-cache.org/docs/3.0/tutorial/increasing_your_hitrate.html
https://www.varnish-cache.org/docs/3.0/tutorial/increasing_your_hitrate.html
https://www.varnish-cache.org/docs/3.0/tutorial/increasing_your_hitrate.html
https://twitter.com/varnishcache
https://twitter.com/varnishcache
https://twitter.com/varnishcache
https://www.varnish-cache.org/docs/3.0/tutorial/cookies.html
https://www.varnish-cache.org/docs/3.0/tutorial/cookies.html
https://www.varnish-cache.org/docs/3.0/tutorial/index.html
https://www.varnish-cache.org/docs/3.0/tutorial/index.html
https://www.varnish-cache.org/docs/3.0/tutorial/increasing_your_hitrate.html
https://www.varnish-cache.org/docs/3.0/tutorial/increasing_your_hitrate.html
https://twitter.com/varnishcache
https://twitter.com/varnishcache

Cache Invalidation
Strategies With Varnish
Cache

BY PER BUERBY PER BUER ❧❧

Phil Karlton once said, “There are only two hard things in
Computer Science: cache invalidation and naming
things.” This chapter is about the harder of these two:
cache invalidation. It’s directed at readers who already
work with Varnish Cache. To learn more about it, you’ll
find background information in “Speed Up Your Mobile
Website With Varnish.”

10 microseconds (or 250 milliseconds): That’s the differ-
ence between delivering a cache hit and delivering a
cache miss. How often you get the latter will depend on
the efficiency of the cache—this is known as the “hit
rate.” A cache miss depends on two factors: the volume of
traffic and the average time to live (TTL), which is a num-
ber indicating how long the cache is allowed to keep an
object. As system administrators and developers, we can’t
do much about the traffic, but we can influence the TTL.

However, to have a high TTL, we need to be able to in-
validate objects from the cache so that we avoid serving
stale content. With Varnish Cache, there are myriad ways
to do this. We’ll explore the most common ways and how
to deploy them.

Varnish does a whole lot of other stuff as well, but its
caching services are most popular. Caches speed up Web
services by serving cached static content. When Varnish

169

Cache is delivering a cache hit, it usually just dumps a
chunk of memory into a socket. Varnish Cache is so fast
that, on modern hardware, we actually measure response
time in microseconds!

When using a cache, you need to know when to evict con-
tent from the cache. If you have no way to evict content,
then you would rely on the cache to time-out the object
after a predetermined amount of time. This is one
method, but hardly the most optimal solution. The best
way would be to let Varnish Cache keep the object in
memory forever (mostly) and then tell the object when to
refresh. Let’s go into detail on how to achieve this.

Caching isn’t always as simple as we think; a few gotchas and problems
may take quite some of our time to master. (Image: Varnish Cache200)

200. https://twitter.com/varnishcache

CACHE INVALIDATION STRATEGIES WITH VARNISH CACHE

170

https://twitter.com/varnishcache
https://twitter.com/varnishcache
https://twitter.com/varnishcache
https://twitter.com/varnishcache
https://twitter.com/varnishcache

HTTP Purging
HTTP Purging is the most straightforward of these meth-
ods. Instead of sending a GET /url to Varnish, you would
send PURGE /url. Varnish would then discard that object
from the cache. Add an access control list to Varnish so
that not just anyone can purge objects from your cache;
other than that, though, you’re home free.

acl purge { 

"localhost";

   "192.168.55.0"/24; 

}

  sub vcl_recv { 

allow PURGE from localhost and 192.168.55...

   if (req.request == "PURGE") {

  if (!client.ip ~ purge) { 

error 405 "Not allowed.";

   }

  return (lookup);

  }

}

  sub vcl_hit { 

if (req.request == "PURGE") {

  purge;

  error 200 "Purged."; 

}

 }

171

  sub vcl_miss { 

if (req.request == "PURGE") { 

purge;

  error 200 "Purged.";

  }

 }

SHORTCOMINGS OF PURGINGSHORTCOMINGS OF PURGING

HTTP purging falls short when a piece of content has a
complex relationship to the URLs it appears on. A news
article, for instance, might show up on a number of URLs.
The article might have a desktop view and a mobile view,
and it might show up on a section page and on the front
page. Therefore, you would have to either get the content
management system to keep track of all of these manifes-
tations or let Varnish do it for you. To let Varnish do it,
you would use bans, which we’ll get into now.

Bans
A ban is a feature specific to Varnish and one that is fre-
quently misunderstood. It enables you to ban Varnish
from serving certain content in memory, forcing Varnish
to fetch new versions of these pages.

An interesting aspect is how you specify which pages
to ban. Varnish has a language that provides quite a bit of
flexibility. You could tell Varnish to ban by giving the ban
command in the command-line interface, typically con-
necting to it with varnishadm. You could also do it

CACHE INVALIDATION STRATEGIES WITH VARNISH CACHE

172

through the Varnish configuration language (VCL),
which provides a simple way to implement HTTP-based
banning.

Let’s start with an example. Suppose we need to purge
our website of all images.

> ban obj.http.content-type ~ “^image/”

The result of this is that, for all objects in memory, the
HTTP response header Content-Type would match the
regular expression ^image/, which would invalidate im-
mediately.

Here’s what happens in Varnish. First, the ban com-
mand puts the ban on the “ban list.” When this command
is on the ban list, every cache hit that serves an object old-
er than the ban itself will start to look at the ban list and
compare the object to the bans on the list. If the object
matches, then Varnish kills it and fetches a newer one. If
the object doesn’t match, then Varnish will make a note
of it so that it does not check again.

Let’s build on our example. Now, we’ll only ban im-
ages that are placed somewhere in the /feature URL.
Note the logical “and” operator, &&.

> ban obj.http.content-type ~ “^image/” && req.url ~

“^/feature”

You’ll notice that it says obj.http.content-type and
req.url. In the first part of the ban, we refer to an attrib-
ute of an object stored in Varnish. In the latter, we refer to
a part of a request for an object. This might be a bit un-
conventional, but you can actually use attributes on the

173

request to invalidate objects in cache. Now, req.url isn’t
normally stored in the object, so referring to the request
is the only thing we can do here. You could use this to do
crazy things, like ban everything being requested by a
particular client’s IP address, or ban everything being re-
quested by the Chromium browser. As these requests hit
Varnish, objects are invalidated and refreshed from the
originating server.

Issuing bans that depend on the request opens up
some interesting possibilities. However, there is one
downside to the process: A very long list of bans could
slow down content delivery.

There is a worker thread assigned to the task of short-
ening the list of bans, “the ban lurker”. The ban lurker
tries to match a ban against applicable objects. When a
ban has been matched against all objects older than itself,
it is discarded.

As the ban lurker iterates through the bans, it doesn’t
have an HTTP request that it is trying to serve. So, any
bans that rely on data from the request cannot be tested
by the ban lurker. To keep ban performance up, then, we
would recommend not using request data in the bans. If
you need to ban something that is typically in the request,
like the URL, you can copy the data from the request to
the object in vcl_fetch, like this:

set beresp.http.x-url = req.url;

Now, you’ll be able to use bans on obj.http.x-url. Re-
member that the beresp objects turn into obj as it gets
stored in cache.

CACHE INVALIDATION STRATEGIES WITH VARNISH CACHE

174

Tagging Content For Bans
Bans are often a lot more effective when you give Varnish
a bit of help. If the object has an X-Article-id header,
then you don’t need to know all of the URLs that the ob-
ject is presented as.

For pages that depend on several objects, you could
have the content management system add an X-depends-
on header. Here, you’d list the objects that should trigger
an update of the current document. To take our news
website again, you might use this to list all articles men-
tioned on the front page:

X-depends-on: 3483 4376 32095 28372

Naturally, then, if one of the articles changes, you would
issue a ban, like this:

ban obj.http.x-depends-on ~ “\D4376\D”

This is potentially very powerful. Imagine making the
database issue these invalidation requests through trig-
gers, thus eliminating the need to change the middleware
layer. Neat, eh?

Graceful Cache Invalidations
Imagine purging something from Varnish and then the
origin server that was supposed to replace the content
suddenly crashes. You’ve just thrown away your only
workable copy of the content. What have you done?!
Turns out that quite a few content management systems
crash on a regular basis.

175

Ideally, we would want to put the object in a third
state—to invalidate it on the condition that we’re able to
get some new content. This third state exists in Varnish:
It is called “grace,” and it is used with TTL-based invalida-
tions. After an object expires, it is kept in memory in case
the back-end server crashes. If Varnish can’t talk to the
back end, then it checks to see whether any graced objects
match, and it serves those instead.

