

Imprint
Published 2014 by Smashing Magazine GmbH, Freiburg, Germany.
ISBN: 978-3-94454084-9.
Cover Design: Francisco Inchauste.
Chapter Illustrations: Anna Shuvalova.
Technical Editing: Francisco Inchauste.
Copyediting and Proofreading: Owen Gregory.
Editing and Quality Control: Vitaly Friedman.
eBook Production: Cosima Mielke.

Making It Right: Product Management For A Startup World was written by
Rian van der Merwe.

IMPRINT

2

For Jessica, Aralyn, and Emery. Home is where you are.

3

TABLE OF CONTENTSTABLE OF CONTENTS

PART 1 : INTRODUCTION ... 5
Introduction ..6
Chapter 1: Roles And Responsibilities Of The Product
Manager ... 16
PART 2: PLANNING ..50
Chapter 2: Uncovering Needs ... 51
Chapter 3: Product Discovery..74
Case Study: The User Experience Of kalahari.com............99
Chapter 4: Product Roadmaps... 105
PART 3: EXECUTION ...116
Chapter 5: Defining A Product ...117
Chapter 6: User-Centered Design And Workflows.......... 125
What About Responsive Design? ... 136
Chapter 7: Specifications .. 143
Chapter 8: Build And Release...164
Chapter 9: Assess And Iterate .. 173
Chapter 10: Product Management In Agile
Methodologies.. 179
Chapter 11: Getting Started... 185
Acknowledgements ...191
About The Author .. 193

IMPRINT

4

Part 1: Introduction

5

Introduction

On February 9, 2010 Google’s vice president of product
management, Bradley Horowitz, got on stage at a press
conference to introduce a product called Google Buzz.
Hailed as “a new way to start conversations about the
things you find interesting1”, Buzz was a social network
that lived inside Gmail2 and promised features like a
“rich, fast sharing experience”, and a relevancy filter to
highlight only the most important items.

Unfortunately Google didn’t have much time to bask
in the glory of the new social network’s release. Almost
immediately, a feature intended to save users time turned
into a nightmare for the company. Once a user opted in to
Google Buzz, they immediately auto-followed everyone
they emailed or chatted with frequently. The bigger prob-
lem was that this information was also made available on
the user’s public Google profile, meaning anyone could
see whom they contacted most frequently. By delivering
on its “no setup required!” promise, Google inadvertently
stepped into a privacy controversy from which the prod-
uct never fully recovered.

On February 10—a day after the launch—headlines
like “Google Buzz: Privacy nightmare3” and “WARNING:
Google Buzz Has A Huge Privacy Flaw4” started to appear
on popular technology blogs. The articles aimed to edu-

1. “Introducing Google Buzz” – http://smashed.by/buzz
2. Google Gmail press conference – http://smashed.by/buzz-release
3. “Google Buzz: Privacy nightmare” – http://smashed.by/nightmare
4. “WARNING: Google Buzz Has A Huge Privacy Flaw” – http://smashed.by/

privacy-flaw

INTRODUCTION

6

http://smashed.by/buzz
http://smashed.by/buzz
http://smashed.by/buzz
http://smashed.by/buzz
http://smashed.by/buzz-release
http://smashed.by/buzz-release
http://smashed.by/buzz-release
http://smashed.by/buzz-release
http://smashed.by/nightmare
http://smashed.by/nightmare
http://smashed.by/nightmare
http://smashed.by/privacy-flaw
http://smashed.by/privacy-flaw
http://smashed.by/privacy-flaw
http://smashed.by/privacy-flaw
http://smashed.by/buzz
http://smashed.by/buzz
http://smashed.by/buzz-release
http://smashed.by/buzz-release
http://smashed.by/nightmare
http://smashed.by/nightmare
http://smashed.by/privacy-flaw
http://smashed.by/privacy-flaw

cate users about aspects of Buzz that the interface failed
to explain in a satisfactory manner: how a user’s informa-
tion was displayed publicly; how to make the information
private; and how to edit the list of people they followed.

The Google Buzz team reacted immediately and
worked around the clock to address the issues. On Febru-
ary 11 Google released a feature to make it easier for users
not to show the list of people they followed on their pub-
lic Google profiles. But it still auto-followed everyone
they emailed and chatted with regularly. So the bad press
kept coming. On February 12 Business Insider published a
photo of a masked Eminem wielding a chain saw beneath
the headline “Outraged Blogger Is Automatically Being
Followed By Her Abusive Ex-Husband On Google Buzz5”.

Things were not going well for the Google Buzz team.
But the only way out was through, so they pushed

ahead, setting up a dedicated war room and pushing
Google Buzz into “Code Red6” so that updates could be re-
leased as soon as possible.

On February 14 the team announced a bunch of
changes to Buzz7, including the big one: Buzz would no
longer auto-follow users during setup. Instead, Buzz
would change to an auto-suggest model, meaning users
would have to explicitly select the people they want to
follow. However, for some it was too little, too late. On

5. “Outraged Blogger Is Automatically Being Followed By Her Abusive Ex-Hus-
band On Google Buzz” – http://smashed.by/stalking

6. “How Google Went Into ‘Code Red’ And Saved Google Buzz” –
http://smashed.by/code-red

7. “A new Buzz start-up experience based on your feedback” – http://smashed.by/
buzz-feedback

7

http://smashed.by/stalking
http://smashed.by/stalking
http://smashed.by/stalking
http://smashed.by/stalking
http://smashed.by/code-red
http://smashed.by/code-red
http://smashed.by/code-red
http://smashed.by/buzz-feedback
http://smashed.by/buzz-feedback
http://smashed.by/buzz-feedback
http://smashed.by/buzz-feedback
http://smashed.by/stalking
http://smashed.by/stalking
http://smashed.by/code-red
http://smashed.by/code-red
http://smashed.by/buzz-feedback
http://smashed.by/buzz-feedback

February 16 a complaint about the privacy issues was
filed against Google with the Federal Trade Commission8.
A Harvard Law School student filed a class action law suit
against the company on the same day.

Still, slowly but surely, the chaos subsided. Eventually the
tech press moved on to the next juicy story, and Google
Buzz chugged along for a while. Of course, the story of
Google Buzz didn’t have a happy ending. On December 15,

The tech press got some great headlines out of the Google Buzz story
(Source: Business Insider9)

8. The FTC complaint was settled on March 30, 2011. Read the press release here:
http://smashed.by/ftc

9. “Outraged Blogger Is Automatically Being Followed By Her Abusive Ex-Hus-
band On Google Buzz” – http://smashed.by/stalking

INTRODUCTION

8

http://smashed.by/ftc
http://smashed.by/ftc
http://smashed.by/ftc
http://smashed.by/ftc
http://smashed.by/stalking
http://smashed.by/stalking
http://smashed.by/stalking
http://smashed.by/ftc
http://smashed.by/ftc
http://smashed.by/stalking
http://smashed.by/stalking

2011 both Google Buzz and the Buzz API shut down for all
users, so the company could focus on its Google+ social
network instead.

What does Google Buzz have to do with this book?
Well, this is a book about product management and how
to build successful products. And if you just read this sto-
ry and said to yourself, “Hey, that sounds like a fun expe-
rience to be part of!”, then product management is almost
certainly the career for you. If you wanted to hide under
your desk and have a stiff drink, it’s probably best to con-
sider a different career path. Because behind every deci-
sion, every mistake, every solution, and every code re-
lease on Google Buzz there was a product manager who
took responsibility for every consequence. During the
run-up to the launch, the first few chaotic days, as well as
the ensuing battle to convince people to use the product,
a product manager stood in the gap between the product
and the market to provide long-term vision, as well as tac-
tical direction to keep things moving forward.

Product management is one of the most exhausting,
exhilarating, stressful, and rewarding careers out there.
It’s not for the faint of heart. It’s for people who want to
move mountains. It swallows some whole, but others de-
rive endless invigoration and passion from the pace and
the impact and the glory and the huge potential for fail-
ure as well as success. There’s no other job like it, and this
is a book to help you make it your job.

I fear I may have not sold the role of product manage-
ment very well by jumping in with a story about Google
Buzz. There’s nothing like a dose of reality to wake us up
to what being a product manager is about: a boundless

9

tenacity to build the best products in the world. Yet, to
balance things out, let’s consider a different story—the
app, Clear10 from Realmac Software.

I can only imagine the miles and miles of chaotic com-
plexity that product managers, designers, and developers
had to wade through to arrive at the simplicity of Clear –
a to-do list app for the iPhone and Mac. The first time I
used the app, Rebekah Cox’s definition of design11 kept
popping into my head:

Design is a set of decisions about a product. It’s not an
interface or an aesthetic, it’s not a brand or a color. De-
sign is the actual decisions.

And Realmac made some difficult decisions that resulted
in a great product. I can picture the endless, difficult
meetings and arguments that must have happened to de-
cide what features to include in the app. Should we have
projects and contexts? No. How about due dates and fil-
ters? Nope. Well, why not!? Because Clear is a prioritized
list of tasks that is fast and easy to edit. That’s it. Nothing
less, nothing more.

To understand the beauty of Clear, it’s not just impor-
tant to look at what it is, but also what it’s not. Clear is a
great way to view and prioritize a simple list of tasks, but
it’s not a replacement for hardcore task management sys-
tems, like Omnifocus. But Omnifocus is overkill for sim-

10. Clear from Realmac Software – http://smashed.by/clear
11. Web 2.0 Expo Presentation – http://smashed.by/web-expo

INTRODUCTION

10

http://smashed.by/clear
http://smashed.by/clear
http://smashed.by/clear
http://smashed.by/web-expo
http://smashed.by/web-expo
http://smashed.by/web-expo
http://smashed.by/clear
http://smashed.by/clear
http://smashed.by/web-expo
http://smashed.by/web-expo

ple tasks like making a car appointment or getting coffee
at the store. And that is the gap that Clear fills.

Clear is focused on two things that make it superior to
other similar apps:

• Speed: it’s really fast. When it starts up you can instantly
start typing. This is crucial to quickly capture that all-im-
portant thing you don’t want to forget.

• Effortless editing: it’s completely gesture-based—no
chrome, no fluff, no fancy visual design. You tap, you
type, you swipe, you close. These gestures are easy to
learn and intuitive.

It’s really hard to resist the temptation to build an app
that tries to solve every problem for every person in the
world. What makes the product management on Clear so
impressive is that they walked through the fire of saying
no to potentially great features, and emerged on the other
side probably scorched and battered, but also with a great
app for listing tasks and editing them quickly. Want more
in your to-do list app? That’s what Omnifocus is for. And
they’re OK with that. That’s something to be proud of.

The juxtaposed stories of Google Buzz and Clear hope-
fully show us that even though product management is
not always an easy job, it’s also never a boring one.

When I started out in product management I read a
bunch of books about it, but none prepared me for the re-
alities I would face once I got stuck in. A big problem is
that the role goes by many different names—and if that’s
not reason enough to be confused, some companies de-
fine product manager completely differently from how

11

it’s understood elsewhere. So you have program man-
agers, project managers, and business analysts some-
times fulfilling the role of product manager. And then
you have product managers in roles that could more ac-
curately be called production managers or product own-
ers. I know we sometimes get stuck in our quest to De-
fine The Damn Thing, but in the case of product manage-
ment, it’s effort well spent, because it’s quite the jungle
out there.

So with that as background, I set out to write this book
to accomplish three goals:

1. Define the roles and responsibilities of product managers
in the software development context. There are so many
people building digital products and doing a bunch of
things that can be defined as product management, but
what is lacking is a holistic definition of and a systematic
approach to the role. I hope to fill that gap with this book.

2. Explain why product management is an essential role in
any organization, and what characteristics managers
should look for when they hire product managers.

3. Provide a framework and practical guidance for strategic
product management; a framework that details the ele-
ments of product planning and product execution that
make up a product manager’s day-to-day work.

That’s how this book came to be, and how it’s structured.
In Part 1 I’ll give an overview of the product manager

role. What it’s like, who it’s for, why it’s important, and
how it fits into an organization.

INTRODUCTION

12

In Part 2 I’ll discuss the elements of product planning.
How to decide what to build, how to prioritize the needs
of different customers and stakeholders, and how to turn
that into a strategic product plan and roadmap for deliv-
ery.

In Part 3 I’ll discuss how to make the strategy real
through product execution. This is where we’ll get into
the nitty-gritty of product definition, hypothesis testing,
design, and release cycles.

This book is for anyone considering a career in product
management, or those who have been in the field for a

Strategic product management

13

while and are looking for a more formal framework for
the work they do. Most of us come to product manage-
ment from different circumstances; design, business
analysis, and development backgrounds are the most
common. So this is also a book for those who want to
keep working in their chosen specializations, but would
like to gain a better understanding of how their work fits
into the bigger picture of product strategy and delivery.

On a personal level, this book is about more than
strategies, processes, and methodologies. We live in an
amazing time dominated not by consumers, but by peo-
ple who create software. Because of the internet and ad-
vances in digital technology we have broad access to the
tools and expertise needed to create new products and
improve existing ones. And I want to be part of that
movement. I want to do what I can to contribute, and
help foster that passion to create in others. My fear—and
why I believe the ideas in this book are so important—is
that we lack the patience and the frameworks required to
make sure we understand users before we start building
products for them. We lack the appropriate tools to prop-
erly plan and execute our product ideas. And, most of all,
we still lack the broad adoption of teams of people who
obsess over these things in our organizations—the prod-
uct, its users, and how to make both successful.

My desire is that this book would empower product
managers to build better products. I’ll provide a struc-
tured framework—with just the right amount of
process—to make product managers confident that they
are building the right products, at the right time, for the
right people.

INTRODUCTION

14

I hope that anyone who works to make software, web-
sites, or mobile applications will find this book useful to
build products that are meaningful to users, and that are
sustainable as businesses.

Let’s get started.❧

15

CHAPTER 1:

Roles And Responsibilities
Of The Product Manager

What is a product manager, and what do they do every
day? Good question.

The first confusion we have to clear up is what we
mean by the word product. In the context of software de-
velopment, the product is the website, application, or on-
line service that users interact with. Depending on the
size of the company and its products, a product manager
can be responsible for an entire system (like a mobile
app), or only part of a system (like the checkout flow on
an e-commerce site, across all devices).

This is confusing because in most contexts a product
is a thing you sell to people. Particularly in the context of
e-commerce, product management often gets confused
with category management: the team that deals with
sourcing and merchandising the products sold on an e-
commerce site. So, yes, product probably isn’t the best
word for it. But it’s what we have, and the definition we’ll
use to explore this role.

To get to a definition of the product management role,
let’s start by looking at Marc Andreessen’s view of the on-
ly thing that matters in a startup environment12 (my em-
phasis added in bold):

12. “Product/Market Fit” – http://smashed.by/market-fit

CHAPTER 1: ROLES AND RESPONSIBILITIES OF THE PRODUCT MANAGER

16

http://smashed.by/market-fit
http://smashed.by/market-fit
http://smashed.by/market-fit
http://smashed.by/market-fit
http://smashed.by/market-fit
http://smashed.by/market-fit

The quality of a startup’s product can be defined as
how impressive the product is to one customer or user
who actually uses it: How easy is the product to use?
How feature rich is it? How fast is it? How extensible is
it? How polished is it? How many (or rather, how few)
bugs does it have?

The size of a startup’s market is the number, and
growth rate, of those customers or users for that prod-
uct.

[…]
The only thing that matters is getting to prod-

uct/market fit. Product/market fit means being
in a good market with a product that can sat-
isfy that market.

Even though Marc wrote this specifically for the startup
context, the importance of product/market fit has univer-
sal truth in any organization—whether that organization
is getting a new product into the market, or redesigning
an existing experience, or anything in between. It is a
universal roadmap for success, and the core of what prod-
uct managers are responsible for.

With that as backdrop, my definition of the role of
product manager is as follows:

The product manager’s mission is to achieve business
success by meeting user needs through the continuous
planning and execution of digital product solutions.

This definition summarizes all the things that product
managers need to obsess over: the target market; the in-
tricacies of the product; what the business needs to

17

achieve success; and how to measure that success. It fur-
ther encapsulates the three things that product managers
should never lose sight of:

• The ultimate measure of success is the health of the busi-
ness, and therefore the value that the product provides to
users.

• Everything starts with a good understanding of the target
market and its needs, so that the focus remains on the
quality of the product experience.

• A continuous cycle of planning and execution is required
to meet these market needs in a way that is sustainable.

So how does this translate to what product managers do
every day? That is, of course, what this book is about. By
way of introduction, Marty Cagan has a great list of com-
mon tasks that product managers are responsible for in
his ebook Behind Every Great Product13. The list includes:

• Identifying and assessing the validity and feasibility of
product opportunities.

• Making sure the right product is delivered at the right
time.

• Developing the product strategy and roadmap for devel-
opment.

13. Behind Every Great Product – http://smashed.by/product-manager

CHAPTER 1: ROLES AND RESPONSIBILITIES OF THE PRODUCT MANAGER

18

http://smashed.by/product-manager
http://smashed.by/product-manager
http://smashed.by/product-manager
http://smashed.by/product-manager
http://smashed.by/product-manager

• Leading the team in the execution of the product
roadmap.

• Evangelizing the product internally to the executive
team, and colleagues.

• Representing customers through the product develop-
ment process.

We’ll spend many chapters discussing each of these ac-
tivities—and more. But before we get to that, we need to
answer a few important questions. First, do companies
really need product managers? And if we can agree on
that, what are the characteristics of a good product man-
ager? Also, where does this role fit into the organizational
structure? Let’s explore these questions.

Why Companies Need Product Managers
Product management can be a hard sell for some compa-
nies. Common objections to the role include:

• “We have different people in the organization who fulfill
each of these functions as part of their roles.”

• “I don’t see how the role will make us more money.”

• “Product managers will just slow us down.”

• “I don’t want to relinquish control of the product to some-
one else.” (OK, that one is usually thought without being
said out loud.)

19

These appear to be valid concerns at first, but only if the
role is not well understood—or if there are bad product
managers in the organization who perpetuate these per-
ceptions.

The truth is that, to be effective, the product manage-
ment role for a particular product or area can’t be fulfilled
by multiple people. It is essential for the product manager
to see the whole picture—the strategic vision as well as
the implementation details—to help them make good de-
cisions about the product. If the knowledge of different
parts of the process is in the heads of different people, the
holistic view goes away, taking all the value out of the
role.

Let’s look at two major benefits of product manage-
ment.

PRODUCT MANAGERS ENSURE A MARKET-PRODUCT MANAGERS ENSURE A MARKET-
DRIVEN APPROACHDRIVEN APPROACH

The key argument in favor of product management is
that it helps companies to be driven by the needs and
goals of their target market, not the forces of technology
or fad. And, as Barbara Nelson puts it in “Who Needs
Product Management?14”:

It is vastly easier to identify market problems and solve
them with technology than it is to find buyers for your
existing technology.

14. “Who Needs Product Management?” – http://smashed.by/pmanagement

CHAPTER 1: ROLES AND RESPONSIBILITIES OF THE PRODUCT MANAGER

20

http://smashed.by/pmanagement
http://smashed.by/pmanagement
http://smashed.by/pmanagement
http://smashed.by/pmanagement
http://smashed.by/pmanagement
http://smashed.by/pmanagement

If done right, being market-driven results in long-term,
sustainable, profitable businesses, because the company
remains focused on solving market problems as opposed
to looking for things to do with the latest technologies.
Being market-driven is important because such compa-
nies are proven to be more profitable than those driven by
other factors (31% more profitable, according to re-
search15).

This doesn’t mean that you only focus on incremental
change in lieu of product innovation. Identifying market
problems isn’t just about finding existing issues to im-
prove (for example, “60% of users drop off on this page, so
let’s fix that”), but also about creating new products to
satisfy unmet needs (“Cell phones suck, let’s make a bet-
ter one”). One of the things we’ll discuss later on is how to
do research that uncovers the needs behind the features,
to assist companies with both innovation and iteration.

PRODUCT MANAGERS IMPROVE TIME-TO-PRODUCT MANAGERS IMPROVE TIME-TO-
EVERYTHINGEVERYTHING

The second major benefit of product management is that
it reduces the time it takes to reach the organization’s
goals. A well-defined and appropriate product develop-
ment process run by effective product managers im-
proves both time-to-market as well as time-to-revenue.

The reason for faster turnaround times is that product
managers are responsible for figuring out what’s worth

15. “Managerial Representations of Competitive Advantage,” George S. Day and
Prakash Nedungadi, Journal of Marketing 58 (April 1994): 40.

21

building, and what is not. This means that less time is
spent on the spaghetti approach to product development
(throwing things against the wall to see what sticks), and
more time is spent on building products that have been
validated in the market. This approach also provides fo-
cus to an organization, so it’s able to dedicate more people
to products that are likely to succeed, as opposed to
spreading people too thin on projects that no one is sure
will reach product/market fit.

Characteristics Of A Good Product
Manager
Now that we’ve covered the importance of product man-
agement, the next question is, “Who are these people?”

Most of us are familiar with the idea of T-shaped peo-
ple: those who have deep knowledge in one or two areas,
combined with a reasonable understanding of a variety of
disciplines related to their main field of focus. In 2009 Bill
Buxton wrote an interesting article for Businessweek in
which he calls for more “I-shaped” people16:

These have their feet firmly planted in the mud of the
practical world, and yet stretch far enough to stick their
head in the clouds when they need to. Furthermore, they
simultaneously span all of the space in between.

This is a good description of the unique blend of skills
that product managers (PMs) need. First, they need to

16. “Innovation Calls For I-Shaped People” – http://smashed.by/ishape

CHAPTER 1: ROLES AND RESPONSIBILITIES OF THE PRODUCT MANAGER

22

http://smashed.by/ishape
http://smashed.by/ishape
http://smashed.by/ishape
http://smashed.by/ishape
http://smashed.by/ishape

have their heads in the clouds. PMs need to be leaders
who can look into the future and think strategically. They
need to be able to develop a vision for where a product
should go—and they need to be able to communicate that
vision effectively. Further, PMs need to show their teams
how they plan to get to that vision. And I do mean show—
through sketches, prototypes, storyboards, or whatever it
takes to get the message across. Good PMs are also able
to remain flexible and change course when needed, per-
haps when there is a big shift in market needs or expecta-
tions, or a great business opportunity presents itself.

But good PMs also have their feet on the ground. They
pay attention to detail, and they know their products in-
side out. They are the product’s biggest users—and its

I-shaped people

23

biggest fans and critics. They understand every aspect of
the complexity that needs to be worked through in each
product decision. And they’re able to make those deci-
sions quickly based on all the information they have at
their disposal.

Most importantly, PMs know how to ship. They know
how to execute and rally a team to get products and im-
provements out in the world where the target market can
use them and provide feedback.

In short, PMs are visionaries as well as doers. Man-
agers as well as makers. And they need to move seamless-
ly between those extremes, sometimes at a moment’s no-
tice. Sound difficult? That’s only the beginning. Let’s look
at some more characteristics of good product managers:

• Leader and collaborator

• Communicator and negotiator

• Passionate and empathic

• Qualified and curious

• Trustworthy and ethical

• Responsible and flexible

LEADER AND COLLABORATORLEADER AND COLLABORATOR

Being a leader and a collaborator at the same time can be
a difficult balance to strike. The first challenge is that col-
laboration is often mistaken for consensus. But that’s not
the case. Consensus cultures often produce watered
down, unexciting products. Products where endless

CHAPTER 1: ROLES AND RESPONSIBILITIES OF THE PRODUCT MANAGER

24

rounds of give-and-take have worn down the original
idea to a shadow of what it once was. Consensus cultures
also wear down the teams working on the product, be-
cause no one really gets what they want, they just get
some of it.

Collaboration is different. In collaboration cultures
people understand that even though everyone gets a
voice, not everyone gets to decide. People are able to air
their opinions, argue passionately for how they believe
things should be done, and try to negotiate compromises.
But it certainly doesn’t mean that everyone has to agree
with every decision.

The first step to building a collaboration culture is be-
ing a good leader. As you’ve probably surmised by now,
the product manager is the ultimate decision-maker. But
that only works if they are a trusted and respected leader
in the organization—someone who can get teams excited
about a vision, as well as make the best decisions for the
benefit of the company and its customers. Good leaders
also readily admit when they make a wrong decision, and
they own up to it and do whatever they can to fix the mis-
take.

This isn’t a book about leadership—there are plenty of
those to go around. But I’ll still share one piece of leader-
ship advice from French writer and aviator Antoine de
Saint Exupéry17 that has helped me over the years:

17. A loose English paraphrase of Antoine de Saint Exupéry’s French poem Dessine-
moi un bateau (Make me a boat), found in Citadelle (1948) – http://smashed.by/
makemeaboat

25

http://smashed.by/makemeaboat
http://smashed.by/makemeaboat
http://smashed.by/makemeaboat
http://smashed.by/makemeaboat
http://smashed.by/makemeaboat
http://smashed.by/makemeaboat
http://smashed.by/makemeaboat

If you want to build a ship, don’t drum people up togeth-
er to collect wood, and don’t assign them tasks and
work. Rather teach them to long for the endless immen-
sity of the sea.

What does “the endless immensity of the sea” mean in
your context? Instead of telling people to build a bunch of
features, how can you inspire them to think about how
the product will help users accomplish their goals? That’s
how you’ll be able to unite teams around a common vi-
sion.

So, how does a good leader foster this kind of collabo-
ration culture? By creating the right environment and
processes that allow collaboration to feed on itself, and
understanding that every person is different and will re-
act unpredictably at some point.

To create the right environment and processes for col-
laboration, focus on the physical environment first. Make
sure that physical work spaces allow both for impromptu
discussions with team members, as well as the ability to
shut everyone else out and work free of distractions for a
period of time. The MailChimp office is a great example
of this. The team created a collaborative work space18

based on the following principles:

• Commingle and cross-pollinate. Instead of segregating
teams, mix people up based on personalities and the pro-
jects they’re working on. This leads to valuable discus-

18. “New MailChimp: Collaboration by Design” – http://smashed.by/
collaborationbydesign

CHAPTER 1: ROLES AND RESPONSIBILITIES OF THE PRODUCT MANAGER

26

http://smashed.by/collaborationbydesign
http://smashed.by/collaborationbydesign
http://smashed.by/collaborationbydesign
http://smashed.by/collaborationbydesign
http://smashed.by/collaborationbydesign

sions that might not have happened if everyone is stuck
in their own silos.

• Facilitate movement. Open desks, couches, standing ta-
bles: these are all ways to encourage people to move
around and work together when needed.

• Ideas everywhere. Cover walls and whiteboards with
sketches, designs, prioritization lists, roadmaps. This not
only contributes to better communication, but also leaves
the door open for anyone to improve the ideas people are
working on.

• Create convergence. A common space for lunch (and
coffee!) is important because it facilitates people running
into each other, even if they don’t normally work together
on a project. This, again, can result in great ideas and per-
spectives.

• Create retreats. The hustle and bustle of collaboration
spaces has great energy, but can sometimes be distract-
ing. Occasionally individuals or teams need a quiet space
to work, so make sure there are meeting rooms or quiet
retreats where there won’t be any interruptions.

