


For my wife, Fan, who has the power 
to make me smile, in spite of the world.



Published 2016 by Smashing Magazine GmbH, 
Freiburg, Germany.
ISBN: 978-3-945749-43-2.

Cover and illustrations created by Heydon Pickering.
Editing & proofreading: Owen Gregory.
Print layout: Markus Seyfferth. 
eBook production: Cosima Mielke.
Typefaces used: Elena by Nicole Dotin and Mija by Miguel 
Hernández.  

Inclusive Design Patterns was written by Heydon Pickering 
and reviewed by Rodney Rehm and Steve Faulkner.



Table Of Contents

Introduction

The Document

A Paragraph

A Blog Post

Evaluation By Pattern

Navigation Regions

A Menu Button

Inclusive Prototyping

A List Of Products

A Filter Widget

A Registration Form

Test-Driven Markup

Further Reading

08

20 

46 

70 

108

124

154

180

190 

224 

260

290

308



About The Author
Heydon Pickering is a utilitarian designer, writer and public 
speaker, the accessibility editor for Smashing Magazine,1 
and a consultant working with the Paciello Group.2 He’s 
interested in new and innovative ways to make the web an 
inclusive place. User research, systems thinking, and plain 
old semantic HTML all play their part. When Heydon isn’t 
writing, coding or illustrating, he does some mental health 
campaigning, experiments with sound design, and thrashes 
out doom metal riffs on his detuned SG copy. He’s almost 
entirely fueled by original recipe Guinness and Naga chillies.

About The Reviewers
Rodney Rehm is a web developer based in southern Germany. 
After being a full-stack freelancer for a decade, he moved on 
to working on the front-ends of Qivicon, Deutsche Tele-
kom’s Smart Home platform. He created URI.js3 and the  
ally.js4 accessibility library, made libsass run in the browser,5 
and wrote the world’s first buggyfill.6

1 https://www.smashingmagazine.com/tag/accessibility/
2 https://www.paciellogroup.com/
3 http://medialize.github.io/URI.js/
4 http://allyjs.io/
5 https://github.com/medialize/sass.js/
6 https://github.com/rodneyrehm/viewport-units-buggyfill

https://www.smashingmagazine.com/tag/accessibility
https://www.paciellogroup.com
http://medialize.github.io/URI.js
http://allyjs.io
https://github.com/medialize/sass.js
https://github.com/rodneyrehm/viewport-units-buggyfill


Steve Faulkner is the senior web accessibility consultant and 
technical director of TPG Europe. He joined the Paciello 
Group in 2006 and was previously a senior web accessibility 
consultant at Vision Australia.7 He is the creator and lead 
developer of the Web Accessibility Toolbar8 accessibility 
testing tool. Steve is a member of several groups, including 
the W3C Web Platforms Working Group and the W3C ARIA 
Working Group. He is an editor of several specifications at 
the W3C9 including: 

• HTML 5.1,10

• ARIA in HTML,11

• Notes on Using ARIA in HTML,12

• HTML5: Techniques for useful text alternatives.13

He also develops and maintains HTML5accessibility.com.

7 https://www.visionaustralia.org/
8 https://www.paciellogroup.com/resources/wat/
9 http://w3.org
10 http://w3c.github.io/html/
11 http://w3c.github.io/html-aria/
12 http://w3c.github.io/aria-in-html/
13 http://www.w3.org/TR/2014/WD-html-alt-techniques-20141023/

http://HTML5accessibility.com
https://www.paciellogroup.com/resources/wat
http://w3.org
http://w3c.github.io/html
http://w3c.github.io/html-aria/
http://w3c.github.io/aria-in-html/
http://www.w3.org/TR/2014/WD-html-alt-techniques-20141023/


Foreword
I’ve always had a good word for Heydon Pickering. However, 
laws of libel prevent me from writing it here, so instead let 
me tell you about this book: it’s very good. Heydon clearly 
and comprehensively shows you how to use the web prop-
erly; that is, how to take advantage of its built-in powers of 
reach, inclusivity and accessibility, so you don’t lock out any 
potential customer or visitor, regardless of how they choose 
to (or need to) access your content.

I’ve been writing about the same for many years, but I’ve 
still picked up a number of useful tips and tricks when read-
ing through the drafts. It’s a little unfortunate that Heydon 
didn’t accept some of my amendments to make his musical 
taste less — what’s the word? — embarrassing, but don’t let 
that put you off reading. There’s a load of useful advice con-
tained in this book, and it would be really good if you were 
to follow it and make your corner of the web a better place 
for all. Just tweet me if you want music suggestions.

Bruce Lawson,14 Deputy CTO, Opera

14   http://www.brucelawson.co.uk

http://www.brucelawson.co.uk




8 Inclusive Design Patterns

Introduction
Imagine we meet at a party. Not long into conversation 
you ask me what I do. I simply say, “I’m a designer.” Before 
you have the chance to ask me what type of designer I am, 
our mutual friend, the host, taps me on the elbow.

“Can I borrow you a moment?”

They make their apologies and usher me away. You’re rather 
relieved, actually, since the sort of person who proudly 
pronounces themselves “a designer” is probably a bit of a 
self-regarding bore. Nonetheless, you’re left briefly won-
dering what I actually do to pay the bills. Perhaps he makes 
designer egg cups? Sews postmodernist swimwear? Builds 
helicopter missile systems? He could have meant anything.

By the end of the party we’re not reacquainted, but in a 
conversation with our mutual friend over the phone the 
following day, they apologize to you again for the previous 
night’s interruption. After a moment, you recall.

“Oh, your friend the designer. Well, never mind. What does he actu-
ally design anyway?”

“Oh, he's a web designer.”



9Introduction

“Oh, right.”

“Yeah.”

Now, the way you might react to this new information is 
really going to depend on your relationship to the sprawl-
ing, amorphous public information matrix we call “The 
Web.” If you’re more a consumer of the web than a producer 
for the web, web designer is probably sufficient: “OK, so they 
design web stuff. Websites and the like.”

But I’m willing to bet this isn’t you, otherwise you wouldn’t 
be reading this book. In which case, you’re no doubt aware 
just how controversial, contested, and frequently contrary 
the term design is in the context of the web. The number 
of people contributing to the web at any given moment 
is unfathomable, and so is the variety of their talents and 
skills. So which ones are the designers, and what do they do?

For a long time, we’ve been getting the answers to these 
questions epically, tragicomically wrong. We’ve miscon-
ceived and mistreated the medium, both making hard work 
for ourselves and shortchanging our audiences as a result.



10 Inclusive Design Patterns

Reconceiving Web Design

Our most persistent error as an industry has been to apply 
the largely incompatible principles of printed graphical com-
munication design to the web. A print designer’s domain is 
purely visual, confined to predictable and predetermined 
spaces, using agreed materials and consistently reproduci-
ble resolutions and colors. Print design is the production of 
static, immutable artifacts.

That’s not like the web at all, but it doesn’t stop us pouring 
wasted energy into pointless frippery like pixel perfection 
and organizing ourselves into those two ill-defined, arbi-
trary groups, designers and developers. It’s as if content 
editors and project managers don’t even exist!

The truth is, design work is deliberation. It’s the pursuit of 
the best solution to a given problem. By relegating design 
to the realm of visual aesthetics, so much of the web goes 
undesigned. This can only lead to inaccessibility, poor per-
formance and, of course, a general lack of utility.

The aim of this book is to help you nurture design thinking 
that’s suited to the web and, as such, acknowledges some 
(astonishingly recent!) developments in the evolution of the 
web design discipline:



11Introduction

• The web is made of code and must be designed, there-
fore designing with code is working with the right
materials. This is the best course of action.

• Content — what we write or otherwise express via the
web — must be subject to design thinking and, in fact,
all other design decisions should facilitate that.

• Web pages are not immutable artifacts. They should be
tolerant of changing, dynamic content. This content
should be managed in terms of discrete components
which can be reused as agreed patterns.

• The potential audience of a website or app is anyone hu-
man. Inclusivity of ability, preference and circumstance
is paramount. Where people differ — and they always
do — inclusive interfaces are robust interfaces.

Inclusive Design

For the subject and purpose of this particular book, that last 
principle is the most important. Before we can contemplate 
inclusive patterns, inclusive design must first be defined. 
It’s really more of a mindset than anything reducible to dis-
crete skills, so I’m going to illustrate it by way of an analogy.



12 Inclusive Design Patterns

Here’s a property representing a street address in JSON:

"address": "84, Beacon St, Boston, MA 02108,
 United States"

Now, if I wanted to print the address to screen using a 
templating library like Handlebars, I might write something 
like {{this.address}}. Fine, but what if I needed to refer to 
the country part of my address on its own? With the data in 
its current form — one string — I’d have to write a helper to 
extract the “United States” part.

Handlebars.registerHelper('getCountry', function(address) {
return address.split(',').pop();

});

This is what some might refer to as hacky: a fragile and 
unfortunately complex workaround. A hack is a symptom of 
bad design. Not only is the employment of a helper func-
tion relatively computationally heavy, it’s also unreliable. 
Why? Because not all addresses end in a country. British 
addresses, for instance, usually end in a postcode:

"address": "85-87, Gwydir St, Cambridge, England, CB1 2LG"

A more robust solution might be to make the address prop-
erty an object and store each part of the address as a prop-
erty on that object:



13Introduction

"address": {
"building": "85-87",
"street": "Gwydir St",
"city": "Cambridge",
"country": "UK",
"zipOrPostcode": "CB1 2LG"

}

Now I can access the country simply with address.country.

This seems like a better approach. But is it? Using a hugely 
international set of addresses, you’ll find they vary so much 
that prescribing an unbending set of properties is just not 
tenable. Simply capturing a single string makes more sense. 
You’d have to forfeit being able to extract countries, but 
sometimes that’s the way it goes.

In any case, thinking about the structure of data and trying 
to arrive at an optimal solution is designing and there’s not 
an Adobe license or copy of Sketch in sight. In fact, it’s really 
a kind of inclusive design: here, the right solution is one 
which is inclusive of different kinds of addresses. We’d like 
to be able to deal with consistent, uniform addresses, but 
that’s not reality. Instead, we make allowances.

Replace “structure of data” with “interface” and swap 
“addresses” for “people” in the previous paragraph, and 
you’ve got inclusive interface design in a nutshell.



14 Inclusive Design Patterns

The best part is that designing inclusive interfaces, like 
designing robust data schemas, doesn’t have to be any harder 
or more complex than making exclusive or otherwise obso-
lete ones. It’s just different. By looking at common web inter-
face patterns through the lens of inclusivity, this book will 
help you quickly learn how to apply and reapply conventions 
that will earn you a broader and less frustrated audience.

The Inclusive Button

Let’s look at one more simple example, a prototypical inter-
face pattern much like those to follow. This time, we’ll look 
at an interactive element, a button, from the perspectives 
of three types of designer. The purpose of this example is to 
show you how a little bit of knowledge about the medium 
can lead to a simpler and more inclusive solution.

THE GRAPHIC DESIGNER

The first designer comes from a graphic design background. 
Their files never have a resolution lower than 300dpi and 
they have a working knowledge of color theory. Their typog-
raphy and illustration skills are vivacious. To them, a button 
is a visual artifact, producible in Adobe Illustrator or Sketch. 
They are concerned with how that button resembles a 
real button and how it simultaneously fits into the larger 
design’s branding. They have no idea how to put that button 
on a web page or to make it do anything.



15Introduction

THE DESIGNER WHO CODES

The second designer has many of the same skills exhib-
ited by the first, but differs in one important aspect: they 
have enough knowledge of HTML, CSS and JavaScript to 
make their button appear inside a web page, and attach a 
JavaScript event listener to it.

The HTML looks like this:

<div class="button"></div>

and the CSS like this:

.button {
 width: 200px;
 height: 70px;
 background: url('../images/button.png');
}

The JavaScript would probably be written using jQuery 
or perhaps AngularJS’s API. Using the Web API (“vanilla” 
JavaScript), it might look a bit like this:

button.addEventListener('click', function() {
// the event fired on click

});



16 Inclusive Design Patterns

Designer number two is a designer who has learned to code 
inasmuch as they’ve acquired the ability to bring their ideas 
to the web — to put them in web pages. Under some cir-
cumstances, they may even work for the odd user. Unfortu-
nately, aside from the event listener, all they’re really doing 
is encoding graphic design, not designing with code. As the 
third designer is only too aware, there are few direct transla-
tions between graphic design and web interface design.

THE INCLUSIVE DESIGNER

The third designer sees the second designer’s button from 
a number of perspectives, each the imagined point of view 
of a potential user. Accordingly, the current implementation 
presents a number of problems.

One problem regards the not insignificant number of users 
who zoom their web pages to ease reading. The image 
used is not a vector, so cannot be scaled without becoming 
degraded and blurry as a result. That’s if the user operates 
full page zoom. If the user adjusts their browser’s default 
font size independently, the image (which has been defined 
using pixels rather than relative units) will not scale at all.

Another problem is encountered when a user switches off 
image loading in their mobile browser, to save bandwidth: 
the button, constituted entirely by a background image, will 
be invisible. Users having trouble differentiating foreground 
and background imagery may turn on Windows’ high con-



17Introduction

trast mode.1 This, under some conditions, will also eliminate 
background images.2

And it doesn’t stop there. The <div> element, unlike the 
purpose-built <button> element, is not (in its current form) 
focusable or operable by keyboard. Some folks choose to 
navigate and operate web pages with a keyboard. Others 
must use a keyboard, because a mouse requires a finer 
motor control than they can muster.

Screen reader users include those with severe vision impair-
ments, and others who find that having a web page read out 
to them using a synthetic voice aids their comprehension. 
The second designer’s button design leaves these users 
entirely bereft. Most desktop screen reader users are also 
keyboard users, so they encounter the same problems as the 
previous group. In addition, the <div> element is semanti-
cally inert, offering no information non-visually that it is, 
indeed, a button.

Since the button’s label of “Start” is in a background image 
as part of CSS’s presentation layer, this too is unavailable to 
assistive technologies. It’s also why the button is untrans-
latable into different languages, making it exclude interna-
tional audiences. That’s a lot of people missing out!

1 http://smashed.by/hicontrast
2 http://terrillthompson.com/blog/182

http://smashed.by/hicontrast
http://terrillthompson.com/blog/182


18 Inclusive Design Patterns

The inclusive designer anticipates these problems, because 
experience tells them that people differ, well, in lots of 
different ways. Far from being daunted or frustrated, they 
know that by exploiting standard conventions they can 
achieve more by doing less. In other words, they know when 
to design and when to employ what is already designed — a 
simple HTML button element, provided as standard by the 
HTML specification. Resizable, translatable, focusable, inter-
operable, stylable, restylable, maintainable, mutable, simple.

<button>Start</button>

Not all inclusive design solutions are as simple as choos-
ing the right HTML element for the job. Even so, combining 
simple, standard elements and conventional structures 
empathetically needn’t be difficult, nor impede artistic 
flair: our <button> can still be presented in a near-infinite 
number of ways.

There are 140,737,479,966,720 combinations of hexcodes. Obviously 
not all of them are accessible. If only 1% of all color combinations 
are accessible then there are still almost 141 million combinations to 
choose from. This seems more than adequate to paint any bikeshed 
you will come across for the rest of your career.” 

— “The Veil Of Ignorance”, Adam Morse3

3 http://mrmrs.io/writing/2016/03/23/the-veil-of-ignorance/

“

http://mrmrs.io/writing/2016/03/23/the-veil-of-ignorance/


19Introduction

With experience, identifying the countless inclusive solu-
tions to interface design problems can become second 
nature. The patterns described in this book are reusable 
as exemplars, but mostly they’re for practice. When new 
problems arise, requiring different inclusive patterns to be 
formulated, you will have learned how to think about for-
mulating them. You will have become an inclusive designer.





21The Document

The Document
While other chapters of this book will look into dis-
crete interface patterns — conventions realized as modules 
or components — it would be foolhardy to not recognize 
that each of these will ultimately belong to a web document. 
HTML pages vary dramatically in shape and size, and can 
include any combination of patterns; but there are a handful 
of document-level best practices we should stick to.

The aim here is not to go in search of the ultimate boilerplate 
but to configure a parent web page for an inclusive interface.

The Doctype

Whether your web page is an old-school static resource or a 
single-page app, it is unavoidably a document. The clue is in 
the “DOC” part which should appear in the first line of code: 
<!DOCTYPE html>. This serves as an important reminder that 
even when you’re designing a highly tactile and dynamic 
interface, you are still really just putting content into a 
browser window. Never forget that the browser itself is an 
interface, which can be augmented and configured in a 
number of ways by the user — as well as helping interpret 
the content you provide for third-party assistive technolo-
gies like screen readers. Your subsidiary interface should be 
tolerant of users’ differing setups and configurations.