One Varnish module (or VMOD), named softpurge,
allows you to invalidate an object by putting it into the
grace state. Using it is simple. Just replace the PURGE VCL
with the VCL that uses the softpurge VMOD.

import softpurge;

sub vcl_hit {

if (req.method == "PURGE") { 

softpurge.softpurge();

error 200 “Successful softpurge”;

  } 

}

sub vcl_miss { 

if (req.method == "PURGE") {

  softpurge.softpurge(); 

error 200 "Successful softpurge";

  } 

}

CACHE INVALIDATION STRATEGIES WITH VARNISH CACHE

176

Distributing Cache Invalidations Events
All of the methods listed above describe the process of in-
validating content on a single cache server. Most serious
configurations would have more than one Varnish server.
If you have two, which should give enough oomph for
most websites, then you would want to issue one invali-
dation event for each server. However, if you have 20 or
30 Varnish servers, then you really wouldn’t want to bog
down the application by having it loop through a huge
list of servers.

Instead, you would want a single API end point to
which you can send your purges, having it distribute the
invalidation event to all of your Varnish servers. For ref-
erence, here is a very simple invalidation service written
in shell script. It will listen on port 2000 and invalidate
URLs to three different servers (alfa, beta and gamma)
using cURL.

nc -l 2000 | while true

do read url

for srv in “alfa” “beta” “gamma”

do curl -m 2 -x $srv -X PURGE $url

done

done

It might not be suitable for production because the error
handling leaves something to be desired!

Cache invalidation is almost as important as caching.
Therefore, having a sound strategy for invalidating the
content is crucial to maintaining high performance and
having a high cache-hit ratio. If you maintain a high hit

177

rate, then you’ll need fewer servers and will have happier
users and probably less downtime. With this, you’re
hopefully more comfortable using tools like these to get
stale content out of your cache.❧

CACHE INVALIDATION STRATEGIES WITH VARNISH CACHE

178

Gone In 60 Frames Per
Second: A Pinterest Paint
Performance Case Study

BY ADDY OSMANIBY ADDY OSMANI ❧❧

Today we’ll discuss how to improve the paint perfor-
mance of your websites and Web apps. This is an area
that we Web developers have only recently started look-
ing at more closely, and it’s important because it could
have an impact on your user engagement and user expe-
rience.

Frame Rate Applies To The Web, Too
Frame rate is the rate at which a device produces consec-
utive images to the screen. A low frames per second (FPS)
means that individual frames can be made out by the eye.
A high FPS gives users a more responsive feel. You’re
probably used to this concept from the world of gaming,
but it applies to the Web, too.

Long image decoding, unnecessary image resizing,
heavy animation and data processing can all lead to
dropped frames, which reduces the frame rate, resulting
in janky pages. We’ll explain what exactly we mean by
“jank” shortly.

179

Why Care About Frame Rate?
Smooth, high frame rates drive user engagement and can
affect how much users interact with your website or app.

At EdgeConf earlier this year, Facebook confirmed201

this when it mentioned that in an A/B test, it slowed
down scrolling from 60 FPS to 30 FPS, causing engage-
ment to collapse. That said, if you can’t do high frame
rates and 60 FPS is out of reach, then you’d at least want
something smooth. If you’re doing your own animation,
this is one benefit of using requestAnimationFrame202:
the browser can dynamically adjust to keep the frame
rate normal.

In cases where you’re concerned about scrolling, the
browser can manage the frame rate for you. But if you in-
troduce a large amount of jank, then it won’t be able to do
as good a job. So, try to avoid big hitches, such as long
paints, long JavaScript execution times, long anything.

Don’t Guess It, Test It!
Before getting started, we need to step back and look at
our approach. We all want our websites and apps to run
more quickly. In fact, we’re arguably paid to write code
that runs not only correctly, but quickly. As busy develop-
ers with deadlines, we find it very easy to rely on snippets
of advice that we’ve read or heard. Problems arise when

201. http://www.youtube.com/watch?list=SPNYkxOF6rcICCU_UD67Ga0qLvMjnBB
wft&v=3-WYu_p5rdU&feature=player_detailpage#t=2149s

202. https://developer.mozilla.org/en-US/docs/Web/API/
window.requestAnimationFrame

GONE IN 60 FRAMES PER SECOND: A PINTEREST PAINT PERFORMANCE
CASE STUDY

180

http://www.youtube.com/watch?list=SPNYkxOF6rcICCU_UD67Ga0qLvMjnBBwft&v=3-WYu_p5rdU&feature=player_detailpage#t=2149s
http://www.youtube.com/watch?list=SPNYkxOF6rcICCU_UD67Ga0qLvMjnBBwft&v=3-WYu_p5rdU&feature=player_detailpage#t=2149s
http://www.youtube.com/watch?list=SPNYkxOF6rcICCU_UD67Ga0qLvMjnBBwft&v=3-WYu_p5rdU&feature=player_detailpage#t=2149s
https://developer.mozilla.org/en-US/docs/Web/API/window.requestAnimationFrame
https://developer.mozilla.org/en-US/docs/Web/API/window.requestAnimationFrame
https://developer.mozilla.org/en-US/docs/Web/API/window.requestAnimationFrame
http://www.youtube.com/watch?list=SPNYkxOF6rcICCU_UD67Ga0qLvMjnBBwft&v=3-WYu_p5rdU&feature=player_detailpage#t=2149s
http://www.youtube.com/watch?list=SPNYkxOF6rcICCU_UD67Ga0qLvMjnBBwft&v=3-WYu_p5rdU&feature=player_detailpage#t=2149s
https://developer.mozilla.org/en-US/docs/Web/API/window.requestAnimationFrame
https://developer.mozilla.org/en-US/docs/Web/API/window.requestAnimationFrame

we do that, though, because the internals of browsers
change very rapidly, and something that’s slow today
could be quick tomorrow.

Another point to remember is that your app or website
is unique, and, therefore, the performance issues you face
will depend heavily on what you’re building. Optimizing
a game is a very different beast to optimizing an app that
users will have open for 200+ hours. If it’s a game, then
you’ll likely need to focus your attention on the main loop
and heavily optimize the chunk of code that is going to
run every frame. With a DOM-heavy application, the
memory usage might be the biggest performance bottle-
neck.

Your best option is to learn how to measure your ap-
plication and understand what the code is doing. That
way, when browsers change, you will still be clear about
what matters to you and your team and will be able to
make informed decisions. So, no matter what, don’t guess
it, test it!203

We’re going to discuss how to measure frame rate and
paint performance shortly, so hold onto your seats!

Note: Some of the tools mentioned in this chapter require
Chrome Canary204, with the “Developer Tools experi-
ments” enabled in about:flags. (We—Addy Osmani and
Paul Lewis—are engineers on the Developer Relations
team at Chrome.)

203. http://aerotwist.com/blog/dont-guess-it-test-it/
204. https://www.google.com/intl/en/chrome/browser/canary.html

181

http://aerotwist.com/blog/dont-guess-it-test-it/
http://aerotwist.com/blog/dont-guess-it-test-it/
http://aerotwist.com/blog/dont-guess-it-test-it/
http://aerotwist.com/blog/dont-guess-it-test-it/
https://www.google.com/intl/en/chrome/browser/canary.html
https://www.google.com/intl/en/chrome/browser/canary.html
https://www.google.com/intl/en/chrome/browser/canary.html
http://aerotwist.com/blog/dont-guess-it-test-it/
http://aerotwist.com/blog/dont-guess-it-test-it/
https://www.google.com/intl/en/chrome/browser/canary.html
https://www.google.com/intl/en/chrome/browser/canary.html

Case Study: Pinterest
The other day we were on Pinterest205, trying to find
some ponies to add to our pony board (Addy loves
ponies!). So, we went over to the Pinterest feed and start-
ed scrolling through, looking for some ponies to add.

JANK AFFECTS USER EXPERIENCEJANK AFFECTS USER EXPERIENCE

The first thing we noticed as we scrolled was that
scrolling on this page doesn’t perform very well —
scrolling up and down takes effort, and the experience
just feels sluggish. When they come up against this, users
get frustrated, which means they’re more likely to leave.
Of course, this is the last thing we want them to do!

Addy adding some ponies to his Pinterest board, as one does.