Work spaces are more important than we might think.
We’ve gone to great lengths to try to create a welcoming,
creative space at the studio I used to work at, and we see
it paying off. Most clients prefer to come to us when
we’re having meetings, and they cite two reasons: excel-
lent coffee (we went a little overboard on the coffee), and
a great atmosphere to work in.

27

Steve Jobs understood the value of physical spaces
very well. He had this to say about the design of Pixar’s
new campus19:

If a building doesn’t encourage [collaboration], you’ll
lose a lot of innovation and the magic that’s sparked by
serendipity. So we designed the building to make people
get out of their offices and mingle in the central atrium
with people they might not otherwise see.

Of course, physical space is only one part of the equation.
A lot of work happens remotely now, and we have enough
tools at our disposal to make that an effective and reward-
ing experience for everyone involved. From communica-
tion tools like Campfire, HipChat, and Slack, to collabora-
tive project management tools like Trello, Basecamp, and
Jira, to source code repositories like GitHub and Bitbuck-
et, there’s no excuse anymore to force everyone to be in
the same physical space at all times. There is still much
value in talking to people face to face, and collaborating
in certain areas of the process, but even that can happen
in digital spaces.

So, what’s next after you’ve worked on the physical
and digital environments? A feared word… Many people
hear “process” and think it’s synonymous with “things I
have to do instead of working”. But we’re going to talk a
lot about appropriate, or right-fidelity processes in this
book. To quote Michael Lopp: “Engineers don’t hate
process. They hate process that can’t defend itself20.”

19. Isaacson, Walter: Steve Jobs.

CHAPTER 1: ROLES AND RESPONSIBILITIES OF THE PRODUCT MANAGER

28

http://smashed.by/process-myth
http://smashed.by/process-myth
http://smashed.by/process-myth
http://smashed.by/process-myth

When it comes to creating a culture of collaboration,
there are several processes that can make life easier for
the whole team—defendable processes.

One essential collaboration process to get right is reg-
ular feedback sessions on design, development, and busi-
ness decisions. The problem is that feedback sessions can
get out of hand quickly, because we’re just not very good
at providing (or receiving) feedback. We are prone to see-
ing the negative parts of someone’s ideas first, so we of-
ten jump straight into the teardown. This puts the person
on the receiving end in defensive mode right away, which
usually starts a negative spiral into unhelpful arguments
and distrust.

There is, however, a better way. In an interview on
criticism and judgment, French philosopher Michel Fou-
cault once laid out the purpose of any good critique21. In
his view, criticism should be focused not on what doesn’t
work, but on how you can build on the ideas of others to
make it better:

I can’t help but dream about a kind of criticism that
would try not to judge but to bring an oeuvre, a book, a
sentence, an idea to life; it would fight fires, watch grass
grow, listen to the wind, and catch the sea foam in the
breeze and scatter it. It would multiply not judgements
but signs of existence; it would summon them, drag
them from their sleep. Perhaps it would invent them

20. “The Process Myth” – http://smashed.by/process-myth
21. Politics, Philosophy, Culture: Interviews and Other Writings, 1977–1984, Michel

Foucault. (http://smashed.by/foucault)

29

http://smashed.by/foucault
http://smashed.by/foucault
http://smashed.by/foucault
http://smashed.by/process-myth
http://smashed.by/process-myth
http://smashed.by/foucault
http://smashed.by/foucault

sometimes — all the better. Criticism that hands down
sentences sends me to sleep; I’d like a criticism of scintil-
lating leaps of the imagination. It would not be sover-
eign or dressed in red. It would bear the lightning of pos-
sible storms.

Keeping this purpose in mind, I particularly like the
process used by Jared Spool and his team at UIE22. The
team uses this specifically for design critiques, but it can
be applied generically to any kind of feedback session.
Here’s how the process works:

• The person presenting their idea or work describes the
problem they are trying to solve.

• If everyone agrees on the problem, the team moves on.
However, if there isn’t agreement on the problem that is
being solved, some discussion is needed to clarify. Hope-
fully this step isn’t needed, though.

• Next, the presenter communicates their idea or shows
their work to the team. The goal is not only to show the
finished product, but to explain the thought process be-
hind the idea or deliverable. The presenter should remain
focused on how the idea will solve the problem that
everyone agreed on.

• The first step for feedback is for the people in the room to
point out what they like about the idea. This isn’t a gim-
mick to set up the crap sandwich method (you know:

22. “Moving from Critical Review to Critique” – http://smashed.by/critical-review

CHAPTER 1: ROLES AND RESPONSIBILITIES OF THE PRODUCT MANAGER

30

http://smashed.by/critical-review
http://smashed.by/critical-review
http://smashed.by/critical-review
http://smashed.by/critical-review
http://smashed.by/critical-review

start and end with something positive, eviscerate in the
middle). Instead, this step helps to highlight what direc-
tion is desirable as a solution to the problem.

• Critique follows as the next step, not as direct attacks or
phrases such as “I don’t like…”, but as questions about the
idea. Team members ask if a different solution was con-
sidered, what the reason was for a particular choice, and
so on. This gives the presenter a chance to respond if
they’ve thought through the issue already, or else, make a
note to address the issue for the next iteration.

• At the end of the meeting, the team reviews the notes, es-
pecially what everyone liked, and what questions they
had. The presenter then goes away to work on the next it-
eration of the idea.

As the product manager you are responsible for making
sure feedback sessions happen, and that they are respect-
ful and useful. Scott Berkun has a great set of ground
rules about critiques23 that are worth remembering:

• Take control of the feedback process. Feedback is
something that you should make happen, because that’s
how it happens on your terms and in a way that improves
the product. If you just wait for feedback to happen to
you, it’s going to happen in meetings when you’re not
prepared, you’ll be on the defensive, and the focus will
shift off product to politics.

23. “How to give and receive criticism” – http://smashed.by/berkun

31

http://smashed.by/berkun
http://smashed.by/berkun
http://smashed.by/berkun
http://smashed.by/berkun
http://smashed.by/berkun
http://smashed.by/berkun

• Pick your partners. Some people are better at giving
feedback than others. Find feedback partners who have
the relevant experience you need to make the product
better.

• Strive to hear it all, informally and early. Don’t wait
until the product is nearly finished before you get feed-
back. Discuss ideas, concepts, and sketches way before
you discuss comps and working code.

The goal of collaboration is for ideas to become better by
building on the best parts of different thoughts and view-
points. As long as people trust that the decision-maker
(that’s you, dear product manager) has the product’s and
the company’s best interests at heart, they won’t have a
problem with not getting their way every once in a while.
Be confident, trustworthy, and decisive—and make sure
everyone feels comfortable to raise their opinions with
the team. The book Crucial Conversations: Tools for Talking
When Stakes Are High24 is a great resource on how to build
this type of environment.

One final note on collaboration. The design and strate-
gy firm Cooper has a great set of guiding principles to en-
sure good collaboration within and across teams25. Some
of those guidelines—once again adjusted for a broader
context than just design—are:

24. Crucial Conversations: Tools for Talking When Stakes Are High, Kerry Patterson,
Joseph Grenny, Ron McMillan and Al Switzler. (http://smashed.by/amzn-1)

25. “Better together; the practice of successful creative collaboration” –
http://smashed.by/better-together

CHAPTER 1: ROLES AND RESPONSIBILITIES OF THE PRODUCT MANAGER

32

http://smashed.by/amzn-1
http://smashed.by/amzn-1
http://smashed.by/amzn-1
http://smashed.by/amzn-1
http://smashed.by/better-together
http://smashed.by/better-together
http://smashed.by/better-together
http://smashed.by/better-together
http://smashed.by/amzn-1
http://smashed.by/amzn-1
http://smashed.by/better-together
http://smashed.by/better-together

• Don’t work alone. There needs to be a natural ebb and
flow to the way teams work. Some work is going to be
done by individuals on their own (documentation, Photo-
shop comp creation, and so on), but that period of work-
ing alone should always be followed by time together as a
team to provide critique and push ideas forward.

• Externalize thinking. It’s important to share early itera-
tions of an idea with the team. We’ll discuss this in detail
later, but once a team starts iterating on an idea, it be-
comes much harder to change course. Talking about early
stage ideas helps the team consider a variety of alterna-
tives.

• Presume value, even when it’s not obvious. This is the
“Yes, and…” trick they teach us in brainstorming classes.
Instead of finding fault with something, try to find ways
you can build on the ideas that are shared.

• Leave egos at the door. This is often the most difficult
component of collaboration, but the most essential one.
It’s not just important to give good feedback, it’s also es-
sential to receive it well. Being good at receiving feedback
means listening intently, writing things down, request-
ing more details where needed, and most of all, having
enough humility to assume that you’re going to be wrong
about things every once in a while. It’s much better to fix
mistakes early in the development process than it is to
fight for your point and have it fail once it’s live. Leaving
egos at the door means everyone gets to look good, be-
cause you’re less likely to make mistakes.

33

All of this is much easier said than done, of course. Prod-
uct managers need to steer the team through the collabo-
ration process. And sometimes the trust just won’t be
there in the beginning. That’s OK—trust takes time. Live
these values, lead by example, and the culture will come.

COMMUNICATOR AND NEGOTIATORCOMMUNICATOR AND NEGOTIATOR

A more accurate label for this section may be “Overcom-
municator and Negotiator,” because if there’s one thing a
product manager can never get tired of, it’s telling people
what’s going on. But instead of sending tons of email, a
better way—and something we’ll discuss quite a bit—is
to work out in the open as much as possible. Make sure
that notes, sketches, plans, and strategies are all accessi-
ble to everyone inside the company at all times. This can
be either on whiteboards across the office, or in company
wikis or project spaces. Working in public has the added
benefit of contextual conversations: all comments and de-
cisions are in one place, as opposed to spread out over
multiple emails (or worse, in meetings where no one re-
membered to take notes…).

Being a product manager can sometimes feel like be-
ing torn limb from limb. Most stakeholders only have
their own department’s interests at heart (as they
should—they’re paid to fight the good fight for what they
care about). In contrast, the product manager needs to ne-
gotiate the best solution out of all the different directions
that stakeholders want to take, and then communicate
the decisions effectively and without alienating the peo-
ple who don’t get their way. That’s not an easy job.

CHAPTER 1: ROLES AND RESPONSIBILITIES OF THE PRODUCT MANAGER

34

The phrase the design community has adopted to refer to
the difficult process of managing the expectations (and
assertions) of a variety of stakeholders is: design by com-
mittee. Once again, a more generic decisions-by-commit-
tee culture is often pervasive, particularly in large organi-
zations. I’ve always liked the approach Speider Schneider
proposes in his article “Why Design-By-Committee
Should Die26”:

What product management sometimes feels like (central panel of
Martyrdom of St Hippolyte triptych by Dieric Bouts, c1468)

26. “Why Design-By-Committee Should Die” – http://smashed.by/
design-committees

35

http://smashed.by/design-committees
http://smashed.by/design-committees
http://smashed.by/design-committees
http://smashed.by/design-committees
http://smashed.by/design-committees
http://smashed.by/design-committees

The sensible answer is to listen, absorb, discuss, be able
to defend any design decision with clarity and reason,
know when to pick your battles and know when to let
go.

This is not as easy as it sounds, so over time I’ve devel-
oped the following guidelines to deal with the decisions
by committee in a systematic way.

Respond to every piece of feedbackRespond to every piece of feedback

It takes time to respond to every demand, criticism, ques-
tion, and idea. But failing to respond will waste even
more time and energy down the road. It’s one thing when
someone listens to your idea and doesn’t use it. It’s some-
thing else entirely when someone doesn’t even listen. In-
stead of dealing with the political ramifications of not
hearing people out, take the time to respond thoughtfully
whenever someone gives feedback (no matter how in-
valid) or sends an idea along.

Note what feedback is being incorporatedNote what feedback is being incorporated

When you implement a good idea, don’t just do it quietly.
It’s an opportunity to show that you’re flexible and open
to good feedback. So let people know when and how their
ideas are being used. Also, this should go without saying,
but don’t take credit for someone else’s ideas.

When feedback is not being incorporated, explain whyWhen feedback is not being incorporated, explain why

Practically speaking, most of the feedback you receive
won’t be incorporated into the product. It’s important not

CHAPTER 1: ROLES AND RESPONSIBILITIES OF THE PRODUCT MANAGER

36

to sweep those decisions under the rug. By forcing your-
self to be clear and upfront about feedback that isn’t in-
corporated, you’ll also force yourself to think through the
decision and defend it properly. Sometimes you’ll even
realize that what you initially dismissed as a bad idea
would be an improvement after all. The main benefit of
doing this is that people are generally OK with it if their
feedback isn’t being used, as long as they’ve been heard,
and there’s a good reason for the decision.

Use a validation stack to defend decisionsUse a validation stack to defend decisions

In their book Undercover User Experience Design27 Cennydd
Bowles and James Box explain the user experience valida-
tion stack, a method that can, once again, be applied
generically to defend product decision. When defending
a decision, always try to use evidence in the form of data
collected directly from users, such as usability testing, or
web analytics. If you don’t have direct user data, look for
third-party research—either previous research you’ve
done, or research in similar areas that are applicable to
the problems you are trying to solve. If all else fails, fall
back on theory. The principles of visual perception, per-
suasion, psychology, and so on come in very handy to ex-
plain why you’ve made certain decisions.

These guidelines should make it easier to negotiate dif-
ferent needs and requests from internal stakeholders. But
remember Speider’s recommendation in his article: you

27. Undercover User Experience Design, Cennydd Bowles and James Box.
(http://undercoverux.com/)

37

http://undercoverux.com/
http://undercoverux.com/
http://undercoverux.com/
http://undercoverux.com/
http://undercoverux.com/

must know when to pick your battles, and know when to
let go. That’s the art of being a good negotiator and com-
municator.

PASSIONATE AND EMPATHICPASSIONATE AND EMPATHIC

Product managers have a love and deep respect for well-
designed, well-made products—physical as well as digi-
tal. And they live to create products like that. They are the
people who go to parties and can’t shut up about a new
site or app they saw recently; or more likely, they can’t
shut up about what they’re working on and how cool it is.

But they’re not just passionate about the product:
they’re passionate about the people who use the products
as well. They have a very good understanding of their
market—their customers’ values, priorities, perceptions,
and experiences. Passion for a product is useless without
empathy—a deep care and understanding—about the
people who use the product. I don’t think it’s possible to
build great products without the ability to get into the
minds of the people who use the product. If we want to
anticipate what people want to do, and guide them along
that path, empathy is non-negotiable.

QUALIFIED AND CURIOUSQUALIFIED AND CURIOUS

Product managers usually come from specialist back-
grounds like user experience design, programming, or
business analysis. In order to apply the knowledge from
their fields more generally—in other words, becoming
more I-shaped—they not only need to be extremely com-
fortable in their current skill sets, but they must also be

CHAPTER 1: ROLES AND RESPONSIBILITIES OF THE PRODUCT MANAGER

38

able to learn new skills very quickly (and under great
pressure). This combination of being qualified as well as
able to keep learning indicates that product managers
need to be insatiably curious in everything they do. Why?
Cap Watkins puts it really well28:

[…]if you’re intensely curious, I tend to worry less about
those other skills. Over and over I watch great designers
acquire new skills and push the boundaries of what can
be done through sheer curiosity and force of will. Curios-
ity forces us to stay up all night teaching ourselves a new
Photoshop technique. It wakes us up in the middle of the
night because it can’t let go of the interaction problem
we haven’t nailed yet. I honestly think it’s the single,
most important trait a designer (or, hell, anyone work-
ing in tech) can possess.

Good product managers do whatever it takes to make the
product successful. They constantly worry about the tini-
est of details as well as the biggest of strategy questions.
And instead of being overwhelmed by the sheer amount
of what needs to be done, their curiosity pushes them to
remain committed and become as qualified as possible to
make the right decisions.

TRUSTWORTHY AND ETHICALTRUSTWORTHY AND ETHICAL

Good product managers build trust with their teams with
every decision they make. To be trustworthy, PMs need
to be fair (more on this a bit later), consistent, and always

28. “Curiosity Required” – http://smashed.by/curiosity

39

http://smashed.by/curiosity
http://smashed.by/curiosity
http://smashed.by/curiosity
http://smashed.by/curiosity
http://smashed.by/curiosity

take responsibility for their decisions. They also have to
admit when they’re wrong, which can be very difficult at
the best of times.

At one extreme, PMs need to be confident about the
decisions they make. They need to keep learning and
growing, and hone their craft constantly. Solid theory and
excellent technique need to become so ingrained that
they simply become second nature, cornerstones of
everything they do.

But equally important, they need to be open to the pos-
sibility that some of their decisions might be wrong. In
fact, they need to welcome it. They should hang on to a
measure of self-doubt every time they present a new so-
lution to the team or the world. Admitting that someone
else’s ideas are better than your own, and making
changes based on good critique do wonders to improve
products—and build trust within the team. In the design
context John Lilly phrases this in a way that should be-
come a mantra for all product managers: “Design like
you’re right; listen like you’re wrong.29”

Building on the theme of trust, the best product man-
agers are those who are guided by a strong and ethical
point of view about the world. An ethics discussion can
only get me into trouble, but it would be wrong not to at
least touch on the subject. The point is that we’re not just
making products here. We are putting a stamp on the
world, and we have the opportunity to make it a good
one. To leave this place better than we found it. Perhaps

29. “Design like you’re right…” – http://smashed.by/you-right

CHAPTER 1: ROLES AND RESPONSIBILITIES OF THE PRODUCT MANAGER

40

http://smashed.by/you-right
http://smashed.by/you-right
http://smashed.by/you-right
http://smashed.by/you-right
http://smashed.by/you-right
http://smashed.by/you-right

no one says it better than Mike Monteiro in Design Is A
Job30:

I urge each and every one of you to seek out projects that
leave the world a better place than you found it. We used
to design ways to get to the moon; now we design ways
to never have to get out of bed. You have the power to
change that.

How do we find projects and problems that fit these crite-
ria? One way is to watch out for what Paul Graham calls
schlep blindness31, or our inability to identify hard prob-
lems to solve—mostly because we’re just not consciously
looking for them. Paul’s advice to combat this? Instead of
asking what problem you should solve, ask what problem
you wish someone else would solve for you.

Another great source of worthy projects and ideas is
the field of social entrepreneurship (pursuing innovative
solutions to social problems). Meagan Fallone has a great
overview of the nature and importance of this type of
work32:

We in turn can teach Silicon Valley about the human
link between the design function and the impact for a
human being’s quality of life. We do not regard the users
of technology as “customers,” but as human beings
whose lives must be improved by the demystification of

30. Design Is A Job – http://smashed.by/design-job
31. “Schlep Blindness” – http://www.paulgraham.com/schlep.html
32. “Technology Is Useless If It Doesn’t Address A Human Need” –

http://smashed.by/useless-tech

41

http://smashed.by/design-job
http://smashed.by/design-job
http://smashed.by/design-job
http://smashed.by/design-job
http://www.paulgraham.com/schlep.html
http://www.paulgraham.com/schlep.html
http://www.paulgraham.com/schlep.html
http://smashed.by/useless-tech
http://smashed.by/useless-tech
http://smashed.by/useless-tech
http://smashed.by/useless-tech
http://smashed.by/design-job
http://smashed.by/design-job
http://www.paulgraham.com/schlep.html
http://www.paulgraham.com/schlep.html
http://smashed.by/useless-tech
http://smashed.by/useless-tech

and access to technology. Otherwise, technology has no
place in the basic human needs we see in the developing
world. Sustainable design of technology must address
real challenges; this is non-negotiable for us. Social en-
terprise stands alone in its responsibility to ensuring
sustainability and impact in every possible aspect of our
work.

The book Wicked Problems33 is a great starting point for
ideas on how to direct our efforts toward meaningful
work.

Of course, we’ll all have different definitions of work
that’s important and moves society forward. That’s
OK—what’s important is to think it through, and have
clear definitions and boundaries for the work you want to
be involved in.

RESPONSIBLE AND FLEXIBLERESPONSIBLE AND FLEXIBLE

There is a well-known adage that product managers use
to explain their role to others in an attempt to garner
some sympathy. The saying goes that the most difficult
part of being a product manager is that you have all the
responsibility, but none of the authority. What we mean
by this is that even though product managers are respon-
sible for the success and failure of the product, they gen-
erally don’t have anyone reporting to them. This is why
communication and collaboration are such crucial char-
acteristics for effective product managers.

33. Wicked Problems: Problems Worth Solving – https://www.wickedproblems.com/

CHAPTER 1: ROLES AND RESPONSIBILITIES OF THE PRODUCT MANAGER

42

https://www.wickedproblems.com/
https://www.wickedproblems.com/
https://www.wickedproblems.com/
https://www.wickedproblems.com/
https://www.wickedproblems.com/

The dangerous side of all having all the responsibility
for a product is that it can lead to rigidity: an inability to
let go of certain tasks that could easily be delegated, as
well as a stubbornness to stick to an original plan even if
circumstances have changed and a new course of action
is needed. That’s why PMs absolutely need to remain
flexible. Planning is extremely important—we’re going to
spend a good third of this book talking about it. But an es-
sential part of planning is to allow for the right informa-
tion to change the plan if needed.

This flexibility can be disconcerting for PMs, but it’s a
necessary part of the process of building great products.
So, get comfortable with ambiguity. There’s a lot of it in
this job.

In Fairness…
I’ll end this section with a bonus characteristic. In fact, it’s
the most important characteristic of a product manag-
er—the one that rules them all. I once had a discussion
with a colleague in our development team about the new
product development process we had rolled out a few
months before. One of the words he used to describe the
new process is fair.

It was a passing comment and I didn’t really think
much of it at the time, but since then I keep going back to
that conversation, and the importance of fairness in the
product management profession. All the characteristics I
just talked about are great, but above all, fairness is the
one that a PM simply cannot do without.

43

Let’s look at one definition of the word fair34, and what
it means in the context of product management:

fair. adjective. free from favoritism or self-interest
or bias or deception.

FREE FROM FAVORITISMFREE FROM FAVORITISM

One of the fastest ways to become ineffective in a PM or-
ganization is to start playing favorites with a particular
internal group, product line, or user base. As soon as peo-
ple sense that you are not looking at all ideas and input
equally and fairly, a lack of trust inevitably follows. And
without trust, you’ll have to work a lot harder (and
longer) to bring people along for the ride on your
roadmap.

FREE FROM SELF-INTERESTFREE FROM SELF-INTEREST

If you start doing things purely with reasons like “be-
cause I want to” or “because I’m being measured by this
metric,” that same lack of trust grows very quickly. You
cannot be effective by nursing your own pet projects and
ignoring all the other needs around you.

FREE FROM BIASFREE FROM BIAS

This often happens when PMs receive news they don’t
want to hear, especially from the user research or analyt-
ics teams. If something doesn’t test well, don’t make up

34. Definition of fair by the Free Online Dictionary, Thesaurus and Encyclopedia –
http://www.thefreedictionary.com/fair

CHAPTER 1: ROLES AND RESPONSIBILITIES OF THE PRODUCT MANAGER

44

http://www.thefreedictionary.com/fair
http://www.thefreedictionary.com/fair
http://www.thefreedictionary.com/fair
http://www.thefreedictionary.com/fair
http://www.thefreedictionary.com/fair

reasons why you are right and the users are wrong. Do
the right thing and realign the design.

One of the hardest skills for a PM to learn is to take
their own emotions and feelings out of the equation
when it comes to decision-making. Yes, a lot of gut feel-
ing goes into a product vision, but that cannot be based
on personal preferences or preconceived ideas. This is
much easier said than done, but something to strive for
and be aware of at all times.

FREE FROM DECEPTIONFREE FROM DECEPTION

This one seems obvious, but you see it often, especially
when it comes to metrics and assessment. Don’t ignore or
distort negative data, or make a problem someone else’s
fault. The PM’s job is to own a product—and this means
owning its successes and its failures. You’ll gain trust and
respect if you not only claim the successes, but also ac-
knowledge the failures and commit to do it better next
time.

The PM role is often referred to as “the great diplo-
mat,” and with good reason. It is our responsibility to bal-
ance a variety of needs from inside and outside the busi-
ness, and somehow turn that into a roadmap that delivers
business value as well as meets user needs. A focus on
fairness accomplishes that goal.

• Fairness to users. Approach users with respect, open-
ness, and transparency. Understand their needs, and ex-
plain to them when you’re doing something that makes it
more difficult for them to meet those needs.

45

• Fairness to the business. Do everything you can to un-
derstand the needs of marketing, merchandising, cus-
tomer support, and the rest. Pull them into the planning
process, be clear about how projects are prioritized, and
help them adjust to that process so they can define their
project goals in the right way to get on the roadmap.

• Fairness to technology. Don’t force the development
team to make the technology do things it’s not capable of
doing. Understand the technical debt in the organization,
and work actively to make those improvements part of
regular development cycles.

A lot of this comes naturally in good product managers,
but we need to be conscious of it every day. Fairness is a
minimum required characteristic for an effective product
manager. If you do it right, the real work of building great
products can begin. But if you don’t, you’re dead in the
water, working with a team that has no reason to trust
that you’re doing the right thing.

Where Product Management Fits Into An
Organization
Here’s some bad news. It doesn’t matter how well PMs fit
the ideal characteristics of the role, if they’re sidelined in
crucial discussions they just won’t be effective. So anoth-
er common question about product management is
where it should fit into an organizational hierarchy. PMs
are often described as mini-CEOs of their products, which

CHAPTER 1: ROLES AND RESPONSIBILITIES OF THE PRODUCT MANAGER

46

should give a good indication of the appropriate hierar-
chical level PMs require to operate effectively.

Product management cannot sit within the marketing
or engineering organizations—which unfortunately
sometimes happens because companies aren’t sure where
to put it. To be effective, product management needs
executive-level representation. In startups with one or
two PMs, this means that they report directly to the CEO
or COO. In larger organizations it means that the product
management team is led by an executive-level person. In
recent years, this has evolved into a new C-level role
called the CPO (chief product officer).

The labels and job titles aren’t as important as what
this implies, though—which is that the product manage-
ment team collaborates with fellow decision-makers in
the company. Hiding PMs within an organization with
very specific goals and agendas (like marketing or opera-
tions) defeats the purpose of developing and executing a
holistic product vision and strategy.

I don’t really like talking titles and hierarchy, so don’t
misunderstand this as a personal agenda to elevate PMs
to godlike status. Instead, as you’ll see throughout this
book, PMs need to be at a decision-making level—what-
ever that is called in your company, and whether you
have ten employees or ten thousand—in order to make
the best possible products for the company and its users.
That’s all there is to it.

47

A Prerequisite For Success
There’s one last topic we need to address before we get in-
to the details of what PMs do day to day. An organization
can hire the best product managers in the world, and im-
plement the best development processes, but still fail if
one non-negotiable prerequisite for success is not met.
That prerequisite is this:

For product managers to succeed, there needs to be an
executive mandate and company-wide understanding
that even though everyone gets a voice, product deci-
sions ultimately reside with product managers.