22 Inclusive Design Patterns

Your interface is not the only interface users are interacting with when 
their browsers are open.

In addition, the omission of the aforementioned doctype 
declaration can result in unexpected and broken behavior 
for users. Without a doctype declared, the browser simply 
doesn’t know how to interpret the content and can regress 
into a non-compliant and incompatible mode, often called 
quirks mode.4 Layout and interaction can become error-prone 
and unpredictable. If things get plain odd when testing a 
web page, I always check for a doctype before trying any-
thing else. I’ve been stung too many times.

The lang Attribute

If the doctype tells the browser what kind of document it is 
serving (HTML5 in the above example), then the <html> ele-
ment’s lang attribute tells it which language it is written in.  

4 http://smashed.by/quirksmode

http://smashed.by/quirksmode


23The Document

I’m not talking HTML or XHTML; I mean English or French.

<html lang="en"> <!-- language set to English -->

Though frequently omitted, declaring a language for a web 
page could scarcely be more important. Not only does it 
make the page more indexable by search engines, but it also 
becomes easier to translate by user’s operating third-party 
tools such as Google’s Translate API.5 It also helps the user 
to write in the page’s language. Firefox, for instance, changes 
dictionaries on <textarea>s so that spelling errors are high-
lighted appropriately.

Perhaps most starkly, a page that does not have a language 
declared — or has the wrong language declared for the 
content — will not trigger the adoption of an appropriate 
synthetic voice profile when used with a screen reader. That 
is, if <html lang="en"> is present but the text is actually in 
French, you’d hear a voice profile called Jack doing a bad 
impression of French, rather than a French profile called 
Jaques using authentic French pronunciation.

<p>Il ne faut pas mettre tout dans le même sac!</p>

In addition to screen readers and computer braille displays 
benefiting from proper language declaration, it also helps 

5 https://cloud.google.com/translate/docs

https://cloud.google.com/translate/docs


24 Inclusive Design Patterns

browsers choose and render system fonts with the appropri-
ate character sets. For instance, lang="zh-Hans” will invoke 
the rendering of a simplified Chinese font. Garbled text, 
rendered in unbefitting characters is not optimally inclusive 
of your readership to say the least.

It is possible to switch languages within a page using the 
lang attribute on child elements within the <body>. For 
instance, I may want to quote some French within an Eng-
lish language page:

<blockquote lang="fr">
 <p>Ceci n’est pas une pipe</p>
 <p>— <cite>René Magritte</cite></p>
</blockquote>

In my CSS I can select any sections declared as French using 
the :lang pseudo-class, applying a font well suited to the 
French character set, thereby improving legibility:

:lang(fr) {
 font-family: French Font, fallback, sans-serif;
}

The lang attribute can be used to improve the readability, 
translatability and compatibility of web documents’ written 
content, helping open it up to an international audience. 
It’s easy to include the lang attribute, so just go ahead and 
include it.



25The Document

Responsive Design

Responsive design is a big part of inclusive design. By 
designing documents that can respond and adapt to their 
environment, they become compatible with the ever prolif-
erating choice of devices on the market. This book is not the 
place to discuss the ins and outs of responsive design, but 
you should be aware of some responsive design principles 
that support inclusive design.

CONTENT BREAKPOINTS

Targeting the specific viewports of specific devices (employ-
ing device breakpoints) is an exercise in futility if you want 
to create a truly inclusive experience. There are just too 
many viewport variations available to support each one. 
Instead, you should create an entirely flexible design from 
the outset and insert breakpoints only where the content 
breaks the layout — hence content breakpoint or tweakpoint. 

By employing content breakpoints, you can ensure success-
ful layouts for a range of devices far greater than you would 
ever be able to manually test with. Unless your superpower 
is prescience and you can anticipate the device setup of each 
and every one of your users, this is the only way to go.



26 Inclusive Design Patterns

Locating content breakpoints is easy using Firefox’s respon-
sive design mode.6 Just press Cmd + Option + M, then resize 
the simulated viewport incrementally until the content is 
forced to collide, overlap or wrap. The responsive design 
mode interface displays the current dimensions, allowing 
you to record and attend to that breakpoint.

Your responsive design should cover every width. That doesn’t mean you 
need a breakpoint for every width.

Simple interfaces are usable interfaces, and much less work 
in terms of managing breakpoints. As a rule of thumb, you 
should never set a fixed width or height on any element: 
the intrinsic flexibility of boxes means they can tolerate the 
same content in different spaces. Web pages behave like 
this without author CSS, and should continue to respect this 
fundamental behavior where CSS is included.

6 http://smashed.by/rdmode

http://smashed.by/rdmode


27The Document

ALLOW PINCH-TO-ZOOM

The viewport meta tag is where responsive design is, some-
what magically, enabled. Yet it’s also where we habitually 
disable users’ ability to zoom content, making experiences, 
well, less magical. In an informal poll I took on Twitter 
asking my followers about the biggest mistakes designers 
make regarding inclusion, the suppression of pinch-zoom 
on handheld devices was by far the most cited.

To be clear, then, the first of what follows is unacceptable; 
the second is correct.

<!-- don’t use this -->
<meta name="viewport" content="width=device-width, initial-
scale=1.0, minimum-scale=1.0, maximum-scale=1.0, 
user-scalable=no">

<!-- use this -->
<meta name="viewport" content="width=device-width, 
initial-scale=1.0">

Adrian Roselli provides a comprehensive list of reasons why 
disabling this feature undermines inclusion:7

• The text may be too small for the user to read.
• The user may want to see more detail in an image.
• Selecting words to copy/paste may be easier for users 

when the text is larger.

7 http://adrianroselli.com/2015/10/dont-disable-zoom.html

http://adrianroselli.com/2015/10/dont-disable-zoom.html


28 Inclusive Design Patterns

• The user wants to crop animated elements out of the 
view to reduce distraction.

• The developer did a poor job of responsive design,  
and the user needs to zoom just to use the page  
(this happens!).

• There is a browser bug or quirk (still a bug) that causes 
the default zoom level to be odd.

• It can be confounding for users when a pinch/spread 
gesture is interpreted as something else.

You may recall my remark earlier that the browser itself is 
an interface. To achieve inclusive design you should act as 
a facilitator, allowing users to configure the way they view 
and interact with the content you provide them. The fewer 
decisions you make for them, the more they can make for 
themselves.

If your layout breaks badly when a user zooms, the design is 
at fault, not the user, and removing their ability to zoom is 
not a solution. As a rule of thumb, avoid using positioned 
elements, especially with position: fixed. When content is 
enlarged, any elements stuck to a certain part of the screen 
are liable to become blind spots.



29The Document

Font Size

Desktop browsers tend to render fonts at 16px by default. 
There is a rationale for reasonably large defaults: anything 
else risks alienating a huge swath of users, many from 
older populations whose eyesight has deteriorated. “But my 
audience is young and hip!” I hear you say. Sure, but gener-
ous font sizes don’t offend young, keen-eyed folks. The key 
to inclusive design isn’t to target specific groups, it’s to not 
exclude groups arbitrarily — there’s nothing to gain.

You may already be accustomed to the convention of setting 
font size using a percentage, on the root (<html>) element 
like so:

html {
 font-size: 100%;
}

In the example above, 100% is equal to 16px if the user has 
not adjusted the font size manually, either in their operating 
system or browser settings (e.g. under Preferences → Content 
in Firefox). So, 100% is really “one hundred percent of the 
default size or the size the user has chosen.” If I were to 
set the font size explicitly as 16px at the root level, I would 
diminish the user’s ability to adjust font size to their liking.



30 Inclusive Design Patterns

html {
 /* do not do this */
 font-size: 16px;
}

It is true that a greater number of users will operate full-
page zoom using Cmd (or Ctrl) and +, but modern browsers 
and operating systems still support text-only resizing, and 
so should you. To make sure font-size, padding and margin 
all resize proportionately, each should be set using the rela-
tive units rem or em.

This greatly reduces the complexity of your media queries. 
In the example to follow, the line-height and margin of 
the p will scale proportionately, because they are both set 
relative to the font-size. Where everything is set propor-
tionately, whole pages can be scaled simply by adjusting the 
root font size, as in the media query that follows.

(Note: To ensure the media query triggers at the correct 
point relative to user-defined font size, we are using the em 
unit there, too. The rem unit causes problems in Safari, as 
“PX, EM or REM Media Queries?”8 by Zell Liew attests.)

 
 

8 http://zellwk.com/blog/media-query-units/



31The Document

p {
 margin: 1.5rem 0;
 font-size: 1rem;
 line-height: 1.5;
}

@media (max-width: 60em) {
 html {
  font-size: 80%;
 }
}

An <h2> given font-size: 2rem; is two times larger than the 
size set at the root. If the user has gone to Settings → Content 
in Firefox and set the default font size to 20px, 2rem will 
mean 2 × 20 — or 40px. Do not make the mistake of convert-
ing theoretical rem units into pixels via a CSS preprocessor. 
It’s what ends up in the compiled CSS, parsable by browsers, 
that counts.

VIEWPORT UNITS

Viewport units present the opportunity to set text that 
scales with the height (vh) or width (vw) of the viewport. 
Essentially, this means you can employ implicitly respon-
sive text without the need for media queries like that of the 
previous code example. 

You just need to address one issue: elements set using view-
port units cannot be scaled using full-page zoom. Zoom can 



32 Inclusive Design Patterns

be reinstated by entering a viewport unit-based value into a 
sum with an em-based value. This has the added advantage 
of ensuring a minimum font size for the page. That is, 1em + 
(0 × 1vw) is still 1em.

html { font-size: calc(1em + 1vw); }

With this algorithm in place, everything scales incremen-
tally and proportionately relative to the viewport. It saves 
you a lot of manual coding without sacrificing accessibility. 

The only modern browser that does not support viewport 
units at the time of writing is Opera Mini. Not to worry: 
font-size: calc(1em + 1vw); is a progressive enhance-
ment. Where it is not recognized, browsers fall back to the 
user agent’s default. In other words, Opera Mini would 
display the body text as it would have liked to begin with.

Progressive Enhancement

Progressive enhancement, like responsive design, is a cor-
nerstone of inclusive design. Much maligned as the ardu-
ous task of making web applications still do things when 
a unicorn-rare user switches JavaScript off, it has much 
broader implications.

Progressive enhancement is about building a strong founda-
tion of content, logical and robust in form, which is resilient 



33The Document

to a multitude of network and scripting failures. It’s not 
just about JavaScript or CSS being unavailable, but when 
and how they are unavailable, for how long, and when they 
should be made available, and in what order.

Patterns in this book are founded on well-formed and 
semantic HTML structures, enhanced by CSS and JavaScript. 
Where possible, integrated JavaScript widgets degrade into 
well-structured static content or interactive form elements, 
meaning users without JavaScript or CSS — temporarily 
or otherwise — can traverse and use content. Whether 
JavaScript is available or not, semantic HTML ensures an 
inclusive experience for assistive technology users and makes 
interaction behavior more predictable and efficient.

Enhancement is a great thing, but only where it’s really needed.

In a progressively enhanced setup, scripts should be 
inserted at the end of the document, just before the closing 
</body> tag. This allows the main DOM content to be ren-
dered before the scripts are executed.



34 Inclusive Design Patterns

 <script>// TODO: enhancement</script>
</body>

Managing Assets

In terms of our document setup, it’s critical we make sure 
the resources we are using to enhance the page content do 
not stand in the way of that content. On slow networks, the 
content should arrive as soon as possible. It’s what the user 
went to the page for, after all.

Web fonts are typically large assets which should be treated 
as an enhancement. In particular, FOIT (flash of invisible 
text) should be avoided: if the font resource is indefinitely 
stalled (it happens!), users of some devices and browsers 
will be stuck with a page that has no visible text. That’s 
pretty uninclusive of users on temperamental networks.

The trick is to load the page then the font, using the onload 
event as a watershed. For this to work, the fonts will have 
to be base64-encoded and embedded into the style sheet in 
question. In Keith Clark’s example,9 <link> has an onload 
handler which switches the media type from none to all. If 
JavaScript is entirely unavailable, the CSS is loaded regard-
less, thanks to <noscript>.

9 http://smashed.by/render-block



35The Document

<link rel="stylesheet" href="fonts.css" media="none" 
onload="if(media!='all')media='all'">
<noscript><link rel="stylesheet" href="fonts.css">
</noscript>

The base64-encoded font would be included inside an 
@font-face declaration block, like so:

@font-face {
 font-family: Merriweather;
 font-style: normal;
 font-weight: 400;
 src: local('Merriweather'), 
url('data:application/x-font-woff;charset=utf-8;base64...');
}

A more comprehensive way of overcoming FOIT is offered 
by Bram Stein10 and requires a small JavaScript depend-
ency. Font Face Observer allows you to watch and wait on 
the completion of a font resource loading using a simple 
promise-based interface:

var observer = new FontFaceObserver('MyWebSerif');

observer.check().then(function() {
 document.documentElement.className += "fonts-loaded";
});

10 https://github.com/bramstein/fontfaceobserver

https://github.com/bramstein/fontfaceobserver


36 Inclusive Design Patterns

It’s simple to then supply the font in your CSS, using the 
.fonts-loaded class selector shown above:

html {
 /* system font with fallback */
 font-family: MySystemSerif, serif;
}

html.fonts-loaded {
 /* web font with fallbacks */
 font-family: MyWebSerif, MySystemSerif, serif;
}

In defeating FOIT, you have to accept a lesser evil called 
FOUT (flash of unstyled text). This is a rather unjust moni-
ker since all fonts are styled (i.e. they have their own form). 
However, there can be an unpleasant and disorienting 
jump when the web font supplants the system font after 
it has loaded. This is due to one font being intrinsically 
larger or smaller than the other, causing lines to wrap in 
different places.

To mitigate this undesired effect, your best strategy is to 
choose fallback system fonts with intrinsic dimensions 
(metrics) which are similar to the web font.



37The Document

Subsetting Fonts

A font that supports a large, international character set is 
an inclusive font. Nevertheless, you should only include a 
subset containing the characters you need or your users 
may suffer performance issues. The difference in file size 
between an entire font and one subsetted to just the amper-
sand glyph you want will be many orders of magnitude!

When including fonts using Google Fonts,11 you can append 
a text parameter to the URI listing just the characters you 
need. For example, if you know your <h2> headings will use 
just the uppercase letters from a particular font, you can 
include the link like so:

<link href="https://fonts.googleapis.com/
css?family=Roboto:900&text=ABCDEFGHIJKLMNOPQRSTUVWXYZ"
rel="stylesheet" type="text/css">

If you are serving your own fonts, you can first subset them 
using Font Squirrel’s generator.12 In the CSS font stack, 
characters not supported by a priority font are filled by a 
fallback. In practice, this means a well-matched system font 
can supply the more unusual characters, allowing you to 
heavily subset the web font. 

11 https://www.google.com/fonts
12 http://www.fontsquirrel.com/tools/webfont-generator

https://www.google.com/fonts


38 Inclusive Design Patterns

By using Font Squirrel’s generator, you can roll back your 
web font’s character set to just the Basic Latin Unicode 
block,13 for example.

body {
 font-family: SubsettedWebFont, ExtensiveSystemFont, 
sans-serif;
}

The <title> Element

The <title> element, found in the <head>, should be 
familiar to you already as the element browsers glean the 
text from for their tab labeling, and search engines the text 
for their results links. Certainly, unlabeled browser tabs 
are a frustrating shortcoming for most anyone, but there 
are additional implications for assistive technology users. 
Throughout this book you’ll hear a lot about accessible names. 
These are the assistive technology compatible labels for the 
various elements of your web pages. The accessible name 
for a document, <iframe> or embedded SVG element is 
provided by their <title>. It should describe the purpose of 
the contents of said element.

The <title> is announced as soon as a new web document 
is loaded, so it is your opportunity to provide a succinct 

13 https://en.wikipedia.org/wiki/Basic_Latin_(Unicode_block)



39The Document

summary of the page. Conventional practice is to describe 
the page and append author and site information. 

For example, “Inclusive Design Template | Heydon’s Site.” 
For a search results page, you should include the search 
term the user provided; something like, “Website name | 
Search results for search phrase.”

The <main> Element

Some patterns in this book, like navigation regions, 
should appear consistently between pages of the site as 
landmarks. Others will contribute to the modular, often 
dynamic content that makes up unique pages. In conven-
tional web page anatomy, this content is designated to a 
main content area.

<main id="main">
 <!-- this page’s unique content -->
</main>

The concept of main content is not a new one, but it is 
only recently that we’ve been afforded a tool to inclusively 
separate it from surrounding page apparatus like headers, 
navigation regions and footers. The <main> element defines 
a region recognized and communicated by screen readers. 
Screen readers like JAWS also offer a keyboard shortcut (the 
Q key) to access <main>, allowing the user to bypass a page’s 



40 Inclusive Design Patterns

preamble and go straight to the content they came for. In 
a single-page application, your singular <main> should be 
where each of your functionality-heavy views is rendered. 
In a static blog or brochure website, <main> would contain 
blog posts and other informational content. A products page 
would describe the products within <main>.