205. http://pinterest.com/

GONE IN 60 FRAMES PER SECOND: A PINTEREST PAINT PERFORMANCE
CASE STUDY

182

http://pinterest.com/
http://pinterest.com/
http://pinterest.com/
http://pinterest.com/
http://pinterest.com/

This break in consistent frame rate is something the
Chrome team calls “jank,” and we’re not sure what’s caus-
ing it here. You can actually notice some of the frames be-
ing drawn as we scroll. But let’s visualize it! We’re going
to open up Frames mode and show what slow looks like
there in just a moment.

Note: What we’re really looking for is a consistently high
FPS, ideally matching the refresh rate of the screen. In
many cases, this will be 60 FPS, but it’s not guaranteed, so
check the devices you’re targeting.

Now, as JavaScript developers, our first instinct is to sus-
pect a memory leak as being the cause. Perhaps some ob-

Pinterest showing a performance bottleneck when a user scrolls.
(Animated GIF206)

206. http://media.smashingmagazine.com/wp-content/uploads/2013/05/
slow_scroll2.gif

183

http://media.smashingmagazine.com/wp-content/uploads/2013/05/slow_scroll2.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/slow_scroll2.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/slow_scroll2.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/slow_scroll2.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/slow_scroll2.gif

jects are being held around after a round of garbage col-
lection. The reality, however, is that very often these days
JavaScript is not a bottleneck. Our major performance
problems come down to slow painting and rendering
times. The DOM needs to be turned into pixels on the
screen, and a lot of paint work when the user scrolls could
result in a lot of slowing down.

Note: HTML5 Rocks specifically discusses some of the
causes of slow scrolling207. If you think you’re running
into this problem, it’s worth a read.

Measuring Paint Performance

FRAME RATEFRAME RATE

We suspect that something on this page is affecting the
frame rate. So, let’s go open up Chrome’s Developer Tools
and head to the “Timeline” and “Frames” mode to record a
new session. We’ll click the record button and start
scrolling the page the way a normal user would. Now, to
simulate a few minutes of usage, we’re going to scroll just
a little faster.

Up, down, up, down. What you’ll notice now in the
summary view up at the top is a lot of purple and green,
corresponding to painting and rendering times. Let’s stop
recording for now. As we flip through these various
frames, we see some pretty hefty “Recalculate Styles” and
a lot of “Layout.”

207. http://www.html5rocks.com/en/tutorials/speed/scrolling/

GONE IN 60 FRAMES PER SECOND: A PINTEREST PAINT PERFORMANCE
CASE STUDY

184

http://www.html5rocks.com/en/tutorials/speed/scrolling/
http://www.html5rocks.com/en/tutorials/speed/scrolling/
http://www.html5rocks.com/en/tutorials/speed/scrolling/
http://www.html5rocks.com/en/tutorials/speed/scrolling/
http://www.html5rocks.com/en/tutorials/speed/scrolling/

If you look at the legend to the very right, you’ll see that
we’ve actually blown our budget of 60 FPS, and we’re not
even hitting 30 FPS either in many cases. It’s just per-
forming quite poorly. Now, each of these bars in the sum-
mary view correspond to one frame—i.e. all of the work
that Chrome has to do in order to be able to draw an app
to the screen.

Using Chrome’s Developer Tools to profile scrolling interactions.
(Animated GIF208)

208. http://media.smashingmagazine.com/wp-content/uploads/2013/05/
performance.gif

185

http://media.smashingmagazine.com/wp-content/uploads/2013/05/performance.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/performance.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/performance.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/performance.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/performance.gif

FRAME BUDGETFRAME BUDGET

If you’re targeting 60 FPS, which is generally the optimal
number of frames to target these days, then to match the
refresh rate of the devices we commonly use, you’ll have
a 16.7-millisecond budget in which to complete every-
thing—JavaScript, layout, image decoding and resizing,
painting, compositing—everything.

Note: A constant frame rate is our ideal here. If you can’t
hit 60 FPS for whatever reason, then you’re likely better
off targeting 30 FPS, rather than allowing a variable
frame rate between 30 and 60 FPS. In practice, this can be
challenging to code because when the JavaScript finishes

Chrome’s Developer Tools showing a long paint time. (Animated GIF209)

209. http://media.smashingmagazine.com/wp-content/uploads/2013/05/
selection1.gif

GONE IN 60 FRAMES PER SECOND: A PINTEREST PAINT PERFORMANCE
CASE STUDY

186

http://media.smashingmagazine.com/wp-content/uploads/2013/05/selection1.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/selection1.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/selection1.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/selection1.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/selection1.gif

executing, all of the layout, paint and compositing work
still has to be done, and predicting that ahead of time is
very difficult. In any case, whatever your frame rate, en-
sure that it is consistent and doesn’t fluctuate (which
would appear as stuttering).

If you’re aiming for low-end devices, such as mobile
phones, then that frame budget of 16 milliseconds is real-
ly more like 8 to 10 milliseconds. This could be true on
desktop as well, where your frame budget might be low-
ered as a result of miscellaneous browser processes. If
you blow this budget, you will miss frames and see jank
on the page. So, you likely have somewhere nearer 8 to 10
milliseconds, but be sure to test the devices you’re sup-
porting to get a realistic idea of your budget.

An extremely costly layout operation of over 500 milliseconds.
(Animated GIF210)

187

http://media.smashingmagazine.com/wp-content/uploads/2013/05/highlight.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/highlight.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/highlight.gif

Note: We’ve also got an article on how to use the Chrome
Developer Tools to find and fix rendering performance is-
sues211 that focuses more on the timeline.

Going back to scrolling, we have a sneaking suspicion
that a number of unnecessary repaints are occurring on
this page with onscroll.

One common mistake is to stuff just way too much
JavaScript into the onscroll handlers of a page—making
it difficult to meet the frame budget at all. Aligning the
work to the rendering pipeline (for example, by placing it
in requestAnimationFrame) gives you a little more head-
room, but you still have only those few milliseconds in
which to get everything done.

The best thing you can do is just capture values such
as scrollTop in your scroll handlers, and then use the
most recent value inside a requestAnimationFrame call-
back.

PAINT RECTANGLESPAINT RECTANGLES

Let’s go back to Developer Tools → Settings and enable
“Show paint rectangles.” This visualizes the areas of the
screen that are being painted with a nice red highlight.
Now look at what happens as we scroll through Pinterest.

210. http://media.smashingmagazine.com/wp-content/uploads/2013/05/
highlight.gif

211. http://addyosmani.com/blog/performance-optimisation-with-timeline-profiles/

GONE IN 60 FRAMES PER SECOND: A PINTEREST PAINT PERFORMANCE
CASE STUDY

188

http://addyosmani.com/blog/performance-optimisation-with-timeline-profiles/
http://addyosmani.com/blog/performance-optimisation-with-timeline-profiles/
http://addyosmani.com/blog/performance-optimisation-with-timeline-profiles/
http://addyosmani.com/blog/performance-optimisation-with-timeline-profiles/
http://media.smashingmagazine.com/wp-content/uploads/2013/05/highlight.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/highlight.gif
http://addyosmani.com/blog/performance-optimisation-with-timeline-profiles/
http://addyosmani.com/blog/performance-optimisation-with-timeline-profiles/

Every few milliseconds, we experience a big bright flash
of red across the entire screen. There seems to be a paint
of the whole screen every time we scroll, which is poten-
tially very expensive. What we want to see is the browser
just painting what is new to the page—so, typically just
the bottom or top of the page as it gets scrolled into view.
The cause of this issue seems to be the little “scroll to top”
button in the lower-right corner. As the user scrolls, the
fixed header at the top needs to be repainted, but so does
the button. The way that Chrome deals with this is to cre-
ate a union of the two areas that need to be repainted.

Enabling Chrome Developer Tools’ “Paint Rectangles” feature.
(Animated GIF212)

212. http://media.smashingmagazine.com/wp-content/uploads/2013/05/rects.gif

189

http://media.smashingmagazine.com/wp-content/uploads/2013/05/rects.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/rects.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/rects.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/rects.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/rects.gif

In this case, there is a rectangle from the top left to top
right, but not very tall, plus a rectangle in the lower-right
corner. This leaves us with a rectangle from the top left to
bottom right, which is essentially the whole screen! If you
inspect the button element in Developer Tools and either
hide it (using the H key) or delete it and then scroll again,
you will see that only the header area is repainted. The
way to solve this particular problem is to move the scroll
button to its own layer so that it doesn’t get unioned with
the header. This essentially isolates the button so that it
can be composited on top of the rest of the page. But we’ll
talk about layers and compositing in more detail in a little
bit.

The next thing we notice has to do with hovering.
When we hover over a pin, Pinterest paints an action bar
containing “Repin, comment and like” buttons—let’s call

Chrome shows freshly painted areas with a red box.