This is a hard one to swallow for many companies—and
another reason why I just argued that PMs need to have
executive-level representation. When I mention this part
in product management training courses, the mood in the
room often changes. This is where people start complain-
ing that even though they see the value in the product
manager role, it will never work at their company, be-
cause leaders aren’t willing to give up that ultimate con-
trol over the product. We’ll discuss strategies to deal with
this throughout the book, but for now here’s a reminder
of what Seth Godin reportedly once said: “Nothing is
what happens when everyone has to agree.” The product
manager is there to make sure things happen—the right
things.

Executive teams and individual contributors have to
buy into this role. If they don’t, product managers become
impotent and frustrated bystanders to a process that con-
tinues to spiral out of control. And they’ll end up going

CHAPTER 1: ROLES AND RESPONSIBILITIES OF THE PRODUCT MANAGER

48

somewhere they’re appreciated for the value they bring.

Coming Up Next…
In this chapter we covered a bunch of what might be con-
sidered soft issues in product management: what PMs
are like, how they work with other people, what differen-
tiates the good ones from the bad ones. It’s tempting to
skim over these issues to get to the how—the processes
and day-to-day activities that make up the PM role. But
that would be a mistake. I haven’t seen a product develop-
ment role that relies more on these kinds of soft skills for
its success than that of the product manager. A PM can
have the best strategy, and be brilliant at execution, but
without the ability to work well with people and get them
to rally around a common cause, they will fail. So if
you’ve skipped over any of the sections in this chapter,
now is a good time to go back and read them thoroughly!

Now that we have this foundation in place, it’s time to
move on to how product managers spend their days.
We’re going to break this into two sections: product plan-
ning (how to prepare for and prioritize product changes);
and product execution (how to ship those changes).❧

49

Part 2: Planning

PART 2: PLANNING

50

CHAPTER 2:

Uncovering Needs

“If I had asked people what they wanted, they would have
said faster horses.” Far too often, we hear those words
(supposedly spoken by Henry Ford) as a way to justify
rushing headlong into executing a so-called innovation
before the idea is tested with users. It’s worth noting that
not only did Henry Ford probably never speak those
words, it also turns out that kind of thinking resulted in
“a catastrophic loss of market share from which [Ford]
never recovered35.”

The lesson we should take from this story is that it’s
extremely dangerous to execute ideas without first iden-
tifying and testing assumptions about the value of those
ideas. We shouldn’t jump to a solution before we under-
stand the problem. And that’s what this section of the
book is about.

I’ve already alluded to the two main elements of prod-
uct management that we’re going to discuss: product
planning, and product execution. It’s now time to expand
on the product planning part. Below is a diagram of the
framework we’ll use to discuss the planning activities
PMs are responsible for.

35. “Henry Ford, Innovation, and That ‘Faster Horse’ Quote”, Patrick Vlaskovits,
Harvard Business Review. – http://smashed.by/henry-ford

51

http://smashed.by/henry-ford
http://smashed.by/henry-ford
http://smashed.by/henry-ford
http://smashed.by/henry-ford
http://smashed.by/henry-ford
http://smashed.by/henry-ford

We’ll start by looking at the different inputs into the
product development process. The starting point is—al-
ways—needs. Not what we assume would be cool, but
what users or the business need to be successful. Differ-
ent inputs into this process include:

• User needs. The PM must have a good understanding of
the market, the company’s customers (existing and po-
tential), and their behaviors and attitudes. PMs should
never be caught off guard by questions about the prod-
uct’s target audience. We’ll look at different sources of
user input, including market research, user experience re-
search, site analytics, and customer support.

• Business needs. The “putting users first” mantra too of-
ten neglects the fact that a product exists to make money.

The primary steps of the product planning process, from identifying needs
to developing a strategic and flexible roadmap

CHAPTER 2: UNCOVERING NEEDS

52

Having revenue goals is not an excuse for bad design,
though, so we’ll look at the difference between bad rev-
enue streams and good revenue streams.

• Technical needs. Development needs get ignored much
of the time in favor of the more tangible front-end and
business requirements. Developers know the limitations
of the product; they know what needs to be fixed, and
they know what technical debt needs to be paid. We’ll dis-
cuss the mechanics of the all-important relationship be-
tween developers and PMs.

All these different needs feed into a process called prod-
uct discovery. Once again, there are different definitions
of this process, but I use the term here to refer to:

Defining the problem you are trying to solve for users,
the business opportunities that exist to solve the prob-
lems, and the core competencies that will help you make
the solution a success.

The outputs of the product discovery process can
vary—just like how long it takes can vary between any-
thing from two to three hours to several weeks. In gener-
al, the product discovery process for larger projects pro-
duces outcomes like problem frame diagrams, personas,
and customer journey maps—all of which we’ll discuss in
detail. These artifacts feed into the strategic product plan:
a document that summarizes what the product is about,
who it’s for, and the plan to make it a success.

Once the strategy is set, the PM leads a process of idea
generation (coming up with lots of different approaches

53

to solve a problem) and iteration (quickly narrowing
down those ideas to the best ones). This is followed by
customer validation (testing ideas with target users) as
part of a larger process to prioritize which ideas are worth
pursuing. All these activities feed into the mighty product
roadmap. There’s quite a bit of controversy around the
value and legitimacy of roadmaps, so we’ll discuss that in
detail (hint: it’s not all bad).

Once the strategic product plan and the initial
roadmap are in place, execution can start. Right now
you’re probably tempted to skip this section and jump
straight to execution, but don’t do it! One of the biggest
dangers of product development is jumping to execution
before an appropriate planning cycle has been completed,
so we need to give planning the attention it deserves.

Let’s start with gathering user needs.

User Needs
The first thing we need to clarify is the difference be-
tween needs and features. We often make the mistake of
equating product features with user needs. If you’ve ever
used a household appliance you’ll know that this isn’t the
case. Have you ever used more than one or two of the pre-
set cycles on your washing machine? And how many dif-
ferent ways do you need to toast your bread? The evolu-
tion of household appliances is a perfect example of what
happens when features are equated with value. We don’t
need more ways to wash our clothes. We might need
faster or quieter ways, sure. But as we know, more isn’t

CHAPTER 2: UNCOVERING NEEDS

54

necessarily better. And that’s when users sometimes take
matters into their own hands.

When the first reviews and usage statistics for Facebook
Home37 started appearing, John Gruber used a phrase
that stuck with me38: “It’s a well-designed implementa-
tion of an idea no one wants.” Hyperbole aside, this is
what happens when features (cover feed, friends filling
the screen, chat heads, app launcher…) are mistaken for
user needs (why would people want to replace their
phone’s operating system with an app?). The distinction

Source: Reddit “My buddy dad-proofing his remotes36”

36. Reddit “My buddy dad-proofing his remotes” – http://smashed.by/remotes
37. “The Facebook Home disaster” – http://smashed.by/fb-home
38. “Facebook Home Is Looking Like a Flop” – http://smashed.by/fbflop

55

http://smashed.by/remotes
http://smashed.by/remotes
http://smashed.by/remotes
http://smashed.by/fb-home
http://smashed.by/fb-home
http://smashed.by/fb-home
http://smashed.by/fb-home
http://smashed.by/fbflop
http://smashed.by/fbflop
http://smashed.by/fbflop
http://smashed.by/fbflop
http://smashed.by/remotes
http://smashed.by/remotes
http://smashed.by/fb-home
http://smashed.by/fb-home
http://smashed.by/fbflop
http://smashed.by/fbflop

between features and needs is important, and sometimes
difficult to spot. That’s where user research comes in.

Research methods for gathering user needs are power-
ful because they rely more on observation and deduction
than gathering answers to a bunch of predetermined
questions. But before we get into the different methods
we can use to make better products, we need to take a lit-
tle detour to define some basic research terms.

First, we need to distinguish between quantitative re-
search and qualitative research. With quantitative ap-
proaches, data tends to be collected indirectly from re-
spondents, through methods like surveys and web analyt-
ics. Quantitative research allows you to understand what
is happening, or how much of it is happening. With quali-
tative approaches, data is collected directly from partici-
pants in the form of interviews or usability tests. Qualita-
tive research helps you understand how or why certain
behaviors occur.

We also need to make a distinction between market
research and user research. Both are important, but they
serve different purposes. Market research seeks to under-
stand the needs of a market in general. It is concerned
with things like brand equity and market positioning. At-
titudinal surveys and focus groups are the bread-and-but-
ter tools for market researchers. They are tasked to figure
out how to position a product in the market. Surveys and
focus groups are very useful to understand market trends
and needs, but they won’t help you very much when it
comes to the design of your product.

User research, on the other hand, focuses on users’ in-
teractions with a product. It is concerned with how peo-

CHAPTER 2: UNCOVERING NEEDS

56

ple interact with technology, and what we can learn from
their wants, needs, and frustrations. Those are the meth-
ods we’ll focus on in this section.

So, with those definitions under our belts, let’s look at
some of the most common user research methods avail-
able to us. We can generally classify methods in three dif-
ferent buckets.39

1. EXPLORATORY RESEARCH1. EXPLORATORY RESEARCH

Exploratory research is most useful when the goal is to
discover the most important (and often unmet) needs
that users have with the products and services around
them. This includes methods like contextual inquiries (al-
so called ethnographic research or field visits), participa-
tory design sessions, and concept testing. The goal here is
to find out where there are gaps in the way existing prod-
ucts solve users’ problems. New product or feature ideas
often develop out of these sessions.

Make no mistake, this isn’t about asking people if they
want faster horses—it’s about observing people and find-
ing out that they want to get where they need to be much
faster than they’re currently able to. For example, we used
to do a lot of ethnography with eBay sellers all over the
world. By going into people’s homes and seeing how they
managed their sales, we uncovered a major issue that
web analytics or surveys would never be able to tell us
about. Sellers all manage their sales in different ways,

39. All of the methods I mention here—and more—are covered in detail in a book
called Observing The User Experience by Elizabeth Goodman, Mike Kuniavsky, and
Andrea Moed.

57

ranging from sticky notes stuck all around their moni-
tors, to Excel spreadsheets with complicated formulas
and pivot tables. Sellers were forced to make up their own
process for something eBay should be helping them with:
how to track sales progress, and learn from that. Through
ethnography we uncovered an unmet user need that can
be met with a variety of features on the site. But the need
is the starting point.

2. DESIGN RESEARCH2. DESIGN RESEARCH

Design research helps to develop and refine product ideas
that come out of the user needs analysis. Methods in-
clude traditional usability testing, RITE testing (rapid iter-
ative testing and evaluation), and even quantitative meth-
ods like eye tracking. This class of research helps us dur-
ing the design process to create better products for the
problems we’re trying to solve for users. For example, we
can build interactive prototypes and bring people into a
usability lab, give them tasks to complete on the proto-
type, and uncover usability issues before we start the (ex-
pensive) development cycle. Since these are usually in-
depth one-to-one interviews, it’s also a great opportunity
to get more insight on how well certain features meet
those customer needs we identified during exploratory
research.

3. ASSESSMENT RESEARCH3. ASSESSMENT RESEARCH

Assessment research helps us figure out if the changes
we’ve made really improve the product, or if we’re just
spinning our wheels for nothing. This class of research is

CHAPTER 2: UNCOVERING NEEDS

58

often overlooked, but it’s a crucial part of the product de-
velopment cycle. Methods include surveys and web ana-
lytics to gives us a view of how our products perform
over time, not just in terms of hard conversions, but also
in terms of the attitudes of our users. These methods are
most useful when combined with further design research
to understand why we’re seeing the changes we see. For
example, form analytics can tell us where people abandon
a form. Once we’ve made usability improvements to the
form, it’s important to assess if those changes made a dif-
ference to completion rates. Without assessment re-
search we won’t know if we’re going in the right direc-
tion.

So, with this framework in mind, one of the first
things a PM needs to do is find all the existing research
that can help uncover user needs—both general (what
the product needs to do to help users accomplish their
goals) and specific (what’s broken within or missing from
the current solution). Grab any surveys, usability testing
reports, and web analytics reports you can get your hands
on, and drink it up. What users really want and need
from a product must become part of the PM’s fabric, and
the only way to accomplish that is to get immersed in
user data. Do whatever it takes: set up weekly customer
calls, work the customer support queue a few hours a
week, or set up regular usability testing sessions. User
needs have to be a constant voice in the PM’s ear when
they start to balance all the other business and technolo-
gy demands that are always pressing in—especially since
those other demands are often in direct competition with
user needs.

59

Business Needs
The web is littered with the remains of products that did
a great job of fulfilling user needs, but never figured out a
way to make money and become sustainable businesses.
Over the past few years we’ve seen several beloved ser-
vices on the web shut down because of a lack of revenue.
Editorially was a fantastic collaborative writing and edit-
ing tool whose creators eventually realized that “Even if
all of our users paid up, it wouldn’t be enough.40”

A few months before that, the photo startup Everpix
shut its doors, in part because it couldn’t afford the cloud
storage bills. This happened despite having thousands of
paying users on the platform. The founders later admit-
ted that even though they were able to make a product
that people genuinely loved, they spent too much time
working on that product, and not enough time on growth
and distribution.41

These stories are complex and there are never easy an-
swers. Yet it’s a common approach on the web to focus on
getting as many users as possible as quickly as possible,
and then figuring out how to make money out of them
later. Call me old school if you must, but that’s just no
way to build a business. I’m not saying a new product
needs to be profitable from day one (although that would
be nice, of course), but there at least needs to be a plan—a

40. “Goodbye” – http://smashed.by/editorially-goodbye
41. “Out of the picture: why the world’s best photo startup is going out of business”

– http://smashed.by/photo-startup

CHAPTER 2: UNCOVERING NEEDS

60

http://smashed.by/editorially-goodbye
http://smashed.by/editorially-goodbye
http://smashed.by/editorially-goodbye
http://smashed.by/editorially-goodbye
http://smashed.by/photo-startup
http://smashed.by/photo-startup
http://smashed.by/photo-startup
http://smashed.by/photo-startup
http://smashed.by/editorially-goodbye
http://smashed.by/editorially-goodbye
http://smashed.by/photo-startup
http://smashed.by/photo-startup

few possible revenue streams—that will eventually lead
to a sustainable business42.

So where do these revenue stream ideas come from?
Well, in many cases they come from customers; the re-
search methods discussed above can also be used to fig-
ure out what people would be willing to pay for—and
how much. But there are also several internal teams that
spend most of their time thinking about business needs,
and the PM needs to form strong allies with these teams.
This includes the business development team, the sales
and marketing teams, and the engineering team (yes, the
engineering team—no one knows the product better than
they do).

When it comes to growing the business, it’s useful to
split activities into two buckets: eliminating bad revenue
streams, and pursuing good revenue streams.

ELIMINATING BAD REVENUE STREAMSELIMINATING BAD REVENUE STREAMS

The Greek tragedian Sophocles once wrote, “Profit is
sweet, even if it comes from deception.” We have to be
wary of our own frailties when it comes to making mon-
ey. Deceiving people to make a quick buck might seem
like a good idea at the time, but it is a short-term strategy
that is bound to backfire—not to mention that it doesn’t
exactly fit with the ethical characteristic we discussed
earlier.

In interface design we refer to deceptive techniques as
dark patterns. A dark pattern is a type of interface that is

42. Unless you’re only in it for the acqui-hire, but that’s a different story altogether.

61

specifically designed to trick people into buying stuff
they don’t want. There are many examples, and the web-
site http://www.darkpatterns.org/ provides a comprehen-
sive list, but these techniques include examples like these:

• Ryanair buries the option to opt out of travel insurance in
an unrelated dropdown menu so most people don’t real-
ize they’re buying the insurance.

• Some iOS apps for kids, like Talking Tom Cat, put random
pop-ups on the screen at all points in the game to trick
kids into making in-app purchases.

• On login, PayPal often shows a full-screen ad with only a
small link at the top-right to close the ad and continue to
your account section.

• Zynga’s game FarmVille was “engineered with one goal
in mind: to coerce users into tending their virtual plots of
land for as long as possible43.”

It might seem obvious to point out that some revenue
streams are not ethical, and therefore not worth pursu-
ing. The problem is that, very often, these methods
work—they unfortunately do make money (at least in the
short term). But they also have long-term consequences
that are rarely considered. Once users figure out what’s
going on and start complaining, these underhanded
methods affect companies directly in the form of in-
creased support costs and major reputation damage.

43. “The Zynga Abyss” – http://smashed.by/zynga-abyss

CHAPTER 2: UNCOVERING NEEDS

62

http://www.darkpatterns.org/
http://smashed.by/zynga-abyss
http://smashed.by/zynga-abyss
http://smashed.by/zynga-abyss
http://smashed.by/zynga-abyss
http://smashed.by/zynga-abyss
http://smashed.by/zynga-abyss
http://smashed.by/zynga-abyss

Ryanair has become a poster child for dark patterns be-
cause of its insurance tactics. That’s not a good position
to be in.

The thing is, very few people start their days thinking,
“I wonder how I could deceive people today?” Instead,
dark patterns and deceptive methods sneak up on most
product managers as potentially decent ideas that degen-
erate little by little until they become dark patterns. We
shouldn’t spend much time on this, except to say: watch
out. Don’t fall into the dark pattern trap. An easy, obvious,
but rarely applied rule of thumb is to ask of any potential
revenue opportunity: “Would I be OK with it if a product
asked me to do or pay for this?” If the answer is no, walk
away. There are better paths out there. It might be more
difficult to find those paths, but it’s worth sacrificing
short-term success for long-term loyalty from customers.
And besides, you’ll sleep better at night.

Sometimes a revenue stream starts out as a good idea,
but a change in the external environment turns it into
something undesirable. The problem is that by then it
might already be a large source of revenue, which places
the business in quite a predicament.

One such example is photos in search results on eBay.
Back in 1995 when eBay was founded, storage was expen-
sive. So it made sense to charge users a nominal amount
to upload a photo to their listings. Fast forward a decade
to 2005, and not only was storage cheap, but the idea of
charging users to add photos to their listings seemed lu-
dicrous. The problem was that by then, charging for pho-
tos was a significant revenue stream, so it was not an
easy decision to make photos free.

63

Our user experience team partnered with the analytics
team to reveal that showing photos in search results by
default not only increased sales, but also had a positive
impact on ratings of search results organization and help-
fulness. It took a while, but eventually eBay made the
brave decision to shut off that bad revenue stream and
make photos free (for up to eight photos), and it never
looked back.

When it comes to dealing with these accidental bad
revenue streams, the best course of action is to conduct
research to understand needs and motivations, coupled
with A/B testing to get an accurate measure of the effect
it would have on good revenue when the bad revenue
stream is cut off.

PURSUING GOOD REVENUE STREAMSPURSUING GOOD REVENUE STREAMS

Good revenue streams can come from many different
sources. Consumers are willing to pay for things as long
as the value is immediately clear to them. And the entire
product management process is built around finding that
value first, and then building a product and business
around it, as opposed to making something and then
scrambling to find the value. So, user needs research is al-
ways the first place to look for how the product can make
money.

Consider the slightly offbeat example of Iron Maiden
(yes, really). The band has spent a significant amount of
time touring in South America, and it’s turned out to be a
great strategy. They usually play sold out, highly prof-
itable shows in the region. Why has the band been so suc-

CHAPTER 2: UNCOVERING NEEDS

64

cessful there? If you ask music analytics company Music-
metric, they’ll tell you it’s related to an unlikely phenome-
non: piracy. The company discovered a surge of BitTor-
rent traffic related to Iron Maiden’s music in South Amer-
ica in recent years, particularly in Brazil. By going where
people were already fans of the music the band was able,
as Musicmetric CEO Gregory Mead put it, to “[be] rather
successful in turning free file-sharing into fee-paying
fans44.” Understanding where your users are already
highly invested in your product is the best way to figure
out what value they would be willing to pay for.

Once there are existing revenue streams, there are sev-
eral standard growth strategies, such as expanding to
new regions, establishing new channels, appealing to a
broader market, and building new products for an exist-
ing market. But there is one strategy in particular that I’d
like to focus on, because it’s a comprehensive approach to
long-term business success. It’s a strategy formalized by
Brandon Schauer at Adaptive Path, and it’s called the long
wow45. To quote from Brandon’s article about it:

The Long Wow is a means to achieving long-term cus-
tomer loyalty through systematically impressing your
customers again and again. Going a step beyond just
measuring loyalty, the Long Wow is an experience-cen-
tric approach to fostering and creating it.

The long wow is built on a four-step process:

44. “How Iron Maiden turned piracy into paying customers” – http://smashed.by/
piracy

45. “The Long Wow” – http://smashed.by/long-wow

65

http://smashed.by/piracy
http://smashed.by/piracy
http://smashed.by/piracy
http://smashed.by/piracy
http://smashed.by/piracy
http://smashed.by/long-wow
http://smashed.by/long-wow
http://smashed.by/long-wow
http://smashed.by/long-wow
http://smashed.by/piracy
http://smashed.by/piracy
http://smashed.by/long-wow
http://smashed.by/long-wow

1. Know your platform for delivery. Identify the ways
you can combine different ways to engage with cus-
tomers, both online and offline.

2. Tackle a wide area of unmet customer needs. Based
on your user needs research, identify an area where there
is a huge need that is not met by your product, or any oth-
er products out there.

3. Create and evolve your repeatable process. Combine
the company’s existing strengths with new ideas to meet
unmet needs to come up with ways to delight users over
and over.

4. Plan and stage wow experiences. Develop your ideas
over time, and introduce new and better experiences con-
sistently along the product development life cycle.

And then, repeat as necessary to make sure the long wow
isn’t just a one-time thing. This is an excellent way to
identify good revenue streams in your product, and en-
sure that you continue to provide the value needed to cre-
ate loyal customers who keep giving you money.

Technical Needs
The first thing we need to be clear about when it comes to
technical needs is that, just as in finance, there is a huge
difference between assets and debt. Technical assets are
things like the underlying technologies your product is
built on, backoffice systems (procurement, finance, ful-
fillment), and scaling technologies (sysadmin activities).

CHAPTER 2: UNCOVERING NEEDS

66

In contrast, technical debt refers to systems and code
that place strain on your product (in the form of bugs and
scaling issues) and gets worse the longer it isn’t ad-
dressed. According to Steve McConnell46 there are two
kinds of technical debt:

• Unintentional debt occurs when the wrong technical
design is implemented, or a programmer just writes bad
code. This kind of debt is non-strategic, and you want as
little of it as possible.

• Intentional debt occurs when the organization knows
that what they’re doing isn’t ideal, but it’s a compromise
worth making for whatever reason (usually to do with
budget or time constraints). Although not ideal, this kind
of debt is inevitable in any organization. It needs to be
minimized and dealt with, but unlike unintentional debt,
it is not entirely unavoidable.

There are many obvious reasons to avoid, minimize, and
pay down technical debt. But the most salient argument
is to avoid what’s commonly referred to as the broken
windows theory47. This criminological theory aims to ex-
plain the effect of urban disorder and vandalism and
states that:

[M]aintaining and monitoring urban environments in a
well-ordered condition may stop further vandalism and
escalation into more serious crime.

46. “Technical Debt” – http://smashed.by/technical-debt
47. Broken windows theory – http://smashed.by/broken-windows

67

http://smashed.by/technical-debt
http://smashed.by/technical-debt
http://smashed.by/technical-debt
http://smashed.by/broken-windows
http://smashed.by/broken-windows
http://smashed.by/broken-windows
http://smashed.by/broken-windows
http://smashed.by/technical-debt
http://smashed.by/technical-debt
http://smashed.by/broken-windows
http://smashed.by/broken-windows

The basic analogy is that software is like an urban envi-
ronment. As soon as a few broken windows (bad code) ap-
pear in the environment, and those windows are not im-
mediately repaired, the tendency is for vandals to break a
few more windows (we stop caring about good code).
Then the environment starts to deteriorate: litter appears,
squatters show up, and so on (all coding standards go out
the window). Before long, all hell breaks loose. To quote
Steve McConnell48 again:

If the debt grows large enough, eventually the company
will spend more on servicing its debt than it invests in
increasing the value of its other assets. A common exam-
ple is a legacy code base in which so much work goes in-
to keeping a production system running (i.e., ‘servicing
the debt’) that there is little time left over to add new ca-
pabilities to the system.

That’s a situation that that needs to be avoided at all costs,
and it’s where the product manager comes in. Finding
space on the roadmap to address technical debt is usually
an extremely tough sell. Paying down debt is not
sexy—you usually can’t see any changes in the front end,
very few people understand what’s going on so there is a
fair bit of skepticism about why the work is needed, and
no one really wants to go clean up litter in the code. But
it’s essential to prioritize technical debt in most, if not
every, development cycle, to avoid the breakdown of basic
services until there is nothing left but a ghost town.

48. “Technical Debt” – http://smashed.by/technical-debt

CHAPTER 2: UNCOVERING NEEDS

68

http://smashed.by/technical-debt
http://smashed.by/technical-debt
http://smashed.by/technical-debt
http://smashed.by/technical-debt
http://smashed.by/technical-debt
http://smashed.by/technical-debt

It’s important to note that technical debt isn’t neces-
sarily bad at the moment it occurs. Sometimes technical
debt allows a feature-rich release to happen when it oth-
erwise wouldn’t have if there was a zero-tolerance ap-
proach to technical debt. In general, new debt is OK, old
debt is bad. Henrik Kniberg proposes a great way to deal
with out of control technical debt in his article “Good and
Bad Technical Debt49”. He introduces the concept of a
debt ceiling, where you stop to make sure the debt doesn’t
get out of control:

When debt hits the ceiling, we declare “debt alert!”, the
doors are closed, all new development stops, and every-
body focuses on cleaning up the code until they’re all the
way back down to the baseline.

Ideally you’ll address technical debt during every devel-
opment cycle, but sometimes you’re going to hit that ceil-
ing, and then it’s important to stop and work on it before
it’s too late.

Putting It All Together
Gathering user needs, business needs, and technical
needs is one thing. Figuring out where to put all this in-
formation and what to do with it is something else entire-
ly. You need a system to gather and structure all this in-
put in a way that will not only make sense later, but make

49. “Good and Bad Technical Debt (and how TDD helps)” – http://smashed.by/
good-bad-debt

69

http://smashed.by/good-bad-debt
http://smashed.by/good-bad-debt
http://smashed.by/good-bad-debt
http://smashed.by/good-bad-debt
http://smashed.by/good-bad-debt
http://smashed.by/good-bad-debt

it easy to repurpose the information in different formats,
as needed.

Everyone has their own preferences and systems for
keeping notes and organizing information, but there are a
few ways this process can be made easier. First off, don’t
use standalone tools—like email or Microsoft
Word—that don’t integrate well with others. This kind of
siloed content is difficult to share, difficult to keep up to
date, and difficult to format for other purposes.

My preferred way of gathering and sorting informa-
tion is the simplest file format we have at our disposal:
plain text files, preferably tagged using a controlled vo-
cabulary. I love that with plain text the focus is on the
words, not the formatting. I love that it’s portable and can
be used anywhere and everywhere, in any piece of soft-
ware that edits or displays words. I love how easy it is to
create beautifully formatted documents when needed.
Most of all, I love how fast it is. I simply work more effi-
ciently since switching to plain text.