Since <main> is designed to contain the salient content of 
a page, it can make the writing of a print style sheet easier. 
If your navigation, header, footer and sidebar (<aside>) 
regions are correctly made the siblings of <main>, you can 
target them quite easily with CSS:

@media print {
 body > *:not(main) {
  display: none;
 }
}

I’m not one to print web pages. I gave up on home printers 
a long time ago because they always seemed to break after 
ten minutes of use. But not everyone is like me, and making 
sure printed pages do not contain page elements which are 
only relevant when browsing on-screen is an act of con-
siderate, inclusive design. It’s currently the easiest offline 
solution available, because it means the reader can print to 
PDF and save to their local drive.



41The Document

Another advantage of being able to eliminate subsidiary content is the 
ability to improve the on-screen reading experience. Extensions are  
available14 to apply your own CSS on a per-domain basis.

SKIP LINKS

Skip links are a classic allowance made in the name of inclu-
sive design: they feel like an awful cludge, but their impact 
on the experience of some types of users is tried and tested.

A skip link appears above all other content on the page and 
points to the main content area. But who’s it for? Conven-
tional wisdom says screen reader users but, as I’ve already 
covered, they have other means to reach the <main> ele-
ment. The principal beneficiaries of skip links are sighted 

14 http://smashed.by/stylish

http://smashed.by/stylish


42 Inclusive Design Patterns

keyboard users. Such people are not afforded the same 
shortcuts as screen reader operators, so it’s them we’re mostly 
helping to skip over navigation and other header content.

Skip links should not appear visually by default because 
they have very limited utility to mouse and touch users and 
would only serve to confound them. To make skip links 
available to keyboard users, we should bring them into view 
on focus:

[href=”#main”] {
 position: absolute;
 top: 0;
 right: 100%; /* moves off screen */
}

[href=”#main”]:focus {
 right: auto;
}

When a keyboard user enters a new page, the document 
itself will be the first thing to receive focus. With the above 
provision in place, when the user hits their Tab key they’ll 
focus the first interactive element on the page: the skip link. 
Focusing the skip link reveals it visually, giving the user the 
option of skipping to the main content if so desired. Tabbing 
again will hide the skip link and focus on the next interac-
tive element on the page (probably the homepage link or the 
first link in the navigation list).



43The Document

<!DOCTYPE html>
<!-- the main language of the page declared -->
<html lang="en">
 <head>
  <meta charset="utf-8">

  <!-- a viewport declaration which does not disable zooming -->
  <meta name="viewport" content="width=device-width, initial-
scale=1.0">
  <!-- a non-blocking base64-encoded font resource -->
  <link rel="stylesheet" href="fonts.css" media="none" 
  onload="if(media!='all')media='all'">
  <noscript><link rel="stylesheet" href="fonts.css"></noscript>

  <!-- a non-blocking stylesheet -->
  <link rel="stylesheet" href="main.css" media="none" 
  onload="if(media!='all')media='all'">
  <noscript><link rel="stylesheet" href="main.css"></noscript>

  <!-- a descriptive label for the page -->
  <title>Inclusive Design Template | Heydon's Site</title>
 </head>
 <body>
  <!-- a handy skip link for keyboard users -->
  <a href="#main">skip to main content</a>

  <!-- logo / page navigation etc. goes here -->

  <main id="main">
     <!-- unique content of page goes here -->
  </main>

  <!-- a non-blocking javascript resource -->
  <script src="scripts.js"></script>
 </body>
</html>

Putting The Page Together

OK, let’s see how our inclusive document is shaping up.



44 Inclusive Design Patterns

“

A Note On Frameworks, Preprocessors 
And Task Runners

It seems to me that developer ergonomics should be less important 
than our users’ needs. 

— Paul Lewis15

A lot of web design articles and books are about improving 
your workflow and making your life easier as a developer. 
Should you wish to adopt a framework or employ a preproc-
essor to speed up your development process, be my guest. 
However, this book is not about you; it’s about your audience.

As such, any time spent on tools will only be in cases where 
they can have a direct impact on the quality of the user 
experience. Under all other circumstances we’ll be exploring 
the possibilities offered by standard web technologies like 
HTML, CSS, JavaScript and SVG. How these underlying 
technologies actually interact with your users will be the 
focus throughout (alongside organizational and writing 
techniques that benefit users too, of course).

You can take the lessons learned here and apply them 
within any framework sufficiently flexible to allow you to 
write and organize good interfaces. 

15 https://aerotwist.com/blog/react-plus-performance-equals-what/



45The Document

Any opinionated frameworks not easily configurable for 
inclusive design techniques should be avoided. They lead 
you to build poor products.

To help me stay focused on the true task at hand, I have 
a points system. In all cases, whether I’m applying visual 
design, writing JavaScript behavior or structuring content, I 
ask who benefits from the way I’m approaching it.

• 1 point: it benefits me
• 10 points: it benefits a user/reader like me and with my 

setup
• 100 points: it benefits me, people like me, and users/

readers unlike me, with differing setups

One hundred points is what we’re aiming for here.





47A Paragraph

A Paragraph
Let’s start small. In Brad Frost’s atomic design terminol-
ogy,15 a paragraph would be an atom: an indivisible building 
block with which complex patterns (molecules, organisms and 
pages) are created.

Some say a picture paints a thousand words, but I prefer 
the contrary expression: “Never send a picture to do the 
job of words.” Text is the most direct and efficient way of 
communicating information and — though imagery and 
other media have supplemental value for those who learn 
better visually or have literacy issues — it should be treated 
as primary. This applies whether you’re in the business of 
publishing lengthy, florid prose or dotting isolated descrip-
tions and messages around an application.

With so many exciting opportunities available to us to build 
interactive mechanisms, it’s tempting to neglect the design 
of our body text. Yet not only is a readable web page an 
inclusive one, there’s also some interactivity to address in 
the forms of zoom functionality and inline hyperlinks.

15 http://bradfrost.com/blog/post/atomic-web-design/#atoms

http://bradfrost.com/blog/post/atomic-web-design/#atoms


48 Inclusive Design Patterns

The Typeface

There is a lot of conflicting advice on what the characteristics 
of a readable body text typeface should be. One well-sup-
ported claim is that sans serif fonts are more readable than 
serif ones. Nonetheless, it is entirely possible to design an 
excruciatingly unreadable font which is technically sans serif.

Instead of relying on conventional wisdom, here are a few 
things to ask about a typeface under consideration:

• Does it have any ornamentation that gets in the way of 
comprehension?

• Are the metrics (such as x-height)16 consistent between 
letterforms?

• Are individual letterforms distinct in shape or can they 
be confused with others?

• Does the typeface support all of the characters and font 
styles that are needed?

The British Dyslexia Association notes some specific char-
acteristics17 that can aid legibility. Generous ascenders (e.g. 
the vertical line in d) and descenders (e.g. the down-pointing 
line in y) proved popular among dyslexic readers in their 
research. A d and b which were not an exact mirror image 

16 https://en.wikipedia.org/wiki/X-height
17 http://bdatech.org/what-technology/typefaces-for-dyslexia/

https://en.wikipedia.org/wiki/X-height
http://bdatech.org/what-technology/typefaces-for-dyslexia/


49A Paragraph

of one another also helped, as well as a clear distinction 
between an uppercase I, lowercase l and 1. Kerning (the 
spacing between characters) benefited from being reason-
ably generous, particularly between r and n. Otherwise 
“modern” could be read as “modem.”

Although sans serif fonts are generally thought to be more readable, their 
simplicity makes them more vulnerable to having similar letterforms.

As with all things, successful comprehension is a question 
of offering enough but not too much information. Accord-
ingly, serif typefaces are generally regarded as overcomplex, 
but a purposeful use of serifs to differentiate characters is 
actually beneficial.

It’s important to note that legible body text for folks with 
reading disorders such as dyslexia is also pleasant body 
text for those who have less trouble reading. By choosing 
a typeface that we feel the average user could read, we’d 
be consciously alienating a section of our users. Instead, by 
selecting a typeface which is workable for those who struggle 
to read, we arrive at a choice that works for everyone. This is 
efficient and effective inclusive design.



50 Inclusive Design Patterns

The average user is created from the combination of all users. What 
we get is, in fact, a completely different user. None of our users is 
like the average user. Therefore, when designing for that artificial 
individual we create something that doesn’t fit anyone’s needs. 

— “Designing for the extremes,” Susana Gonzalez Ruiz

As the excellent article “Designing for the extremes”18 points 
out, designing first for users in extreme situations helps us 
better serve everyone. The article uses bandwidth as another 
exemplar: a web app that’s performant on the most unrelia-
ble mobile network is, therefore, performant everywhere.

However, it’s important not to think about extreme cases in 
isolation and to target specific groups. In an experimental 
study carried out in Spain19 (PDF) which investigated the 
readability of different fonts to dyslexic people, a typeface 

18 http://sugoru.com/2013/07/14/designing-for-the-extremes/
19 http://smashed.by/dyslexiastudy

“

http://sugoru.com/2013/07/14/designing-for-the-extremes/
http://smashed.by/dyslexiastudy


51A Paragraph

designed specifically for dyslexic readers performed very 
poorly. It would appear that the typeface designers, though 
well-meaning, made some generalizations about the target 
audience. As a result, they alienated the majority of dyslexic 
readers as well as creating a “clunky and difficult to read” 
font for everyone. In the article “A Typeface For Dyslexics? 
Don’t Buy Into The Hype,”20 the creator of the Lucida type-
face, Chuck Bigelow, corroborates these findings with his 
own research.

Typesetting

Having chosen an inclusive typeface, we ought to do it 
justice with good composition. Inclusive typesetting aids 
readability and is the task of choosing a measure, justifi-
cation and leading which suit the typeface at hand. These 
provisions, according to Bigelow and others, are likely more 
important than the choice of font (unless the font is eye-wa-
teringly illegible, of course).

MEASURE

A paragraph’s measure is the length, in characters, of one line. 
In text that isn’t justified (see “Justification” below) this will 
vary, so you should measure the longest line of a sample para-
graph. Lines that are too long are difficult to read because, on 

20 http://smashed.by/dyslexiafont

http://smashed.by/dyslexiafont


52 Inclusive Design Patterns

reaching the end of the line, scanning back to find the start 
of the following line becomes problematic. Lines that are too 
short require darting your eyes back and forth too frequently 
— something that becomes tiresome quickly.

In Robert Bringhurst’s book “The Elements of Typographic 
Style,” he recommends a measure between 45 and 75 char-
acters. In CSS, 1rem roughly corresponds to the width of the 
typeface’s lowercase m, so a paragraph which is 60rem wide 
could be said to have a measure of 60 — nicely within range 
for comfort.

Setting paragraphs’ measure directly is unwise, since in 
responsive and modular layouts they should wrap accord-
ing to their containing element. Bearing this in mind, no 
container of text in your layout should exceed your stated 
measure. For instance, your <main> element should be set 
with an appropriate max-width.

main {
 max-width: 60rem;
}

This has a useful outcome regarding media queries which 
augment the root font size: the measure adjusts proportion-
ately. For example, where I increase the font size for wider 
desktop screens, the measure — which is defined using a 
unit relative to the font size (rem) — also increases.



53A Paragraph

html {
 font-size: 100%; /* the default, so the block can be 
removed */
}

main {
 max-width: 60rem;
}

@media (min-width: 120rem) {
 html {
  font-size: 150%;
 }
}

By virtue of relativity, we don’t just set an inclusive measure 
but ensure it within responsive layouts too.

JUSTIFICATION

Justification, possible by setting text-align: justify; in 
your CSS, is generally considered bad practice for web con-
tent. Justification means making each line the same length, 
which makes paragraphs look neater but can severely 
impair readability. If you’ll excuse the pun, I’ve struggled to 
justify using justified text on many occasions because I just 
like the way it looks. I’d be the first to admit I was putting 
vanity before inclusion. Bad dog!

In text justification, to make each line of equal length, 
words need to be redistributed within their lines, creating 
distractingly uneven word spacing.



54 Inclusive Design Patterns

Justified text produces the worst results when using a narrow measure, 
such as in the column-based layout illustrated.

In desktop publishing, this issue is mitigated by hyphena-
tion: breaking up larger words to redistribute them more 
evenly. Unfortunately, CSS hyphenation, available via the 
hyphens21 property, is poorly implemented across browsers. 
One of the most popular browsers, Chrome, does not sup-
port hyphenation at all. To make matters worse, JavaScript 
polyfills22 for hyphenation tend to be extremely weighty 
because they must refer to a large library of agreed hyphen-
ation patterns. Not all browsers even support hyphenation 
for languages other than English.

For good readability without JavaScript dependencies and 
their attendant performance issues, the default text-align 
value of left is preferable. This results in a ragged right-

21 https://developer.mozilla.org/en/docs/Web/CSS/hyphens
22 https://github.com/mnater/Hyphenator

https://developer.mozilla.org/en/docs/Web/CSS/hyphens
https://github.com/mnater/Hyphenator


55A Paragraph

hand side to your paragraphs, but users won’t care. They’ll 
be too busy effortlessly digesting your content.

LEADING (LINE-HEIGHT)

Leading relates to the height of individual lines. It is the 
vertical measure between one line’s baseline and the next. 
In the W3C’s WCAG 2.0 accessibility guideline 1.4.8 Visual 
Presentation,23 it is recommended that a generous “space-
and-a-half” of leading is applied to paragraphs. In CSS 
this can be expressed using the line-height property. For 
instance, if the font size was 16px, the leading should be at 
least 24px. However, as stated earlier in “The Document,” 
it’s rarely advisable to use fixed units like pixels because 
it makes managing comfortable proportions a headache. 
Instead, line-height should be set as a unitless proportion:

/* (life is too short)
p {
 font-size: 16px;
 line-height: 24px;
}
*/ 

p {
 font-size: 1rem; /* the default, so this line not needed */
 line-height: 1.5;
}

23 http://smashed.by/levelaaa

http://smashed.by/levelaaa


56 Inclusive Design Patterns

Now, as the paragraph font size is increased or decreased 
(either in a media query or by the user changing their font 
size settings), a comfortable, proportionate line height is 
ensured. When a pixel-based line height is used, the follow-
ing is the result:

The danger of a line height that is not relative to the font size.

CONTRAST

Why so many type designers are enamored with pale gray 
text on a white background, I’ll never know. Quite apart 
from it causing readability issues, it just looks feeble. In any 
case, low-contrast combinations of text and background 
colors should be avoided.

Since it’s easy to become wedded to brand colors early in 
a project, instead of testing color contrast after the fact, I 
recommend designing an accessible color scheme from 
the outset. Free tools like Contrast-A24 (requires Flash) and 
Color Safe25 are available to help you there. If you end up in 

24 http://www.dasplankton.de/ContrastA/
25 http://colorsafe.co/

http://www.dasplankton.de/ContrastA
http://colorsafe.co


57A Paragraph

the unfortunate position that colors were chosen without 
recourse to contrast accessibility, tools like Color Contrast 
Analyser26 can help you identify problem areas. I’m glad it’s 
not me who’ll have to inform your brand guru!

What’s less known is that very high contrast can actually 
diminish readability for some users. Sufferers of scotopic 
sensitivity syndrome27 (or Irlen syndrome) are sensitive 
to glare, and stark contrast can result in blurred text or 
text that appears to move around. It is advisable to slightly 
temper the contrast between your paragraph text and back-
ground color.

main {
 background: #eee;
}

p {
 color: #222;
}

As I’ll restate throughout the book, there’s rarely an inclu-
sive design provision that benefits only one kind of user or 
reader. At this juncture I’d like to thank you in advance for 
dampening contrast in this way. That’s because bright light 
has a habit of triggering migraines for me. Thank you.

26 https://www.paciellogroup.com/resources/contrastanalyser/
27 http://irlen.com/what-is-irlen-syndrome/

https://www.paciellogroup.com/resources/contrastanalyser
http://irlen.com/what-is-irlen-syndrome/


58 Inclusive Design Patterns

Inline Links

CSS is a blessing and a curse. It gives us the freedom to exer-
cise our creativity, and it gives us the freedom to exercise our 
creativity. I’m not saying every website and app should look 
the same, but we have a habit of breaking with conventions 
just to appear radical. Here’s the thing: in a world of artifice 
and ornamentation, utility is radical. And utility depends 
on cognition, which depends on convention. The trick is to 
embrace convention without dispensing with personality.

Save for button-like call-to-action links which play by dif-
ferent rules of affordance, it is conventional for links to be 
underlined. Not only does capitalizing on this convention 
help folks to identify links within paragraph text, but it also 
alleviates a more extreme concern of inclusive design: color 
blindness. By differentiating inline links by color alone, 
some readers will not be able to pick them out from the 
surrounding text, so there should be another means.