GONE IN 60 FRAMES PER SECOND: A PINTEREST PAINT PERFORMANCE
CASE STUDY

190

this the action bar. When we hover over a single pin, it
paints not just the bar but also the elements underlying
it. Painting should happen only on those elements that
you expect to change visually.

There’s another interesting thing about scrolling here.
Let’s keep our cursor hovered over this pin and start
scrolling the page again.

Every time we scroll through a new row of images,
this action bar gets painted on yet another pin, even
though we don’t mean to hover over it. This comes down
more to UX than anything else, but scrolling performance
in this case might be more important than the hover ef-
fect during scrolling. Hovering amplifies jank during
scrolling because the browser essentially pauses to go off
and paint the effect (the same is true when we roll out of
the element!). One option here is to use a setTimeout with
a delay to ensure that the bar is painted only when the
user really intends to use it, an approach we covered in

A cause for concern: full-screen flashes of red indicate a lot of painting.
(Animated GIF213)

213. http://media.smashingmagazine.com/wp-content/uploads/2013/05/scroll.gif

191

http://media.smashingmagazine.com/wp-content/uploads/2013/05/scroll.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/scroll.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/scroll.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/scroll.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/scroll.gif

“Avoiding Unnecessary Paints214.” A more aggressive ap-
proach would be to measure the mouseenter or the
mouse’s trajectory before enabling hover behaviors.
While this measure might seem rather extreme, remem-
ber that we are trying to avoid unnecessary paints at all
costs, especially when the user is scrolling.

OVERALL PAINT COSTOVERALL PAINT COST

We now have a really great workflow for looking at the
overall cost of painting on a page; go back into Developer
Tools and “Enable continuous page repainting.”

Chrome’s “Continuous Page Repainting” mode helps you to assess the
overall cost of a page. (Animated GIF215)

214. http://www.html5rocks.com/en/tutorials/speed/unnecessary-paints/
215. http://media.smashingmagazine.com/wp-content/uploads/2013/05/

painthud.gif

GONE IN 60 FRAMES PER SECOND: A PINTEREST PAINT PERFORMANCE
CASE STUDY

192

http://www.html5rocks.com/en/tutorials/speed/unnecessary-paints/
http://www.html5rocks.com/en/tutorials/speed/unnecessary-paints/
http://www.html5rocks.com/en/tutorials/speed/unnecessary-paints/
http://media.smashingmagazine.com/wp-content/uploads/2013/05/painthud.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/painthud.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/painthud.gif
http://www.html5rocks.com/en/tutorials/speed/unnecessary-paints/
http://www.html5rocks.com/en/tutorials/speed/unnecessary-paints/
http://media.smashingmagazine.com/wp-content/uploads/2013/05/painthud.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/painthud.gif

This feature will constantly paint to your screen so that
you can find out what elements have costly paint times.
You’ll get this really nice black box in the top corner that
summarizes paint times, with the minimum and maxi-
mum also displayed.

Let’s head back to the “Elements” panel. Here, we can
select a node and just use the keyboard to walk the DOM
tree. If we suspect that an element has an expensive
paint, we can use the H shortcut key (something recently
added to Chrome) to toggle visibility on that element. Us-
ing the continuous paint box, we can instantly see
whether this has a positive effect on our pages’ paint
times. We should expect it to in many cases, because if
we hide an element, we should expect a corresponding re-
duction in paint times. But by doing this, we might see
one element that is especially expensive, which would
bear further scrutiny!

The “Continuous Page Repainting” chart showing the time taken to paint
the page. (Animated GIF216)

193

http://media.smashingmagazine.com/wp-content/uploads/2013/05/cont.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/cont.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/cont.gif

For Pinterest’s website, we can do it to the categories bar
or to the header, and, as you’d expect, because we don’t
have to paint these elements at all, we see a drop in the
time it takes to paint to the screen. If we want even more
detailed insight, we can go right back to the timeline and
record a new session to measure the impact. Isn’t that
great? Now, while this workflow should work great for
most pages, there might be times when it isn’t as useful.
In Pinterest’s case, the pins are actually quite deeply nest-
ed in the page, making it hard for us to measure paint
times in this workflow.

Luckily, we can still get some good mileage by select-
ing an element (such as a pin here), going to the “Styles”
panel and looking at what CSS styles are being used. We
can toggle properties on and off to see how they effect the
paint times. This gives us much finer-grained insight into
the paint profile of the page.

Here, we see that Pinterest is using box-shadow217 on
these pins. We’ve optimized the performance of box-
shadow in Chrome over the past two years, but in combi-
nation with other styles and when heavily used, it could
cause a bottleneck, so it’s worth looking at.

Pinterest has reduced continuous paint mode times by
40% by moving box-shadow to a separate element that
doesn’t have border-radius. The side effect is slightly
fuzzy-looking corners; however, it is barely noticeable
due to the color scheme and the low border-radius val-
ues.

216. http://media.smashingmagazine.com/wp-content/uploads/2013/05/cont.gif
217. http://www.html5rocks.com/en/tutorials/speed/css-paint-times/

GONE IN 60 FRAMES PER SECOND: A PINTEREST PAINT PERFORMANCE
CASE STUDY

194

http://www.html5rocks.com/en/tutorials/speed/css-paint-times/
http://www.html5rocks.com/en/tutorials/speed/css-paint-times/
http://www.html5rocks.com/en/tutorials/speed/css-paint-times/
http://media.smashingmagazine.com/wp-content/uploads/2013/05/cont.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/cont.gif
http://www.html5rocks.com/en/tutorials/speed/css-paint-times/
http://www.html5rocks.com/en/tutorials/speed/css-paint-times/

Note: You can read more about this topic in “CSS Paint
Times and Page Render Weight218.”

Let’s disable box-shadow to see whether it makes a differ-
ence. As you can see, it’s no longer visible on any of the
pins. So, let’s go back to the timeline and record a new
session in which we scroll the same way as we did before
(up and down, up and down, up and down). We’re getting
closer to 60 FPS now, and that’s just from one change.

Public service announcement: We’re absolutely not
saying don’t use box-shadow—by all means, do! Just
make sure that if you have a performance problem, mea-
sure correctly to find out what your own bottlenecks are.

Toggling styles to measure their effect on page-rendering weight.
(Animated GIF219)

218. http://www.html5rocks.com/en/tutorials/speed/css-paint-times/
219. http://media.smashingmagazine.com/wp-content/uploads/2013/05/box.gif

195

http://www.html5rocks.com/en/tutorials/speed/css-paint-times/
http://www.html5rocks.com/en/tutorials/speed/css-paint-times/
http://www.html5rocks.com/en/tutorials/speed/css-paint-times/
http://www.html5rocks.com/en/tutorials/speed/css-paint-times/
http://media.smashingmagazine.com/wp-content/uploads/2013/05/box.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/box.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/box.gif
http://www.html5rocks.com/en/tutorials/speed/css-paint-times/
http://www.html5rocks.com/en/tutorials/speed/css-paint-times/
http://media.smashingmagazine.com/wp-content/uploads/2013/05/box.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/box.gif

Always measure! Your website or application is unique, as
will any performance bottleneck be. Browser internals
change almost daily, so measuring is the smartest way to
stay up to date on the changes, and Chrome’s Developer
Tools makes this really easy to do.

Note: Eberhard Grather recently wrote a detailed post on
“Profiling Long Paint Times With DevTools’ Continuous
Painting Mode220,” which you should spend some quality
time with.

Another thing we noticed is that if you click on the “Re-
pin” button, do you see the animated effect and the light-
box being painted? There’s a big red flash of repaint in the

Using Chrome Developer Tools to profile is the best way to track browser
performance changes.

220. http://updates.html5rocks.com/2013/02/
Profiling-Long-Paint-Times-with-DevTools-Continuous-Painting-Mode

GONE IN 60 FRAMES PER SECOND: A PINTEREST PAINT PERFORMANCE
CASE STUDY

196

http://updates.html5rocks.com/2013/02/Profiling-Long-Paint-Times-with-DevTools-Continuous-Painting-Mode
http://updates.html5rocks.com/2013/02/Profiling-Long-Paint-Times-with-DevTools-Continuous-Painting-Mode
http://updates.html5rocks.com/2013/02/Profiling-Long-Paint-Times-with-DevTools-Continuous-Painting-Mode
http://updates.html5rocks.com/2013/02/Profiling-Long-Paint-Times-with-DevTools-Continuous-Painting-Mode
http://updates.html5rocks.com/2013/02/Profiling-Long-Paint-Times-with-DevTools-Continuous-Painting-Mode
http://updates.html5rocks.com/2013/02/Profiling-Long-Paint-Times-with-DevTools-Continuous-Painting-Mode

background. It’s not clear from the tooling if the paint is
the white cover or some other affected being area. Be sure
to double check that the paint rectangles correspond to
the element or elements that you think are being repaint-
ed, and not just what it looks like. In this case, it looks like
the whole screen is being repainted, but it could well be
just the white cover, which might not be all that expen-
sive. It’s nuanced; the important thing is to understand
what you’re seeing and why.