For example, as a Mac user, I take all my notes using
Brett Terpstra’s nvALT50. The two main things I love
about nvALT are:

• Modeless operation in which searching for notes and cre-
ating new notes happen in the same part of the interface.
It’s highly efficient and there’s zero lag.

• Powerful keyboard shortcuts for mouseless operation,
which further speeds up your writing.

50. nvALT – http://smashed.by/nvalt

CHAPTER 2: UNCOVERING NEEDS

70

http://smashed.by/nvalt
http://smashed.by/nvalt
http://smashed.by/nvalt
http://smashed.by/nvalt
http://smashed.by/nvalt

These files all sync to a folder on Dropbox, which makes
the notes immediately accessible on all my other devices
(I use Notesy51 for note-taking on my iOS devices). But
what about formatting? That’s where Markdown52 comes
in. Markdown is an easy-to-learn, inconspicuous syntax
that lets you focus on what you’re writing without get-
ting bogged down in what it’s going to look like once
you’re done. At the same time, it’s a powerful system for
formatting documents automatically when you need to
print them out, or send something to a colleague or client.
The syntax remains easily readable without getting in the
way of your words.

When these notes have to be shared in more formal
documents, it’s still important to stay away from offline
tools like Microsoft Word. Company wikis, or tools like
Google Docs are great for collaboration and to share in-
formation about the various needs and research you col-
lect over time.

So, assuming you now have a way to collect, store, and
share all this information, the next question is what to do
with it. We’ll get into prioritization in an upcoming chap-
ter, but for now, suffice to say that it’s important to strike
a balance between addressing user, business, and techni-
cal needs, and that how this balance changes is based on
three main factors:

• The stage of the product in its life cycle. Is it a brand
new product, or has it been around for a while?

51. Notesy – http://smashed.by/notesy
52. Markdown – http://smashed.by/markdown

71

http://smashed.by/notesy
http://smashed.by/notesy
http://smashed.by/notesy
http://smashed.by/markdown
http://smashed.by/markdown
http://smashed.by/markdown
http://smashed.by/notesy
http://smashed.by/notesy
http://smashed.by/markdown
http://smashed.by/markdown

• The level of user engagement. Are you struggling to
gain traction, or are users beating down the door to use
your product?

• The financial state of the business. Are you still figur-
ing out how to make money, or is there a steady revenue
stream?

Depending on how those three factors are put together,
you will have a different focus on your product develop-
ment. Is the product brand new, and in a heavy acquisi-
tion phase? Then user needs should carry more weight. Is
the business seeing massive organic growth? Then put
more focus on scaling and revenue growth.

This approach will give the PM a rough idea of how prior-
ities and needs should be balanced, but it’s a long way
from figuring out what to build, and how and when to do
it.

Balancing user, business, and technical needs based on the phase of the
business

CHAPTER 2: UNCOVERING NEEDS

72

The point that deserves to be stressed is this: without
doing the work to understand the core user, business, and
technical needs that your product will address, you’ll be
building a foundation on sand. The product might work
for a while, but eventually something better will come
along. So instead of relying on dangerous assumptions,
build a sustainable product on the solid rock of real in-
sights.

Of course, uncovering needs is one thing. Figuring out
how to turn those insights into a successful product is
something else entirely. So let’s discuss why so many
products fail, and what we can do to make sure ours don’t
go down that road.❧

73

CHAPTER 3:

Product Discovery

Brasília is a remarkable, bizarre city. The vision of archi-
tect Oscar Niemeyer53, it was built in just four years, from
1956 to 1960. More than fifty years later, its beauty and el-
egance are renowned. But Brazil’s capital city is known
for something else as well: how difficult it is to live there.
A “shiny citadel” from far away, as the Guardian once re-
ported54, up close Brasília has “degraded into a violent,
crime-ridden sprawl of cacophonous traffic jams. The real
Brazil has spilled into its utopian vision.”

This problem echoes across today’s web landscape as
well, where the needs of ordinary users spill constantly
into companies’ utopian visions. All around us we see
beautiful, empty monuments erected not for their users,
but for the people who built them—and the VCs who are
scouting them. Even sites and apps that go beyond beauty
to usability often fail because they can’t find a big enough
market.

Why can’t some interactive products find enough
users to be sustainable? Why are there so many failed
startups, despite a renewed focus on design? Most impor-
tantly, what can we do about it?

53. http://smashed.by/niemeyer
54. “Trouble in utopia as the real Brazil spills into Niemeyer’s masterpiece” –

http://smashed.by/brazil

CHAPTER 3: PRODUCT DISCOVERY

74

http://smashed.by/niemeyer
http://smashed.by/niemeyer
http://smashed.by/niemeyer
http://smashed.by/brazil
http://smashed.by/brazil
http://smashed.by/brazil
http://smashed.by/brazil
http://smashed.by/niemeyer
http://smashed.by/niemeyer
http://smashed.by/brazil
http://smashed.by/brazil

The Rise Of Usable, Useless Products
We’ve long accepted that for a product to be useful, it
needs to have acceptable levels of both utility (“whether it
provides the features you need”) and usability (“how easy
& pleasant these features are to use55”). Yet far too often,
we seem to ignore the former in favor of the latter, end-
ing up with lots of easy and pleasant applications that
have no reason to exist. One could argue that the first ver-
sion of the iOS app Color fell into this trap56.

One of the major problems that new products in par-
ticular run into is a lack of product/market fit57, as we’ve
discussed in chapter 1 where we defined the roles and re-
sponsibilities of the product manager:

Product/market fit means being in a good market with a
product that can satisfy that market.

The problem arises when startups and companies don’t
spend enough time increasing the likelihood of good
product/market fit before they start design and develop-
ment. The lean startup concept of minimum viable prod-
uct58 (just those features that allow the product to be de-
ployed, and no more) is certainly useful, but we might
rather want to focus on minimum desirable products59:

55. “Usability 101: Introduction to Usability” – http://smashed.by/usability-101
56. See “How Color Already Blew It” – http://smashed.by/color
57. “Product/Market Fit” – http://smashed.by/market-fit
58. See the Wikipedia article: http://smashed.by/minimum-viable-product
59. See Andrew Chen’s article “Minimum Desirable Product” – http://smashed.by/

mdp

75

http://smashed.by/usability-101
http://smashed.by/usability-101
http://smashed.by/usability-101
http://smashed.by/usability-101
http://smashed.by/color
http://smashed.by/color
http://smashed.by/color
http://smashed.by/market-fit
http://smashed.by/market-fit
http://smashed.by/market-fit
http://smashed.by/minimum-viable-product
http://smashed.by/minimum-viable-product
http://smashed.by/minimum-viable-product
http://smashed.by/minimum-viable-product
http://smashed.by/mdp
http://smashed.by/mdp
http://smashed.by/mdp
http://smashed.by/usability-101
http://smashed.by/usability-101
http://smashed.by/color
http://smashed.by/color
http://smashed.by/market-fit
http://smashed.by/market-fit
http://smashed.by/minimum-viable-product
http://smashed.by/minimum-viable-product
http://smashed.by/mdp
http://smashed.by/mdp

Minimum Desirable Product is the simplest experience
necessary to prove out a high-value, satisfying product
experience for users.

What’s the use of fast iteration if all it does is get us to a
suboptimal solution more quickly, when there might be a
much better solution out there?

But before we get ahead of ourselves and discuss how
to fix this, let’s jump into some of the all-important why
questions.

Why Products Fail To Fit
Brasília’s biggest problem is that the architects who de-
signed it didn’t consider how the city could be used if mil-
lions of people lived there. They exhibited architectural
myopia60 by focusing so intently on the design task that
they weren’t able to adequately consider the needs of peo-
ple. I’ve written before about a similar phenomenon in
our industry: designer myopia61. Lured by the recognition
(and clients and VCs) they desire, designers are often pri-
marily focused on being featured in galleries and list-dri-
ven blog posts that drive tons of traffic.

There is nothing inherently wrong with that need for
recognition—but it becomes a problem when it hurts
users. If Brasília teaches us anything, it’s that becoming
blind to the needs of users leads us down a dangerous

60. See “Shareable: Architectural Myopia: Designing for Industry, Not People” –
http://smashed.by/architectural-myopia

61. “Designer Myopia: How To Stop Designing For Ourselves” –
http://smashed.by/designer-myopia

CHAPTER 3: PRODUCT DISCOVERY

76

http://smashed.by/architectural-myopia
http://smashed.by/architectural-myopia
http://smashed.by/architectural-myopia
http://smashed.by/architectural-myopia
http://smashed.by/designer-myopia
http://smashed.by/designer-myopia
http://smashed.by/designer-myopia
http://smashed.by/architectural-myopia
http://smashed.by/architectural-myopia
http://smashed.by/designer-myopia
http://smashed.by/designer-myopia

path where we lose control over our products, with no
way to get it back. Once something has shipped, you can
either iterate or pivot. Iteration is great if you’re on the
right path. Pivoting is dangerous because changing
course can wreak havoc on employees and users alike.

Product Discovery: A Better Way
If we want to create better, more useful products, we
need to stop designing solutions too early and start in-
stead with product discovery: a process that helps us un-
derstand the problem properly so we don’t just design
things better, but design better things.

Product discovery consists of three steps:

1. Frame the problem.

2. Explore and assess multiple solutions.

3. Prioritize and plan.

Let’s discuss each of these steps in detail.

1. FRAME THE PROBLEM1. FRAME THE PROBLEM

It’s hard to argue with these words, attributed to Einstein:

If I had an hour to solve a problem I’d spend 55 minutes
thinking about the problem and 5 minutes thinking
about solutions.

77

Step one of product discovery is that proverbial fifty-five
minutes. Here, the product manager leads a process to an-
swer questions such as:

• Which user needs and problems are we trying to solve?
For existing products, what are the shortcomings we
need to fix?

• What are the profiles of our users (personas)?

• What customer insights are available to inform the solu-
tion (customer support, analytics, market research, user
research, competitive analysis, and so on)?

• How will solving this problem help our business?

• What makes our business capable of solving this prob-
lem?

• How will we measure success?

This is where the PM pulls out all their notes on user
needs, business needs, and technical needs to seed and
guide a discussion about the essence of the product.
There are several techniques to structure the discussion
and make it easier to get to the bottom of these questions.
Fishbone diagrams and the five whys are two root-cause
analysis techniques that can be applied very effectively to
defining a problem in terms of user needs and business
goals.

CHAPTER 3: PRODUCT DISCOVERY

78

Fishbone DiagramsFishbone Diagrams

These are mostly used as a quality control method in
manufacturing, but the technique has since found its way
into the world of digital product design. The diagram is
created by identifying a problem or a desired outcome,
and then listing all aspects that could be a cause of the
problem or outcome. When used in the context of prod-
uct development, these causes are usually grouped in cat-
egories commonly referred to as the seven Ps: product
(service), price, place, promotion, people, process, and
physical evidence.

The Five WhysThe Five Whys

This is a similar technique that uses iterative questioning
to find the root cause of a problem. The basic idea is to
state a problem and keep asking why—sometimes more
than five times—until a particular process can be identi-
fied that is the main cause of the problem.

This phase always—without fail—produces insights the
team finds incredibly valuable. Startups gain clarity about
what to say yes and no to in their product, and large cor-
porations learn how to go beyond customer-centric buzz-
words and discover which benefits they should be selling
to their users. As just one of many examples, I was once
in a workshop that revealed the executives had a com-
pletely different vision for the company than the design-
ers and developers. It was an awkward two hours, but in
the end they agreed on the tough but correct decision to
suspend their e-commerce plans until some of the con-

79

tent areas on the site had been sorted out. It’s great to see
a statement of purpose emerge from these sessions—one
that finally gets an organization to agree on what the
product’s focus should be.

From this step, the PM produces a problem frame dia-
gram, which is simply a visual summary of the main
takeaways in the form of three overlapping circles: user
needs, business goals, and core competencies.

Every decision the team makes should be anchored in at
least one of these circles—preferably in the overlap of all

Example of a problem frame diagram (Larger view62)

62. http://smashed.by/problem-frame-diagram

CHAPTER 3: PRODUCT DISCOVERY

80

http://smashed.by/problem-frame-diagram
http://smashed.by/problem-frame-diagram
http://smashed.by/problem-frame-diagram
http://smashed.by/problem-frame-diagram
http://smashed.by/problem-frame-diagram

three. Design decisions should focus on meeting those
needs and capitalizing on the business opportunities by
using the core competencies identified.

This is also a good point in the process to create per-
sonas for your target market. There are great resources
available for the creation of personas63, so I won’t go into
it into much detail beyond a quick summary.

Personas are hypothetical, archetypal user characters,
defined in detail. They have names and faces, so the
whole team can picture them. As opposed to a mythical
average user, they are solid people we can imagine using
our product to achieve their goals. This is helpful because
by focusing on individuals that are closer to the edges of
the experience, instead of the average, we’re able to cater
to a larger portion of the user base.

In the documentary Objectified64, Dan Formosa from
Smart Design says, “What we need to do to design is to
look at the extremes. The middle will take care of itself.”
As an example, he talks about how they once designed
garden shears specifically to cater for people with arthri-
tis. They knew that if the shears worked for that user, it
would work well for everyone. That’s the power of per-
sonas.

So we develop personas for a few important reasons:

• To capture knowledge. The team identifies what char-
acteristics of users matter most for the product’s design

63. The Persona Lifecycle: Keeping People in Mind Throughout Product Design by John
Pruitt, Tamara Adlin; and The User is Always Right: A Practical Guide to Creating and
Using Personas for the Web by Steve Mulder, Ziv Yaar.

64. http://www.objectifiedfilm.com/

81

http://www.objectifiedfilm.com/
http://www.objectifiedfilm.com/
http://www.objectifiedfilm.com/
http://www.objectifiedfilm.com/
http://www.objectifiedfilm.com/

(such as technological savviness, family size, and so on),
and then use those characteristics to pick users that make
up the target market.

• To build consensus. Personas are a good starting point
for team members to clarify who they think users are.
Even if everyone disagrees at first, it’s a great process to
reach agreement on whom to target.

• To build empathy. We constantly need to be reminded
that we are not our users, so our needs are a distant sec-
ond to their needs. Personas help us to put ourselves into
the mindsets of the people who will use our products. It’s
useful to get very specific and create different scenarios
of how personas might use the product in a certain situa-
tion.

• To guide a design that maximizes usability. Personas
help to settle design arguments. Teams can be confident
that if a product can fulfill each persona’s needs, they
have achieved their goals.

It’s worth pointing out that not everyone is a fan of per-
sonas. Personas can become oversimplified caricatures of
users that don’t take specific situations and actions into
account. Without proper research, personas also tend to
be shallow and not very useful. But those dangers are
easy to avoid. Remember that personas aren’t prescrip-
tive, they’re descriptive. You can’t identify a persona and
then try to predict people’s behavior from it. But with sol-
id research and analysis you can use personas effectively
to help focus development efforts on target users, and

CHAPTER 3: PRODUCT DISCOVERY

82

help define what features should be included in (and just
as importantly, excluded from) the product.

Customer journey maps are another useful output of the
product discovery process. Journey maps are visual repre-
sentations that help summarize research, highlight and

Example of a persona (Larger view65)

65. http://smashed.by/persona-example

83

http://smashed.by/persona-example
http://smashed.by/persona-example
http://smashed.by/persona-example
http://smashed.by/persona-example
http://smashed.by/persona-example

prioritize user needs and opportunities, and get buy-in
from stakeholders. A product’s journey map is important
because:

• It confirms a common understand of the users’ needs and
goals, and the strategy you intend to follow to attend to
those needs and goals.

• It is an excellent prioritization tool, since it allows compa-
nies to focus on the most important parts of an experi-
ence first, without losing sight of the overall picture.

• It is a guiding light for design. Every time a design idea
comes along, a quick glance at the journey map helps us
figure out if it’s a good idea that will accomplish the cho-
sen strategy.

• It is an excellent conduit for content-first design, which
fits in perfectly with responsive design approaches.

There are many different ways to create a customer jour-
ney map. It has some common elements, such as a visual
representation of customer touchpoints, emotions, and
key takeaways throughout their experience with a prod-
uct. But that’s only useful up to a point, so we’ve started
to expand on the concept. In addition to the usual ele-
ments, this document also becomes a representation of
the information architecture and the product’s content
plan, with personas (needs, goals, scenarios) serving as
the starting point for everything—the glue that ties it all
together.

CHAPTER 3: PRODUCT DISCOVERY

84

This document is a summary of everything we need to
know to design the best possible product for users. It has
the following elements:

• Unique selling points to keep us focused on what the
site needs to communicate at all times. This comes
straight from the persona needs and goals.

• Journey stages and model to remind us how the prod-
uct fits into people’s lives, and what the primary calls to
action need to be throughout the site. This section is a vi-
sual representation of a customer’s journey, from realiz-
ing they might have a need for the product until long af-
ter they’ve used it. This helps PMs keep a holistic view of
the entire product and how it fits into users’ daily lives.

• Questions that our target personas are likely to ask in
each phase of the journey, to focus the type of content we
serve on each page. In an e-commerce context, these are
questions like, “Can I trust this retailer?” or “When will
my stuff arrive?”

• Takeaways and key principles to summarize the
unique selling points, journey model, and user questions,
and document how they translate into the design deci-
sions and solutions we need to keep in mind throughout
the design process.

• Content plan that maps each phase of the journey with
the questions our personas will ask during that phase,
and what it means for the specific content that needs to
go on each page. We get very specific here—nothing gets
on the page unless it’s in the content plan. And if we can’t

85

identify a persona that would find the content useful, it
doesn’t go on the list.

Journey maps are often the culmination of weeks or
months of product discovery work. It might seem like a
large investment, but you’ll be thankful you made it once
the execution phases start. It’s a document that, above all,
keeps teams sane because it focuses their attention on
what’s important.

Once the problem has been defined (and agreed on by all
stakeholders), it’s time to start thinking about solutions.

Example customer journey map (Larger view66)

66. http://smashed.by/customer-journey-map

CHAPTER 3: PRODUCT DISCOVERY

86

http://smashed.by/customer-journey-map
http://smashed.by/customer-journey-map
http://smashed.by/customer-journey-map
http://smashed.by/customer-journey-map
http://smashed.by/customer-journey-map

2. EXPLORE AND ASSESS MULTIPLE SOLUTIONS2. EXPLORE AND ASSESS MULTIPLE SOLUTIONS

The takeaways from problem-framing lead into a period
of divergent thinking, where you produce as many differ-
ent possible solutions as quickly as possible—visually.
Break out the pencils, and lots and lots of paper.

Rather than open your laptop too early in the design
process, you can use sketching to produce a variety of so-
lutions in a short amount of time. It’s important to gener-
ate as many different ideas as possible during this stage
of the process. To understand why this is important, let’s
go to mathematical theory, specifically the concepts of
maxima and minima67:

In mathematics, the maximum and minimum […] of a
function […] are the largest and smallest value that the
function takes at a point either within a given neighbor-
hood (local or relative extremum) or on the function do-
main in its entirety (global or absolute extremum).

Using the concept of local neighborhoods and global
functions as backdrop, let’s look at the idea of the local
maximum within the context of product development.
For the purposes of product development, I liken the
mathematical concept of neighborhood to product. For
example, the iPhone (as a product) will hit a local maxi-
mum when the current design cannot be improved any
more given the time constraints and market conditions.
This isn’t necessarily the best product you can make in

67. Maxima and minima – http://smashed.by/max-min

87

http://smashed.by/max-min
http://smashed.by/max-min
http://smashed.by/max-min
http://smashed.by/max-min
http://smashed.by/max-min
http://smashed.by/max-min

the entire industry (global maximum), but it is the best it-
eration of the current product.

To understand this fully we also have to differentiate
between the concepts of iteration and variation. Variation
is a way to explore a bunch of alternative product solu-
tions. In contrast, iteration solidifies the product idea that
gets chosen. To quote Jon Kolko68: “Where an iteration
moves an idea forward (or backwards), a variation moves
an idea left or right.” Or, to put it into the language of
maxima and minima, variation surveys the global land-
scape to help companies choose the right neighborhood
(product) to move into. Iteration then helps them to find
the local maximum in their chosen neighborhood.

This is why generating lots of ideas quickly through
sketching is so important. The variation ensures that
teams spend enough time finding the right neighborhood
for their product before they buy the land, so to speak,
and start developing their product. In an answer to the
question “Should I focus on a good user experience, or
push something out quickly?” Ryan Singer wrote a good
answer on Quora69 that provides a summary of why prod-
uct solution variation is so important:

Design is a path-dependent process. That means the ear-
ly moves constrain the later moves. On the very first iter-
ation the design possibilities are wide open. The designer
defines some screens and workflows and then the pro-

68. “Iteration and Variation” – http://smashed.by/iteration-variation
69. Ryan Singer’s answer to “Should I focus on a good user experience, or push

something out quickly?” – http://smashed.by/ryan-singer

CHAPTER 3: PRODUCT DISCOVERY

88

http://smashed.by/iteration-variation
http://smashed.by/iteration-variation
http://smashed.by/iteration-variation
http://smashed.by/ryan-singer
http://smashed.by/ryan-singer
http://smashed.by/ryan-singer
http://smashed.by/ryan-singer
http://smashed.by/iteration-variation
http://smashed.by/iteration-variation
http://smashed.by/ryan-singer
http://smashed.by/ryan-singer

grammer builds those. On the next iteration, it’s not
wide open anymore. The new design has to fit into the
existing design, and the new code needs to fit into the ex-
isting code. Old code can be changed, but you don’t want
to scrap everything. There is a pressure to keep moving
with what is already there.

Our early design decisions are like bets whose out-
come we will have to live with iteration after iteration.
Since that’s the case, there is a strong incentive to be sure
about our early bets. In other words, we want to reduce
uncertainty on the first iterations.

Now, much has been said about the value of sketching,
but I’d like to add a couple more thoughts about it here.
Even though I don’t like the word very much, I do like the
concept of ”thinkering”, a word that Michael Ondaatje
coined in his novel The English Patient to describe the cre-
ation of ideas in the mind while tinkering with the hands.
Michele and Robert Root-Bernstein describe it as fol-
lows70:

[t]he physical manipulation of things, like direct person-
al experience of any kind, generates sensory images of all
sorts and thus enables thought. Hands-on tinkering
leads to minds-on thinkering. Bodily engagement with
nature teaches much more than any amount of words or
numbers in science books. Doing produces a personal
understanding that symbols simply can’t.

70. “Thinkering” – http://smashed.by/thinkering

89

http://smashed.by/thinkering
http://smashed.by/thinkering
http://smashed.by/thinkering
http://smashed.by/thinkering
http://smashed.by/thinkering
http://smashed.by/thinkering

And that’s why sketching is much better for the initial
idea variation phase of a project than jumping straight in-
to design software. And by the way—everyone can
sketch. If you don’t believe me, Dan Roam’s book The Back
of the Napkin71 will convince you otherwise. It’s a great re-
source for helping you figure out how to solve problems
with sketching.

The outcomes of this phase of the process are story-
boards and low-fidelity sketches to help visualize possible
solutions to the problems you’ve identified. The goal is to
get these ideas in front of potential users as quickly as
possible to get their feedback and validate your assump-
tions. However, first you need to narrow the ideas down
to a manageable set, otherwise you’ll be testing hypothe-
ses forever and never ship anything.

3. PRIORITIZE AND PLAN3. PRIORITIZE AND PLAN

I talk to many teams who complain about analysis paraly-
sis: an inability to make decisions because there are just
too many factors (and people) involved. Good prioritiza-
tion methods give teams reassurance that even though
they’re not focusing on everything at once, they are fo-
cused on the right information to make good decisions.

You can do this with a phase of convergent thinking
that narrows down which ideas and solutions to explore
further. There are many established processes for this

71. The Back of the Napkin: Solving Problems and Selling Ideas with Pictures by Dan Roam
– http://smashed.by/napkin

CHAPTER 3: PRODUCT DISCOVERY

90

http://smashed.by/napkin
http://smashed.by/napkin
http://smashed.by/napkin
http://smashed.by/napkin
http://smashed.by/napkin
http://smashed.by/napkin

type of prioritization, each designed for a different sce-
nario. Let’s take a look at three of these methods.

KJ-MethodKJ-Method

With the KJ-Method (also called affinity diagrams), you
group similar issues together and use a voting mecha-
nism to rank those issues in order of importance. It’s best
when you have a large group of stakeholders who all have
strong opinions about the product and you want to make
decisions quickly. The basic outline of a KJ session is as
follows:

• Write each idea or need on a sticky note.

• Put all the sticky notes on the wall, adding more if addi-
tional ideas are sparked in the process.

• Group similar ideas or needs together.

• Assign a name to each group, staying away from jargon
(try to use plain, user-focused language).

• Rank the ideas or needs in order of importance by voting
on them. Each person in the group gets a set number of
votes (usually three) to give to the ideas or needs they feel
are most important (use markers or small stickers as the
mechanism to cast votes). They can distribute the votes
however they want—all three on a single idea they think
is extremely important, or distributed across three differ-
ent ideas.

The KJ-Method is remarkably effective to reach agree-
ment on the priority of issues that need to be addressed,

91

even in large teams. It’s a great method to give everyone a
voice and a chance to make the case for why they believe
a specific idea or need is important to the business.

Kano ModelKano Model

Developed in the 1980s by Professor Noriaki Kano for the
Japanese automotive industry, the Kano model is a help-
ful method to prioritize product features by plotting them
on the following two-dimensional scale:

• How well a particular user need is being fulfilled by a fea-
ture.

• What level of satisfaction the feature will give users.

The model is generally used to classify features into three
groups:

• Excitement generators: delightful, unexpected features
that make a product both useful and usable.

• Performance payoffs: features that continue to increase
satisfaction as improvements are made.

• Basic expectations: features that users expect as a giv-
en—if these aren’t available in a product, you’re in trou-
ble.

CHAPTER 3: PRODUCT DISCOVERY

92

This method works when you want to ensure you have a
balanced roadmap that addresses basic requirements, as
well as innovative features that might help the product
pull ahead of competitors.

Amazon.com’s ApproachAmazon.com’s Approach

Amazon’s approach prioritizes large themes first, before
going into individual features and projects to address
those themes. Ian McAllister describes the starting phase
of this approach72 as follows:

Using the Kano model to balance feature development

72. Ian McAllister’s answer to “Product Management: What are the best ways to
prioritize a list of product features?” – http://smashed.by/mcallister

93

http://smashed.by/mcallister
http://smashed.by/mcallister
http://smashed.by/mcallister
http://smashed.by/mcallister
http://smashed.by/mcallister
http://smashed.by/mcallister

Prioritize themes, not projects. Create a list of themes for
your product or business. Examples might be customer
acquisition, activation, retention, avg revenue per user,
avg visits per user, etc. Pick ~3 that are the most impor-
tant for your product given its stage.

The next steps involve assigning people to work on each
of the themes, generating projects within each of the
themes, and then prioritizing each project based on the
potential cost and business impact of each. It’s a good ap-
proach when the sheer number of features or improve-
ments required feels overwhelming, and you need a way
to structure and make sense of all of them.