All browsers render text with text-decoration: underline 
by default, making inline link design a classic case of doing 
nothing being a perfectly good resolution. But it’s possible to 
improve on text-decoration: underline. With custom CSS, 
we can keep the symbolic role of an underline but imple-
ment it better.



59A Paragraph

IMPROVED LINK UNDERLINES

Since an underline tends to sit directly below the typeface’s 
baseline, it cuts through the descenders of letterforms like 
g and j, diminishing the readability of linked text. Ideally, 
the underline should not intersect the form of descenders 
but leave space for them. A solution partly developed at 
Medium28 does just this, using a CSS background gradient 
and text shadow. Here is my adapted version:

p a {
 text-decoration: none;
 text-shadow: 0.05em 0 0 #fff, -0.05em 0 0 #fff,
  0 0.05em 0 #fff, 0 -0.05em 0 #fff,
  0.1em 0 0 #fff, -0.1em 0 0 #fff,
  0 0.1em 0 #fff, 0 -0.1em 0 #fff;
 background-image: linear-gradient(to right, currentColor 
0%, currentColor 100%);
 background-repeat: repeat-x;
 background-position: bottom 0.05em center;
 background-size: 100% 0.05em;
}

When using custom, gradient-based underlines, you have the luxury of 
being able to control their color independently of the font color.

28 http://smashed.by/underlines

http://smashed.by/underlines


60 Inclusive Design Patterns

In this implementation, a linear-gradient background 
with a height of just 0.05em forms the underline. Descend-
ers are not crossed thanks to a text shadow which protects 
the letterforms like a moat protects a castle.

Note that unlike text-decoration: underline;, this under-
line is adjustable. You can tweak the vertical positioning 
using background-position, and the thickness using 
background-size to find the most readable solution for 
the typeface. Be wary, though, of older browsers that do 
not support gradient backgrounds. These should have a 
text-decoration fallback:

.ie-lte-9 a {
 text-decoration: underline;
}

INDICATING FOCUS

One approach to inclusive interaction design is to look at 
interfaces from the perspective of human interface devices 
(HIDs): different devices which allow input from and/or out-
put to a human user. A mouse is an HID. So are keyboards, 
touch displays, refreshable braille displays and keyboards, 
joysticks29 and switches.30 

29 http://www.bltt.org/hardware/joysticks.htm
30 https://en.wikipedia.org/wiki/Switch_access

http://www.bltt.org/hardware/joysticks.htm
https://en.wikipedia.org/wiki/Switch_access


61A Paragraph

Designing inclusively is to support as many of these as 
possible and provide alternative content and interaction 
mechanisms where this isn’t possible.

Making an element keyboard-accessible is quite straight-
forward:

• Make sure the element is focusable.
• Make sure the focusable element is visible.
• Make sure the focus state of the element is visible.

Links, like the <button> element addressed in the introduc-
tion, are implicitly focusable. Thanks to standard browser 
behavior, any <a> element with an href attribute which is 
the next focusable element within the document will gain 
focus when the user hits the Tab key. It then becomes opera-
ble: you can follow the link by pressing Enter.

Even so, if links are not styled so their focus state is indi-
cated, it’s impossible for the user to see which element is 
indeed in current focus. This is where focus styles come in. 
Browsers implement their own focus styles ranging from 
dotted outlines to fuzzy blue halos. You can replace these 
default styles, but you should never just remove them. We 
can strengthen and simultaneously normalize the appear-
ance of focus styles for our paragraph links across browsers 
by using a background-color solution.



62 Inclusive Design Patterns

p a:focus {
 outline: none;
 background-color: #cef;
 text-shadow: 0.05em 0 0 #cef, -0.05em 0 0 #cef, 
      0 0.05em 0 #cef, 0 -0.05em 0 #cef, 
      0.1em 0 0 #cef, -0.1em 0 0 #cef, 
      0 0.1em 0 #cef, 0 -0.1em 0 #cef;
}

A background color creates a filled box which is easier to identify as focus 
moves between elements than the dotted outline some browsers provide 
by default.

This is much clearer than the thin dotted outline that many 
browsers apply by default. It’s a style implemented on the 
official UK government website, GOV.UK;31 an exemplar of 
inclusive service design, with a responsibility to be usable 
by every British citizen.

The subject of focus styles will come up in many patterns to 
follow, as more and different interactive elements are added 
to our vocabulary.

31 https://www.gov.uk/

https://www.gov.uk


63A Paragraph

Automated Icons

Folks who update and maintain websites can be non-techni-
cal and frequently have no confidence (nor interest) in visual 
design. An inclusive editorial system should be streamlined 
so that it doesn’t force editors to think about and deal in code 
or formatting. It should enable them to get on with what 
they’re good at without the fear of breaking anything.

By employing a modicum of fairly advanced CSS, it’s possi-
ble to provide iconography within paragraph text which is 
inclusive on two counts:

• It does not complicate the editorial process.
• It provides accessible information to users.

When linking to an external resource on a separate domain, 
it’s polite to inform the user that following the link will take 
them out of the current context. This is especially helpful 
to screen reader users who will have become accustomed 
to the current site’s features and layout. In other words, you 
avoid a “Where the hell am I?” moment.

IDENTIFYING EXTERNAL LINKS

The first step is to identify which links qualify as external. 
Any link href which begins with http (i.e. is not a relative 
link) and does not link to the current domain passes muster. 



64 Inclusive Design Patterns

My blog’s local domain is heydonworks.com, so I’d build a 
selector like this:

[href^="http"]:not([href*="heydonworks.com"])

Translated, the selector reads, “Links with href values 
that start with http but do not contain the string heydon-
works.com”.

PROVIDING THE ICON

As discussed, an inclusive editorial experience is one where 
the editor is not asked to think and work in an unfamiliar 
way. In which case, we don’t want to ask editors to have 
to upload and link icon images or — worse still — edit the 
source to add a class attribute to each external link. Instead, 
we can use CSS pseudo-content to automatically add the 
icon based on the matched selector:

[href^="http"]:not([href*="heydonworks.com"])::after {
 display: inline-block;
 width: 1em;
 height: 1em;
 background-image: url('path/to/external-icon.svg');
 background-repeat: no-repeat;
 background-position: center;
 background-size: 75% auto;
}



65A Paragraph

Note the use of relative units and a percentage-based 
background-size to make sure the icon scales with the text 
when it is resized by the user or in a media query.

ALTERNATIVE TEXT

That just leaves adding some hidden text to also inform 
screen reader users that the link is external. This is achiev-
able using the content property and a few supplementary 
rules to move it out of sight without affecting layout.

[href^="http"]:not([href*="heydonworks.com"])::after {
 display: inline-block;
 width: 1em;
 height: 1em;
 background-image: url('path/to/external-icon.svg');
 background-repeat: no-repeat;
 background-position: center;
 background-size: 75% auto;
 /* alternative text rules */ 
 content: '(external link)';
 overflow: hidden;
 white-space: nowrap;
 text-indent: 1em; /* the width of the icon */ 
}

It’s a common misconception that pseudo-content (in this 
case, “(external link)”) is not announced in screen readers.32 

32 http://tink.uk/accessibility-support-for-css-generated-content/

http://tink.uk/accessibility-support-for-css-generated-content/


66 Inclusive Design Patterns

Not all screen reader and browser combinations support 
pseudo-content, but most do. Those that don’t support it 
provide a less informative experience, but not a broken one.

Writing Paragraphs

It would be remiss of me to talk about inclusive paragraph 
design without mentioning how to actually write approach-
able, accessible content. Copywriting requires design just as 
much as form and composition, but in a culture dominated 
by visual design it tends to be put to one side; deferred until 
frankly less important decisions about aesthetics and orna-
mentation have been settled.

I’m a big believer in content-first design.33 As stated in the 
principles outlined in the introduction, all other design 
activities should be treated as merely supportive of the 
content and its formation. What makes things hard is 
that, unlike dealing in accessible interaction states or color 
contrast levels, accessible wording is not easy to measure. 
Nonetheless, there are some general guidelines that are 
applicable to paragraph text:

• Write short paragraphs, sentences and words.  
“I purchased a mammalian companion of the canine 
variety” is never better than “I bought a dog.”

33 http://alistapart.com/blog/post/content-first-design

http://alistapart.com/blog/post/content-first-design


67A Paragraph

• Be wary of passive sentences.34 They can often be 
replaced by a more direct alternative. There’s no need 
to say the convoluted, “a pork pie was eaten by Harry” 
when you can just as well say, “Harry ate a pork pie.”

• Eliminate redundancy. It’s rarely worth saying the same 
thing twice in different ways. Avoid repetition. (See 
what I did there?)

• Vary the length of sentences and paragraphs. This 
reduces monotony, encouraging focus.

Acknowledging the importance of good copy design will 
form a part of many patterns in this book. For example, “A 
Blog Post” will cover testing content readability against the 
Flesch-Kincaid scale.35 For now, note this down: everything 
but content is an enhancement. Therefore, your prototypes and 
minimum viable product should contain real and preferably 
well-considered copy, ready to be tested with your users. If 
you’re going to get something right from the outset make it 
the content, not the typography, layout or color scheme.

34 https://en.wikipedia.org/wiki/English_passive_voice
35 http://smashed.by/flesch

https://en.wikipedia.org/wiki/English_passive_voice
http://smashed.by/flesch


68 Inclusive Design Patterns

Summary

Well, there’s more that goes into humble paragraph text 
design than perhaps you first imagined. By looking at 
typefaces, leading, measure, justification, contrast, focus 
indication and more, we’ve set ourselves on the right path to 
formulate paragraphs suited for a hugely diverse audience. 

By tackling specific issues we know would affect folks 
with limited vision, dyslexia, Irlen syndrome, low literacy 
and limited technical knowledge, a comfortable reading 
and interaction experience has been ensured for most 
everyone else.

THINGS TO AVOID

• Wording and typefaces designed to impress rather than 
communicate.

• A measure that’s too long or too short.
• Reasonably high contrast, without defaulting to stark 

black on white.
• Eliminating focus styles with outline: none;.



69A Paragraph





71A Blog Post

A Blog Post
Keeping things prosaic for now, let’s look at para-
graphs in context.

I’ve had a blog for several years and it’s been through four to 
five design iterations. Like many designer-bloggers, I seem 
to be afflicted with obsessive tinkering and I’m still not 
happy with the result. Time is a luxury we often can’t afford 
on client projects — which is why client work sometimes 
gets finished, I suppose.

In my opinion, the most effective blog designs are spartan, 
focusing on content and removing as many distractions as 
possible. It’s difficult to overestimate the effect of simplicity 
on both performance and accessibility. Not incorporating 
complex and ambitious layouts also puts you on the path to 
a more robust, flexible reading experience. When the reader 
adjusts something, there’s simply less to break as a result.

Here, we’ll investigate the composition of an inclusive blog 
post as found at its permalink, forming the principal con-
tent of the parent page. Semantic structure and source order 
must be taken into account. I’ll also cover effective link text, 
incorporating video content, and the creation of an auto-
mated flow system to ease the work of content editors.



72 Inclusive Design Patterns

The <main> Element

You may recall the <main> element from our setup in “The 
Document.” Every web page should have a <main> element 
to identify the unique content of that page. The element 
helps us to think about what the main content of our page 
actually is, and can later be used as a navigational aid by 
screen reader operators.

At a blog permalink, the salient content is the blog article 
itself, so it should be placed inside <main>. Note the id 
below, which allows keyboard users to navigate to the article 
via a skip link (also discussed in “The Document”):

<main id="main">
 <!-- blog article here -->
</main>

When incorporating complex grid systems, we tend to rely 
heavily on <div>-based scaffolding. This may help us to cor-
ral the visual structure of the page, but it has no impact on 
the semantic structure. That is, the following code example is 
semantically identical to the preceding one. The source code 
is just more complex.



73A Blog Post

<div class="grid_50">
 <div class="grid_50_inner">
  <main id="main">
   <div class="main_inner">
    <!-- blog article here -->
   </div>
  </main>
 </div>
</div>

In general, I recommend against dealing with third-party grid 
systems. They’re typically rather large assets themselves and 
encourage convoluted, redundant markup. Not only does this 
produce a larger document to download, but also it can have 
additional, unpleasant side effects. For example, in testing 
I’ve experienced a screen reader producing erroneous output 
as it struggled to parse a massive DOM.

If you’re building a highly complex layout, a grid system 
may help you. However, you should not be building a highly 
complex layout. Simple user interfaces are usable interfaces, 
accessible interfaces, maintainable interfaces, and per-
formant interfaces. 

In print design, where the relative position of grid ele-
ments is reliable and consistent, you can rely on juxtapo-
sition to convey meaning and use terminology like, “the 
photograph to the right.” On the responsive web you don’t 
have this luxury. Occasionally, you’ll still want to put some 



74 Inclusive Design Patterns

things next to some other things, if only to be intensive 
with the available space. But there’s no use trying to be 
exacting. I’ll talk more about the terseness with which you 
can create responsive, self-managing grids36 using flexbox 
in the “A Filter Widget” chapter.

Heading Structure

I’m concerned we only usually look at HTML semantics in 
terms of discrete elements providing meaning, and not by 
looking at their relationships to one another. While it’s true 
the <main> element itself provides idiosyncratic behaviors, 
these benefits can be diminished with improper placement; 
for example, by using multiple <main> elements on a single 
page or by using <main> to wrap the entire DOM.

Heading elements in particular derive much of their mean-
ing from their relationships with one another.

THE <H1> ELEMENT

The <h1> element represents your document’s first-level 
heading. It is the top heading of the document. At our perma-
link, it should be the title of the blog article itself. The <h1> 
text effectively labels the supersection that is the document 
body, so it’s not logical to have more than one per page.

36 http://www.heydonworks.com/article/flexbox-grid-finesse

http://www.heydonworks.com/article/flexbox-grid-finesse


75A Blog Post

<main id="main">
 <h1>How To Mark Up Inclusive Blog Articles</h1>
</main>

Like the <main> element, the <h1> exposes a navigation 
shortcut for assistive technology users. Both NVDA and 
JAWS users can press the 1 key and their screen readers 
will transport them directly to the <h1>, where “How To 
Mark Up Inclusive Blog Articles, heading level one” will be 
announced.

Practically speaking, the <main> and <h1> offer similar 
functionality, so why employ both? Because not all screen 
reader users are alike. In my informal research into screen 
reader users’ behaviors and preferences,37 some respond-
ents were familiar and comfortable with landmark (region) 
navigation, but the majority used headings to get around. 
Providing unobtrusive options for users is sometimes called 
multimodality. It’s why we should also provide transcripts 
alongside video content. More on that shortly.

A number of survey respondents also professed to navigate 
documents from element to element, reading from the 
start to the end using their screen reader’s down arrow key 
(or equivalent). Source order is an important dimension of 
structure and our blog article should make sense read from 

37 http://smashed.by/srsurvey

http://smashed.by/srsurvey


76 Inclusive Design Patterns

top to bottom. Though it can be made to look visually com-
pelling either way, it is therefore important not to open an 
article with its publish date, but with its heading.

<!-- don’t use this -->
<main id="main">
 <div class="meta">Published on <time 
datetime="2017-12-12">12/12/2017</time></div>
 <h1>How To Mark Up Inclusive Blog Articles</h1>
 <!-- article content here -->
</main>

<!-- use this -->
<main id="main">
 <h1>How To Mark Up Inclusive Blog Articles</h1>
 <div class="meta">Published on <time 
datetime="2017-12-12">12/12/2017</time></div>
 <!-- article content here -->
</main>

In the first, commented out example, someone navigating 
by heading using the generic h key would be unaware of 
the publish date because the screen reader would take them 
silently past it.

Note that the first structure is unlikely to produce an error 
in an automated accessibility testing tool. That does not 
mean the second structure is not preferable. Inclusive 
design is about appreciating how people really use inter-
faces, not just fixing technical errors.



77A Blog Post

How heading navigation bypasses section content that precedes sections’ 
headings. 

SUBSECTIONS

When it comes to structure, depth is just as important as 
source order. By dividing our blog article into subsections, 
we can describe which parts of it belong to which other 
parts, building a thematic map or outline. Despite the 
inclusion of nestable sectioning elements in the HTML5 
specification, like <section>, the only elements currently 
able to describe depth in an inclusive fashion are <h1> 
to <h6>. That’s not to say you shouldn’t use <section> or 
<article>, but the information they provide does not serve 
this particular purpose. The HTML5 outline algorithm was 
specified to automate section structure based on sectioning 
elements, removing the need for <h1>–<h6>. However, it is 
not implemented in any user agent,38 and there’s no sign it 
ever will be.