HARDWARE COMPOSITING (GPUHARDWARE COMPOSITING (GPU
ACCELERATION)ACCELERATION)

The last thing we’re going to look at on Pinterest is GPU
acceleration. In the past, Web browsers have relied pretty
heavily on the CPU to render pages. This involved two
things: firstly, painting elements into a bunch of textures,
called layers; and secondly, compositing all of those lay-
ers together to the final picture seen on screen.

Over the past few years, however, we’ve found that
getting the GPU involved in the compositing process can
lead to some significant speeding up. The premise is that,
while the textures are still painted on the CPU, they can
be uploaded to the GPU for compositing. Assuming that
all we do on future frames is move elements around (us-
ing CSS transitions or animations) or change their opaci-
ty, we simply provide these changes to the GPU and it
takes care of the rest. We essentially avoid having to give
the GPU any new graphics; rather, we just ask it to move
existing ones around. This is something that the GPU is

197

exceptionally quick at doing, thus improving perfor-
mance overall.

There is no guarantee that this hardware compositing
will be available and enabled on a given platform, but if it
is available the first time you use, say, a 3D transform on
an element, then it will be enabled in Chrome. Many de-
velopers use the translateZ hack to do just that. The oth-
er side effect of using this hack is that the element in
question will get its own layer, which may or may not be
what you want. It can be very useful to effectively isolate
an element so that it doesn’t affect others as and when it
gets repainted. It’s worth remembering that the upload-
ing of these textures from system memory to the video
memory is not necessarily very quick. The more layers
you have, the more textures need to be uploaded and the
more layers that will need to be managed, so it’s best not
to overdo it221.

Note: Tom Wiltzius has written about the layer model in
Chrome222, which is a relevant read if you are interested
in understanding how compositing works behind the
scenes. Paul has also written a post about the translateZ
hack223 and how to make sure you’re using it in the right
ways.

Another great setting in Developer Tools that can help
here is “Show composited layer borders.” This feature will

221. https://plus.google.com/115133653231679625609/posts/gv92WXBBkgU
222. http://www.html5rocks.com/en/tutorials/speed/layers/
223. http://aerotwist.com/blog/on-translate3d-and-layer-creation-hacks/

GONE IN 60 FRAMES PER SECOND: A PINTEREST PAINT PERFORMANCE
CASE STUDY

198

https://plus.google.com/115133653231679625609/posts/gv92WXBBkgU
https://plus.google.com/115133653231679625609/posts/gv92WXBBkgU
https://plus.google.com/115133653231679625609/posts/gv92WXBBkgU
https://plus.google.com/115133653231679625609/posts/gv92WXBBkgU
http://www.html5rocks.com/en/tutorials/speed/layers/
http://www.html5rocks.com/en/tutorials/speed/layers/
http://www.html5rocks.com/en/tutorials/speed/layers/
http://www.html5rocks.com/en/tutorials/speed/layers/
http://aerotwist.com/blog/on-translate3d-and-layer-creation-hacks/
http://aerotwist.com/blog/on-translate3d-and-layer-creation-hacks/
http://aerotwist.com/blog/on-translate3d-and-layer-creation-hacks/
http://aerotwist.com/blog/on-translate3d-and-layer-creation-hacks/
https://plus.google.com/115133653231679625609/posts/gv92WXBBkgU
https://plus.google.com/115133653231679625609/posts/gv92WXBBkgU
http://www.html5rocks.com/en/tutorials/speed/layers/
http://www.html5rocks.com/en/tutorials/speed/layers/
http://aerotwist.com/blog/on-translate3d-and-layer-creation-hacks/
http://aerotwist.com/blog/on-translate3d-and-layer-creation-hacks/

give you insight into those DOM elements that are being
manipulated at the GPU level.

If an element is taking advantage of the GPU accelera-
tion, you’ll see an orange border around it with this on.
Now as we scroll through, we don’t really see any use of
composited layers on this page—not when we click
“Scroll to top” or otherwise.

Chrome is getting better at automatically handling
layer promotion in the background; but, as mentioned,
developers sometimes use the translateZ hack to create
a composited layer. Below is Pinterest’s feed with trans-
lateZ(0) applied to all pins. It’s not hitting 60 FPS, but it
is getting closer to a consistent 30 FPS on desktop, which
is actually not bad.

Switching on composited layer borders will indicate Chrome’s rendering
layers. (Animated GIF224)

224. http://media.smashingmagazine.com/wp-content/uploads/2013/05/nolayers.gif

199

http://media.smashingmagazine.com/wp-content/uploads/2013/05/nolayers.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/nolayers.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/nolayers.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/nolayers.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/nolayers.gif

Remember to test on both desktop and mobile, though;
their performance characteristics vary wildly. Use the
timeline in both, and watch your paint time chart in Con-
tinuous Paint mode to evaluate how fast you’re busting
your budget.

Again, don’t use this hack on every element on the
page—it might pass muster on desktop, but it won’t on
mobile. The reason is that there is increased video memo-
ry usage and an increased layer management cost, both
of which could have a negative impact on performance.
Instead, use hardware compositing only to isolate ele-
ments where the paint cost is measurably high.

Using the translateZ(0) hack on all Pinterest pins. Note the orange
borders. (Animated GIF225)

225. http://media.smashingmagazine.com/wp-content/uploads/2013/05/
transformpost.gif

GONE IN 60 FRAMES PER SECOND: A PINTEREST PAINT PERFORMANCE
CASE STUDY

200

http://media.smashingmagazine.com/wp-content/uploads/2013/05/transformpost.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/transformpost.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/transformpost.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/transformpost.gif
http://media.smashingmagazine.com/wp-content/uploads/2013/05/transformpost.gif

Note: In the WebKit nightlies226, the Web Inspector now
also gives you the reasons227 for layers being composited.
To enable this, switch off the “Use WebKit Web Inspec-
tor” option and you’ll get the front end with this feature
in there. Switch it on using the “Layers” button.

A Find-and-Fix Workflow
Now that we’ve concluded our Pinterest case study, what
about the workflow for diagnosing and addressing your
own paint problems?

FINDING THE PROBLEMFINDING THE PROBLEM

• Make sure you’re in “Incognito” mode. Extensions and
apps can skew the figures that are reported when profil-
ing performance.

• Open the page and the Developer Tools.

• In the timeline, record and interact with your page.

• Check for frames that go over budget (i.e. over 60 FPS).

• If you’re close to budget, then you’re likely way over the
budget on mobile.

• Check the cause of the jank. Long paint? CSS layout?
JavaScript?

226. http://nightly.webkit.org/
227. https://twitter.com/addyosmani/status/313978378220879872/photo/1

201

http://nightly.webkit.org/
http://nightly.webkit.org/
http://nightly.webkit.org/
https://twitter.com/addyosmani/status/313978378220879872/photo/1
https://twitter.com/addyosmani/status/313978378220879872/photo/1
https://twitter.com/addyosmani/status/313978378220879872/photo/1
http://nightly.webkit.org/
http://nightly.webkit.org/
https://twitter.com/addyosmani/status/313978378220879872/photo/1
https://twitter.com/addyosmani/status/313978378220879872/photo/1

FIXING THE PROBLEMFIXING THE PROBLEM

• Go to “Settings” and enable “Continuous Page Repaint-
ing.”

• In the “Elements” panel, hide anything non-essential us-
ing the hide (H) shortcut.

• Walk through the DOM tree, hiding elements and check-
ing the FPS in the timeline.

• See which element(s) are causing long paints.

• Uncheck styles that could affect paint time, and track the
FPS.

• Continue until you’ve located the elements and styles re-
sponsible for the slow-down.

Spend some quality time with Frame mode in Chrome Developer Tools to
understand your website’s runtime profile.

GONE IN 60 FRAMES PER SECOND: A PINTEREST PAINT PERFORMANCE
CASE STUDY

202

What About Other Browsers?
Although at the time of writing, Chrome has the best
tools to profile paint performance, we strongly recom-
mend testing and measuring your pages in other
browsers to get a feel for what your own users might ex-
perience (where feasible). Performance can vary massive-
ly between them, and a performance smell in one brows-
er might not be present in another.