I’ve personally found a stripped-down version of the
Amazon method most effective and realistic in organiza-
tions I’ve worked with. As much as I agree with the prin-
ciples of each of the three approaches mentioned above,
they tend to become unrealistic in the context of ongoing
prioritization. So here is the extremely simple process
we’ve used, with good results:

• Have a whiteboard with a permanent two-by-two matrix
on it. The horizontal axis represents business impact
(which includes user needs and technical considerations),
and the vertical axis represents the level of effort to im-
plement (which includes people and their time commit-
ment).

• Write product requests and ideas on sticky notes as they
come up, have a quick discussion with relevant people to
ascertain business value and level of effort, and then put
the sticky note on the two-by-two matrix.

CHAPTER 3: PRODUCT DISCOVERY

94

• Write prioritization numbers next to each of the features
or themes, starting with those that have the highest busi-
ness value. I like a 70/30 split between high- and low-ef-
fort features.

• Every week or so, check your roadmap to make sure
you’re still working on the right things, and make adjust-
ments as needed.

It’s a simple method, and it’s far from perfect. But it has a
few things going for it:

• It’s detailed enough to ensure constant prioritization
based on what’s important.

• It’s light enough to make it practical for everyday use.

Prioritizing using business impact and level of effort indicators

95

These methods all work because they facilitate teamwork
without falling into the traps of design by committee.
Everyone gets a voice, but not everyone gets to make de-
cisions. That’s an essential attribute of any good prioriti-
zation method, because as Seth Godin says, “Nothing is
what happens when everyone has to agree.”

In addition to providing the necessary structure to
reach prioritization decisions quickly, these methods also
produce tangible artifacts that can help you sell your
ideas to internal stakeholders. User experience is often
much less a design problem than it is an organizational
problem. As much as we just want to do our work without
obstruction, we can only be truly effective if we also
make a compelling argument to people in other parts of
the organization. These structured prioritization methods
make that step reasonably painless by helping you pro-
duce written and visual records of your thought process.

But what’s more important than the specific method
being used, is that you come out of the prioritization
process with a clear understanding of the importance and
potential value of each product or feature that the team
intends to work on. Through the prioritization process,
product managers constantly narrow down ideas to a se-
lect few they want to build and test—and they need to be
confident that those ideas have the best chances of meet-
ing your user needs and business goals.

The Output
The artifacts produced during product discovery depend
on the scope and nature of the project. Sometimes it’s a

CHAPTER 3: PRODUCT DISCOVERY

96

few sketches on the back of a napkin that a developer us-
es to start prototyping; sometimes it’s a big PowerPoint
document summarizing the process and key takeaways
in an effort to bring senior executives along for the ride.

Regardless of the actual output, at the end of the
process you should be able to answer the following ques-
tions with ease:

• What is the problem we are trying to solve?

• For whom are we solving it? Why should they care?

• What’s the vision for the solution?

• What’s in it for us?

• What’s our implementation plan?

In some organizations it helps to put together a strategic
product plan that clearly communicates the product/
market fit idea by identifying:

• The product (what’s the value proposition?)

• The market (what’s the customer profile?)

• The fit (what’s the size of the opportunity, the pricing and
distribution plan?)

• The initial set of priorities and success metrics (this can
change over time)

The real power of the product discovery process is that it
will reassure your team that you’re solving the right prob-

97

lems for the right users. “This is all very nice,” I hear you
say, “but we’re a fast-moving startup and we don’t have
time to sit around and talk.” You do if the alternative is
failure, brought on by an unhealthy addiction to pretty
things that lead to fifteen minutes of fame, but not much
else.

We’re entering an interesting era in web design. Reti-
na displays might not have mass adoption yet, but it’s on-
ly a matter of time before they become the norm. We’re
also seeing a level of interest in typography and graphics
last experienced when color CRT monitors became a
thing. There are many shiny objects out there, and if we
focus on those (or on impressing the VCs who are fo-
cused on them) to the neglect of usefulness, we might
find ourselves in a situation similar to that of only a few
years ago, when we built Flash intros on every site just
because we could.

In other words, product discovery is essential for star-
tups precisely because we’re in a time of such exciting vi-
sual innovation. We cannot let the allure of the visual tear
us too far away from the usefulness of the products we
develop. It is true that failure teaches us a great deal
about what works and what doesn’t. But it’s so much
cheaper and more effective to fail at a variety of ideas on
paper than it is to fail at one full-blown, VC-backed idea.

Together, we can avoid building digital Brasílias—pro-
jects that generate buzz, but don’t meet the needs of the
people who live there. So let’s discover before we build.❧

CHAPTER 3: PRODUCT DISCOVERY

98

CASE STUDY:

The User Experience Of
kalahari.com

When I arrived at kalahari.com in December 2010 the site
hadn’t seen any significant UI improvements during the
more than ten years of its existence. My job description
was pretty straightforward: do something about that.

I’d like to talk about the work our team did in the first
twelve months to improve the user experience of kala-
hari.com73. When I look at the site now I still see so much
wrong with it—there were way too many things that we
needed to fix. So this isn’t an attempt to hold up our work
as some kind of standard. I’m doing this in the interest of
sharing our methods and the lessons learned from the
trenches of real-life product management.

If you stepped through the site back in 2010 then you
probably would have felt as overwhelmed as I did. Where
do we start? What order should we do things in? After the
first few days of having too much coffee and talking to
people all over the organization, I realized that we had
two primary challenges:

1. No formal prioritization or product development
process
It was the same situation I’ve seen many times before. Re-
quirements went straight from the business to develop-

73. http://www.kalahari.com

99

http://www.kalahari.com
http://www.kalahari.com
http://www.kalahari.com
http://www.kalahari.com
http://www.kalahari.com
http://www.kalahari.com

ers. That kicked off an endless back and forth about what
was needed, with only a cursory nod to design. The first
in, first out approach to prioritization was also quite com-
mon. The result was, well, not ideal. We needed to fix
this.

2. No formal user experience design
This was no surprise, and it was the reason I took the job
in the first place. There was no user research, no content
strategy, no interaction design, and no visual design be-
yond marketing and merchandizing materials. This is the
part that really excited me: the opportunity to introduce
user experience design into an organization that was (to
their enormous credit) hungry for it but didn’t know
where to start.

So we immediately got to work on both those problems.

Hello, I’m A Product Manager
Introducing a product management layer into an organi-
zation that’s used to working without it is tricky. If you
do it wrong it can become a political nightmare and end
up ruining your chances of shipping anything worth-
while. You might have the best of intentions, but there is
always the danger that the only thing people will think
when they look at a product manager is, “Hey, I used to be
responsible for that stuff, buddy!”

We certainly didn’t make this transition perfectly, but
I believe the key is to make sure that you talk to as many
people as possible about what their organizational issues
are, and how they think it can be done better. You have to

CASE STUDY: THE USER EXPERIENCE OF KALAHARI.COM

100

take the time to explain the benefits of having a product
team to take responsibility for strategy, vision, and execu-
tion of a product (and take the fall if it fails). And then,
most importantly, you have to make the development
process fair.

We now had a team of product managers who were
responsible for delivering measurable business results
through product solutions that met both market needs
and company goals. They worked closely with their teams
to develop the strategy and vision for their products.
They ensured that designers and developers were includ-
ed throughout the process. And most importantly: they
made sure we shipped.

Hello, I’m A User Experience Designer
I knew that we needed to build a great team if we were
going to follow a user-centered approach to identifying
and addressing the main issues on the kalahari.com site.
But building a team takes time and money, and it’s hard
to justify a large headcount request before you’ve proven
that you can have a real impact on the business.

So we started small. I fulfilled the UX design role, and
we hired one visual designer since that was the primary
need at that stage. Then we got stuck in. On a site of this
size, and with the pressure we had to make improve-
ments quickly, we decided on a dual approach:

1. Make some initial and obvious changes to the visual de-
sign to improve hierarchy and the general aesthetic.

101

2. At the same time, work on a long-term UX strategy to ad-
dress some of the more fundamental user experience is-
sues on the site.

The goal was to show quickly that we knew what we were
doing, and then use those successes to build out the team
further and attack the areas where we could have the
biggest effect on conversion rates.

Building A Roadmap
We started this process with a small team of three prod-
uct managers and two designers, so we didn’t initially
have the luxury of user research and a long period of
product discovery to build out a roadmap. Instead, we
went offsite for a day and built a customer journey map
for our different user journeys. It was a great way to fo-
cus on what the core experience was that we need to im-
prove.

We also went a bit further. Based on a heuristic evalu-
ation of the site, we annotated each step in the user jour-
ney with the obvious improvements we could make. This
gave us a flexible framework for the year, and guided our
roadmap throughout.

We decided early on to realign, not redesign. Our ap-
proach was to make relentless incremental progress as
opposed to doing a six to nine-month project with a big
bang release. Our goal was to release every three to four
weeks, depending on the size of the project.

In our first two releases we took care of some basics.
These changes had exactly the desired effect. User re-

CASE STUDY: THE USER EXPERIENCE OF KALAHARI.COM

102

sponse was immediate and universally positive. In com-
bination with some good specials, traffic started to in-
crease. And most importantly, we were able to start grow-
ing our team to add designers, a researcher, and a front-
end developer. Game on.

We spent the rest of the year systematically working
through our customer experience map, starting with the
most important areas where improved UX can have the
biggest effects (registration, checkout, product details
page, and so on). We were also able to remain flexible and
shift priorities as necessary (business needs, competitor
pressure, for example).

We made quite a few mistakes before hitting our
stride. Sometimes we estimated the scope of work incor-
rectly, or we tried the wrong solution first, or we were so
pressured for time that we just couldn’t deliver the quali-
ty we wanted. But we dealt with each of those issues im-
mediately and honestly. We owned our failures, we ex-
plained our frustration with arbitrary timelines, we
showed how changing priorities affects costs because of
the amount of time that ends up being wasted on rework
(or work that never gets used). We also showed how fol-
lowing an approach of iterative design and development
resulted in increased revenue in our key flows. Eventual-
ly our process found a good rhythm towards the middle
of the year.

• Define the area we’re working on, and define what suc-
cess looks like (what are the metrics we’re trying to im-
prove?).

103

• Work in small teams of PMs, designers, and developers
to sketch out new flows and develop wireframes.

• Test prototypes with users, utilizing the RITE method so
that the outcome is improved designs, not PowerPoint
decks with recommendations.

• Refine the designs as they evolve into high-fidelity visual
designs (with more user testing as required), and deliver
high-quality HTML and CSS as the final output.

The outcome was a site that was drastically different
from where it was a year before, with real improvements
in the success metrics we set for ourselves (positive
changes in conversion of registration, checkout, and oth-
er flows).

My biggest regret about that year is that we couldn’t
do more. We made some great improvements to the site,
but it was still so far from where it needed to be. And I
know everyone on the team felt this way. We set out to
build a culture of quality above all else, and it physically
hurt when we had to make compromises and do some-
thing that was counter to that culture. But it certainly
was a great start.❧

CASE STUDY: THE USER EXPERIENCE OF KALAHARI.COM

104

CHAPTER 4:

Product Roadmaps

The Importance Of Product Roadmaps
We’ve covered a lot of ground on product planning and
prioritization. We’ve generated some good ideas along
the way. So, now what? Should you create a product
roadmap? Those have fallen out of fashion over the last
few years, particularly in more agile-minded organiza-
tions like Basecamp, with Jason Fried proclaiming74:

Instead of the roadmap, just look out a few weeks at a
time. Work on the next most important thing. What’s
the point of a long list when you can’t work on every-
thing at once anyway? Finish what’s important now
and then figure out what’s important next. One step at a
time.

It’s hard to disagree with a person (and a company) you
have great admiration for, as I do for Jason and Base-
camp. But I do think it’s important to set the record
straight on product roadmaps—particularly when it
comes to large organizations. Jason’s article highlights
two main concerns with product roadmaps, that summa-
rize the general concern you often hear about it:

74. “Product roadmaps are dangerous” – http://smashed.by/product-roadmaps

105

http://smashed.by/product-roadmaps
http://smashed.by/product-roadmaps
http://smashed.by/product-roadmaps
http://smashed.by/product-roadmaps
http://smashed.by/product-roadmaps

• Product roadmaps assume you know what’s going to hap-
pen 6–18 months from now.

• Product roadmaps set expectations, so you can’t change
them (and if you do change them it becomes a worthless
exercise).

My purpose here is not to disagree with Jason in particu-
lar, but to use his argument to make some general points
about the importance of roadmaps. So let’s look at each of
these points in turn.

PRODUCT ROADMAPS ASSUME YOU KNOWPRODUCT ROADMAPS ASSUME YOU KNOW
THE FUTURETHE FUTURE

Jason writes:

When you let a product roadmap guide you you let the
past drive the future. You’re saying “6 months ago I
knew what 18 months from now would look like.” You’re
saying “I’m not going to pay attention to now, I’m going
to pay attention to then.” You’re saying “I should be
working at the Psychic Friends Network.”

This is not what a product roadmap is, or what it’s sup-
posed to do. The purpose of a product roadmap is to set
out a long-term vision for the business, and break that up
into smaller, meaningful pieces of work, based on what
you know now. It’s a fallacy that this is an unchangeable
list of dates about where the business is headed. A prod-
uct roadmap that doesn’t react to day-to-day changes in
the market and within the company is a pretty dumb doc-
ument.

CHAPTER 4: PRODUCT ROADMAPS

106

At organizations where I’ve been responsible for the
roadmap we’ve always been very clear that it is a flexible
guideline that can (and must) change frequently as need-
ed. It is not always easy to convince teams to see
roadmaps in this flexible way, but it’s worth the effort.
The trick is not to describe the flexible roadmap in a way
that makes it sound like an excuse to be indecisive and
not committing to everything. Instead, point out that a
flexible roadmap is the only way to remain proactive
when important changes happen in the company or the
external landscape, while also keeping your eye on the
product’s vision and goals.

Roadmaps like these give teams and managers realis-
tic goals to work towards. It’s a common vision, a sense of
direction that’s more than just fluffy language—it’s con-
crete evidence that we’re headed somewhere good, and
we know how to get there.

We can change direction as many times as we want.
This doesn’t make it a useless exercise: it means that in-
stead of starting fresh on a new roadmap every few
weeks, you build on your past successes, don’t make the
same mistakes twice, and keep making measurable
progress since you can see where you came from.

PRODUCT ROADMAPS SET THE WRONGPRODUCT ROADMAPS SET THE WRONG
EXPECTATIONSEXPECTATIONS

Jason writes further in his article:

The other problem with roadmaps is the expectations
game. People expect you to deliver what you say you will
in 4, 5, 6 months. And what if you have a better idea?

107

What if there’s a shift in the market that you need to ad-
dress? What if what you thought wasn’t what actually
happened? Any change in the roadmap nullifies the
roadmap. Then the map isn’t a map at all.

If you have this problem it doesn’t mean that product
roadmaps are wrong: it means that you’re doing it wrong.
As long as everyone in the organization buys into the flu-
id nature of the roadmap, you won’t have this problem. In
an organization where I once worked we did this mainly
through the mechanism of what we called the product
council (I was partial to Intergalactic Product Force, but
for some reason that didn’t fly so well). Here’s how it
works.

The product council is made up of the VPs of every de-
partment in the organization: engineering, marketing,
support, category, and so on. This body has a weekly
meeting where we discuss the current product roadmap
and priorities. We ask ourselves if we’re still working on
the most important things. If something more important
comes up, we prioritize it higher in the roadmap, and
something else shifts down; if we’re happy with the direc-
tion, we do nothing. If a new opportunity arises we ask
ourselves, “Is this more important than what we’re work-
ing on right now? Or is this something we should work
on next? If so, what moves down the priority list?”

From here, I communicated with my product team
about any changes, and we discussed this to make sure
no one missed anything. But then—and this is impor-
tant—the product managers had complete autonomy and
ownership over the implementation of the roadmap. The

CHAPTER 4: PRODUCT ROADMAPS

108

product council sets the priorities (with input from all
parts of the organization), but the product managers
work with their development teams (and others) to set
the timeline, the implementation details, the design,
everything.

This process has three main advantages. First, it gives the
management team complete transparency into what the
product team is working on, and it allows anyone to make
the case for a change in priorities. This transparency
takes away the vast majority of the politics you see in
many organizations, and it frees up the teams to do what
they do best—execute.

Second, it prevents scope creep. Nothing can go on the
roadmap without something else moving out or down. As

How the product council could work

109

anyone who has ever worked at a large organization
knows, this is a critical part of a successful development
cycle.

Finally, it gives the product manager and their teams
what they need to be successful: direction and autonomy.
As Jocelyn Glei said75: “Give your team members what
they need to thrive, and then get out of the way.”

WHY PRODUCT ROADMAPS ARE SAFE (ANDWHY PRODUCT ROADMAPS ARE SAFE (AND
ESSENTIAL)ESSENTIAL)

At a practical level I went through the exercise of figuring
out how we could execute in an organization without a
roadmap. And although it might work in some circum-
stances, in general it seems to me like a very dangerous
proposition. Changes to current pages and flows affect
changes we’ll make down the line—the product manager
has to think about that.

If you’re serious about frequent incremental change as
opposed to large redesign projects, you can’t live without
a roadmap because you’ll have no idea how far you’ve
gone, what you still need to do, and what’s more impor-
tant than something else. And perhaps most dangerous of
all, everyone in the organization will come to you and
want all their projects done right now, and you’ll have no
systematic method for dealing with that in a way that’s

75. “What Motivates Us To Do Great Work?” – http://smashed.by/motivate

CHAPTER 4: PRODUCT ROADMAPS

110

http://smashed.by/motivate
http://smashed.by/motivate
http://smashed.by/motivate
http://smashed.by/motivate
http://smashed.by/motivate

best for the business. Andy Wagner summed up my feel-
ings on this issue quite succinctly in a comment on Ja-
son’s 37signals post76:

[Product roadmaps are] an opportunity to dream about
what the future might look like so that as you make your
day-to-day responses to the customer, you can do so con-
sistent with building the future state. It emphatically
should not be anything to be [a] slave to, it should be dy-
namic and notional, not static and specific.

Jason wrote, “The further you get from now, the less you
know. And the less you know, the worse your decisions
will be.” We agree on that. My argument is that without a
roadmap you only see now. And if you only see now with-
out seeing yesterday and tomorrow, you don’t see a
whole lot. And “the less you know, the worse your deci-
sions will be.”

The Elements Of A Roadmap
So what does a product roadmap look like? Again, that
completely depends on what the organization is comfort-
able with. My preferred way to communicate a roadmap
is as lightweight as possible—whiteboards in the office,
or company wikis. It’s dangerous to introduce documents
and internal systems that people aren’t used to, so wher-
ever people are already working, use that platform. Many

76. http://smashed.by/roadmaps-comment

111

http://smashed.by/roadmaps-comment
http://smashed.by/roadmaps-comment
http://smashed.by/roadmaps-comment
http://smashed.by/roadmaps-comment
http://smashed.by/roadmaps-comment
http://smashed.by/roadmaps-comment

organizations already have an internal wiki, so that’s a
good place to start.

It’s also very important to make roadmaps as visible as
possible to the rest of the company. We’ll discuss this
more when we talk about functional specifications, but
product managers work out in the open. And they do this
because their goal isn’t personal glory; their goal is a great
product. For that to happen they can’t be precious about
their ideas, and they can’t run the risk of doing things in
secret that could hurt the product or backfire on them po-
litically. That’s another reason why whiteboards are great
at communicating roadmaps—everyone can see them
and comment on the ideas and progress.

In my view, product roadmaps should contain the fol-
lowing elements:

• The priority of the project (1 being the highest priority, all
the way down).

• A summary of no more than ten words.

• A detailed description of no more than fifty words.

• A list of contacts involved in the project (PM, business,
development lead).

• An indication of the business impact and the estimated
level of effort.

• A link to the functional specification as soon as it’s avail-
able.

CHAPTER 4: PRODUCT ROADMAPS

112

You’ll notice there’s something conspicuously missing
from this list: dates. This might be controversial, but I be-
lieve that product roadmaps shouldn’t have dates associ-
ated with projects, only priorities. That’s where my views
start to converge with Jason’s general principle in his
post—work on the most important thing until it’s done,
and then move on to the next thing, and the next. Here’s
an example of what a flexible roadmap could look like, in-
cluding the elements mentioned above:

Example of a flexible roadmap with priorities but no dates (Larger view77)

77. http://smashed.by/roadmap

113

http://smashed.by/roadmap
http://smashed.by/roadmap
http://smashed.by/roadmap
http://smashed.by/roadmap
http://smashed.by/roadmap

Of course, it’s impossible to get rid of dates completely, so
I prefer to do that in the release schedule. This schedule
lists the dates when the company plans to release code
(often in two- or three-week intervals if the company uses
agile methodologies), and indicates what projects are
scheduled to go live on each date. This might sound like
just another document to maintain, but it allows you to
remain flexible with the schedule. Code release dates
might not change, but which projects and features go in-
to each release can. If something goes wrong, or too
many corners need to get cut, a project can be moved to
the next release date without changing its priority or
compromising on quality just to hit an arbitrary date.
Here’s an example of what such a release schedule could
look like:

Example release schedule with dates and features within the release
(Larger view78)

CHAPTER 4: PRODUCT ROADMAPS

114

http://smashed.by/release
http://smashed.by/release
http://smashed.by/release

Coming up next…
With your strategic product plan in place, as well as a
roadmap and tentative release schedule to guide your
steps, it’s time to start executing and ship stuff.

We’ve discussed the product planning phase of prod-
uct management in isolation, but of course that’s not how
it works in practice. Everything mentioned in part 1 of
this book happens continuously as the product evolves.
But as important as planning is, you can’t just do that for-
ever—where’s the fun in that? And that’s where Part 3
comes in. Let’s talk about product execution—the process
of validating your ideas with customers, and building
those ideas out in the most effective way.❧

78. http://smashed.by/release

115

http://smashed.by/release
http://smashed.by/release

Part 3: Execution

PART 3: EXECUTION

116

CHAPTER 5:

Defining A Product

In the first half of this book we spent a lot of time dis-
cussing why product management is important, what
product managers are like, and how to make sure you
spend time building the right products for the right peo-
ple. That was time well spent, because as we’ve talked
about at length, it’s way more expensive to build the
wrong product than it is to find out early in the design
and development process that you’re not quite hitting the
mark. Now that we’ve discussed how ongoing product
planning works, and how to create a strategic product
plan, it’s time to focus on the process of execution.

In this section we’ll discuss the various activities that
go into getting a product live, and how to work with dif-
ferent teams to accomplish your goals. We’ll also briefly
discuss the process of user-centered design, which is an
essential component throughout the execution process to
ensure that the organization remains market-driven. PMs
should make sure the user experience teams are always
involved in the process. Even if a PM doesn’t perform all
the activities of user-centered design themselves, it is im-
portant to understand the process and use the output in
decision-making.

Below is a diagram that shows the outline of this sec-
tion:

117

We’ll start with a discussion of problem and product defi-
nitions, and how they’re different from functional and
technical specifications. We’ll then take a detour to talk
about user-centered design and the importance of proto-
type testing with target users, and then apply those prin-
ciples to the rest of the process—building and releasing
features, and assessing their success.

Problem Definition
Requirements often get a bad rap, especially in the con-
text of lean principles and agile development, where it is
assumed that defining requirements is about figuring out
what features stakeholders think should be in a product

The product execution process

CHAPTER 5: DEFINING A PRODUCT

118

before you start designing and building. That might be
how requirements were viewed in traditional waterfall
processes, but it’s not a good way to build product. I al-
ways picture a product manager with lab coat and clip-
board, walking around the office asking random people
what features they want a product to have. It might seem
like collaboration, but that approach is mostly about poli-
tics—making everyone feel like they’ve had input. Collab-
oration is essential, but we’ve already discussed the best
ways to build collaboration into the process. Traditional
requirements gathering is way too focused on features,
and very rarely takes user needs into account. So, instead,
we need to define requirements a little differently. With
that in mind, I’m going to refer to this part of the process
as the problem definition phase instead.

It’s important to differentiate between a problem defi-
nition and a specification. A problem definition is a short
statement of the problem you’re trying to solve. A specifi-
cation explains how to solve the problem. If the product
planning section taught us anything, it’s the importance
of keeping the problem you’re solving front and center at
all times. That’s why it’s so important to break up ideas
into problem definitions first, before starting to work on
solutions (or hypotheses in the context of lean method-
ologies), so that you don’t lose sight of the problem that’s
being solved.

A good way to write problem definitions is to use a
format similar to user stories in agile development. I call
these problem stories: [user] has [problem] when [trigger]. For
example, a PM on a financial services product might have
a problem definition that states: “Investors are not able to

119

submit supporting documents online when they need to
make changes to client portfolios.” That becomes a state-
ment of the problem that needs to be solved through
product improvements. The addition of the trigger ele-
ment also ensures that you remain focused on the cause
of the action that users need to take to find the product
useful.

An effective problem definition includes the following
elements:

• It clearly defines target users (the target users can also be
the business or the development team).

• It clearly defines the problem that needs to be solved.

• It clearly defines under what circumstances the problem
occurs (the trigger events).

• It has enough supporting documentation to provide con-
text on the target users and the problem to guide the de-
sign of the solution.

To reiterate, this phase isn’t about making a list of what
everyone in the office wants to see in a new product. But
that is unfortunately what often happens—everyone gets
in a room and rambles off their wish lists for what fea-
tures should be in a product, based on their own feelings
and preferences. Then the poor product manager has to
sort through all of that and create a coherent product.

No. Let’s stop this crazy behavior. Instead, let’s work
on providing a clear definition of a manageable problem

CHAPTER 5: DEFINING A PRODUCT

120

to solve for a specific set of users, and then spend our
time creating the right solutions.

Where do these problem definitions come from? Well,
that should be very easy at this point —your problem def-
initions are pulled from the prioritized list of needs (user,
business, and technical), as laid out in the strategic prod-
uct plan. For example, if the next high priority project is a
redesign of an e-commerce account or profile section, the
PM would take all the background from the product plan-
ning phase and distill that into a simple problem story,
like this:

Buyers can’t find the information they’re looking for
when they want to check on the status of their orders.

This problem story forms the basis of the project that an-
chors everyone on the user, the problem, and the product
context.

Product Definition And Design Studio
Once you’ve selected a problem definition to work on in a
specific project, it’s time to come up with possible solu-
tions for the identified problems. Here the team spends
time creating product ideas. This is similar to what the
lean movement refers to as forming hypotheses—formu-
lating assumptions or ideas with the goal of testing those
ideas through user research.