38 http://smashed.by/html5doc

http://smashed.by/html5doc


78 Inclusive Design Patterns

As stated, our blog article should begin with an <h1>. You 
could stop there, but the lack of further structural informa-
tion would produce comprehension issues for a broad range 
of users. You should always aim to divide your content into 
digestible chunks. That’s ultimately what HTML is for: 
forming structure through differentiation.

To create a subsection within the article, use <h2>. The 2 
in <h2> says “two levels deep,” or “one down from the first 
level.” Visually, headings are conventionally differentiated 
by font size: the deeper the level, the smaller the font-size.

h1 { font-size: 3em; }
h2 { font-size: 2.25em; }
h3 { font-size: 1.5em; }

This is where a lot of developers make a mistake: they 
choose a heading element which they believe best fits 
the perceived importance of the section it represents. For 
example, a developer might choose an <h3> in place of an 
<h2> because they deem the section unimportant and would 
like to reduce the font-size accordingly. This deceives both 
visual and non-visual readers because it breaks the per-
ceived structure — a level has been skipped.

<h1>How To Mark Up Blog Articles</h1>
<!-- introductory content -->
<h3>A quick note on the word ‘semantic’</h3> 
<!-- wait! Where’s the second nesting level? -->



79A Blog Post

Missing layers in document structure can be disorienting to users  
trying to build a mental map of the document. 

Some developers handle heading styles separately using 
CSS classes. This gives them the freedom to change font 
sizes independent of semantic structure.

<h2 class="h3">What am I?</h2>

While this method eschews having to make structural 
errors to achieve visual effects, exercise caution: in most 
cases, an <h2> should look like an <h2>. That’s what it is, 
after all! Part of inclusion is achieving a parity of experience 
across different user needs. By managing content visually 
one way and non-visually another way, you begin to seg-
regate seeing and non-seeing users. A syndicated version 
of your content, subject to a different style sheet, would 
diverge in visual structure too.



80 Inclusive Design Patterns

SUBTITLES

Blog articles in which the author has not been able to say 
everything they want in a title alone sometimes employ 
subtitles or straplines. This also applies to books…

The previous example could be rewritten to take the title 
“How To Mark Up Blog Articles” and the subtitle “In Seven 
Simple Steps.” The question is how to mark this up. I’ve seen 
many an implementation which chooses to put the subtitle 
in a separate heading element, like so:

<main id="main">
 <h1>How To Mark Up Blog Articles</h1>
 <h2>In Seven Simple Steps</h2> <!-- this should not be a 
heading -->
 <div class="meta">Published on <time 
datetime="2017-12-12">12/12/2017</time></div>
 <!-- article content here -->
</main>

Now that you’re familiar with the structural contribution 
of headings, you should be able to see the problem: the 
<h2> creates an immediate subsection, “In Seven Easy 
Steps.” That’s a pretty weird, fragmentary heading for a 
section and would make little sense wherever a table of 
contents is generated:



81A Blog Post

• How To Mark Up Blog Articles
• In Seven Simple Steps
•  Headings

•  Subsections
•  Link text

For a short time, the <hgroup> element was the prescribed 
solution. By wrapping the <h1> and <h2> in an <hgroup>, 
you could theoretically remove the <h2> from the outline, 
preventing it from creating a subheading:

<!-- do not use -->
<hgroup>
 <h1>How To Mark Up Blog Articles</h1>
 <h2>In Seven Simple Steps</h2>
</hgroup>

As this MDN article on <hgroup>39 attests, however, 
<hgroup> has been removed from the HTML5 specification. 
You cannot therefore depend on it becoming implemented 
uniformly or reliably in browsers.

Finding the right solution depends on what we want to 
achieve. If we want “In Seven Easy Steps” to be part of the 
title, we can separate it with a semantically inert <span>  
element and drop it onto a new line using  
h1 span { display: block; }.

39 http://smashed.by/hgroup

http://smashed.by/hgroup


82 Inclusive Design Patterns

<h1>
 How To Mark Up Blog Articles <span>In Seven Simple Steps
</span>
</h1>

This would produce the following, corrected outline:

• How To Mark Up Blog Articles In Seven Simple Steps
•  Headings

•   Subsections
•  Link text

Instead, you might deem the subtitle unimportant and want 
to remove its text from the outline altogether. In which case, 
the following solution could work:

<h1>How To Mark Up Blog Articles</h1>
<p><span class="visually-hidden">Subtitle:</span> In Seven 
Simple Steps</p>

Note the use of the <span> with the .visually-hidden 
class. Visually, the role of the subtitle would presumably be 
indicated by its styling. In a non-visual context, this would 
not be apparent: Traversing from the <h1> to the <p> would 
have a screen reader believe that they had begun reading the 
article body. By providing the prefix “Subtitle:” we clarify 
the role of the <p> element non-visually, in much the same 
way as the implicit role of a <button> element makes screen 
readers announce “Button.”



83A Blog Post

The .visually-hidden class invokes a special set of prop-
erties, carefully devised to hide the element visually with-
out it becoming silenced in screen reader software. Using 
display: none;, visibility: hidden;, height: 0; or  
width: 0; wouldn’t work — it would make the span unavaila-
ble both visually and aurally.

.visually-hidden {
 position: absolute;
 width: 1px;
 height: 1px;
 overflow: hidden;
 clip: rect(1px, 1px, 1px, 1px);
 white-space: nowrap;
}

Having such a utility class in your style sheet and at your dis-
posal is always recommended. In later chapters, we’ll call on 
.visually-hidden a number of times.

Should a <subtitle> element ever be specified, the clarifying 
“Subtitle:” prefix would probably be provided for you as a fea-
ture of the element’s role, and therefore automatically availa-
ble in the “accessibility tree”40 — the version of the DOM used 
by assistive technologies where roles, properties, states, labels 
and values are exposed. Aside from providing interactive 
behaviors, this is one of the simple benefits of using semantic 
elements where they are specified and supported.

40 http://smashed.by/a11ytree

http://smashed.by/a11ytree


84 Inclusive Design Patterns

The <article> Element

There is a lot of confusion surrounding HTML5 sectioning 
elements. For example, you may be asking, “If this is an 
article, shouldn’t it be in an <article> element?”

<main id="main">
 <article>
  <h1>How To Mark Up Inclusive Blog Articles</h1>
  <div class="meta">Published on <time 
datetime="2017-12-12">12/12/2017</time></div>
  <!-- article content here -->
 </article>
</main>

The answer is: probably not, but maybe. Theoretically, the 
<article> should start a new subsection by deferring to the 
HTML5 outline algorithm.41 It would be poorly placed here 
because we haven’t even begun the main content of the 
document (which is the outermost section). But, since the 
outline algorithm is not actually implemented in any user 
agents,42 this has no effect on assistive technology users. No 
harm done. Unlike the <main> element, <article> is not a 
landmark, so few screen readers provide it as a navigational 
tool. Since it’s the singular child of <main>, it would take the 
user to the same place anyway. 

41 http://smashed.by/html5outline
42 http://smashed.by/html5doc

http://smashed.by/html5outline
http://smashed.by/html5doc


85A Blog Post

Altogether, deploying <article> doesn’t look very appeal-
ing, but there is a small advantage in certain contexts. The 
JAWS screen reader (and only the JAWS screen reader) 
announces “Article” on entering the element and “Article 
end” on exiting it. Arguably, this is useful information 
where there are several <article>s on the same page and 
the user is reading from top to bottom, element by element. 
The following markup is serviceable for a blog’s homepage, 
where multiple recent posts are listed.

<article>
 <!-- first article’s content here -->
</article>
<article>
 <!-- second article’s content here -->
</article>
<article>
 <!-- third article’s content here -->
</article>

Try to think in terms of user experience when choosing 
semantic elements. Sometimes they may be the technically 
correct element to use, but they’re not supported in any 
way so have no impact on anyone. Other times they do 
have an impact but the part they play is confusing, incon-
sistent or obstructive. 



86 Inclusive Design Patterns

In her talk “Burn Your Select Tags” (video),43 Alice Bartlett 
shares the research she undertook at the UK Government 
Digital Service44 into <select> element usability. Univer-
sally implemented and semantic though it is, there’s com-
pelling evidence that you should avoid using the <select> 
element wherever possible. Not only are there discrete 
technical shortcomings (such as certain devices suppressing 
the zoom of <option> overlays), but they just don’t seem to 
be understood by all sorts of people.

Progressive Enhancement And  
Interoperability

The sound semantic structure we’ve been fostering in our 
blog article doesn’t just benefit screen reader users. If a 
browser fails to load your style sheet, it will still differen-
tiate key elements of the interface using its own default 
user agent style sheet. Headings, for instance, will appear 
in bold text and have font sizes indicative of the section 
depth they represent.

In addition, services that syndicate your content, such as 
feed readers, will be able to apply their own structural styles, 
enabling a comfortable reading experience within their own 

43 https://www.youtube.com/watch?v=CUkMCQR4TpY
44 https://gds.blog.gov.uk/

https://www.youtube.com/watch?v=CUkMCQR4TpY
https://gds.blog.gov.uk


87A Blog Post

applications. Content that works well in different contexts 
and via different inputs can be said to be interoperable. Good 
semantic structure works well with screen readers, feed 
readers, search engines and all sorts of other parsers looking 
for structural meaning in your content.

A good way to test that your content has a sound structure 
is to turn CSS off and see if the page is still readable. Are 
the order and hierarchy apparent? Is the page still naviga-
ble and usable?

A NOTE ON SINGLE-PAGE APPLICATIONS

Single-page applications are typified by their use of client- 
side JavaScript to render and rerender content. Where con-
tent is subject to a lot of change as a result of user interac-
tion, this approach enables an immediacy not possible when 
making round-trips to the server.

However, when the content you are serving is static and 
intended for reading alone, relying on client-side JavaScript 
to render that content is an underperforming and relatively 
unreliable method. Content should be available to users who 
do not have JavaScript running or for whom JavaScript has 
thrown an error, been blocked or failed to load.

Providing server-rendered content also means that content 
will be found by folks using search engines, and is parsable 



88 Inclusive Design Patterns

by third parties using command line tools like cURL.45 It’s 
for all these reasons that Tantek Çelik, cofounder of the 
IndieWeb movement, believes JavaScript-dependent static 
content is not in keeping with web design fundamentals. 
In short:

If it’s not curlable, it’s not on the web.” 
— “js;dr = JavaScript required; Didn’t Read,” Tantek Çelik 46

When a site like smashingmagazine.com sends prerendered 
content to the client, I can print that content to my console 
using the curl command. If JavaScript was used to con-
struct the content in the client, all I would see is the code for 
the outer web page, with its link(s) to the JavaScript which 
curl is unable to run.

curl https://www.smashingmagazine.com

Flesch-Kincaid Readability Tests

In “A Paragraph” I offered some basic guidance on writing 
easily digestible body text. Now that we’re putting a few 
paragraphs together within a blog article, it’s probably a 
good time to review the readability of your content. 

45 https://curl.haxx.se/docs/httpscripting.html
46 http://tantek.com/2015/069/t1/js-dr-javascript-required-dead

“

https://curl.haxx.se/docs/httpscripting.html
http://tantek.com/2015/069/t1/js-dr-javascript-required-dead


89A Blog Post

There are two tests you can perform on your content which 
assess word, sentence and paragraph length to determine 
the readability of your text. 

The Flesch reading ease test gives you a score between 0 and 
100 where a higher score means more easily readable and, 
therefore, more inclusive of different readers. The Flesch- 
Kincaid grade level test is similar but produces a US school 
grade level. The idea is that the younger the audience who 
can successfully read it, the more readable it is. Here’s a 
summary from the tests’ Wikipedia page:47

There are a number of tools to test your content against 
Flesch-Kincaid, including the TRAY readability tool48 (a 
Chrome browser extension) or, if you want something 
to run from the command line, I’ve created Readability 

47 http://smashed.by/flesch
48 http://smashed.by/tray

http://smashed.by/flesch
http://smashed.by/tray


90 Inclusive Design Patterns

Checker CLI49 — a Node.js CLI (command line interface). 
Just install readability-checker globally and point it at 
a web page.

npm i readability-checker -g

readability http://your-site.com/about.html

Here’s what it will return:

• Flesch reading ease score (out of 100; higher means 
more readable).

• Notes about the score.
• A list of the longer words (more than four syllables).
• A list of the longer sentences (more than 35 words).

Recently, products like Tenon50 have begun to emerge: 
quality assurance tools focused on accessibility and inclu-
sion. Amid a maintenance-centric quality assurance culture 
largely designed by developers for developers, this is most 
welcome. If poor code style like inconsistent indentation 
breaks a build, that’s one thing; but if a build breaks because 
the product is in danger of alienating a user? All the better. 
I see no reason why poor readability should not also be con-
sidered a point of failure.

49 https://github.com/Heydon/readabilityCheckerCLI
50 http://tenon.io/

https://github.com/Heydon/readabilityCheckerCLI
http://tenon.io


91A Blog Post

Note, however, that readability is rather subjective. Sci-
entific though a formula for determining readability may 
sound, you cannot rely on Flesch-Kinkaid tests alone. Use 
them as an early warning system to highlight potential 
issues, and test with real users as well.

Heading And Link Text

If you work as a front-end engineer, you are no doubt famil-
iar with the virtues of modular design. By creating reusable 
modules (or components), you can develop more rapidly, 
with tried-and-tested code, and eliminate redundancy. A 
good module has an independent purpose that can be lent 
seamlessly to a number of different contexts.

For the purposes of inclusive design, sometimes our text 
has to have a certain autonomy as well. Take the following 
<h2> heading as an example:

<h2>Free, you say? Then yes, please!</h2>

In the context of surrounding paragraph text, it is no doubt 
possible to infer what the heading is referring to. That is, 
reading from the previous section into this one, you’d have 
a good idea of what is free. But this isn’t much help in a 
table of contents, listing headings outside of body text. 
What’s free?



92 Inclusive Design Patterns

Direct, descriptive headings clarify the ensuing content, 
which aids comprehension across the board. In other words, 
being cryptic or whimsical doesn’t get you very far! There’s 
also a specific implication for screen reader users: screen 
readers tend to catalog headings dynamically and offer 
them as a list to choose from. For instance, in NVDA, I can 
open the Elements List dialog with Insert + F7 and browse a 
list of headings on the page. Running VoiceOver you can 
open the rotor (Ctrl + Option + U on Mac OS X) and see head-
ings listed in a similar fashion.

Accordingly, the following heading content would be of 
greater utility (at least if this section of the blog article is 
indeed about flapjacks, otherwise it would be rather mis-
leading!).

<h2>Free flapjacks, you say? Yes, please!</h2>

OBNOXIOUS LINK LABELS

Links, like headings, are made available as a list in NVDA’s 
elements dialog, and other screen readers aggregate them in 
a similar fashion. Like headings, link text should be autono-
mously meaningful. You may have encountered the habit of 
bloggers using runs of inline links like so:



93A Blog Post

I have a lot of support to back up my amazing ideas!

Cute, but each link has an entirely meaningless label when 
taken out of context, not to mention that even read sequen-
tially “a link lot link of link” doesn’t tell us anything useful. 
In addition, it’s not always clear visually that there are sep-
arate links present. That depends on you identifying breaks 
in the underline. It’s even worse if you haven’t actually 
provided a link underline.

If you’re going to cite the work of other authors, the polite 
thing to do is mention their works by name. The links in the 
following example all indicate where they actually take you, 
and the commas — plus the “and” — help to separate them.

I have a lot of support to back up my amazing ideas, includ-
ing Why Heydon Is Right by John Thoughtleader, In Support Of 
Heydon by Jane Unicornfield, and When Heydon Talks It’s Like 
He Vomits Fragrant Rainbows by Harry Surname.



94 Inclusive Design Patterns

Video

As a writer, it is the differentiation and clarification of runs 
and blocks of words that still excites me most about HTML, 
old news though this basic feature is. But I appreciate that 
not everyone is a confident writer or an avid reader. The 
addition of images, sound and video to blog posts gives 
color and variety to content, as well as providing more 
options to those with different abilities and preferences, or 
in different circumstances.

Take video. Sometimes it’s just better to be shown rather 
than told about how something works. It’s simply a better 
way of learning certain things. Other times I might want 
to be told but not shown, because I need to be looking at 
something different at the same time. For example, while 
I’m working on a visual design for something, I might want 
to simultaneously listen to the dialog from a conference talk 
video. On a bus, and without a set of headphones handy, I 
might want to be shown and told, but without blaring audio 
at my fellow passengers. Furthermore, watching speakers 
in the video with captions also available can assist me as a 
non-native speaker. A well-captioned video is just the ticket.

Of course, having captions also caters for those who are 
deaf and hard of hearing, but not just them. It’s better to 
see captions as simply “another way to consume the same 
content.” Then you get a better idea of just how many people 



95A Blog Post

can make use of them. But captions are only available if the 
video itself can be downloaded or streamed. This is why 
video that contains dialog should always be accompanied by 
a transcript.