As we said earlier, don’t guess it, test it! Measure for
yourself, understand the abstractions, know your brows-
er’s internals. In time, we hope that the cross- browser
tooling for this area improves so that developers can get
an accurate picture of rendering performance, regardless
of the browser being used.

Conclusion
Performance is important. Not all machines are created
equal, and the fast machines that developers work on
might not have the performance problems encountered
on the devices of real users. Frame rate in particular can
have a big impact on engagement and, consequently, on a

Switch on extra Developer Tools features for more insight.

203

project’s success. Luckily, a lot of great tools out there can
help with that.

Be sure to measure paint performance on both desk-
top and mobile. If all goes well, your users will end up
with snappier, more silky-smooth experiences, regardless
of the device they’re using.

FURTHER READINGFURTHER READING

• “Performance Profiling With the Timeline228,” Chrome
DevTools, Google Developers

• Let’s Make the Web Jank-Free229 (resources)

• “Don’t Guess It, Test It!230” (article and video), Paul Lewis

• “CSS Paint Times and Page Render Weight231,” Colt
McAnlis, HTML5 Rocks

• “Accelerated Rendering in Chrome232,” Tom Wiltzius,
HTML5 Rocks

• “Avoiding Unnecessary Paints233,” Paul Lewis, HTML5
Rocks

• “Fluid User Interface With Hardware Acceleration234”
(slidedeck) Ariya Hidayat, W3Conf 2013❧

228. https://developer.chrome.com/devtools/docs/timeline
229. http://jankfree.org
230. http://aerotwist.com/blog/dont-guess-it-test-it/
231. http://www.html5rocks.com/en/tutorials/speed/css-paint-times/
232. http://www.html5rocks.com/en/tutorials/speed/layers/
233. http://www.html5rocks.com/en/tutorials/speed/unnecessary-paints/
234. https://speakerdeck.com/ariya/fluid-user-interface-with-hardware-acceleration

GONE IN 60 FRAMES PER SECOND: A PINTEREST PAINT PERFORMANCE
CASE STUDY

204

https://developer.chrome.com/devtools/docs/timeline
https://developer.chrome.com/devtools/docs/timeline
https://developer.chrome.com/devtools/docs/timeline
http://jankfree.org
http://jankfree.org
http://jankfree.org
http://aerotwist.com/blog/dont-guess-it-test-it/
http://aerotwist.com/blog/dont-guess-it-test-it/
http://aerotwist.com/blog/dont-guess-it-test-it/
http://www.html5rocks.com/en/tutorials/speed/css-paint-times/
http://www.html5rocks.com/en/tutorials/speed/css-paint-times/
http://www.html5rocks.com/en/tutorials/speed/css-paint-times/
http://www.html5rocks.com/en/tutorials/speed/layers/
http://www.html5rocks.com/en/tutorials/speed/layers/
http://www.html5rocks.com/en/tutorials/speed/layers/
http://www.html5rocks.com/en/tutorials/speed/unnecessary-paints/
http://www.html5rocks.com/en/tutorials/speed/unnecessary-paints/
http://www.html5rocks.com/en/tutorials/speed/unnecessary-paints/
https://speakerdeck.com/ariya/fluid-user-interface-with-hardware-acceleration
https://speakerdeck.com/ariya/fluid-user-interface-with-hardware-acceleration
https://speakerdeck.com/ariya/fluid-user-interface-with-hardware-acceleration
https://developer.chrome.com/devtools/docs/timeline
https://developer.chrome.com/devtools/docs/timeline
http://jankfree.org
http://jankfree.org
http://aerotwist.com/blog/dont-guess-it-test-it/
http://aerotwist.com/blog/dont-guess-it-test-it/
http://www.html5rocks.com/en/tutorials/speed/css-paint-times/
http://www.html5rocks.com/en/tutorials/speed/css-paint-times/
http://www.html5rocks.com/en/tutorials/speed/layers/
http://www.html5rocks.com/en/tutorials/speed/layers/
http://www.html5rocks.com/en/tutorials/speed/unnecessary-paints/
http://www.html5rocks.com/en/tutorials/speed/unnecessary-paints/
https://speakerdeck.com/ariya/fluid-user-interface-with-hardware-acceleration
https://speakerdeck.com/ariya/fluid-user-interface-with-hardware-acceleration

About The Authors

Addy Osmani
Addy Osmani is a Developer Programs Engineer on the
Chrome team at Google. A passionate JavaScript develop-
er, he has written open-source books like Learning
JavaScript Design Patterns235 and Developing Backbone Appli-
cations236, having also contributed to open-source projects
like Modernizr and jQuery. He is currently working on
‘Yeoman’—an opinionated workflow for building beauti-
ful applications. Twitter: @addyosmani237.

Bobby Pearson
Bobby Pearson is a web programmer for The Ivy Group238

in Charlottesville, Virginia. He began his professional life
as a .NET application developer for his alma mater, the
University of Virginia, and pivoted into open-source web
technologies for a more dynamic and varied work experi-
ence. Bobby has been the lead programmer on dozens of
websites and loves it when a plan comes together. Valid
HTML, clever JavaScript, clean CSS, and neatly refactored
PHP give him a cosmic sense of satisfaction. Bobby lives
with his wife Audrey and their two children Luke and Ly-
dia just down the street from Thomas Jefferson’s Monti-
cello. In season, he brings the fury as a linebacker on the

235. http://shop.oreilly.com/product/0636920025832.do
236. http://shop.oreilly.com/product/0636920025344.do
237. http://www.twitter.com/addyosmani
238. http://www.ivygroup.com

205

http://shop.oreilly.com/product/0636920025832.do
http://shop.oreilly.com/product/0636920025832.do
http://shop.oreilly.com/product/0636920025832.do
http://shop.oreilly.com/product/0636920025832.do
http://shop.oreilly.com/product/0636920025344.do
http://shop.oreilly.com/product/0636920025344.do
http://shop.oreilly.com/product/0636920025344.do
http://shop.oreilly.com/product/0636920025344.do
http://www.twitter.com/addyosmani
http://www.twitter.com/addyosmani
http://www.twitter.com/addyosmani
http://www.ivygroup.com
http://www.ivygroup.com
http://www.ivygroup.com
http://shop.oreilly.com/product/0636920025832.do
http://shop.oreilly.com/product/0636920025832.do
http://shop.oreilly.com/product/0636920025344.do
http://shop.oreilly.com/product/0636920025344.do
http://www.twitter.com/addyosmani
http://www.twitter.com/addyosmani
http://www.ivygroup.com
http://www.ivygroup.com

Blue Ridge Church of Christ flag football team. Out of
season, he makes a mean spicy chili.

James Rosewell
James Rosewell239 has 18 years experience in the mobile
industry. He led many initiatives for Vodafone, including
the development of the 1st mobile web application for the
Nokia 7110 in 1999. Since then he’s founded several busi-
nesses, including 51Degrees, providers of the fastest and
most accurate device detection tools240 tools to build on
RWD techniques241. Licensed under the Mozilla Public Li-
cence 2 all source code is freely available for commercial
use. Between 150 and 350 new web enabled devices242 are
added to the 51Degrees data set each week by a profes-
sional team of over 9 people. The extensive information
available ranges from screen size243, retail price244 and
battery capacity245 to browser capabilities246. James is also
a regular presenter on thefonecast.com247, the longest
running mobile industry podcast. Twitter:
@jwrosewell248.