In chapter 3 about product discovery I talked about the
importance of variation before an iterative process starts.
If the team has done a bunch of thinking and sketching
during discovery, use those ideas as a starting point to

121

formalize possible solutions in the form of prototypes
that can be tested and validated with potential users be-
fore they’re built. I’ve mostly used Axure RP79 to create in-
teractive prototypes, but there are plenty of other tools
and frameworks available for prototyping, from code-spe-
cific solutions (ZURB Foundation80, Bootstrap81) to link-
ing paper prototypes together (POP for iPhone82). The
type of prototype doesn’t matter as much as it has to be
realistic enough to get real user feedback on. In general,
static wireframes are not that useful, since they don’t al-
low for user interaction, and they’re also not very helpful
as a way for developers to figure out what the product
does (unless you spend a lot of time annotating the wire-
frames, which isn’t a very good use of time).

It is often not feasible to go out and test a bunch of
prototype solutions to the same problem, so in those cas-
es it is useful to create several variations as a team, and
then narrow down to one or two solutions to be validated
in usability tests.

An effective way to do this is to run a design studio
with the project team. A design studio workshop gets an
entire team involved in the design process to develop and
refine ideas in a short amount of time—often within a
few hours. Design studio should include team members
across the organization: designers, content strategists, de-
velopers, product managers, marketers, and so on. There

79. http://www.axure.com/
80. http://foundation.zurb.com/
81. http://getbootstrap.com/
82. https://popapp.in/

CHAPTER 5: DEFINING A PRODUCT

122

http://www.axure.com/
http://www.axure.com/
http://www.axure.com/
http://foundation.zurb.com/
http://foundation.zurb.com/
http://foundation.zurb.com/
http://getbootstrap.com/
http://getbootstrap.com/
http://getbootstrap.com/
https://popapp.in/
https://popapp.in/
https://popapp.in/
http://www.axure.com/
http://www.axure.com/
http://foundation.zurb.com/
http://foundation.zurb.com/
http://getbootstrap.com/
http://getbootstrap.com/
https://popapp.in/
https://popapp.in/

are many different ways to run a design studio workshop,
but there are usually some common elements.

Start with a discussion about the problem definition
you’re working on, so that everyone has a common un-
derstanding of the focus area and the personas you in-
tend to solve the problem for. Then proceed through three
(or more) sketching iterations, using the same process
with every cycle: sketch, present, critique, refine.

• Iteration 1: Sketch individually using a six-up template
(six variations per page).

• Present to the team, get critique.

• Iteration 2: Pick the best idea, sketch a refined concept in-
dividually using a one-up template (only one variation
per page).

• Present to the team, get critique.

• Iteration 3: Pick the two to three best ideas, sketch one re-
fined concept as a team using large pieces of paper.

Since quite a bit of critique happens during design studio,
it’s important to make sure the group knows how to give
good feedback. I discussed good critique in detail in Part
1, so I won’t rehash it here, except to highlight the impor-
tant components that should be reiterated during each
design studio session:

• Let each person explain their sketch or idea in full.

123

• The team should first point out what they like about the
sketch, so that the presenter knows which directions to
pursue.

• Phrase critique as questions to give the presenter a
chance to respond and explain the reasoning behind their
decisions.

At the end of this process you’ll have a small number of
ideas that are ready for prototyping and testing with
users. You’ll also be comfortable that you tried many dif-
ferent variations in a short period of time, and refined
those ideas into what you believe solves the problem in
the best possible way. Now it’s time to get your target
users involved, so let’s talk about that within the context
of user-centered design.❧

CHAPTER 5: DEFINING A PRODUCT

124

CHAPTER 6:

User-Centered Design And
Workflows

Usability testing has always been a cornerstone of my
product work. My road to product manager started in the
user experience research team at eBay, so I look at most
product work through a user-centered design lens. As I
moved into an agency role later in my career, things got a
bit tricky. It turns out that usability testing is a difficult
thing to sell to clients. The same concerns always come
up: it will take too long, ten tests aren’t enough, and the
rest. But I learned to keep pushing, and stood firm on not
taking on a project if it didn’t include usability testing. I
soon realized something very important. Clients fight
against usability testing only until they observe their first
one. Then the light goes on, and they start throwing buck-
ets of money at us (OK, not really, but that would be nice).
It only takes seeing one user struggle with your product
to see the value of usability testing.

Considering how essential this topic is, I’d like to take
a slight detour in this chapter to discuss UCD in a bit
more detail. This isn’t a separate step in the product de-
velopment process. Rather, it is a methodology that
should accompany and guide the process from start to
finish. It makes sense to address it at this point because
as you get into the execution phase of building a product,
UCD becomes increasingly important to ensure you don’t

125

just build blindly into the night, but test your ideas with
real target market users.

The value of user experience design has been dis-
cussed in detail elsewhere, so I’ll assume a basic under-
standing of the value of good design, and that we all want
a good experience in our products. In short, we want to
create products that are useful, usable, and delightful.
And we want to integrate that with what’s technically
possible, what’s profitable, and what fits with our strate-
gic goals. That’s what UCD aims to accomplish.

There is one benefit of UCD in particular that I’d like
to focus on here, and that is that the methodology helps
organizations spend less time on building the wrong
stuff. Following a user-centered design process drastical-
ly reduces development and maintenance costs. C. Karat
points out83:

Eighty percent of software lifecycle costs occur after the
product is released, in the maintenance phase. Of that
work, 80% is due to unmet or unseen user requirements
and only 20% is due to bugs or reliability problems.

And Albert Lederer and Jayesh Prasad found the follow-
ing84:

83. Karat, C., “Usability engineering in dollars and cents,” Software, IEEE , vol. 10,
no.3, pp. 88, 89, May 1993.

84. Albert L. Lederer and Jayesh Prasad, “Nine management guidelines for better
cost estimating,” Commun. ACM 35, 2 (February 1992), 51-59. (http://smashed.by/
cost-estimating)

CHAPTER 6: USER-CENTERED DESIGN AND WORKFLOWS

126

http://smashed.by/cost-estimating
http://smashed.by/cost-estimating
http://smashed.by/cost-estimating
http://smashed.by/cost-estimating
http://smashed.by/cost-estimating
http://smashed.by/cost-estimating

63% of software projects exceed their budget estimates,
with the top four reasons all relating to product usabili-
ty: frequent requests for changes by users, overlooked
tasks, users’ lack of understanding of their own require-
ments, and insufficient user analysis communication
and understanding.

In Cost-Justifying Usability85 the authors point out that if
the cost of making design changes during the user-cen-
tered design phase is taken as the baseline, the same
changes would cost ten times as much during the devel-
opment phase, and a hundred times as much after the
product is released.

So, the earlier you discover needs and problems, the
more money you save on development. It makes sense,
and yet it’s still harder to convince organizations (and
sometimes even ourselves) to do things right the first
time, than it is to convince them to do it over when some-
thing fails. This doesn’t mean that the product has to be
perfect and complete from day one. But it does mean that
instead of dealing with a misfire in terms of user needs,
you have a good baseline to iterate from.

The most compelling argument86 comes from Marty
Cagan, who says:

Instead of using one prototyper for a few weeks, [most
organizations] use the full engineering team for full re-
lease cycles to build the software that is then QA’ed and

85. Cost-Justifying Usability, Randolph G. Bias (Editor), Deborah J. Mayhew, 1994,
Academic Press.

86. “Product Discovery” – http://smashed.by/product-discovery

127

http://smashed.by/product-discovery
http://smashed.by/product-discovery
http://smashed.by/product-discovery
http://smashed.by/product-discovery
http://smashed.by/product-discovery

deployed into production systems. This is why it typical-
ly takes so many companies three or more releases over
one to two years to get something usable and useful.
They are using the engineering organization to build a
very, very expensive prototype, and they use their live
customers as unwitting test subjects.

UCD is a well-established approach that creates more suc-
cessful products by making sure that we design for user
needs, not our own whims and desires. It is an iterative
approach that saves costs by making sure we test our
ideas with users before they go into production. UCD is
based on a few key steps, all linked to the three classes of
research we discussed in chapter 2 on user needs:

• Step 1: Understand needs. Start with exploratory research
to uncover the most important unmet user needs to ad-
dress with the product.

• Step 2: Create concepts and/or prototypes. Create
sketches and prototypes to make ideas tangible without
tying up expensive development time.

• Step 3: Test with users and iterate. Run usability tests
on the concepts and prototypes with five to ten target
users to validate the ideas and uncover usability issues
(design research). Go back to step 2 and repeat as many
times as needed or possible.

• Step 4: Launch and measure. Develop the product,
launch, and measure the impact it has on predefined met-
rics (assessment research). Combine with design research

CHAPTER 6: USER-CENTERED DESIGN AND WORKFLOWS

128

methods to uncover why the metrics have moved up or
down. Make changes as needed.

It’s also important to highlight one of the best things
about UCD: it shrinks to fit. If you don’t have a lot of time
or budget, you can still do a scaled down version of each
of the steps in the process.

There have been some critiques of user-centered design
in recent times, and some arguments that we need to
start using other design methodologies, such as activity-
centered design (ACD)87, alongside (or instead of) UCD.
Cennydd Bowles sums up the argument against UCD

User-centered design shrinks to fit any budget or timeline

87. For a good overview of ACD, see “Stop Designing for Users” by Mike Long –
http://smashed.by/stop-designing-users

129

http://smashed.by/stop-designing-users
http://smashed.by/stop-designing-users
http://smashed.by/stop-designing-users
http://smashed.by/stop-designing-users
http://smashed.by/stop-designing-users
http://smashed.by/stop-designing-users

well in his article “Looking Beyond User-Centered De-
sign88”. Issues include the fact that it takes longer than
other methodologies, it doesn’t always take a designer’s
visual style in consideration, and it can sometimes be
misunderstood as science that leads to certainty (which it
is not).

As with most things, the methodology needs to fit the
task. In some cases UCD might not be the best fit, but in a
majority of projects I’ve worked on, it is the best method-
ology we have to make sure we design useful, usable
products.

Despite its many advantages it can sometimes be diffi-
cult to introduce UCD into an organization. When we run
into obstacles we often blame the organization for being
behind the times, or not understanding why it’s impor-
tant to invest in good design. But shifting the blame is the
wrong approach to take. The onus is on us to prove, with-
in our industry and the companies we work at, that good
design will result in positive return on investment.

If I remember one thing from Marketing 101, it’s this
obvious but often forgotten truth: businesses exist to
make a profit. Companies work hard to make us happy
for one reason only: so we will buy more of their stuff.
This seems obvious, but it’s important to remember. Be-
cause when you talk to the management teams of your
organization, telling them how beautiful their site will be
once you’re done with it is just not going to cut it.

To prove the value of user-centered design you have to
prove that by investing in it, the business will make more

88. “Looking Beyond User-Centered Design” – http://smashed.by/beyond

CHAPTER 6: USER-CENTERED DESIGN AND WORKFLOWS

130

http://smashed.by/beyond
http://smashed.by/beyond
http://smashed.by/beyond
http://smashed.by/beyond
http://smashed.by/beyond
http://smashed.by/beyond

money. It’s as simple as that. Well, the concept is simple.
The execution is… complicated. I’d like to propose some
ways to help us prove the value of design, so that we can
spend more of our time building great experiences and
less time telling people why they should build great expe-
riences.

Proving that good design will make your organization
or client more money is not something you can express
in a formula and do overnight. It involves some hard
work and clever thinking (time well spent) to figure out
what works best for the context you’re designing in. In
some cases, like designing a checkout process, it is rela-
tively easy to define success metrics, benchmark, and
show that a redesign resulted in more money—because
checkout is where the money is.

In other cases, for flows that are further removed from
direct revenue generation, it can be much harder to find
the money link. In those cases, a conversion model is of-
ten the right way to go:

In most online user flows you can make a strong case
that an improved conversion rate (or reduced drop-off
rate) will result in increased revenue. Once that link is
made, what remains is to prove that an improved user ex-
perience results in improved conversion rates. But there
are immediately two challenges with this approach:

131

• How do you buy the time you need to prove that UX
works?

• How do you find the right conversion rate model to link
UX to conversion rates (and ultimately revenue)?

So let’s dive into that.

Buying Time To Do The Right Thing
Getting an organization or client to spend time doing
UCD can be quite tricky in the beginning. Without real
data, it’s hard to show the value. But without the time to
do the process right, it’s hard to get real data. And so the
vicious circle continues.

One way to buy some time is to show case studies
where an investment in UCD has resulted in significant
revenue lifts. One of these case studies is Jared Spool’s
$300 million button, where a simple design change result-
ed in an enormous revenue lift. Spool writes89:

When the team contacted us, they’d already pretty much
decided what the problem was and how they were going
to fix it, even though they had never watched any shop-
pers make purchases. And they were dead wrong. Not
only was their fix not going to help, our research showed
that it was going to increase abandonment.

Two weeks of usability testing on the live site (and
on competitors’ sites), followed by two weeks of iterative
paper prototype testing produced a streamlined check-

89. “UIEtips: The $300 Million Button” – http://smashed.by/300-million

CHAPTER 6: USER-CENTERED DESIGN AND WORKFLOWS

132

http://smashed.by/300-million
http://smashed.by/300-million
http://smashed.by/300-million
http://smashed.by/300-million
http://smashed.by/300-million

out process, which, once implemented, showed a dra-
matic increase in revenues. It’s amazing what you’ll
learn when you actually watch your users.

In another example, Airbnb changed the way to add prop-
erties to a wish list from a star to a heart, which resulted
in a 30% increase in engagement90. And when Veeam
Software changed some link text from “Request a quote”
to “Request pricing”, its click-through rate increased by
161%91.

Obviously not all UX changes are going to have this
much impact. But sharing stories like this with senior
management should help to make the case for investing
in a proper user-centered design process. I know this is
easier said than done, but mountains can be moved with
some solid data and stubborn persistence.

So, let’s assume you’ve shown that a good UX can in-
crease revenue quite significantly. How do you go about
proving it for one of your own projects?

The Three ‘A’s
One marketing principle quite useful for UCD is to view
the revenue as coming from one or more of three sources:

• Acquisition: getting new users to sign up for your site or
service

90. “How Airbnb Evolved To Focus On Social Rather Than Searches” –
http://smashed.by/airbnb

91. “How changing a single word increased click through rate by 161%” –
http://smashed.by/click-through

133

http://smashed.by/airbnb
http://smashed.by/airbnb
http://smashed.by/airbnb
http://smashed.by/click-through
http://smashed.by/click-through
http://smashed.by/click-through
http://smashed.by/click-through
http://smashed.by/airbnb
http://smashed.by/airbnb
http://smashed.by/click-through
http://smashed.by/click-through

• Activation: getting those new users to make their first
purchase

• Activity: getting those first-time purchasers to come
back for more

If you can tie a UCD project to one or more of these
sources of revenue by showing that you increased con-
version rates in those areas, you’ll have what you need.
You’d have shown that design equals money. Here are
some hypothetical examples:

• A registration flow redesign can be shown to improve con-
version from sign-up landing page to signed-up users.
This ties into acquisition.

• Improvements to a search results page can be shown to im-
prove conversions from search to items placed in a shop-
ping cart. This ties into activation and activity.

• Home page layout and content changes can be shown to im-
prove click-through rates on merchandising offers specif-
ic to new users. This ties into activation.

And this list can go on and on. It won’t always be easy, but
every UCD project should be measurable in terms of its
impact on the business; tying it to one of the three ‘A’s is a
good structured way of anchoring all design changes in
business goals and, ultimately, revenue. Define your suc-
cess metrics, benchmark those metrics before any
changes are made, and then measure the (hopefully im-
proved) increase in metrics.

CHAPTER 6: USER-CENTERED DESIGN AND WORKFLOWS

134

Designers need to assume some of the blame for often
having to fight very hard for appropriate resources to do
our jobs. We need to understand why businesses exist,
and follow a strategic approach to proving the ROI of de-
sign.

• Show historical case studies to buy some time and re-
sources to follow a proper UCD process on one or more of
your projects.

• Start on a project where changes can be measured by an
improvement in one of the three ‘A’s of revenue genera-
tion: acquisition, activation, and activity.

• Benchmark well before the start of the project, follow
through on the UCD commitment, and measure your re-
sults92.

This process should give product managers the opportu-
nity to introduce user-centered design into an organiza-
tion in a measured and responsible way.❧

92. See this post on Six Revisions for some tips on which measurement tools to
use: “How to Measure the Effectiveness of Web Designs” – http://smashed.by/
effectiveness

135

http://smashed.by/effectiveness
http://smashed.by/effectiveness
http://smashed.by/effectiveness
http://smashed.by/effectiveness
http://smashed.by/effectiveness
http://smashed.by/effectiveness

What About Responsive
Design?

Workflows: Making UCD Part Of Every
Project
One of the big open questions in the design community is
how to make user-centered design part of our workflows
in an increasingly multi-device world. This isn’t a book
about responsive design—there are plenty of those to go
around—but I do think it’s important to address some
possible workflows for product managers to ensure that
projects incorporate user-centered design while also ac-
knowledging the progress of web development. Here is a
workflow that works well in the agency I worked at:

The goal of this approach is to stay grounded in two core
principles:

1. Content first. We need to stop thinking about content in
terms of layout, and plan content independent of design.

WHAT ABOUT RESPONSIVE DESIGN?

136

2. Mobile first. We need to stop the focus on device-specif-
ic thinking, and assume a multi-device world where we
work on style direction independent of layout.

I’ll briefly go through each step in the diagram and how it
helps us to accomplish these goals.

During discovery we research to uncover user needs,
develop personas, and create the user journey map that
becomes our product strategy; we discussed this in detail
in part 2 of the book.

In the planning phase we evolve the user journey map
into a content plan and information architecture docu-
ment; we discussed this in part 2 as well. Once we have
our scaffolding in place, we start the design process.

We rarely do static wireframes any more, but we do a
lot of sketching. The benefits of sketching have been
proven time and time again. What I like most about the
sketching process is how it allows the team to try multi-
ple solutions to a problem, before settling on one or two
ideas to iterate further. I like using Zurb’s responsive
sketchsheets93 as templates because they keep us focused
on a multi-device approach.

Once we’ve gone through the sketching phase with
clients, and we know what approach we’d like to pursue,
we start prototyping. We mainly use Axure, but there are
many solutions out there to suit a variety of approaches.
Axure isn’t natively responsive (yet), so we’ve been build-
ing two prototypes on our projects: starting mobile first;
and then moving on to desktop. This isn’t ideal, but it

93. “Responsive Sketchsheets” – http://smashed.by/sketchsheets

137

http://smashed.by/sketchsheets
http://smashed.by/sketchsheets
http://smashed.by/sketchsheets
http://smashed.by/sketchsheets
http://smashed.by/sketchsheets
http://smashed.by/sketchsheets

works for our current purposes. We have a strong focus
on user testing, so we test these prototypes in our usabili-
ty lab, and iterate the design based on the findings.

Towards the end of the prototyping process we start
working on style tiles94 so we can have a discussion about
graphics with clients without focusing on layout and
flow issues. Style tiles sit between mood boards and full
comps in that they show fonts, colors, and interface ele-
ments such as buttons and form fields, but they’re not
concerned with layout very much. In recent years this
method has been expanded to include ideas like style pro-
totypes (a responsive HTML rendering of a style tile95),
and interactive style tiles (a WordPress plugin solution
for style tiles96).

We’ve seen huge success with this approach. Once
clients are comfortable with the visual direction, the fo-
cus can return to discussing how the UI will help them
meet their business goals and user needs. It also makes
the move from prototype to graphic design much
smoother.

94. Style Tiles – http://styletil.es/
95. “Our New Responsive Design Deliverable: The Style Prototype” –

http://smashed.by/style-prototype
96. Interactive Style Tiles - Short Demo on Vimeo – http://smashed.by/

interactive-style-tiles

WHAT ABOUT RESPONSIVE DESIGN?

138

http://styletil.es/
http://styletil.es/
http://styletil.es/
http://smashed.by/style-prototype
http://smashed.by/style-prototype
http://smashed.by/style-prototype
http://smashed.by/interactive-style-tiles
http://smashed.by/interactive-style-tiles
http://smashed.by/interactive-style-tiles
http://smashed.by/interactive-style-tiles
http://styletil.es/
http://styletil.es/
http://smashed.by/style-prototype
http://smashed.by/style-prototype
http://smashed.by/interactive-style-tiles
http://smashed.by/interactive-style-tiles

There is some concern that style tiles shortchange clients
because they don’t show a holistic view of the canvas98,
which is why we’re not completely post-PSD99 yet—but
we definitely don’t create the entire site in Photoshop.
Since we have an interactive prototype and strong style
guides, we generally only create about six or so pages in
Photoshop, so clients can get a good feel for the direction
(and that holistic canvas). Since clients are already so fa-
miliar with the site by the time they see Photoshop
comps, they are generally totally fine with only seeing a
few pages, and doing the rest of the work in code.

An example style tile, showing colors, buttons, fields, and font choices
(Style tile by Alex Maughan97)

97. http://maughan.me/
98. See “Designing In The Transition To A Multi-Device World” by Francisco

Inchauste – http://smashed.by/multi-device
99. “The Post-PSD Era” – http://smashed.by/post-psd

139

http://maughan.me/
http://maughan.me/
http://maughan.me/
http://smashed.by/multi-device
http://smashed.by/multi-device
http://smashed.by/multi-device
http://smashed.by/post-psd
http://smashed.by/post-psd
http://smashed.by/post-psd
http://maughan.me/
http://maughan.me/
http://smashed.by/multi-device
http://smashed.by/multi-device
http://smashed.by/post-psd
http://smashed.by/post-psd

By the time we jump into Photoshop we’ve generally
already started working on front-end development. We
build the components of the framework using the proto-
type and style tiles, and pick up speed as the graphic de-
sign gets finalized. We don’t use boilerplate frameworks
like Foundation and Bootstrap for production code. On
this point we stand with Aaron Gustafson100:

I find Foundation, Bootstrap, and similar frameworks
interesting from an educational standpoint, but I would
never use one when building a production site. For pro-
totyping a concept, sure, but to take one of these into
production you need to be rigorous in your removal of
unused CSS and JavaScript or you end up creating a
heavy, slow experience for you[r] users.

An important point on the last three phases: as the dia-
gram points out, these are all very much iterative phases.
We make changes all the time based on user feedback,
and discussions between designers, developers, and the
client. I think we can all agree that responsive design is
messy, and we just need to get comfortable with a certain
amount of ambiguity during design and development.
That’s OK, as long as we’re prepared for it.

It’s been an enormous learning process—and we’re
still figuring out the best ways to make responsive web
design our default approach. But we’re committed to it,
because we believe in content parity101, and we’re con-

100. “Responsive web design: 6 experts, 4 questions” – http://smashed.by/
rwd-experts

101. “Content Parity” – http://smashed.by/content-parity

WHAT ABOUT RESPONSIVE DESIGN?

140

http://smashed.by/rwd-experts
http://smashed.by/rwd-experts
http://smashed.by/rwd-experts
http://smashed.by/content-parity
http://smashed.by/content-parity
http://smashed.by/content-parity
http://smashed.by/rwd-experts
http://smashed.by/rwd-experts
http://smashed.by/content-parity
http://smashed.by/content-parity

vinced that responsive design is the approach that will
get us there. Here are some things we’ve learned along
the way.

First, you can’t wing content choreography. We can’t
just make our front-end developers figure out what hap-
pens at each breakpoint. This is something we have to
plan together to consider all the goals and constraints of
the project. Breakpoint graphs are particularly helpful in
this step (see Stephen Hay’s book Responsive Design Work-
flow102).

Second, optimize for touch, and support keyboard ac-
tions. Josh Clark points out that “every desktop UI should
be designed for touch now103.” He’s right. The lines are
blurring between what is considered desktop and mobile,
so we should just assume everything is a touchscreen,
and make controls easy to discover and manipulate.

The benefits go beyond mobile. Putting mobile first
helps us create better desktop sites as well, because we re-
main focused on meeting core user needs and ensuring
there is an easy and discoverable path through the flows.
There is no room for cruft on smaller screens, and that
makes our desktop designs better as well.

Finally, it’s hard, but it’s worth it. As Ben Callahan
points out in “The Responsive Dip104”, “The fact that we
don’t know how to do something today doesn’t mean we
shouldn’t strive to do it tomorrow.” No one has it all fig-

102. Responsive Design Workflow – http://smashed.by/rwd-workflow
103. “New Rule: Every Desktop Design Has To Go Finger-Friendly” (Global Moxie) –

http://smashed.by/touch-design
104. “The Responsive Dip” – http://smashed.by/responsive-dip

141

http://smashed.by/rwd-workflow
http://smashed.by/rwd-workflow
http://smashed.by/rwd-workflow
http://smashed.by/rwd-workflow
http://smashed.by/touch-design
http://smashed.by/touch-design
http://smashed.by/touch-design
http://smashed.by/touch-design
http://smashed.by/responsive-dip
http://smashed.by/responsive-dip
http://smashed.by/responsive-dip
http://smashed.by/rwd-workflow
http://smashed.by/rwd-workflow
http://smashed.by/touch-design
http://smashed.by/touch-design
http://smashed.by/responsive-dip
http://smashed.by/responsive-dip

ured out, so I don’t know about you, but I want to be part
of shaping the future of the web, no matter how hard it is.

We have much maturing to do, but I’m excited about
the progress we’ve made in shifting our entire process to-
ward building responsive sites. Every project runs just a
little bit smoother, and that’s encouraging. So my only ad-
vice to those standing on the edge of responsive design is
this: jump in. It’s worth it.❧

WHAT ABOUT RESPONSIVE DESIGN?

142

CHAPTER 7:

Specifications

It’s time to discuss the part of product management that
strikes fear into the heart of anyone who has worked in a
large organization: the spec document. It doesn’t matter
what you call it—PRD, BRD, BRS—those acronyms all
mean the same thing to product managers, designers,
and developers alike: piles and piles of unnecessary pa-
per. But fear not, we’re going to break through the bad ex-
periences and talk about a way to do documentation that
actually helps us make better products, not make us tear
our hair out.

In this chapter I’ll discuss three kinds of specifica-
tions:

• Functional specifications (how the product should work).

• Technical specifications (how the product should be im-
plemented).

• Marketing specifications (how the product should be
communicated to users).

Before we continue, it’s important to address the ques-
tion, “Do we really need a spec?” I cannot say it better
than Joel Spolsky, so I’ll quote his response105 in full:

105. “Painless Functional Specifications - Part 1: Why Bother?” – http://smashed.by/
functional-spec

143

http://smashed.by/functional-spec
http://smashed.by/functional-spec
http://smashed.by/functional-spec
http://smashed.by/functional-spec
http://smashed.by/functional-spec

[F]ailing to write a spec is the single biggest unneces-
sary risk you take in a software project. It’s as stupid as
setting off to cross the Mojave desert with just the
clothes on your back, hoping to “wing it.” Programmers
and software engineers who dive into code without writ-
ing a spec tend to think they’re cool gunslingers, shoot-
ing from the hip. They’re not. They are terribly unpro-
ductive. They write bad code and produce shoddy soft-
ware, and they threaten their projects by taking giant
risks which are completely uncalled for.

Having said that, the majority of specification documents
are bad. They are long, they are boring, they are done just
to check a box to say they were done, they are written
once and never updated, and most damningly, they don’t
get used during development. That is a situation product
managers desperately need to avoid. If a spec isn’t being
used actively during development, it’s not the developer’s
fault: it’s the product manager’s fault. It’s up to the prod-
uct manager to understand what kind of document
would be useful to developers, and then provide such a
document—one that is much, much better than winging
it. That’s what we’ll focus on in this chapter.