A video blog post should feature the video prominently, but 
provide a transcript of the video underneath it. Here are a 
few pointers on posting videos.

THE PLAYER

Make sure the video player is keyboard and screen reader 
accessible. The fastest way to know if a player is worthy of 
your use is to try tabbing into it with your keyboard. If you 
find focus bypasses the player altogether, then game over. 
Retreat. Find another player.

Second prize for Worst Keyboard Accessibility Implemen-
tation goes to players which you can tab into and use, but 
without any visual feedback. Remember the “Indicating 
Focus” section in the last chapter? In short: no focus styles, 
no good. That said, if the various player controls are imple-
mented in HTML and CSS and you can provide your own 
focus styles, the player may be salvageable. That is, if it’s 
screen reader accessible too.

To get up and running with screen reader testing, I recom-
mend you do the following:



96 Inclusive Design Patterns

• Install the free NVDA screen reader51 for Windows.

• Run it with Firefox exclusively (for maximum compat-
ibility).

• Watch this excellent video introduction from Deque 
Systems.52

• Refer to this list of NVDA keyboard commands53 from 
WebAIM.

• Remember that your experience as a screen reader user 
will differ dramatically from blind users, who have dra-
matically different strategies even among themselves. 
(Refer to the responses of my screen reader survey54 to 
gain an impression of the diversity.)

Alternatively, if you are a Mac user, simply press Cmd + F5 
to activate the built-in VoiceOver screen reader and follow 
along with the tutorial. Make sure you use VoiceOver with 
Safari for the most reliable experience.

51 http://www.nvaccess.org/
52 http://smashed.by/nvdatesting
53 http://webaim.org/resources/shortcuts/nvda
54 http://smashed.by/srsurvey

http://www.nvaccess.org
http://smashed.by/nvdatesting
http://webaim.org/resources/shortcuts/nvda
http://smashed.by/srsurvey


97A Blog Post

Fortunately, testing an interactive widget like a video player 
doesn’t require a working knowledge of the vast array of 
keyboard commands offered in NVDA and other readers. 
Just tab to the controls as you would when testing keyboard 
support and listen for aural feedback. For instance, the play 
button should say “Play button” (or similar) when focused, 
or “Pause button” if the video is already playing. Of course, 
you should make sure the button can indeed be switched 
from a press-to-play to a press-to-pause state. This should 
work by pressing either the Space or Enter keys whether or 
not a screen reader is running.

RECOMMENDED PLAYERS

• YouTube’s embeddable player
• Able Player55

• Accessible HTML5 Video Player56 (from PayPal)
• Accessible and Responsive HTML5 Video Player57  

(by Laura Kalbag)

CLOSED CAPTIONS

Closed captions are captions which exist in a separate, asso-
ciated file and can be switched on or off by the user, rather 
than being embedded into the video itself. You can manually 

55 https://ableplayer.github.io/ableplayer/
56 https://github.com/paypal/accessible-html5-video-player
57 https://ind.ie/blog/accessible-video-player/

https://ableplayer.github.io/ableplayer
https://github.com/paypal/accessible-html5-video-player
https://ind.ie/blog/accessible-video-player/


98 Inclusive Design Patterns

add caption files to HTML5 <video>58 using a WebVTT file59 
as the src of a <track> element. But the easiest way (that 
I’m aware of) to compose closed captions is to use YouTube’s 
intuitive GUI, for which Google offers a help page60 to get 
you started. 

There are certain conventions you should follow when writ-
ing captions. The most important of these are to identify:

1. Changes of speaker
2. Background/incidental sound

SPEAKER IDENTIFICATION AND SOUND EFFECTS

Let’s say our video involves two men called Simon and 
Rupert. They’re sitting at a table in a pub. Simon begins the 
conversation by claiming that the daddy long-legs spider61 
has the world’s most poisonous venom and continues to 
describe how the spider is, nevertheless, harmless because 
its teeth are not strong enough to pierce human skin.

He means fangs, of course. Imagine a spider with teeth!

58 http://smashed.by/html5track
59 https://w3c.github.io/webvtt/#styling
60 https://support.google.com/youtube/answer/2734796?hl=en-GB
61 https://en.wikipedia.org/wiki/Pholcidae

http://smashed.by/html5track
https://w3c.github.io/webvtt/#styling
https://support.google.com/youtube/answer/2734796?hl=en-GB
https://en.wikipedia.org/wiki/Pholcidae


99A Blog Post

In the following illustration, I’ve chosen to identify the 
speaker with their name written in capital letters. This is 
not the only way to identify speakers, but whatever con-
vention you use, make sure it is consistent. Note that the 
name is not needed for the second caption as the speaker 
has not changed.

In the left frame, the left speaker is identified in the caption using an all-
caps name followed by a colon.

Rupert is aware that this factoid is just an internet rumor 
and interjects to correct Simon on his false claim.62 Since 
Rupert is a new speaker, he must be identified. We use the 
same convention.

Before Rupert can finish his sentence, the two speakers are 
interrupted by a loud crash as the barman drops a glass (out 
of frame). 

62 http://smashed.by/livescience

http://smashed.by/livescience


100 Inclusive Design Patterns

Often, the description of such a noise is both in caps and 
bookended by [ and ] (square brackets). The barman imme-
diately apologizes. I identify that he is out of frame by 
prefixing a greater-than symbol.

The BBC provides extensive guidelines63 on different 
options to identify speakers, announcements, sounds, 
music, and much more.

63 http://bbc.github.io/subtitle-guidelines

http://bbc.github.io/subtitle-guidelines


101A Blog Post

THE TRANSCRIPT

The transcript would form the main textual content of your 
video posting. Sometimes it’s easier to write the transcript 
first, then turn the transcript into captions. In any case, it 
should take the form of a linearized version of the captions. 
The only substitution I have made, for clarity where there is 
no visual context, is that the barman is identified as being 
out of shot:

SIMON: “Did you know the daddy long-legs spider is the most poi-
sonous creature in the world? The thing is, though, they can’t bite 
you because their teeth are too weak.”
RUPERT: “Well, actually—”
[GLASS BREAKING]
BARMAN (out of shot): “Sorry about that!”

Establishing A Flow System

Inclusive web design isn’t just about providing robust, acces-
sible experiences for users. It’s also about facilitating and 
easing the contribution of content by site owners and editors.

Like a grid system, a flow system uses CSS to manage layout. 
Unlike a grid system, a flow system deals with the relations 
between flow elements which appear one after another in a 
single column — headings, paragraphs, lists, images, videos, 
and so on. A good flow system produces a regular, well-



102 Inclusive Design Patterns

spaced, readable procession of elements regardless of their 
order and combination. This gives editors the freedom to 
just go ahead and write.

EVERYTHING DIVISIBLE BY LINE-HEIGHT

Though a strict vertical rhythm64 is notoriously tough to 
establish and maintain, it’s good practice to at least use your 
paragraph line height as a basis for vertical spacing. So, if 
paragraphs have a line-height of 1.5, one unit of vertical 
whitespace should be 1.5rem.

To enforce a regularity independent of the flow elements 
incorporated in the editor’s WYSIWYG or Markdown editor, 
this basic spacing should be applied generally, with just a 
few exceptions.

main * + * {
 margin-top: 1.5rem;
}

li, dt, dd, br, th, td {
 margin-top: 0;
}

Note the use of the owl selector65 in the first line. This ensures 
that top margins only occur between successive elements.  

64 http://smashed.by/verhythm
65 http://alistapart.com/article/axiomatic-css-and-lobotomized-owls

http://smashed.by/verhythm
http://alistapart.com/article/axiomatic-css-and-lobotomized-owls


103A Blog Post

If instead we applied margin directly to elements, there 
would be the danger of it doubling up with the padding of 
containers:

.container {
 padding: 1.5rem;
}

.container p {
 margin-top: 1.5rem;
}

/* visible space inside top of .container would now be 3rem */

GROUPING AND SEPARATION

Currently, every flow element is separated by the same 
1.5rem margin, with a few exceptions. List items (<li>s) 
do not take margin at all and consequently look grouped 
together. So they should: for the sake of comprehension on 
the part of the reader, related elements should be visually 
proximate.

By changing the unit of measurement from rem to em, we 
can achieve a similar effect for subsections of content 
within our blog: a margin set in em on a heading will be 
relative to its own font size. Since heading text is larger than 
body text, this means the heading will appear closer to the 
content introduced below it.



104 Inclusive Design Patterns

* + h2,
* + h3 {
 /* em, not rem, now */
 margin-top: 1.5em;
}

To separate supplementary content such as blockquotes 
and illustrations from the paragraph text, you can apply a 
greater margin for anything that isn’t a <p>:

main * + *:not(p) {
 margin: 3rem 0;
}

To maintain vertical rhythm, a multiple of our paragraph 
line height is used (1.5 × 2 = 3). Note that the standard 
1.5rem top margin of the element following will be super-
seded, resulting in a 3rem margin as prescribed both above 
and below the element in question. This is thanks to collaps-
ing margin behavior.66 The editor can insert a <blockquote>, 
<figure>, <audio> or any other element and the spacing 
will communicate a break from the prose.

66 http://smashed.by/cssbox

http://smashed.by/cssbox


105A Blog Post

Successive paragraphs have less margin between them than paragraphs and 
other elements. In CSS, there’s little more inclusive than the universal (star) 
selector. It can help us manage content and its interrelationships inclusively.

A NOTE ON DEFENSIVE CODING

I’ve always found the term WYSIWYG (what you see is 
what you get) a bit misleading, since WYSIWYG editors 
almost invariably have a habit of leaving lots of undesired, 
invisible junk in the source.

<p></p>
<p></p>
<p></p>
<!-- ad infinitum -->

In some circumstances this can have an impact on the 
spacing and vertical rhythm of the rendered content. We 
can employ some defensive coding here to remove empty 
elements from the flow. The display:none; declaration 
eliminates the element’s layout, including any margins 
attributed to it.



106 Inclusive Design Patterns

main :empty {
 display: none;
}

In general, it’s best to encourage the creation of semantic, 
well-structured content with a syntax like Markdown67 or 
Textile.68 They offer a simple syntax which corresponds to 
semantic HTML elements such as headings and list items. 
Where needed, most editors (like the Penflip69 editor used 
to write this book) also allow raw HTML input, meaning 
editors versed in HTML have the option to add more com-
plex content.

In lieu of training editorial staff to make the switch to 
structured content and to patch legacy WYSIWYG-based 
systems, a defensive strategy can help reduce headaches. 
Time spent fixing layout bugs when entering content is 
wasted time and contributes to a frustrating and alienating 
editorial experience.

Summary

In the conception of our blog post pattern, I covered one of 
the most fundamental aspects of inclusive design: structure. 

67 https://en.wikipedia.org/wiki/Markdown
68 http://txstyle.org/
69 https://www.penflip.com/

https://en.wikipedia.org/wiki/Markdown
http://txstyle.org
https://www.penflip.com


107A Blog Post

By incorporating accessible landmarks and a sound section 
structure, the content — blog post or otherwise — becomes 
more navigable and interoperable by a diversity of users 
and parsers. This is bolstered by giving well-written and 
context-independent structural and navigational cues. We 
then moved on to supplementing this robust structure with 
additional media such as video.

Not just one structure but an infinite number of legitimate 
configurations of body text, headings and media elements 
were catered for in our robust and inclusive CSS flow sys-
tem. This ensured that editors would be able to write freely 
without having to worry about breaking the visual design.

THINGS TO AVOID

• A lack of navigable, structural cues or bypass blocks70 
like landmarks and headings.

• Whimsical, cryptic or partial labels for headings and 
links.

• CSS margin declarations not tolerant of and reactive to 
changing contexts.

• Making your static content site dependent on client-
side JavaScript.

70 http://smashed.by/navskip

http://smashed.by/navskip


108 Inclusive Design Patterns

Evaluation By Pattern
When I started working on this book, I prepared a 
rough outline first. This skeleton was organized around 
theme, or principle. That is, I had a chapter stubbed out 
about keyboard interaction, one about color, another on 
writing, and so on.

It’s good to be prepared, but better to be prepared in the 
right way. As I embarked on fleshing out the various chap-
ters, it quickly became apparent that I’d wrong-footed the 
structure entirely. It just wasn’t compatible with the way I 
instinctively think and work.

The trouble was, when I set about describing how to make 
something keyboard-accessible, I had to bite my tongue not 
to talk about touch interaction, screen reader compatibility 
and copywriting as well. It didn’t feel right to expound on 
making something inclusive in one regard without taking 
care of all the other problems that might undermine the 
same example. I’d be leaving the job unfinished.

When we design interfaces, we don’t deal in abstract 
principles, we create working things. Our terminology for 
these things fluctuates between modules, components, or the 
looser term patterns, but essentially we mean the parts that 
contribute to an interface.



109Evaluation By Pattern

When creating patterns, we don’t labor according to any 
one guiding principle; we don’t create keyboard-accessible 
patterns or internationalized patterns. We want these 
patterns to have all the good qualities and, of course, none 
of the bad ones.

I ditched the contrived inclusion-by-principle structure 
early on in favor of talking through discrete patterns — 
motifs and components you might find in a working web-
site or application. My writing began to flow much more 
easily because I was essentially documenting my design 
process: the work of conceiving and realizing inclusive con-
tent and functionality.

Since I’m speaking to you as designers, developers and mak-
ers yourselves, I figured this would make for clearer and 
more transferable information for you too.

The Problem With Evaluating By Principle

The reason I started out writing by principle is because 
I often have to wear my accessibility engineer hat and 
perform accessibility audits. I evaluate the accessibility of 
a website or application, identifying problems and offering 
guidance for ‘remediation’ (making things unbroken).



110 Inclusive Design Patterns

When performing an audit, I defer to WCAG (Web Content 
Accessibility Guidelines). Though different countries have 
their own accessibility legislation, WCAG offers the de facto 
international rule set and is ratified by the W3C standards 
body. On the whole, it’s better I don’t just tell folks how I 
think they should have designed their interface!

That WCAG is organized by principle — perceivable, operable, 
understandable, robust– is to be expected. WCAG doesn’t 
know in advance precisely which elements, composites and 
conventions you are going to employ so it has to remain 
abstract. However, this has led manual evaluation experts 
and automated test tools to report according to principle.

We’re fairly wedded to reporting accessibility failures by 
principle because it’s easier that way to reassure ourselves 
each and every independent issue has been covered. I’m just 
not convinced development teams find information pre-
sented in this way easily actionable. When developer focus 
moves between integrated components, what good are a 
hundred disparate and application-wide missing alternative 
text tickets?



111Evaluation By Pattern

SIGH! Time to put the headphones on and fire up some Napalm Death.

But that’s not all. A lot of the time, one issue apparently 
belonging to one principle or theme is related — either by 
cause or correlation — to another. Contriving to turn one 
instance of poor design into two or more reported issues not 
only complicates the remediation process, but does nothing 
to educate the developer about how these problems really 
come about.

THE BUTTON EXAMPLE (AGAIN)

Let’s take another look at the button example from the 
book’s introduction. Except this time let’s imagine the faux 
button is for upvoting some content.

The button markup looks like this:

<div class="upvote" data-action="upvote"></div>



112 Inclusive Design Patterns

And the button appears like so:

The separation between style and behavior between the 
class and data-action attributes is nice and all, but it 
hardly makes up for the button’s grave shortcomings when 
it comes to inclusion.

This time, let’s map those shortcomings to WCAG’s success 
criteria to establish where there are failings. First, under 
perceivable, the button fails 1.1.1 Non-text Content71 because 
it has no alternative text to supplement the image of text 
in the background. Second, under operable, it fails 2.1.1 
Keyboard72 because the button uses an unfocusable <div> 
element, which — even if you made it to be focusable with 
tabindex="0" — would still need some JavaScript to trigger 
click events on pressing the Enter and Space keys. 

Finally, under robust, the button fails 4.1.2 Name, Role, Value73 
because there’s nothing in the markup to communicate in 
assistive technologies that the button is, indeed, a button.

71 https://www.w3.org/TR/WCAG20/#text-equiv
72 https://www.w3.org/TR/WCAG20/#keyboard-operation
73 https://www.w3.org/TR/WCAG20/#ensure-compat

https://www.w3.org/TR/WCAG20/#text-equiv
https://www.w3.org/TR/WCAG20/#keyboard-operation
https://www.w3.org/TR/WCAG20/#ensure-compat


113Evaluation By Pattern

FIXING THE BUTTON

Now imagine an accessibility consultant has reported all 
of these failures in a spreadsheet under columns organized 
by principle and success criterion. This spreadsheet is then 
handed off to their client’s project manager who sets about 
writing bug tickets for the developers.