239. http://jamesrosewell.com/
240. https://51degrees.com/Products/Device-Detection
241. https://51degrees.com/Products/Responsive-Web-Design
242. https://51degrees.com/Support/Documentation/Device-Data
243. https://51degrees.com/Resources/Property-Dictionary#Screen
244. https://51degrees.com/Resources/Property-Dictionary#Price
245. https://51degrees.com/Resources/Property-Dictionary#Battery
246. https://51degrees.com/Resources/Property-Dictionary#BrowserUA
247. http://thefonecast.com//
248. https://twitter.com/jwrosewell

ABOUT THE AUTHORS

206

http://jamesrosewell.com/
http://jamesrosewell.com/
http://jamesrosewell.com/
https://51degrees.com/Products/Device-Detection
https://51degrees.com/Products/Device-Detection
https://51degrees.com/Products/Device-Detection
https://51degrees.com/Products/Responsive-Web-Design
https://51degrees.com/Products/Responsive-Web-Design
https://51degrees.com/Products/Responsive-Web-Design
https://51degrees.com/Support/Documentation/Device-Data
https://51degrees.com/Support/Documentation/Device-Data
https://51degrees.com/Support/Documentation/Device-Data
https://51degrees.com/Resources/Property-Dictionary#Screen
https://51degrees.com/Resources/Property-Dictionary#Screen
https://51degrees.com/Resources/Property-Dictionary#Screen
https://51degrees.com/Resources/Property-Dictionary#Price
https://51degrees.com/Resources/Property-Dictionary#Price
https://51degrees.com/Resources/Property-Dictionary#Price
https://51degrees.com/Resources/Property-Dictionary#Battery
https://51degrees.com/Resources/Property-Dictionary#Battery
https://51degrees.com/Resources/Property-Dictionary#Battery
https://51degrees.com/Resources/Property-Dictionary#BrowserUA
https://51degrees.com/Resources/Property-Dictionary#BrowserUA
https://51degrees.com/Resources/Property-Dictionary#BrowserUA
http://thefonecast.com/
http://thefonecast.com/
http://thefonecast.com/
https://twitter.com/jwrosewell
https://twitter.com/jwrosewell
https://twitter.com/jwrosewell
http://jamesrosewell.com/
http://jamesrosewell.com/
https://51degrees.com/Products/Device-Detection
https://51degrees.com/Products/Device-Detection
https://51degrees.com/Products/Responsive-Web-Design
https://51degrees.com/Products/Responsive-Web-Design
https://51degrees.com/Support/Documentation/Device-Data
https://51degrees.com/Support/Documentation/Device-Data
https://51degrees.com/Resources/Property-Dictionary#Screen
https://51degrees.com/Resources/Property-Dictionary#Screen
https://51degrees.com/Resources/Property-Dictionary#Price
https://51degrees.com/Resources/Property-Dictionary#Price
https://51degrees.com/Resources/Property-Dictionary#Battery
https://51degrees.com/Resources/Property-Dictionary#Battery
https://51degrees.com/Resources/Property-Dictionary#BrowserUA
https://51degrees.com/Resources/Property-Dictionary#BrowserUA
http://thefonecast.com/
http://thefonecast.com/
https://twitter.com/jwrosewell
https://twitter.com/jwrosewell

Johan Johansson
Johan Johansson249 is a Web Development Manager at
Pixelmade250 in Vancouver, Canada. He has founded two
web design companies during his 18 year career. His free
time is consumed by his 4 year old son, who won’t take
no for an answer. You can follow Johan on Twitter
@johansson_johan251.

Marcus Taylor
Marcus Taylor is the founder of Venture Harbour252, a
digital marketing agency that specialises in working with
companies in the music, film, and game industries.
Twitter: @MarcusATaylor253. Google Profile:
https://plus.google.com/+MarcusTaylorVH254.

Maximiliano Firtman
Maximiliano Firtman is a mobile and web developer, con-
sultant, trainer and author of the books Programming the
Mobile Web255 (2nd edition) and Up and Running: jQuery Mo-
bile256. He is a frequent speaker, including Fluent, JSConf,
TopConf, Velocity Conference talking about performance
and mobile HTML5. He has delivered more than 200

249. https://plus.google.com/112633905866117636066?rel=author
250. http://www.pixelmade.com
251. https://twitter.com/johansson_johan
252. http://www.ventureharbour.com/
253. http://www.twitter.com/MarcusATaylor
254. https://plus.google.com/+MarcusTaylorVH?rel=author
255. http://firt.mobi/pmw
256. http://firt.mobi/jqm

207

https://plus.google.com/112633905866117636066?rel=author
https://plus.google.com/112633905866117636066?rel=author
https://plus.google.com/112633905866117636066?rel=author
http://www.pixelmade.com
http://www.pixelmade.com
http://www.pixelmade.com
https://twitter.com/johansson_johan
https://twitter.com/johansson_johan
https://twitter.com/johansson_johan
http://www.ventureharbour.com/
http://www.ventureharbour.com/
http://www.ventureharbour.com/
http://www.twitter.com/MarcusATaylor
http://www.twitter.com/MarcusATaylor
http://www.twitter.com/MarcusATaylor
https://plus.google.com/+MarcusTaylorVH?rel=author
https://plus.google.com/+MarcusTaylorVH?rel=author
https://plus.google.com/+MarcusTaylorVH?rel=author
http://firt.mobi/pmw
http://firt.mobi/pmw
http://firt.mobi/pmw
http://firt.mobi/pmw
http://firt.mobi/jqm
http://firt.mobi/jqm
http://firt.mobi/jqm
http://firt.mobi/jqm
https://plus.google.com/112633905866117636066?rel=author
https://plus.google.com/112633905866117636066?rel=author
http://www.pixelmade.com
http://www.pixelmade.com
https://twitter.com/johansson_johan
https://twitter.com/johansson_johan
http://www.ventureharbour.com/
http://www.ventureharbour.com/
http://www.twitter.com/MarcusATaylor
http://www.twitter.com/MarcusATaylor
https://plus.google.com/+MarcusTaylorVH?rel=author
https://plus.google.com/+MarcusTaylorVH?rel=author
http://firt.mobi/pmw
http://firt.mobi/pmw
http://firt.mobi/jqm
http://firt.mobi/jqm

trainings in more than 20 countries. He maintains the
HTML5 Mobile Compatibility list257 and usually publishes in-
formation on new capabilities on mobile browsers in his
blog258. Twitter: @firt259.

Per Buer
Per Buer is the CTO and founder of Varnish Software, the
company behind the open source project Varnish Cache.
Buer is a former programmer turned sysadmin, then
manager turned entrepreneur. Runs, cross country skis
and tries to keep his two boys from tearing down the
house. Twitter: @perbu260.

Rachel Andrew
Rachel Andrew is a web developer, writer and speaker and
one of the people behind the content management sys-
tem, Perch261. She is the author of a number of books in-
cluding chapters in the Smashing Book #3 and Smashing
Book #4262, where she writes about Providing Technical
Support. She writes about business and technology on
her own site at rachelandrew.co.uk263. Twitter:
@rachelandrew264.

257. http://mobilehtml5.org
258. http://www.mobilexweb.com
259. http://www.twitter.com/firt
260. http://www.twitter.com/perbu
261. http://grabaperch.com
262. https://shop.smashingmagazine.com/

smashing-book-4-new-perspectives-on-web-design.html
263. http://rachelandrew.co.uk

ABOUT THE AUTHORS

208

http://mobilehtml5.org
http://mobilehtml5.org
http://mobilehtml5.org
http://www.mobilexweb.com
http://www.mobilexweb.com
http://www.mobilexweb.com
http://www.mobilexweb.com
http://www.twitter.com/firt
http://www.twitter.com/firt
http://www.twitter.com/firt
http://www.twitter.com/perbu
http://www.twitter.com/perbu
http://www.twitter.com/perbu
http://grabaperch.com
http://grabaperch.com
http://grabaperch.com
https://shop.smashingmagazine.com/smashing-book-4-new-perspectives-on-web-design.html
https://shop.smashingmagazine.com/smashing-book-4-new-perspectives-on-web-design.html
https://shop.smashingmagazine.com/smashing-book-4-new-perspectives-on-web-design.html
https://shop.smashingmagazine.com/smashing-book-4-new-perspectives-on-web-design.html
http://rachelandrew.co.uk
http://rachelandrew.co.uk
http://rachelandrew.co.uk
http://www.twitter.com/rachelandrew
http://www.twitter.com/rachelandrew
http://www.twitter.com/rachelandrew
http://mobilehtml5.org
http://mobilehtml5.org
http://www.mobilexweb.com
http://www.mobilexweb.com
http://www.twitter.com/firt
http://www.twitter.com/firt
http://www.twitter.com/perbu
http://www.twitter.com/perbu
http://grabaperch.com
http://grabaperch.com
https://shop.smashingmagazine.com/smashing-book-4-new-perspectives-on-web-design.html
https://shop.smashingmagazine.com/smashing-book-4-new-perspectives-on-web-design.html
http://rachelandrew.co.uk
http://rachelandrew.co.uk

Vitaly Friedman
Vitaly Friedman loves beautiful content and doesn’t like
to give in easily. Vitaly is writer, speaker, author and
editor-in-chief of Smashing Magazine. He runs respon-
sive Web design workshops265, online workshops266 and
loves solving complex performance problems in large
companies. Get in touch267. Twitter: @smashingmag268.