Functional Specifications
The functional spec describes how a product works from
a user’s perspective. It’s not focused on how it will be im-
plemented (that’s covered in the technical spec), but on
defining flows and screens, and how users will experi-
ence the product. This might sound a bit academic to

CHAPTER 7: SPECIFICATIONS

144

some, and against the spirit of the lean movement that’s
all about getting out of the deliverables business, but we
have to remember that documentation isn’t bad—bad
documentation is bad. Good functional specs help teams
communicate, save time, and build better products. But to
make sure your functional specs fall into the good docu-
mentation category, there are a few important points to
remember.

SPECS SHOULD BE DYNAMICSPECS SHOULD BE DYNAMIC

They are not written once and forgotten about. This is
why specs shouldn’t be written in Microsoft Word (no
more v27_FINAL4.docx file names). Instead, use collabora-
tive tools like a wiki or Google Docs to make it easier to
edit and access the most recent version.

SPECS SHOULD BE ACCESSIBLESPECS SHOULD BE ACCESSIBLE

The spec document isn’t something that the PM writes in
isolation before coming down the mountain to hand over
their Ten Commandments to the development team to
implement. Anyone in the organization should be able to
access the specs at any time, and team members should
be able to ask questions and contribute to the spec. That’s
another reason why Word is out, and online collaborative
tools are in. Seriously, uninstall Microsoft Word.

SPECS SHOULD BE FLEXIBLESPECS SHOULD BE FLEXIBLE

The biggest and most valid criticism of functional spec
documents is that they are too rigid. Most are merely a
list of requirements that were written by people far away

145

from actual implementation, and once their job is done,
they are unable to adapt in the face of reality. That’s not
how it should work. There is always going to be a mea-
sure of uncertainty in the functional spec, which will only
become clear once development starts. This is a good
thing, provided the entire team is on board with it. It
means that teams can adapt to the needs of the products
and users, and that they are willing to remove, change, or
add features if needed (that is, if the user evidence or
business need is there).

So what goes into a spec? This is the only part of the book
where things might feel a little bit like a textbook. But
please stick with it, because this is important, and it will
make your life (and the lives of everyone who works with
you) so much easier.

Here are the basic components of a good functional
spec. For smaller projects you might not need all these
sections, but it’s still good to think about them, and use
this as a basic template at the start of each project.

PROJECT SUMMARYPROJECT SUMMARY

The project summary should be concise and to the point,
while communicating enough information so that any-
one in the company can take over the project if needed,
and know exactly who to talk to and what needs to be
done. Typically, the following pieces of information
should be included.

CHAPTER 7: SPECIFICATIONS

146

ContactsContacts

List not just who the product manager on the project is,
but also the business analyst, lead developer, marketing
lead, and so on. Anyone who has a say in the project
should be listed here. If there is a project sponsor (a VP or
C-level person), their name should be in here as well. This
not only helps with communication, but also ensures that
everyone who works on the project feels the weight of re-
sponsibility and ownership required to make good prod-
ucts.

LinksLinks

Most companies use tracking software to assign work to
developers. This can be anything from heavy tools like Ji-
ra or Pivotal Tracker, to lighter ones like Trello or Base-
camp. Sometimes other collaboration tools come into the
mix as well (such as ConceptShare for providing feedback
on graphic design), so it can become really difficult to
keep everything together. Luckily most of these programs
have URL schemes, which means you can gather all the
entry points to the information in a central place—the
links section of the functional spec. List here all imple-
mentation tickets, technical designs, visual assets, con-
tent, marketing communications, analytics requirements,
and the rest. This will allow anyone to easily dive deep in-
to any section of the project.

Problem DefinitionProblem Definition

Before any detail is shown, it’s important to describe the
problem that is being solved by the project. Everything

147

comes back to this. If, two years down the line, a new VP
comes on board and asks why your team did something
(trust me, this will happen), the existence of this section
in the spec will save you from a lot of heartache and re-
work. It’s astonishing how often companies reverse deci-
sions or change the way they do things because they for-
get the reason why they did something in the first place.
Don’t let that happen to your projects.

Business GoalsBusiness Goals

It’s essential to link the user goals identified in the prob-
lem definition to benefits for the business. What do you
expect the impact to be on revenue, conversion rates, and
so on? Include analytics and data on the current situation
and expected change. This is where the three ‘A’s (acquisi-
tion, activation, activity) from chapter 6 can come in
handy as well.

Success MetricsSuccess Metrics

How will you know the project was a success? It’s impor-
tant to set clear, measurable, attainable goals that every-
one on the management and project teams agrees with.
And don’t forget to get the right benchmarks before any
changes are made, so that progress can be measured ac-
curately.

Competitive AnalysisCompetitive Analysis

If applicable, provide examples and analysis of competi-
tor features or products that informed the project. It’s im-
portant to be clear on this, not just to document ideas, but

CHAPTER 7: SPECIFICATIONS

148

also because it keeps the team honest and focused on pro-
viding value that’s distinctly different from how competi-
tors do things.

Project ScopeProject Scope

This section is used not just to describe what is included
in the project, but more importantly, to document what is
out of scope. This is important because projects often spi-
ral out of control (so-called feature creep), which can be
avoided with a clear understanding of what systems or
product areas are not planned to be changed in the pro-
ject.

The project summary is the meta-information about
the project. The purpose is to get everyone in the project
team and beyond aligned on the goals and boundaries of
the project, and also to build up organizational memory
so that decisions don’t get reversed in the future without
proper reasoning and planning.

RISKS AND IMPACT ON OTHER PROJECTSRISKS AND IMPACT ON OTHER PROJECTS

The next section of the spec takes a holistic view of the
project by defining its impact on other projects and sys-
tems. It typically includes an outline of the following po-
tential challenges:

• Known risks: what we should acknowledge as potential
knock-on effects on other projects, such as contracts that
need to be signed before anything can be implemented,
services that need to be built to support new features, and
so on.

149

• Back-office impact: the project’s effect on out-of-sight
areas that could be essential to successful execution. This
includes finance, logistics, distribution, payments, and
more.

• Customer support impact: is new help documentation
needed? Do customer service agents need to be trained on
any new or changed features? This is often an after-
thought and can result in angry users and even angrier
support agents.

• Business intelligence impact: what additional reporting
is needed to ensure that the new product or features can
be tracked effectively?

Once the summary and risks of the project have been out-
lined, it’s time to get into the process of framing and de-
scribing the solution to the problem. Start broad, and then
focus on specifics.

CUSTOMER JOURNEYS AND FLOW CHARTSCUSTOMER JOURNEYS AND FLOW CHARTS

During the product discovery process you would have
created customer journey maps, and possibly some per-
sonas. This is a visual summary of the problem as well as
the solution, so it’s a good idea to include those artifacts
in the spec since they provide additional context on how
the project fits into the larger vision.

CHAPTER 7: SPECIFICATIONS

150

This is also a good place to include any flow diagrams
that will help developers and testers complete their tech-
nical designs and QA plans. This is especially true if there
is complex logic that dictates the different paths users
can take through a flow. Most will be familiar with the
classic boxes and arrows format for flow charts, which
looks something like this:

Customer journey map (Larger view106)

106. http://smashed.by/customer-journey-map

151

http://smashed.by/customer-journey-map
http://smashed.by/customer-journey-map
http://smashed.by/customer-journey-map
http://smashed.by/customer-journey-map
http://smashed.by/customer-journey-map

That format definitely works well, but I’ve also started to
use what Ryan Singer from Basecamp calls “flow short-
hand” diagrams108:

Here’s an example of what it looks like when completed:

Example of a flow chart (Larger view107)

107. http://smashed.by/flow-chart
108. “A shorthand for designing UI flows” – http://smashed.by/ui-flows

CHAPTER 7: SPECIFICATIONS

152

http://smashed.by/flow-chart
http://smashed.by/flow-chart
http://smashed.by/flow-chart
http://smashed.by/ui-flows
http://smashed.by/ui-flows
http://smashed.by/ui-flows
http://smashed.by/ui-flows
http://smashed.by/flow-chart
http://smashed.by/flow-chart
http://smashed.by/ui-flows
http://smashed.by/ui-flows

This approach is particularly useful because it accounts
very specifically for so-called red paths110 —those parts of
a flow where users can get stuck or make mistakes. Iden-
tifying the red paths in a flow early on helps in two ways.

First, it forces designers to think about designing for
error prevention. If you know where a user might go
wrong, it’s possible to design a flow that prevents them
from making that mistake. A simple example is the prac-
tice of only showing a Next or Continue button once all re-
quired fields in a form have been filled out. This avoids
the need to present error messages on form submission,
since the form can’t be submitted until all fields have
been completed.

Second, red paths force us to think through error han-
dling as well. I always think about error handling as the
bastard child of user experience design. No one thinks
about it until it’s too late, and then they try to sweep it un-

Source for both images: Ryan Singer109

109. http://smashed.by/ui-flows
110. Red being the color of danger, of course.

153

http://smashed.by/ui-flows
http://smashed.by/ui-flows
http://smashed.by/ui-flows
http://smashed.by/ui-flows
http://smashed.by/ui-flows

der the rug. But good error handling—inline validation,
messaging that is clear and helpful—provides essential
microinteractions in a good interface.

SKETCHES, WIREFRAMES AND PROTOTYPESSKETCHES, WIREFRAMES AND PROTOTYPES

The UX industry is slowly moving away from using static
wireframes in UI design, and in most cases that’s a good
thing. Static wireframes are helpful to communicate a
concept, but they usually require too much effort for the
payoff, since there are faster ways to communicate ideas
(sketching), and better ways to test the validity of those
concepts (interactive prototypes).

So, in most cases, this section of the spec will include
some photos of the sketching process to show early
ideas—especially what different kinds of ideas were ex-
plored before settling on a direction. Variation versus it-
eration, remember?

It then usually also includes a link to an interactive
prototype, built in software like Axure, or frameworks
like Bootstrap or Foundation. The prototype is often the
part of the spec that’s most referenced by developers,
since it’s the most useful. Instead of having to read
through documents, or asking someone a question every
time they encounter a new interface element, prototypes
allow them to just click around and figure out what the
intention is (and ask someone if it’s not clear).

The spec usually points to the final version of the pro-
totype, but it’s also good to include links and references to
earlier versions that were used for customer validation.
As discussed in an chapter 6, the prototyping phase is a

CHAPTER 7: SPECIFICATIONS

154

hypothesis phase, where different ideas are tested with
real users, and changes are made based on that feedback.

GRAPHIC DESIGNGRAPHIC DESIGN

This part of the spec communicates the visual direction
of the product. This can take a variety of formats. As men-
tioned before, I don’t agree completely that we’re entering
a post-PSD era, but I do believe we’re in a reduced-PSD
era, where we don’t need to create PSD files for every
page or screen in the product.

Instead, a combination of a good interactive prototype,
style tiles112, and a few key PSD files, are more than
enough for developers to code up the pages. Style tiles are
particularly useful because they separate the discussion
of what the interface looks like (“I don’t like yellow!”)
from the discussion of how it works (“That button is in

Example of a page from an Axure prototype (Larger view111)

111. http://smashed.by/axure-prototype
112. http://styletil.es

155

http://smashed.by/axure-prototype
http://smashed.by/axure-prototype
http://smashed.by/axure-prototype
http://styletil.es
http://styletil.es
http://styletil.es
http://smashed.by/axure-prototype
http://smashed.by/axure-prototype
http://styletil.es
http://styletil.es

the wrong place”). In my experience, if arguments about
the prototype and the visual direction happen separately,
it’s much easier to move from prototype to the graphic
design and development phases, because most of the is-
sues of look and feel have already been worked through.

The level of graphic design provided in the spec de-
pends entirely on the nature of the business, and how de-
signers and developers prefer to work together (more on
that later). For some organizations, annotated PSDs work
well; others want each element cut up and described in
detail; while some developers are happy to dig around in
the PSD files and create a UI component library113 based
on what they find there. There is no single right way, but
it’s important that everyone has input on what those de-
liverables are.

THE LAST TWENTY PERCENTTHE LAST TWENTY PERCENT

With all these sections in place, you should have a func-
tional spec that not only provides the background and
context for the project and the user and business goals
you’re hoping to solve, but is also a document that is actu-
ally used during development. Imagine that! But there are
a couple final points that are important to make about
functional specs.

First, this isn’t a document that the PM writes the day
before development starts. This is a document that is be-

113. Component libraries are beyond the scope of this book, but this is a great way
to define visual standards for a product. For more background on this ap-
proach, see “How and why to create a pattern library” by Paul Boag:
http://smashed.by/pattern-library

CHAPTER 7: SPECIFICATIONS

156

http://smashed.by/pattern-library
http://smashed.by/pattern-library
http://smashed.by/pattern-library
http://smashed.by/pattern-library
http://smashed.by/pattern-library

gun as soon as a new project kicks off. I always create a
template in our wiki (or wherever the plan is to store
specs), and open it up as soon I start work on a new pro-
ject. The best way to write a spec like this is to add infor-
mation to it as it becomes available. So I add the customer
journey map as soon as we complete it. I add the sketches
right after the design studio session. This reinforces that
idea that the spec is a living document open to collabora-
tion, and it also breaks up the workload so that it doesn’t
feel like a huge effort to create it.

Second, remember to pick only what you need from
this list—nothing more. For some smaller projects I skip
the customer journey and prototyping phase, and move
straight from sketching changes to development. That’s
OK. Don’t think of the sections above as law; think of
them as an à la carte menu that you can pick and choose
from based on the needs of the project.

And finally, remember that functional specs will only
get you about eighty percent of the way to shipping. The
last twenty percent of product definition happens during
development. That’s how it should be. The spec provides
the background and proposed direction, but it’s only
when you start walking on the path that you will discover
the rocks in the way that need to be moved and avoided.
Embrace that, and get comfortable with negotiating with
designers and developers to find good trade-offs. Want to
avoid using JavaScript on a page, but that means you’ll
have to absolutely position an element on a page, which
has unintended design consequences? Well, that’s a
trade-off between progressive enhancement and design
idealism. The role of product manager is to understand

157

that trade-off, listen to each side’s argument, and then
make a call and move on (and remember—live with the
consequences).

Some people roll their eyes at functional specifica-
tions, believing it’s part of old-school product manage-
ment that isn’t relevant any more. But I’ll repeat what I
said earlier: specs aren’t bad—bad specs are bad. If you
create documentation people actually use to build the
product and understand why certain decisions were
made, how can you argue that it’s not useful? So don’t
stop writing specs. Just start writing really good ones.

Let’s just take a moment to remind ourselves where we
are in the product execution process. We’ve now dis-
cussed problem and product definition, and after a detour
into user-centered design we talked about the importance

CHAPTER 7: SPECIFICATIONS

158

of functional specifications. So now we’re going to dis-
cuss the other types of specifications that are also impor-
tant: technical, and marketing.

Technical Specifications
Whereas the functional specification describes how a
product works from a user’s perspective, the technical
specification describes how the product will be imple-
mented. It describes things like data structures and data-
base models, and what programming languages and
frameworks will be used. The technical spec is usually
not written by the product manager, but by the technical
lead on the project.

In general, technical specifications should:

• Reiterate the user and business goals as laid out in the
functional specification.

• Define the system architecture and infrastructure.

• Define the background tasks required to enable the de-
fined user flows.

• Define the database model.

• Define the interfaces to other back-office systems.

• Define the non-functional requirements (list things like
desired page size, response times, and so on).

Product managers who come from non-technical back-
grounds are often less inclined to get involved in this part
of the project. Although I don’t believe it’s essential for

159

product managers to know how to code, it is important
for them to understand enough of the technological ar-
chitecture and infrastructure to help guide technical
specifications. In some cases, additional programming
might be necessary to support a feature in the way it was
designed. It is then the PM’s role to understand all the
trade-offs involved. Does the extra work required result
in a significant usability improvement, or can the same
goal be accomplished through a slightly easier implemen-
tation?

The PM might not write the technical spec, but they
know it inside out.

Marketing Specifications
The marketing team’s involvement in product develop-
ment is a touchy subject. There is often quite a disconnect
between what product designers and marketing team
members find important. The marketing team is focused
on how to sell a product to users, whereas product de-
signers are focused on making a product that is so good
that it won’t need any fancy sales tactics. The reality is
that these groups have to meet in the middle, because
they need each other. Marketing can’t sell a bad product
effectively, and product designers have to learn how to
communicate the benefits of their products to users.

To ensure the marketing team and product team work
well together, the marketing team has to be involved at
appropriate phases of the development process. And the
development of marketing requirements is the perfect
place for collaboration. Marketing requirements specify

CHAPTER 7: SPECIFICATIONS

160

who the users are for a particular product, and what bene-
fits should be used to sell the product to those users.

The structure I like most for marketing requirements
is one that Amazon uses frequently: writing a short inter-
nal press release (no more than two pages) before any de-
sign or development starts. This press release stays inside
the company, and doesn’t go to any media outlets. In-
stead, it is used to help internal marketing teams under-
stand what the product is about, and as an added bonus it
also helps to keep product teams focused. Ian McAllister
explains114:

Internal press releases are centered around the customer
problem, how current solutions (internal or external)
fail, and how the new product will blow away existing
solutions.

When PMs collaborate with the marketing team on a
press release before the product is released, they are com-
pletely aligned on who and what the product is for, and
how it will be sold to users. If anything happens during
the development phase to change a product so that it’s no
longer in line with the press release, that’s a good time to
pause and figure out what needs to change: the press re-
lease, or the planned feature change?

Keeping marketing requirements in sync with func-
tional and technical requirements throughout the devel-
opment process not only helps to build healthy relation-

114. Ian McAllister’s answer to “What is Amazon’s approach to product develop-
ment and product management?” – http://smashed.by/mcallister-amzn

161

http://smashed.by/mcallister-amzn
http://smashed.by/mcallister-amzn
http://smashed.by/mcallister-amzn
http://smashed.by/mcallister-amzn
http://smashed.by/mcallister-amzn
http://smashed.by/mcallister-amzn

ships with the marketing team, but it’s also another check
to ensure that you’re only building products and features
that meet actual user and business goals.

McAllister recommends the following sections in the
internal press release, which aligns very well with the
process we’ve outlined so far:

• Heading: Name the product in a way the reader (i.e.
your target customers) will understand.

• Sub-Heading: Describe who the market for the prod-
uct is and what benefit they get. One sentence only un-
derneath the title.

• Summary: Give a summary of the product and the
benefit. Assume the reader will not read anything else so
make this paragraph good.

• Problem: Describe the problem your product solves.

• Solution: Describe how your product elegantly solves
the problem.

• Quote from You: A quote from a spokesperson in
your company.

• How to Get Started: Describe how easy it is to get
started.

• Customer Quote: Provide a quote from a hypotheti-
cal customer that describes how they experienced the
benefit.

• Closing and Call to Action: Wrap it up and give
pointers where the reader should go next.

CHAPTER 7: SPECIFICATIONS

162

With these three flexible documents in place, it’s time to
start the development phase and get the product built.❧

163

CHAPTER 8:

Build And Release

When it’s time to start development, most of the building
blocks for a successful development cycle should already
be in place. You’ll have clearly defined problem defini-
tions and goals, and you’ll have living functional, techni-
cal, and marketing specifications that clearly define what
the product is about while still providing room for change
and improvisation. You’ll have a roadmap that doesn’t
specify timelines and release dates, but clearly shows the
priority of what issues are being worked on in any given
cycle. So getting the thing shipped will be easy, right?

Well, not so fast. We all know how crazy things can
get during development, and how quickly the finger-
pointing starts when something goes wrong. The truth is
that most people are scared to work with developers, and
that affects the quality of the output because there are so
many misunderstandings along the way. But it’s not nec-
essary to be scared of developers! It’s just extremely im-
portant to understand how developers work most effec-
tively. The good news is, as Jeff Ello points out115:

Unlike in many industries, the fight in most IT groups is
in how to get things done, not how to avoid work. IT
pros will self-organize, disrupt and subvert in the name
of accomplishing work.

115. “The unspoken truth about managing geeks” – http://smashed.by/
managing-geeks

CHAPTER 8: BUILD AND RELEASE

164

http://smashed.by/managing-geeks
http://smashed.by/managing-geeks
http://smashed.by/managing-geeks
http://smashed.by/managing-geeks
http://smashed.by/managing-geeks

Once you understand this, you also start to realize that
developers don’t hate process. They hate process that
doesn’t help them get things done. So they react very
strongly to things like useless fifteen-person meetings
and forty-page Word documents.

To solve this problem, the needs of makers (such as
designers and developers) should be taken seriously by
managers (those who direct and enable the work). It is the
product manager’s job to make sure that everyone in the
organization understands makers’ work, and also to de-
fine the rules of engagement with developers to protect
their time. Mike Monteiro takes on this issue by attack-
ing the humble calendar in “The Chokehold of Calen-
dars116”:

Meetings may be toxic, but calendars are the superfund
sites that allow that toxicity to thrive. All calendars suck.
And they all suck in the same way. Calendars are a
record of interruptions. And quite often they’re a battle-
field over who owns whose time.

Paul Graham takes a more holistic view in “Maker’s
Schedule, Manager’s Schedule117.” He explains that man-
agers break their days up into hour-long stretches of
time, while makers need large blocks of time in order to
focus:

When you’re operating on the maker’s schedule, meetin-
gs are a disaster. A single meeting can blow a whole af-

116. “The Chokehold of Calendars” – http://smashed.by/calendars
117. “Maker’s Schedule, Manager’s Schedule” – http://smashed.by/makers-schedule

165

http://smashed.by/calendars
http://smashed.by/calendars
http://smashed.by/calendars
http://smashed.by/calendars
http://smashed.by/makers-schedule
http://smashed.by/makers-schedule
http://smashed.by/makers-schedule
http://smashed.by/makers-schedule
http://smashed.by/calendars
http://smashed.by/calendars
http://smashed.by/makers-schedule
http://smashed.by/makers-schedule

ternoon, by breaking it into two pieces, each too small to
do anything hard in. Plus you have to remember to go to
the meeting. That’s no problem for someone on the man-
ager’s schedule. There’s always something coming on the
next hour; the only question is what. But when someone
on the maker’s schedule has a meeting, they have to
think about it.

Makers need long stretches of uninterrupted time to get
things done, and get them done well. Most corporate en-
vironments don’t support this because of an insatiable
need for everyone to agree on everything. So helping peo-
ple understand why this is such a big deal for makers is
important, so that then you can effect cultural change.

Michael Lopp talks about this in his article “Managing
Nerds118.” Substitute the word “nerds” in this article with
“designers and developers” (no offense intended).
Michael describes how nerds are forever chasing two
highs.

The first high is unraveling the knot: that moment
when they figure out how to solve a particular problem
(“Finally, a simple way to get users through this flow.”).
But the second high is more important. This is when
“complete knot domination” takes place—when they step
away from the ten unraveled knots, understand what cre-
ated the knots, and set their minds to making sure the
knots don’t happen again (“OK, let’s build a UI component
that can be used whenever this situation occurs.”).

118. “Managing Nerds” – http://smashed.by/managing-nerds

CHAPTER 8: BUILD AND RELEASE

166

http://smashed.by/managing-nerds
http://smashed.by/managing-nerds
http://smashed.by/managing-nerds
http://smashed.by/managing-nerds
http://smashed.by/managing-nerds
http://smashed.by/managing-nerds

Chasing the Second High is where nerds earn their
salary. If the First High is the joy of understanding, the
Second High is the act of creation. If you want your nerd
to rock your world by building something revolutionary,
you want them chasing the Second High.

And the way to help designers and developers chase the
second high is to “obsessively protect both [their] time
and space”:

The almost-constant quest of the nerd is managing all
the crap that is preventing us from entering the Zone as
we search for the Highs.

So, how do you change a culture built around meetings
and interruptions? How do you understand what design-
ers and developers need in order to be effective, and how
do you relentlessly protect them from distractions? Here
are a few ways to start.

Ask The Makers
Find out what designers and developers need, and then
make it happen. A quiet corner to work in? Sure. A bigger
screen? Absolutely. No interruptions while the head-
phones are on? Totally fine. Whatever it takes to help
them be as creative as possible and to be free to chase that
second high.

Also ask developers how they would like to be includ-
ed in the product development process. Some might pre-
fer to stay in their quiet corners and just code. But there
are also some who would jump at the opportunity to be

167

involved all along the process—from concept and design
all the way through release. The earlier PMs bring devel-
opers into the process, the better. Their ideas and input
are invaluable, and they can also point out possible con-
straints early enough in the project to save a lot of pain
and rework down the road.

Start Working On A Better Meeting
Culture
This one is a constant struggle for organizations of all
sizes, and there are many ways to address it. I try to ad-
here to two simple rules. First, a meeting has to produce
something: a sketch, a research plan, a technical design, a
strategic decision to change the roadmap, and so on. Sec-
ond, no large status meetings to update the management
team on what’s going on. That’s what Google Docs and
wikis are for.

I wouldn’t go so far as to say that meetings are toxic119,
but the need to have an agenda and a tangible outcome
should go without saying. I also like Scott Berkun’s pro-
posal to deal with recurring meetings120:

Even back at Microsoft I had this rule about recurring
meetings: at meeting birth, it should be planned that
they will die. They will stop being useful at some point.
But many of us suffer through zombie meetings, that
live on in an undead state forever. Often there is one per-

119. See “Meetings Are Toxic” by 37signals – http://smashed.by/meetings
120. “Do You Need That Meeting?” – http://smashed.by/need-that-meeting

CHAPTER 8: BUILD AND RELEASE

168

http://smashed.by/meetings
http://smashed.by/meetings
http://smashed.by/meetings
http://smashed.by/need-that-meeting
http://smashed.by/need-that-meeting
http://smashed.by/need-that-meeting
http://smashed.by/need-that-meeting
http://smashed.by/meetings
http://smashed.by/meetings
http://smashed.by/need-that-meeting
http://smashed.by/need-that-meeting

son who feels powerful in the meeting, and they will
keep feeding the zombie with the coworker’s brains just
to preserve that feeling.

Meetings should focus on facilitating the things that
meetings are good at: collective thinking. Meetings that
energize me are the ones where most people are standing,
working together on a common goal. From customer
journey workshops to design studio sessions to analyzing
usability testing results, there are plenty of useful ways
to spend our times in meetings. So, death to zombie meet-
ings. Life to meetings that make products better.

Help Designers And Developers
Understand One Another
Lucas Rocha talks about the importance of designers and
developers working closely together in “Mind the Gap121”:

Iterative design processes that engage designers and en-
gineers very early tend to result in higher UI quality be-
cause it provides the necessary flexibility and agility to
steer ideas as they are implemented. Sounds obvious but
this is much easier said than done. Just see how rare [it]
is to find products with outstanding user interfaces.