One developer is randomly assigned a ticket labeled “Upvote 
Button Missing Label.” They open that ticket and, like any 
self-respecting developer, endeavor to fix and close it. Not 
especially familiar with accessible naming techniques, 
they do a bit of casual research and land on some possible 
solutions. Supplying a text node is out because this would 
be visible over the top of the background image’s text. In the 
end, they opt for aria-label.

<div class="upvote" data-action="upvote" aria-label="upvote">
</div>

Unknown to this developer, another developer is assigned 
“Upvote Button Not Keyboard-Accessible.” The ticket comes 
with some guidance from the accessibility consultant 
about how to make the <div> keyboard-accessible using 
tabindex and some JavaScript to trigger click events with 
the keyboard. The project’s JavaScript swells slightly and the 
markup ends up like this:



114 Inclusive Design Patterns

<div class="upvote" data-action="upvote" aria-label="upvote"
tabindex="0"></div>

Meanwhile, a third developer is dutifully studying “Upvote 
Button Has Improper Role” and — seeing how much work 
has gone into this <div> already — tops it off with an 
explicit ARIA role of “button”.

<div class="upvote" data-action="upvote" aria-label="upvote"
tabindex="0" role="button"></div>

A BETTER WAY

The problem with this contrived and fragmented way of 
evaluating interfaces is that nobody has the chance to point 
out and avoid what are simply bad ideas, like using a <div> 
as a button control. The way failures are reported and devel-
opers are tasked means you always end up just patching 
what’s already there. What you end up with is frequently 
bloated and less robust.

In reporting by pattern instead, the consultant has the 
opportunity to recommend alternative approaches and tech-
niques. In this case, the various failures organized under the 
upvote button pattern would surely lead them to recommend 
the use of a standard <button> element in its place.

<button data-action="upvote" aria-label="upvote"></button>



115Evaluation By Pattern

To complete the redesigned pattern they might recommend 
the use of an SVG to represent the icon. As I cover in “A 
Menu Button,” SVG benefits from being scalable, small in 
file size and — unlike icon fonts — not breakable by user 
font preferences.

<button data-action="upvote" aria-label="upvote">
<svg>
   <use xlink:href="#upvote"></use>
</svg>

</button>

To a developer used to working in terms of modules and 
components, this represents a complete, integrated solution 
to a problem. The accessibility consultant (reporter) has met 
them on their home turf and helped them to improve the 
interface in an apprehensible and tangible way.

But that’s not all. Because the inclusive upvote button 
replaces the previous implementation one-for-one, the 
consultant has also helped the organization improve its 
pattern library. The next time an upvote button (or similar) 
is needed, the developer has an exemplar at the ready. This 
could apply to current or future projects.



116 Inclusive Design Patterns

Tickets organized by pattern can be easily reconciled with a 
pattern library.

As Joe Dolson writes in “I’m an accessibility consultant. 
Stop hiring me,”74 remediating broken websites and apps 
is unpleasant work for both the consultant and the client. 
Much more effective and rewarding is training and edu-
cation in how to design inclusive products from the outset. 
Remediating by pattern brings design thinking into the 
remediation process, helping the client to fix their current 
product while instilling the confidence to make inclusive 
design decisions in the future.

This is an effective way to make my role as a remediator 
obsolete and, like Joe, I welcome it.

74 http://smashed.by/stop-hiring-me



117Evaluation By Pattern

Custom Elements And Shadow DOM

This is probably as good a place as any to approach the issue 
of inclusion and web components. Since many organiza-
tions are beginning to embrace the web component spec-
ifications75 to compose their patterns, we should look at 
what needs to be done differently or additionally in terms 
of inclusive design. Of the Shadow DOM, Custom Elements, 
HTML elements, and HTML templates specifications, only 
Custom Elements76 and (to a lesser extent) Shadow DOM77 
directly pose potential problems. Only they affect the behav-
ior of the interface as it is manipulated by the user.

The joy of custom elements is that you can tie custom style 
and behavior to an element of your own conception. You 
could, for example, write all the code for a toggle button and 
attach it to a <toggle-button> element: a neat package of 
functionality with a descriptive name.

//  Custom Elements v0 syntax
document.registerElement('toggle-button', {
 prototype: toggleButton
});

//  Custom Elements v1 syntax
customElements.define('toggle-button', toggleButton);

75 https://github.com/w3c/webcomponents
76 https://w3c.github.io/webcomponents/spec/custom/
77 https://w3c.github.io/webcomponents/spec/shadow/

https://github.com/w3c/webcomponents
https://w3c.github.io/webcomponents/spec/custom
https://w3c.github.io/webcomponents/spec/shadow


118 Inclusive Design Patterns

(Note: For a comparison of Custom Elements versions 0 and 1, 
see Shawn Allen’s “All about HTML Custom Elements.”78)

That new element, although accepted as a legitimate 
element in browsers supporting registerElement or 
customElements.define, does not have the standard behav-
iors of a <button> element. To put it another way, it is not an 
instance of the HTMLButtonElement79 prototype. In fact, it is 
merely an instance of HTMLElement,80 much like a <div>.

If you’ve been following along, you’ll know what that 
means: it’s not focusable or actionable, and doesn’t have the 
button role that announces it as a button in screen readers 
— just like the remediated <div> button I was talking about 
earlier in the chapter. 

In the case of our custom element, these features can be 
added much more neatly and robustly. Using Custom Ele-
ments v0, we add them in the createdCallback lifecycle 
callback:81

78 https://github.com/shawnbot/custom-elements
79 http://smashed.by/htmlbtn
80 http://smashed.by/stop-hiring-me
81 http://smashed.by/lifecycle

https://github.com/shawnbot/custom-elements
http://smashed.by/htmlbtn
http://smashed.by/stop-hiring-me
http://smashed.by/lifecycle


119Evaluation By Pattern

toggleButton.createdCallback = function() {
    //  accept keyboard focus
    this.setAttribute('tabindex', '0');
    //  make this element appear as a button in the 
accessibility tree
    this.setAttribute('role', 'button');
    //  dispatch clicks events with keyboard 
    this.addEventListener('keydown', function(event) {

if (event.keyCode === 13 || event.keyCode === 32) {
var click = new MouseEvent('click', {

'view': this.ownerDocument.defaultView,
'bubbles': true,
'cancelable': true,

});
this.dispatchEvent(click);

}
    });
};

Since our toggle button will initialize in the off (unpressed) 
state, we should also add aria-pressed="false":

this.setAttribute('aria-pressed', 'false');

The advantage of adding these attributes and behaviors 
as part of the element’s definition is that the interface 
remains clean to authors — they only have to instantiate 
<toggle-button>. All we need to do now is handle that 
click event to switch the state. First we add the listener by 
placing this inside the createdCallback too:



120 Inclusive Design Patterns

this.addEventListener('click', function() {
  this.toggle();
});

Then we need to create the actual toggle() method. With 
the following in place, the state will change either on 
click or by scripting toggleInstance.toggle() (where 
toggleInstance is an instance of <toggle-button>).

this.toggle = function() {
    var isPressed = this.getAttribute('aria-pressed') === 
'true';
    this.setAttribute('aria-pressed', String(!isPressed));
};

In terms of semantics and behavior, our <toggle-button> 
now has all the accessibility provisions of <button>, but also 
the toggle functionality which makes it deserving of its own 
element definition. In the tradition of <button> we have 
created an element which has accessibility built in, meaning 
it can simply be deployed to an interface without having to 
consider keyboard and screen reader inclusion as separate 
concerns. Here’s a demo of this little toggle button imple-
mentation, using Custom Elements v0.82

An easier way to get the basic functionality of a 
<button> before extending it is to literally extend the 

82 http://codepen.io/heydon/pen/ZOqwqQ

http://codepen.io/heydon/pen/ZOqwqQ


121Evaluation By Pattern

HTMLButtonElement prototype. Using Custom Elements v1 
with ES2015/ES6 syntax, we can write what follows. Note that 
in Custom Elements v1, createdCallback is not necessary:

class ToggleButton extends HTMLButtonElement {
  constructor() {
    super();

    this.setAttribute('aria-pressed', 'false');
    this.toggle = () => {
      var isPressed = this.getAttribute('aria-pressed') === 
'true';
      this.setAttribute('aria-pressed', String(!isPressed));
    };

    this.addEventListener("click", () => {
      this.toggle();
    });
  }
}

customElements.define('toggle-button', ToggleButton, {
extends: 'button' });

As you can see, now that I’m piggybacking the 
HTMLButtonElement, I have been able to exclude the 
tabindex and role attributes, as well as the ugly keydown 
event dispatching script. We are doing as we set out to do 
from the very beginning: using what’s already at our dis-
posal. It’s more reliable, efficient, and just plain easier.



122 Inclusive Design Patterns

SHADOW BOUNDARY ISSUES

For the most part, creating inclusive web components is just 
creating accessible, semantic HTML as usual but inside a 
new API. Two notable differences I’m aware of are the effect 
the shadow boundary (the boundary between the DOM and 
Shadow DOM) has on ARIA relationship attributes,83 and 
positive tabindex values.

As Steve Faulkner writes in “Some stuff that doesn’t work 
between the DOM and Shadow DOM,”84 the shadow 
boundary effectively severs relationships built using 
attributes like aria-labelledby, aria-describedby and 
aria-controls, where one element in the relationship is the 
other side of a shadow boundary. 

There are common misconceptions that all custom elements 
have shadow DOM included, and that you can only use 
Shadow DOM with Custom Elements. No: they’re autono-
mous technologies. The toggle button example does not use 
Shadow DOM, so could still associate itself with an element 
of ID #toggleTarget using aria-controls="toggleTarget". 
Nonetheless, if it did employ Shadow DOM, this would 
become impossible.

83 http://smashed.by/ariarel
84 http://smashed.by/shadowdom

http://smashed.by/ariarel
http://smashed.by/shadowdom


123Evaluation By Pattern

As for tabindex, using a positive integer like tabindex="4" 
will refer to the fourth in focus order within the shadow 
DOM and not the fourth in focus order within the parent 
document. This may have some useful applications, but 
use of explicit tabindex ordering is not advised in any case. 
Focus order should follow source order for logical keyboard 
operation. This is most easily achieved simply by using 
implicitly focusable elements and — where necessary — 
elements with tabindex="0". Both of which are placed in 
default focus order according to source order, unaffected by 
Shadow DOM subtrees.





125Navigation Regions

Navigation Regions
The last couple of patterns dealt a lot with content, 
how to manage it and write it. But not all web page content 
is really content, as such. Navigation landmarks, for exam-
ple, help your audience to traverse your web pages and the 
content they offer. In other words, they’re a bit meta: they’re 
content that helps with content.

Navigation regions are a tool with a long history, making 
them a convention you can rely on for inclusive page design. 
In fact, even the first web page ever created85 features a rudi-
mentary navigation region consisting of a set of links within 
a definition list (<dl>). Let’s take some time to examine the 
design of navigation patterns as applied to site-wide, and 
page-specific table of contents schemas. This will incorpo-
rate writing structured markup, clear labels and robust CSS. 
How to inclusively indicate the current page — so that every-
one knows where they are! — will also be covered.
 
The Navigation Landmark
Discrete areas of web pages are variously referred to as 
regions, blocks or modules and denote the visual boxes that 
demarcate parts of that page. The WAI-ARIA specification 
offers a handful of landmark roles86 such as role="main", 

85 http://info.cern.ch/hypertext/WWW/TheProject.html
86 http://smashed.by/landmark-roles

http://info.cern.ch/hypertext/WWW/TheProject.html
http://smashed.by/landmark-roles


126 Inclusive Design Patterns

which define semantics and behaviors to make common 
regions accessible in assistive technologies. 

The <main> element and role="main" WAI-ARIA role map 
to each other, offering the same semantics and behaviors. 
You can use either but <main> is terser, as the following 
example attests.

<div role="main" id="main">
 &hellip;
</div>

<!-- or... -->

<main id="main">
 &hellip;
</main>

For the purposes of inclusion, our navigation regions 
should also be navigation landmarks. Navigation land-
marks, denoted either by the role="navigation" WAI-
ARIA role or the <nav> element, differ in two key ways to 
main landmarks:

• You can have more than one navigation landmark  
per page.

• The content inside navigation landmarks that appear 
on multiple pages (such as a common site navigation 
block) should be consistent between those pages.



127Navigation Regions

Site-Wide Navigation

Let’s deal with the most common type of navigation land-
mark first, establishing some of the features common to all 
navigation landmarks while we’re at it.

For the purposes of accessible UX, progressive enhance-
ment and backwards compatibility, landmark regions 
should contain an unordered list of links. For site navigation, 
these links would pertain to the different pages available in 
your site or application.

<nav>
 <ul>
    <li><a href="/">home</a></li>
    <li><a href="/about">about</a></li>
    <li><a href="/products">products</a></li>
    <li><a href="/contact">contact us</a></li>
    <li><a href="/login">login</a></li>
 </ul>
</nav>

By using an unordered list, we evoke the rudimentary 
navigation schemas possible in HTML4 and XHTML and 
build on a recognized convention. The list groups the links, 
conveying accessibly that they have a common and shared 
purpose. Not only that, but when CSS fails, the familiar 
form of a bulleted list containing blue, underlined text acts 
as a visual signifier that this content has a navigational 
purpose.



128 Inclusive Design Patterns

Just by using a list, we’re being inclusive of older users and 
devices, assistive technology users and those who are expe-
riencing a CSS failure.

Wrapping the list in a landmark offers addi-
tional semantics and behaviors. If I was to 
enter the landmark while running a screen 
reader and focus the first link, I would hear 
a lot of useful information. Firstly, I’d hear 
“Navigation landmark,” followed by “List, 
one of five” and finally “Link, home.” By 
then, I’d know that I’m in a navigation 
landmark, that it contains five links in 
total, and that I can follow the first link 
immediately if I wish.

That’s not all, though. The <nav> (or role="navigation") 
landmark joins <main> in being discoverable when travers-
ing the page by region — for instance by using the D key in 
the NVDA screen reader. Also, NVDA, JAWS and VoiceOver 
all provide a dialog listing landmarks as a menu, allowing 
you to switch between them directly.

• Banner
•  Navigation
• Main
• Footer

We see interfaces with 
broken or missing CSS 
frequently enough to 
recognize this as a navi-
gation block.



129Navigation Regions

OK, so a navigation menu that lists a navigation menu is 
really meta. Nonetheless, it’s helpful to have your screen 
reader create an automated index of regions for the page 
in this way. Wading through content with only the hope of 
encountering an identifiable region requires faith that few 
users have to spare.

APPEARANCE AND PLACEMENT

The human brain uses patterns called schemata87 to under-
stand sense data. Schemata constitute prior experience 
against which current experience is evaluated.

In programming terms, schemata are a kind of cache for 
understanding. So long as a familiar thing is being experi-
enced, little more effort is required to understand it. 

By the same token, if something genuinely new is experi-
enced, there’s nothing in the cache to be relied on and the 
sense data must be evaluated in full.

In design, by making things that behave in a certain way 
appear as expected, we help our users make the most of 
their cognitive cache. In other words, we don’t make them 
think.88 This is a well-known usability principle, but it’s worth 

87 https://en.wikipedia.org/wiki/Schema_%28psychology%29
88 http://smashed.by/dontmakemethink

https://en.wikipedia.org/wiki/Schema_%28psychology%29
http://smashed.by/dontmakemethink


130 Inclusive Design Patterns

restating — especially in the context of inclusive design, where 
we’re trying to cater for extremes of cognitive impairment.

In the case of the site navigation landmark, you would 
do well to give it a familiar form consisting of adjacent, 
enlarged links. Position it in the header of each page, above 
the main content and preferably before anything else.

I’m not suggesting your navigation bar has to use a white, cursive font 
on a black background! It’s the familiar positioning and shape that 
counts.

CSS POSITIONING

The purpose of placing site navigation at the top of the page 
is not only for cognition, but interaction. As we’ve already 
established, keyboard users navigate pages one interactive 
element at a time, in order. Putting page navigation at the top 
means they don’t have to traverse one page to get to another.



131Navigation Regions

In practice, so long as source order matches reading order 
this is something which takes care of itself. Unfortunately, we 
have a habit of overengineering and overcomplicating things.

While attending the Future of Web Design conference in 
2015, I sat in on an accessibility clinic run by Léonie Wat-
son.89 One of the attendees had come to Léonie with a prob-
lem: they couldn’t work out why the site navigation in their 
prototype wasn’t focusable. It turns out it was; it was just at 
the bottom of the source so it took thirty or forty presses of 
the Tab key to reach it and finally invoke the focus style.

 <nav>
  <!-- the last interactive elements on the page -->
 </nav>
</body>

With CSS position values of absolute or fixed, one can vis-
ually position an element anywhere in the viewport, regard-
less of the source order. Not only does this create a contrary 
user experience for keyboard users, but positioned elements 
don’t reflow with the rest of the document. This is liable 
to create layout issues when the viewport or its content is 
resized. Elements will slip behind other elements or extend 
outside of the viewport and become obscured.