264. http://www.twitter.com/rachelandrew
265. https://shop.smashingmagazine.com/

workshop-responsive-design-vitaly-zurich-responsiveday.html
266. http://www.smashingmagazine.com/smashing-workshops/#online-workshops
267. http://www.smashingmagazine.com/workshops/#in-house-workshop
268. http://www.twitter.com/smashingmag

209

https://shop.smashingmagazine.com/workshop-responsive-design-vitaly-zurich-responsiveday.html
https://shop.smashingmagazine.com/workshop-responsive-design-vitaly-zurich-responsiveday.html
https://shop.smashingmagazine.com/workshop-responsive-design-vitaly-zurich-responsiveday.html
https://shop.smashingmagazine.com/workshop-responsive-design-vitaly-zurich-responsiveday.html
http://www.smashingmagazine.com/smashing-workshops/#online-workshops
http://www.smashingmagazine.com/smashing-workshops/#online-workshops
http://www.smashingmagazine.com/smashing-workshops/#online-workshops
http://www.smashingmagazine.com/workshops/#in-house-workshop
http://www.smashingmagazine.com/workshops/#in-house-workshop
http://www.smashingmagazine.com/workshops/#in-house-workshop
http://www.twitter.com/smashingmag
http://www.twitter.com/smashingmag
http://www.twitter.com/smashingmag
http://www.twitter.com/rachelandrew
http://www.twitter.com/rachelandrew
https://shop.smashingmagazine.com/workshop-responsive-design-vitaly-zurich-responsiveday.html
https://shop.smashingmagazine.com/workshop-responsive-design-vitaly-zurich-responsiveday.html
http://www.smashingmagazine.com/smashing-workshops/#online-workshops
http://www.smashingmagazine.com/smashing-workshops/#online-workshops
http://www.smashingmagazine.com/workshops/#in-house-workshop
http://www.smashingmagazine.com/workshops/#in-house-workshop
http://www.twitter.com/smashingmag
http://www.twitter.com/smashingmag

About Smashing Magazine
Smashing Magazine269 is an online magazine dedicated
to Web designers and developers worldwide. Its rigorous
quality control and thorough editorial work has gathered
a devoted community exceeding half a million sub-
scribers, followers and fans. Each and every published ar-
ticle is carefully prepared, edited, reviewed and curated
according to the high quality standards set in Smashing
Magazine’s own publishing policy270.

Smashing Magazine publishes articles on a daily basis
with topics ranging from business, visual design, typog-
raphy, front-end as well as back-end development, all the
way to usability and user experience design. The maga-
zine is—and always has been—a professional and inde-
pendent online publication neither controlled nor influ-
enced by any third parties, delivering content in the best
interest of its readers. These guidelines are continually
revised and updated to assure that the quality of the pub-
lished content is never compromised. Since its emergence
back in 2006 Smashing Magazine has proven to be a
trustworthy online source.

269. http://www.smashingmagazine.com
270. http://www.smashingmagazine.com/publishing-policy/

ABOUT THE AUTHORS

210

http://www.smashingmagazine.com
http://www.smashingmagazine.com
http://www.smashingmagazine.com
http://www.smashingmagazine.com/publishing-policy/
http://www.smashingmagazine.com/publishing-policy/
http://www.smashingmagazine.com/publishing-policy/
http://www.smashingmagazine.com
http://www.smashingmagazine.com
http://www.smashingmagazine.com/publishing-policy/
http://www.smashingmagazine.com/publishing-policy/

	Imprint
	About This Book
	Table of Contents

	Improving Smashing Magazine’s Performance: A Case Study
	Good Old-Fashioned Website Decay
	“Mobile First” Means “Always Mobile First”

	Performance Issues
	Switching Gears
	The Big Back-End Cleanup

	Front-End Optimization
	Performance Budget: Speed Index <= 1000
	Prioritization And Separation OfConcerns

	Deferring Web Fonts
	Dealing With JavaScript
	Deferring Non-Critical JavaScript

	Inlining Critical CSS
	Was It All Worth It?
	Work To Be Done
	Performance Optimization Strategy

	Conclusion

	How To Speed Up Your WordPress Website
	Lay The Foundation
	Choose A Good Host
	Choose A Good Theme
	Use A Content Delivery Network

	12 Quick Fixes To Speed Up WordPress
	1. Identify Plugins That Are Slowing You Down
	2. Compress Your Website
	3. Compress Images
	4. Leverage Browser Caching
	5. Clean Up the Database
	6. Minify CSS and JavaScript Files
	7. Turn Off Pingbacks and Trackbacks
	8. Specify Image Dimensions andCharacter Sets
	9. Move CSS to the Top and JavaScript to the Bottom
	10. Use CSS Sprites
	11. Enable Keep Alive
	12. Replace PHP With Static HTML Where Appropriate

	Conclusion

	You May Be Losing Users If Responsive Web Design Is Your Only Mobile Strategy
	Mobile Websites Are From the Past
	Responsive, Mobile And Fast
	Conditional Loading
	Responsiveness According to Group
	Server-Side Layer

	Responsive Design, Performance And Technical Data
	Cellular Connections
	Responsive Design on CellularNetworks
	Cloud-Based Browsers
	Underestimating the Mobile Web
	Above-the-Fold Content in 1 Second
	One HTML for All
	Loading Resources

	The Real Problem: Responsive Design As A Goal
	Responsive vs. Users

	Conclusion
	Further Resources

	How To Make Your Websites Faster On Mobile Devices
	Download Speeds For Mobile Users
	How To Minimize Loading Time
	How To Reduce Dependencies
	Load Images Through CSS
	Keep External Style Sheets To AMinimum
	CSS3 Instead Of Images
	Data URI Instead of Images or Web Font Files
	Inline Scalable Vector Graphics (SVG)Instead of Images
	Image Sprites
	Font Icons
	Avoid Inline Frames
	Code for Mobile-First
	Split Content Onto Multiple Pages(Separate Mobile Websites)
	Keep Redirects to a Minimum (Separate Mobile Websites)

	How To Reduce Image Dimensions
	Responsive Images

	How To Reduce Client-Side Processing
	Keep JavaScript to a Minimum
	Avoid Widgets

	Server-Side Techniques
	Testing Performance On Mobile Devices
	Conclusion

	Creating High-Performance Mobile Websites
	Small Batteries
	Small Screens
	Maximizing The “Golden Second”
	Simulating the Real World
	You Can’t Manage What You Can’tMeasure
	Feed Me Now: An Example
	Better Logging
	Existing Log Files
	Why Monitor?
	Divide and Conquer
	Beware of Clouds

	Squeezing Content
	Images
	HTML
	Includes
	Why .NET?

	Examples
	Summary
	Optimize Now

	Don’t Get Crushed By The Load: Optimization Techniques And Strategies
	Learn To Love The Content Delivery Network
	Single Vs. Multiple Resource Domains
	Identify And Anticipate High-Traffic Periods
	Scalable, Elastic Architecture On The Cloud
	Plan For Load Testing
	Pre-Optimization: 6 Errors, 16 Timeouts, Max 3.0-Second Response Time

	Use Memory Caching
	Post-Optimization: 1 Errors, 7 Timeouts, Max 2.5-Second Response Time
	MySQL Query Cache

	Compressing Resources
	Concatenate Files
	Optimize JavaScript Loading
	Assign Load Testing: DIY Or Outsourced?
	Bill Accordingly

	Speed Up Your Mobile Website With Varnish
	Introducing The Magic
	How Does It Work?
	I’m Sold! How Do I Get Started?
	Install Varnish
	Reconfigure Apache
	Configure Varnish
	Purging The Cache
	Some Simple Customizations
	Next Steps

	Cache Invalidation Strategies With Varnish Cache
	HTTP Purging
	Shortcomings of Purging

	Bans
	Tagging Content For Bans
	Graceful Cache Invalidations
	Distributing Cache Invalidations Events

	Gone In 60 Frames Per Second: A Pinterest Paint Performance Case Study
	Frame Rate Applies To The Web, Too
	Why Care About Frame Rate?
	Don’t Guess It, Test It!
	Case Study: Pinterest
	Jank Affects User Experience

	Measuring Paint Performance
	Frame Rate
	Frame Budget
	Paint Rectangles
	Overall Paint Cost
	Hardware Compositing (GPUAcceleration)

	A Find-and-Fix Workflow
	Finding the Problem
	Fixing the Problem

	What About Other Browsers?
	Conclusion
	Further Reading

	About The Authors
	Addy Osmani
	Bobby Pearson
	James Rosewell
	Johan Johansson
	Marcus Taylor
	Maximiliano Firtman
	Per Buer
	Rachel Andrew
	Vitaly Friedman
	About Smashing Magazine