This is very true, and the power of small, collaborative
teams has been proven time and again. But it’s important
to take this further. It’s not just about collaboration, it’s

121. “Mind the Gap” – http://smashed.by/mind-the-gap

169

http://smashed.by/mind-the-gap
http://smashed.by/mind-the-gap
http://smashed.by/mind-the-gap
http://smashed.by/mind-the-gap
http://smashed.by/mind-the-gap

also about empathy. If designers and developers collabo-
rate but don’t understand one another, you’ll still get
nowhere.

The main issue is that designers and developers ap-
proach their respective crafts from very different per-
spectives. Design is about composition—how to put hun-
dreds of tiny elements together so that the whole makes
sense. Development is about deconstruction—how to
break down the whole into pieces that can be implement-
ed effectively. That creates a disconnect that is difficult to
overcome if there isn’t empathy between the two groups.

Thomas Petersen describes the ideal situation really
well in “Developers are from Mars, Designers from
Venus122”:

They are the developers who can design enough to ap-
preciate what good design can do for their product even
if it sometimes means having to deviate from the frame-
work and put a little extra effort into customizing cer-
tain functionality. […]

And they are the designers who learn how to think
like a programmer when they design and develop an
aesthetic that is better suited for deconstruction rather
than composition.

So, it’s not just about meeting more often. It’s also about
meeting in the middle to accomplish a common goal to-
gether.

122. “Developers are from Mars, Designers from Venus—A question of metaphors”
– http://smashed.by/mars-venus

CHAPTER 8: BUILD AND RELEASE

170

http://smashed.by/mars-venus
http://smashed.by/mars-venus
http://smashed.by/mars-venus
http://smashed.by/mars-venus
http://smashed.by/mars-venus
http://smashed.by/mars-venus

Celebrate Successes
Dhanji R. Prasanna was a developer on Google Wave, and
when he left Google he wrote an excellent post on some
of the issues with working in big companies. In “The
Mythical Man-Month123” he wrote:

[A]s a programmer you must have a series of wins, every
single day. […] It is what makes you eager for the next
feature, and the next after that. And a large team is poi-
son to small wins. The nature of large teams is such that
even when you do have wins, they come after long, tire-
some and disproportionately many hurdles. And this
takes all the wind out of them. Often when I shipped a
feature it felt more like relief than euphoria.

It’s so important for large teams to celebrate success with
the people they work with every day. It is hard to get that
right in large organizations because the invisibility of in-
dividual team members and the pressures to move on to
The Next Thing aren’t naturally conducive to this type of
behavior. But it’s possible if you work at it.

Whether you keep some champagne in a fridge, send
out company-wide emails thanking people by name, or
ring a bell every time code gets deployed (OK, that last
one is lame, sorry), being in a large organization isn’t an
excuse for acting like a faceless corporation.

One more thing: remember that release day is a big
deal. As the product manager, you are the conductor on
release day. Be at the office (or in the chat room) first, and

123. “The Mythical Man-Month” – http://smashed.by/mmm

171

http://smashed.by/mmm
http://smashed.by/mmm
http://smashed.by/mmm
http://smashed.by/mmm
http://smashed.by/mmm
http://smashed.by/mmm

leave last. Make sure everyone has what they need, and
make your one goal be helping things go smoothly. And
don’t forget the champagne. The team deserves a win, so
make a big deal out of it when the project is live—even if
you have a release every two weeks.

One of the most important jobs of a product manager
is to show progress in the product, because this motivates
the team and shows users that you are listening and in-
vested. So don’t just plan a bunch of projects. Ship them.
As often as possible.❧

CHAPTER 8: BUILD AND RELEASE

172

CHAPTER 9:

Assess And Iterate

Earlier in the book we discussed the importance of defin-
ing success metrics before any changes are made to a
product—and making sure there are benchmarks against
which you can measure that success. I also talked about
the three ‘A’s, which can be quite useful to help identify
the most appropriate metrics: acquisition, activation, and
activity.

Once the project is live it’s time for the reckoning. This
is what it all leads up to for a product manager: finding
out if all the hard work paid off, or if you’ll have to make
some changes to get where you need to be. This feedback
loop is important because it not only determines success,
it also helps you figure out what areas to focus on next.

When I was in primary school one of my favorite sta-
tistics was (somewhat morbidly) related to car accidents.
Once I’d heard that most car accidents happen close to
home124, I couldn’t stop sharing that fact everywhere I
went. “It’s obvious,” I would go on, “that people don’t pay
as much attention to their driving when they’re almost
home.” It was only later that I realized the reason most
car accidents happen close to home is because most dri-
ving happens close to home. I always think about that
story as my first exposure to the danger of data, and how
easily we jump to conclusions on a single data point. This

124. “One in three road accidents happen a mile from home, survey says”, Daily
Telegraph, August 13, 2009 – http://smashed.by/accidents

173

http://smashed.by/accidents
http://smashed.by/accidents
http://smashed.by/accidents
http://smashed.by/accidents
http://smashed.by/accidents
http://smashed.by/accidents

is why it’s so important for the assessment process to in-
clude both qualitative and quantitative measures.

Research triangulation—also known as mixed method
research—is a helpful methodology to keep in mind here.
Research triangulation is the process of combining sever-
al research methods to study a single phenomenon (or in
this case, the effects of a single project). This ensures that
each method is balanced out so that, for example, you’re
not placing too much weight on analytics while ignoring
survey or usability testing feedback. I usually like using a
balance of three research method to determine success.

1. WEB ANALYTICS1. WEB ANALYTICS

Measure the pre- and post-launch metrics with Google
Analytics, ClickTale, or your preferred analytics provider.
This is the hard data, the numbers, the thing that ulti-
mately counts for business success. However, it’s not the
whole story.

2. ONLINE SURVEYS2. ONLINE SURVEYS

When I worked at eBay I ran a program called Product
Tracker, which involved running a series of surveys every
quarter, asking the same questions, to measure how sen-
timents about each of our flows changed over time. This
way we could see how the analytics corresponded to atti-
tudes and feelings about the product.

3. USABILITY TESTING3. USABILITY TESTING

As I keep mentioning, analytics (and surveys too) are
good at showing you what is happening, but you need a

CHAPTER 9: ASSESS AND ITERATE

174

qualitative method like usability testing to understand
why something is happening. This is the only way to find
out why something works (do more of this!) or doesn’t
work (do this differently!).

In an impassioned plea to designers and developers at
a meetup in August 2013, Stijn Debrouwere explained
how our obsession with analytics only (without other
pieces of data) can be really detrimental to the product de-
velopment process. Speaking specifically about the pub-
lishing industry, Stijn said125:

Pageviews is a vanity metric: something that looks really
important but that we can’t act on and that tell us noth-
ing about how well we’re actually doing, financially or
otherwise.
[…]
There’s nothing like a dashboard full of data and graphs
and trend lines to make us feel like grown ups. Like peo-
ple who know what they’re doing. So even though we’re
not getting any real use out of it, it’s addictive and we
can’t stop doing it.

This is not to say analytics are not useful. But we have to
define exactly what we’re measuring, and how that will
help us make a better product. And then we have to trian-
gulate those results with other methods to make it truly
useful.

There is a big culture of A/B testing, or test and learn,
in the software development community. But even

125. “Cargo cult analytics” – http://smashed.by/cargo-cult

175

http://smashed.by/cargo-cult
http://smashed.by/cargo-cult
http://smashed.by/cargo-cult
http://smashed.by/cargo-cult
http://smashed.by/cargo-cult

though A/B testing can be extremely valuable to help
identify the best iteration of a site or a particular page, it
should never be used in isolation.

Since A/B testing is relatively cheap to do and the re-
sults are so compelling, companies are in danger of
adopting a test and learn culture where pages are just A/B
tested with no additional user input. That would be the
wrong way to go. A/B testing shouldn’t be used on its own
to make decisions—it should always be used in conjunc-
tion with other research methods, both qualitative (such
as usability testing and ethnography) and quantitative
(such as desirability studies).

A/B testing is an important method in the research
toolkit because it can give you information that usability
testing on its own cannot. The main goal of A/B testing is
to see how business metrics move up and down depend-
ing on the version of the page—click-through rates,
checkout rates, purchasing rates, and so on. You can’t see
that with usability testing alone. But as Kohavi et al point
out in their paper “Practical Guide to Controlled Experi-
ments on the Web126”, A/B testing has some major limita-
tions:

• “Short term versus long term effects.” Since A/B testing
methods generally use controlled experiments that run
for a few days or weeks, some long-term effects—such as
users becoming familiar with a new design and eventual-

126. Ron Kohavi, Roger Longbotham, Dan Sommerfield, Randal M. Henne; “Practi-
cal Guide to Controlled Experiments on the Web: Listen to Your Customers not
to the HiPPO,” Data Mining and Knowledge Discovery, February 2009, Volume 18,
Issue 1, pp 140-181.

CHAPTER 9: ASSESS AND ITERATE

176

ly preferring it—aren’t accounted for. This is another rea-
son to follow up with additional quantitative and qualita-
tive research a few months after a change was made
based on A/B testing data.

• “Primacy and newness effects.” These issues represent
two sides of the same coin. A primacy effect can be ob-
served when a change to a familiar pattern causes experi-
enced users to be uncertain and hesitate. A new feature,
on the other hand, can encourage some users to concen-
trate all their attention on it. Such issues suggest that A/B
testing should be run several times over a longer period,
or recruit only new users who won’t be subject to the in-
fluence of these effects.

• “Features must be implemented.” Sometimes the feature
being tested is not fully developed, since it’s seen as a test.
This can bias the data: if the feature doesn’t perform well
it might be due to poor execution, not because the feature
itself is ineffective.

• “Consistency.” Because of the way most A/B testing plat-
forms work, it’s possible for users to see different ver-
sions of the same page on different computers. This can
cause confusion for users and further bias the data.

The point of raising these concerns is not to say that we
shouldn’t use A/B testing, but that it is important to use
testing responsibly. Since every research and testing
method comes with its own limitations, a combination of
methods is the only way to get the full picture and make
the right decisions.

177

A common example of how single-source metrics can
be confusing is time on site, a metric that most sites track
religiously. The problem here is that it’s very difficult to
know if the goal should be to increase or decrease time on
site. If a user spends more time on a site, is it because
they’re more engaged, or because they can’t figure out
what to do? If they spend less time on a site, is it because
they’re bored, or because they were able to accomplish
their task very quickly? The metrics can tell us that some-
thing has changed, but we need qualitative methods to
understand why those changes happen.

It’s essential to take what you learn back into the prod-
uct development process. So everything you learn here
feeds back into the gathering of user, business, and tech-
nical needs that started it all. And on and on the cycle
goes: release, learn, improve. That’s what being a product
manager is all about.❧

CHAPTER 9: ASSESS AND ITERATE

178

CHAPTER 10:

Product Management In
Agile Methodologies

Throughout the book I’ve deliberately avoided talking
about specific development methodologies like agile or
waterfall. Product management is a discipline that sits
apart from any specific methodology. These are universal
skills and methods that can be applied regardless of the
philosophy a company uses to build software. But since
agile techniques are currently the most common way
companies choose to implement their projects, I wanted
to touch on it briefly. I’m not going to spend much time
discussing the mechanics of agile development—there
are other texts much better suited for that. This definition
from Anthony Colfelt127 will suffice for our purposes:

Agile is an iterative development approach that takes
small steps toward defining a product or service.

Because of its iterative approach, agile methods fit the
lean model very well, and the process has several impor-
tant benefits:

• Quicker return on development investment.

• Constant feedback to help improve the product.

127. “Bringing User Centered Design to the Agile Environment” –
http://smashed.by/agile

179

http://smashed.by/agile
http://smashed.by/agile
http://smashed.by/agile
http://smashed.by/agile
http://smashed.by/agile
http://smashed.by/agile

• It generates product momentum, which is good for users
as well as development teams.

• It encourages contributions from different perspectives
since it relies heavily on cross-functional teams.

But there are also quite a few challenges to overcome, as
Colfelt points out:

• An unclear role for design. We haven’t quite figured
out how to incorporate UX into the agile environment.
There are some good approaches, but we’re all still trying
to get there.

• The product discovery process is not well defined.
Agile techniques focus on iteration, which means there is
rarely time for defining a problem properly, and trying
out a few solutions before picking the iteration to go for.

• The temptation to call it “good enough.” Shipping
beats perfection in agile, which is great, but it can be tak-
en too far. Quality can start falling by the wayside com-
pletely in the interest of keeping up velocity, and that is
really bad for the product.

The important point to remember is that agile methodolo-
gies are good for refining a product, but not good for defin-
ing a product. To use language we’ve relied on throughout
the book, agile is for iteration, not variation. Scott
Sehlhorst also pointed out one of the biggest dangers of
agile in “The One Idea of Your Product128”:

CHAPTER 10: PRODUCT MANAGEMENT IN AGILE METHODOLOGIES

180

http://smashed.by/one-idea
http://smashed.by/one-idea
http://smashed.by/one-idea

Agile is not a process by which you start typing without
any idea of what you intend, releasing it and then get-
ting feedback in an iterative process. If that’s how you’re
approaching agile, your process is broken.

This means that the product manager fulfills a crucial
role in the agile environment, primarily to ensure that
there is enough variation in the product design process,
not just iteration, and that there is a clear plan and vision.
In particular, here are some things to remember for prod-
uct managers in an agile environment.

• The product manager is the product owner
In agile teams, the product manager fulfills the role of
product owner. This might seem obvious, but sometimes
teams bring product owners in who don’t have a back-
ground in some of the other aspects we’ve discussed in
this book, like planning and strategy. This is dangerous
because…

• Product ownership is a role within the larger respon-
sibilities of the product manager
One of the issues I see in the agile community is that the
titles “product manager” and “product owner” are often
used interchangeably. This is a problem because it has the
potential to confuse teams into thinking that the only ac-
tivities product owners are responsible for are those that
are officially part of the agile methodology, such as back-
log grooming.

128. “The One Idea of Your Product” – http://smashed.by/one-idea

181

http://smashed.by/one-idea
http://smashed.by/one-idea

• You still have to plan ahead
Being agile doesn’t mean you can just stumble along and
hope it all works out. There’s no use shipping workable
software if it’s software that no one wants to use. That’s
not failing fast, that’s taking on unnecessary risk. Product
vision and roadmaps are still important in an agile envi-
ronment.

• Try to be one or two sprints ahead of the team
There is certainly some disagreement about the idea of
sprint zero, and always making sure that design and
product are a little bit ahead of the team. But I’ve found
that making sure all the UX ducks are in a row—at least
eighty percent of the way—before a sprint starts is the
only way to make sure that core principles of utility and
usability don’t get thrown out in the interest of delivering
a product as quickly as possible.

• Replace heavy specs with right-fidelity specifications
Light prototypes, documented as outlined in chapter 7 on
specifications, is the right way to go with agile as well.

• Follow the spirit of agile, not the letter
It’s very easy to get caught up in the rules of agile. I’ve
seen people make a religion out of backlog grooming,
sprint planning, retrospectives, and so on. The spirit of
agile is to iterate and learn your way to better software.
The process helps you get there, but it’s OK to ignore or
change the parts that don’t work for the team.

Below is a diagram that shows one approach to include
product and UX work in a typical scrum environment:

CHAPTER 10: PRODUCT MANAGEMENT IN AGILE METHODOLOGIES

182

Stories are added to the backlog based on the user needs,
business needs, and technical needs that are uncovered
during regular product planning. So far, so good. The part
that’s particularly important from a product management
perspective is to not just use story points to score each
story. The user, business, and technical needs must have
a huge impact on the priority of stories, so each story
should also be scored based on those aspects.

From the prioritized backlog, I’ve still experienced that
the most effective way to keep the design team involved
throughout the delivery process is to make sure design
and prototype testing happen a sprint or two before each
of the delivery steps. In this way the generic model for

An approach to integrating design and scrum principles (Larger view129)

129. http://smashed.by/ux-and-scrum

183

http://smashed.by/ux-and-scrum
http://smashed.by/ux-and-scrum
http://smashed.by/ux-and-scrum
http://smashed.by/ux-and-scrum
http://smashed.by/ux-and-scrum

product management I shared in this book can still be ap-
plied effectively to agile development.❧

CHAPTER 10: PRODUCT MANAGEMENT IN AGILE METHODOLOGIES

184

CHAPTER 11:

Getting Started

The last chapter of a book like this usually contains a
summary. But that doesn’t feel right for a topic that’s all
about doing. So instead, I want to address a different top-
ic for this chapter, a question I hear all the time: where do
I start? The theory is nice, the framework is nice, but how
do you actually jump in, and start being a product manag-
er? As it turns out, this makes for a good summary of the
book anyway, so it’s a win-win situation.

Arriving at a company as a new (or sometimes, the
first) product manager can be daunting. Product manage-
ment is usually introduced in an organization once there
is such a high level of internal enthusiasm and chaos that
the leaders aren’t sure how to handle it any more. And
then everyone looks to the product manager to “manage
stuff.”

It’s easy to get overwhelmed by how much there is to
do when you step into a stressful role like product man-
agement. So here are some recommendations on how to
spend your first three months at a new company.

First 30 Days

UNDERSTAND THE PRODUCT, THE MARKET,UNDERSTAND THE PRODUCT, THE MARKET,
AND THE COMPANY CULTUREAND THE COMPANY CULTURE

Here’s how I defined product management in chapter 1:

185

The product manager’s mission is to achieve business
success by meeting user needs through the continuous
planning and execution of digital product solutions.

With that in mind, spend the first thirty days learning
and understanding:

• The product
What does the company sell? What does the product do?
How does it work? What is the value proposition? What
problems does it solve for customers? What features does
it have? What kind of bugs does it have? What are the
main usability issues?

• The market
Who currently uses the product? What are they like?
What are their characteristics? What do they like and not
like about the product? Who is the target market? Are
there personas for each different type of person in the
target market? What are macro- and micro-market needs
addressed by the product? Who are the competitors?

• The current product/market fit
Are you in a good market with a product that can satisfy
the market? What are the gaps you need to close between
what the product does, and what the market needs, to en-
sure a better fit?

• The company culture
Talk to as many people as possible in the organiza-
tion—from marketing to finance to design to engineer-
ing—to understand how things work. What do people
like about the product development process? What do

CHAPTER 11: GETTING STARTED

186

they hate? Do designers feel like they have enough time
to do their work? Do developers have what they need to
program effectively?

Above all, ensure the PM role is properly understood by
everyone. As we discussed earlier, for a product manager
to be effective, the organization needs to understand that
PMs should have autonomy over the products they man-
age. Executive buy-in is a prerequisite for success, so
make sure it’s well understood that even though everyone
gets a voice, not everyone gets to decide. Remember Seth
Godin’s words: “Nothing is what happens when everyone
has to agree.”

Next 30 Days

DEVELOP A STRATEGIC PRODUCT PLANDEVELOP A STRATEGIC PRODUCT PLAN

Based on what you learn in the first thirty days, start the
product planning phase:

• Run a product discovery workshop to start identifying
user needs, business needs, and technical needs, and to
create a problem frame diagram.

• Develop personas and customer journeys, and start
brainstorming ideas for product development with the
team.

• Work with the team to prioritize ideas and start build-
ing a roadmap for development. Consider methods like

187

the KJ-Method or the Kano model as a way to formalize
prioritization efforts.

• Identify success measures—define how you’ll know if
what you’re doing is having the desired impact. The three
‘A’s (acquisition, activation, activity) are always a good
start.

• Put the appropriate processes in place to ensure effec-
tive product development life cycles. This means know-
ing what kind of specifications developers need to start
working, how research and design fits into the process,
how to ensure hypothesis and prototype testing is baked
into the way you work, where marketing becomes in-
volved, how QA should work, and so on. You can only do
this once you understand the current culture, and what
the strategic plan will be.

All of the above goes into the strategic product plan, as we
defined it earlier. Among other things, this plan includes
statements about the product’s value proposition, who
the market is (customer profiles), how you plan to achieve
product/market fit (the business opportunity, pricing, dis-
tribution), what the priorities are, a first stab at the
roadmap, and proposed success measures.

CHAPTER 11: GETTING STARTED

188

Final 30 Days

START EXECUTING THE STRATEGIC PRODUCTSTART EXECUTING THE STRATEGIC PRODUCT
PLANPLAN

Now that the plan and the initial roadmap are in place,
start the product execution phase:

• Start with a reasonably small problem definition with
clear and easily measurable success metrics. Work with
the team to get it done right (collaborative teamwork,
constant learning through prototype testing, right-fideli-
ty specifications).

• Measure, and show the success of the process. Use
this to build trust and continue to ship improvements
(and even better products).

• Assess the situation, and use customer and business
feedback to adjust priorities (and the roadmap) as needed.
Flexibility is key.

• Keep going. Repeat any of the initial steps as needed.

• Have fun while you’re doing all of this.

After the first ninety days, use the framework I discussed
in this book to get into the rhythm of building great prod-
ucts: constant learning, constant testing, constant dream-
ing, constant building. There will never be a dull moment.

What I’ve shown in this book is that the life of a prod-
uct manager has an exhausting, exhilarating rhythm that
is as invigorating as it is excruciating. Spending your

189

time systematically moving from product planning to
product execution, and moving between those phases
seamlessly, will not only give you a solid foundation from
which to improve the product, but also ensure that you
ship the right improvements at the right time.

There are thousands of ways to make a living. But we,
the product managers, choose to spend our time dream-
ing up products and getting them out into the world. That
is an incredible privilege, and an opportunity I wouldn’t
trade for anything. We get to work on understanding
people, and finding out how technology can improve
their lives. Yes, it’s stressful, but it is so, so worth it. Let’s
go make the best products we can possibly make, togeth-
er.❧

CHAPTER 11: GETTING STARTED

190

Acknowledgements

None of this would have happened if Francisco Inchauste
didn’t discover my blog (I still don’t know how) and decid-
ed to take a chance on me. Because of him I started writ-
ing for Smashing Magazine. Because of that work I built
up a relationship with Vitaly. And that gave me the oppor-
tunity to pitch this book idea. I’m also incredibly grateful
that he agreed to be the technical editor for the book. He
played equal parts editor and psychologist, which is ex-
actly what I needed. Francisco, I am forever in your debt.
Thank you.

Vitaly Friedman, Markus Seyfferth, and the rest of the
Smashing Magazine team took this project on with open
arms, and I’m so thankful for that. They’re such a friend-
ly, passionate crew, and a joy to work with. Thank you for
your dedication and support throughout this project.

Owen Gregory came in at just the right moment to do
much more than copyediting. He asked critical questions
that ironed out some of the issues I just couldn’t see be-
fore because I was too close to the text. Thanks, Owen,
you’re awesome.

I love the illustrations Anna Shuvalova made for the
book. It’s pretty much what I saw in my head. Thanks An-
na!

Speaking of what’s in my head, Francisco also did the
cover design, and he did such an amazing job. I want this
design on a T-shirt and wear it all the time, but I guess
that would be going a little overboard.

Last but not least, thank you to my wife Jessica and
my two wonderful daughters Aralyn and Emery. They en-

191

dured lots of stress and Saturday morning coffee shop
sessions to get this thing done. None of this matters with-
out them, so this is their book. Don’t worry guys, you
don’t have to read it. I just want to dedicate it to you.❧

ACKNOWLEDGEMENTS

192

About The Author

Rian van der Merwe is passionate about designing and
building software that people love to use. After spending
several years working in Silicon Valley and Cape Town,
he is currently based in Portland, OR. He blogs130 and
tweets131 regularly about user experience and product
management.

130. http://www.elezea.com/
131. http://twitter.com/rianvdm

193

http://www.elezea.com/
http://www.elezea.com/
http://www.elezea.com/
http://twitter.com/rianvdm
http://twitter.com/rianvdm
http://twitter.com/rianvdm
http://www.elezea.com/
http://www.elezea.com/
http://twitter.com/rianvdm
http://twitter.com/rianvdm

	Imprint
	Table of Contents

	Part 1: Introduction
	Introduction
	Chapter 1: Roles And Responsibilities Of The Product Manager
	Why Companies Need Product Managers
	Product Managers Ensure a Market-Driven Approach
	Product Managers Improve Time-to-Everything

	Characteristics Of A Good Product Manager
	Leader and Collaborator
	Communicator and Negotiator
	Respond to every piece of feedback
	Note what feedback is being incorporated
	When feedback is not being incorporated, explain why
	Use a validation stack to defend decisions

	Passionate and Empathic
	Qualified and Curious
	Trustworthy and Ethical
	Responsible and Flexible

	In Fairness…
	Free from Favoritism
	Free from Self-Interest
	Free from Bias
	Free from Deception

	Where Product Management Fits Into An Organization
	A Prerequisite For Success
	Coming Up Next…

	Part 2: Planning
	Chapter 2: Uncovering Needs
	User Needs
	1. Exploratory Research
	2. Design Research
	3. Assessment Research

	Business Needs
	Eliminating Bad Revenue Streams
	Pursuing Good Revenue Streams

	Technical Needs
	Putting It All Together

	Chapter 3: Product Discovery
	The Rise Of Usable, Useless Products
	Why Products Fail To Fit
	Product Discovery: A Better Way
	1. Frame the Problem
	Fishbone Diagrams
	The Five Whys

	2. Explore and Assess Multiple Solutions
	3. Prioritize and Plan
	KJ-Method
	Kano Model
	Amazon.com’s Approach

	The Output

	Case Study: The User Experience Of kalahari.com
	Hello, I’m A Product Manager
	Hello, I’m A User Experience Designer
	Building A Roadmap

	Chapter 4: Product Roadmaps
	The Importance Of Product Roadmaps
	Product Roadmaps Assume You Know the Future
	Product Roadmaps Set the WrongExpectations
	Why Product Roadmaps are Safe (andEssential)

	The Elements Of A Roadmap
	Coming up next…

	Part 3: Execution
	Chapter 5: Defining A Product
	Problem Definition
	Product Definition And Design Studio

	Chapter 6: User-Centered Design And Workflows
	Buying Time To Do The Right Thing
	The Three ‘A’s

	What About Responsive Design?
	Workflows: Making UCD Part Of Every Project

	Chapter 7: Specifications
	Functional Specifications
	Specs Should Be Dynamic
	Specs Should Be Accessible
	Specs Should Be Flexible
	Project Summary
	Contacts
	Links
	Problem Definition
	Business Goals
	Success Metrics
	Competitive Analysis
	Project Scope

	Risks and Impact on Other Projects
	Customer Journeys and Flow Charts
	Sketches, Wireframes and Prototypes
	Graphic Design
	The Last Twenty Percent

	Technical Specifications
	Marketing Specifications

	Chapter 8: Build And Release
	Ask The Makers
	Start Working On A Better Meeting Culture
	Help Designers And Developers Understand One Another
	Celebrate Successes

	Chapter 9: Assess And Iterate
	1. Web Analytics
	2. Online Surveys
	3. Usability Testing

	Chapter 10: Product Management In Agile Methodologies
	Chapter 11: Getting Started
	First 30 Days
	Understand the Product, the Market, and the Company Culture

	Next 30 Days
	Develop a Strategic Product Plan

	Final 30 Days
	Start Executing the Strategic Product Plan

	Acknowledgements
	About The Author