89 https://twitter.com/LeonieWatson

https://twitter.com/LeonieWatson


132 Inclusive Design Patterns

In general, avoid positioning in all but the rarest of cases. 
When relying on positioning to create modal dialogs, you 
should exercise extreme caution, testing against a range of 
viewport dimensions and magnification settings.
 
“YOU ARE HERE”
Half of knowing where you want to go is knowing where 
you are already. This is why department stores and shop-
ping centres put “You are here” signs on their floor maps.

A friendly navigation schema does something similar by 
highlighting the current page: the page the user has open. 
Identifying the current page link in your <nav> region 
makes your site more usable. If you go about it the right 
way, this increase in usability can be inclusive of different 
types of setup and user.

DON’T DIFFERENTIATE BY COLOR ALONE

Color is not used as the only visual means of conveying informa-
tion, indicating an action, prompting a response, or distinguish-
ing a visual element. 

— WCAG2.0 1.4.1 Use of Color90

90 https://www.w3.org/TR/WCAG20/#visual-audio-contrast

“

https://www.w3.org/TR/WCAG20/#visual-audio-contrast


133Navigation Regions

Typically, the current page link is distinguished by color, 
which means users with certain varieties of color blindness 
may not be able to differentiate this link from the others. 
It’s best to provide an additional adornment, such as a text 
underline, as an alternative means of differentiation.

a.current-page {
 display: inline-block;
 padding: 0.5rem;
 text-decoration: underline;
 background: $highlight-color;
}

A navigation bar with the active “about” link underlined.

 As illustrated, a clear differentiation by hue can be a faint 
differentiation by shade to some color blind users. Mac 
users who want to see what their web pages look like 
without color can go to System Preferences → Accessibility → 
Display and check Use grayscale. 

A more ambitious solution might be to use some scaling and 
a little pointer, provided in pseudo-content.



134 Inclusive Design Patterns

a.current-page {
 display: inline-block;
 padding: 0.5rem;
 background: $highlight-color;
 transform: scale(1.2);
}

a.current-page::after {
 content: '';
 position: absolute;
 left: 0;
 right: 0;
 bottom: -0.25em;
 height: 0.25rem;
 background: url('images/pointer.svg') center no-repeat;
 background-size: auto 100%;
}

The Nav bar with an active “about” inside a white bordered box.

Any method is acceptable so long as the link text remains 
unobscured and readable, and the hue is not the only means 
of differentiation.

 



135Navigation Regions

SCREEN READER AND KEYBOARD SUPPORT

There’s no standard way to identify current page links 
non-visually as yet. Instead, we’ll have to employ a 
workaround. In “The Accessible Current Page Link Conun-
drum,”91 I explored a few possibilities and a productive 
discussion took place in the comments. The following is an 
exposition of the better ideas that emerged there.

The first thing you need to do is provide some text to be read 
out when the screen reader operator focuses the link. It’s 
important that this text does not replace the existing link text 
and is, instead, appended or prepended to it. One approach 
is to insert a visually hidden, screen reader announceable 
<span> containing a cipher, like “Current page”:

<nav>
 <ul>
    <li><a href="/">home</a></li>
    <li><a href="/about"><span class="visually-
hidden">Current page</span> about</a></li>
    <li><a href="/products">products</a></li>
    <li><a href="/contact">contact us</a></li>
    <li><a href="/login">login</a></li>
 </ul>
</nav>

91 http://smashed.by/conundrum

http://smashed.by/conundrum


136 Inclusive Design Patterns

(Note: The CSS for the visually-hidden class is set out in  
“A Blog Post.”)

Whether it is to say “Current page,” “This page” or “You are 
here” is somewhat open to debate, but it should be fairly 
succinct. I’ve prepended the <span> so the screen reader 
says “Current page about” rather than “About current page.” 
The latter is ambiguous: does this link refer to a description 
of the current page?

Another approach, which goes some way to mitigate ambi-
guity, is to use a proxy element and aria-describedby.92 The 
aria-describedby attribute imports and appends a descrip-
tion which is read after a pause. In the following example, 
focusing on the current (about page) link would trigger the 
announcement, “About [pause] Current page.”

<nav>
 <ul>
    <li><a href="/">home</a></li>
    <li><a href="/about" aria-describedby="current">about</
a></li>
    <li><a href="/products">products</a></li>
    <li><a href="/contact">contact us</a></li>
    <li><a href="/login">login</a></li>
 </ul>
 <div hidden id="current">Current page</div>

</nav>

92 http://w3c.github.io/aria/aria/aria.html#aria-describedby

http://w3c.github.io/aria/aria/aria.html#aria-describedby


137Navigation Regions

A few notes:

• aria-describedby is a relationship attribute : it as-
sociates the described element with the descriptive 
element via id. The description is the descriptive 
element’s text node.

•  The HTML5 hidden attribute is used to hide the 
description both visually and from screen readers. It 
works like display: none; but is syntactically neater. 
Despite being hidden, because it has a relationship to 
the link, the link still has access to “Current page” and 
it will be announced on focusing the link. (Note that 
Internet Explorer does not support hidden at the time 
of writing, but you can force it to by adding  
[hidden] { display: none; } to your style sheet.

• Moving the aria-describedby="current" attribute 
from one element to another between pages is easy 
enough, and it can be used as a styling hook just as a 
class might be: [aria-describedby="current"].

FROM REDUNDANT LINK TO SKIP LINK

Some unfinished business: on the about page, the current 
page link, now accessibly identified, points to the same 
about page. In practice, this means that clicking the link 



138 Inclusive Design Patterns

will reload the page, dumping the keyboard user’s focus at 
the very top, on the document itself. For screen reader users, 
this will prompt the repeated announcement of document- 
level information such as the <title> and a set of meta 
information about the page such as how many links it 
contains.

The redundancy of the self-referential link has prompted 
some designers to remove it altogether. On the about page, 
that would leave us with:

<nav>
 <ul>
    <li><a href="/">home</a></li>
    <li><a href="/products">products</a></li>
    <li><a href="/contact">contact us</a></li>
    <li><a href="/login">login</a></li>
 </ul>
</nav>

This produces an unsatisfactory wayfinding experience. 
The current page link is for context, remember; the “You are 
here” marker. Without it, you force the user into a rather 
absurd spot-the-difference game.

As a remedy, I’ve heard it suggested to remove the current 
page link’s href, or to replace the <a> entirely with an 
uninteractive <span> element. These implementations are 
serviceable for sighted users, but screen reader users often 



139Navigation Regions

traverse navigation landmarks from link to link, using their 
Tab key. If the current page indicator is not focusable, it 
would be skipped over as if it didn’t exist.

My favorite solution is to make the current page link point 
to the main region of the page. This way, instead of just 
reloading the page, it takes you past the navigation land-
mark to the content, like a skip link.

<nav>
 <ul>
    <li><a href="/">home</a></li>
    <li><a href="#main">about</a></li>
    <li><a href="/products">products</a></li>
    <li><a href="/contact">contact us</a></li>
    <li><a href="/login">login</a></li>
 </ul>
</nav>

Not only is the link easy to style via the [href="#main"] 
attribute selector, but its behavior is communicated to 
assistive technologies: on focusing the home link, “Home, 
link” will be announced. Then, on focusing the about link, 
the user should hear “About, same page link.” Since “same 
page” is vocalized already, the hidden <span> with “Current 
page” is arguably obsolete. We’ve married behavior and 
semantics just by altering the href value.



140 Inclusive Design Patterns

Credit should go to Daniel Göransson93 for suggesting this 
solution. Sometimes discussions in article comment sec-
tions can be surprisingly productive!

Be wary of using this technique in single-page applications. 
When you are emulating the behavior of loading whole 
new pages, the announcement of “same page link” exposes 
a white lie and would make the experience confusing. For 
single-page applications, the aria-describedby approach 
would therefore be more suitable.

REMOVING REDUNDANCY

It’s common practice to place your navigation landmark 
within the page’s banner landmark, which also features 
your company or project logo. Here’s how that might be 
devised. Note that the <header> element has the explicit 
ARIA banner role. This is because multiple <header> 
elements can be used on one page, but only one should be 
the singular banner landmark. Though some browsers are 
clever enough to calculate which <header> is the right 
one, this helps others along.

93 https://twitter.com/danielgoransson

https://twitter.com/danielgoransson?lang=en-gb


141Navigation Regions

<header role="banner">
 <a href="/home">
    <img src="images/logo.svg" alt="My Project home">
 </a>
 <nav>
    <ul>
       <li><a href="#main">home</a></li>
       <li><a href="/about">about</a></li>
       <li><a href="/products">products</a></li>
       <li><a href="/contact">contact us</a></li>
       <li><a href="/login">login</a></li>
    </ul>
 </nav>
</header>

Since usability convention dictates that the logo image 
should double as a link to the home page, the logo has a 
navigational role: the same navigational role as the first of 
the navigation landmark’s links. Not only does this create 
needless and potentially confounding redundancy, but 
we’ve committed the cardinal usability sin of giving two 
things that appear differently the same functionality.

One resolution might be to remove the home link from 
the navigation landmark. However, navigation landmarks 
need to be complete and autonomous because they can be 
accessed directly, using shortcuts. Instead, we can turn the 
navigation block’s home link into the logo, compacting the 
content by removing the now unnecessary role="banner" 
landmark.



142 Inclusive Design Patterns

<nav>
 <ul>
    <li>
       <a href="#main">
          <img src="images/logo.svg" alt="My Project home">
       </a>
    </li>
    <li><a href="/about">about</a></li>
    <li><a href="/products">products</a></li>
    <li><a href="/contact">contact us</a></li>
    <li><a href="/login">login</a></li>
 </ul>
</nav>

(Note: I am still using the same-page link technique here. 
Imagining that we are currently on the home page, the 
logo’s link goes to #main.)

Where an image is the content of a link, the alternative 
text (alt value) should describe the purpose of the link, not 
the nature of the image. In other words, “My Project logo” 
would not suffice. “My Project home” or just “Home” are 
both appropriate here.

By creating a canonical link to the homepage, we’ve not only 
made navigation simpler to understand but foregone a Tab 
stop and diminished the verbosity of screen reader output. 
It’s important that screen reader users get all the informa-
tion they need, but redundant information is noise, some-
thing which is more difficult to ignore than visual artifacts.



143Navigation Regions

In terms of responsive design, it’s possible to target the logo 
using :first-child and, for example, place it on its own 
row within smaller viewports:

@media (max-width: 20em) {
 nav li:first-child {
    display: block;
    text-align: center;
 }
}

Tables Of Contents

I like pages with links at the top of the page. It’s really helpful on 
long pages with a lot of sections. I can figure out what’s on the 
page without a lot of work.” 

— Lea, a persona from “A Web For Everyone”94

Resources like Wikipedia which trade in typically very 
lengthy and detailed articles, have long been incorporating 
tables of content because they provide two related benefits:

• Summarizing long-form content.
• Providing navigation to specific sections of long-form 

content.

94 http://rosenfeldmedia.com/books/a-web-for-everyone/

“

http://rosenfeldmedia.com/books/a-web-for-everyone/


144 Inclusive Design Patterns

I’m fond of tables of contents for one reason most of all: 
they’re not drop-down/pull-down/pop-up submenus. I 
mean, these don’t even have a name anyone can agree on! 
Drop-down submenus (let’s call them that) attempt to solve 
the same problem of grouping links to related content, but 
are flawed in a number of ways.

First, they hide navigational content from view within a 
precarious, interaction-activated menu. Second, they encour-
age information architects to spawn numerous, independent 
pages of content, without the clear hierarchy of grouping 
related sections under a main heading on a shared page. 
Though technically they can be made accessible, it’s not a 
trivial task to support mouse, keyboard and touch interaction 
simultaneously without diminishing the quality of any one 
mode. The submenus they disclose need to be positioned 
absolutely, which invites layout issues across different view-
ports, and they’re cumbersome when it comes to graceful 
degradation in the absence of JavaScript, CSS or both.

Sometimes it’s better not to make something just-about-in-
clusive, but to think about the root problem and devise a com-
pletely different solution — a simpler and more robust one. 
Tables of content are the antidote to drop-down submenus. 
Drop-down submenus will not, therefore, have a pattern of 
their own in this book. For further reading, consult Nielsen 
Norman Group’s “Drop-Down Menus: Use Sparingly.”95

95 http://smashed.by/drop-down

http://smashed.by/drop-down


145Navigation Regions

BASIC STRUCTURE

Wikipedia provides the <h2> “Contents” to locate the table 
of contents in assistive technology. Since tables of contents 
that link to page sections are de facto navigation land-
marks, we can do one better than Wikipedia and include 
role="navigation" on the parent element. Each link 
points to a fragment identifier96 that corresponds with a 
section of the page.

<div class="toc" role="navigation">
 <h2>Contents</h2>
 <ul>
    <li><a href="#history">Our history</a></li>
    <li><a href="#services">What we do</a></li>
    <li><a href="#endorsements">News</a></li>
    <li><a href="#endorsements">Endorsements</a></li>
 </ul>
</div>

96 https://en.wikipedia.org/wiki/Fragment_identifier

Web page tables of contents usually 
follow the Wikipedia model: a basic 
bulleted list of links inside a box.

https://en.wikipedia.org/wiki/Fragment_identifier


146 Inclusive Design Patterns

SEQUENTIAL FOCUS NAVIGATION

The links within a table of contents point to element ids 
representing targets within the page, such as #services, 
which update the document’s URL with the corresponding 
hash cipher.

<h2 id="services">Services</h2>

Despite these targets (usually <section>s or headings) not 
typically being focusable elements, browsers employ sequen-
tial focus navigation whereby the first focusable element 
within or after the target is made the next focusable element 
in sequence. The upshot is that users navigating by key-
board can follow a link in a table of contents and be trans-
ported to that section safe in the knowledge that keyboard 
functionality will be localized to the section.

MAXIMIZING SUPPORT

Until recently, a bug in Chrome97 meant that sequential 
focus navigation did not work, but that bug has (finally!) 
been fixed. To make sequential focus navigation work in 
Internet Explorer, you have to overcome a longstanding 
hasLayout bug. Fortunately, this is possible by simply add-
ing tabindex="-1" to the element carrying the target id.

97 http://smashed.by/focus-target

http://smashed.by/focus-target


147Navigation Regions

<h2 id="services" tabindex="-1">Services</h2>

LINKJACKING

Some implementations of in-page linking are enhanced by 
JavaScript to provide a smooth scrolling effect as the tar-
geted section comes into view. For this to work correctly, 
the standard browser behavior of jumping instantane-
ously to the target needs to be suppressed. The behavior of 
linking is effectively replaced with scrolling and sequential 
focus navigation no longer takes place. Keyboard users 
become stranded.

Now that standard behavior has been usurped, the usurper 
needs to emulate it for us. In other words, we need to 
use JavaScript to fix the JavaScript. As is often the case in 
making keyboard-inclusive JavaScript interfaces, explicit 
focus management must be employed to move the key-
board user to the intended location. A typical implemen-
tation is achieved by animating scrollTop using jQuery. 
Fortunately, jQuery’s animate method provides a callback, 
meaning focus can be applied to the target element after the 
animation has finished.



148 Inclusive Design Patterns

function isSameResource(urlOne, urlTwo) {
 var fragmentPattern = /#._$/;
 var resourceOne = urlOne.replace(fragmentPattern, '');
 var resourceTwo = urlTwo.replace(fragmentPattern, '');
 return resourceOne === resourceTwo;
}

function getFragmentTarget(id) {
 if (id.slice(0, 1) === '#') {
    id = id.slice(1);
 }

 // we’re looking for <div id="{id}"> or <a name="{id}">
 return document.getElementById(id)
    || document.querySelector('a[name="' + id + '"]');
}

// handle activation of all fragment links on current page
$(document.body).on('click', 'a[href*="#"]:not([href="#"])', 
function(event) {
 if (event.isDefaultPrevented()) {
 // some other event handler might have already
handled this event
    return;
 }
 
 if (!isSameResource(location.href, this.href)) {
    return;
 }

 var target = getFragmentTarget(this.hash);
 if (!target) {
    return;
 }

 // prevent browser from jumping to the fragment
 // because we want to scroll it into view first
 event.preventDefault();



149Navigation Regions

 // smooth scroll document to target element over 1 second,
 // not using Element.scrollIntoView() because not widely
supported yet
 $('html, body').animate(
    { scrollTop: $(target).offset().top },
    1000, function() {
 // now that we’ve scrolled the target into view,
 // let the browser do its regular thing and update the URL
       window.location.hash = target.id || target.name;
    }
 );
});

Note the line starting window.location.hash which updates 
the URL after focus with the hash fragment. This reinstates 
standard behavior too, making sure the user can still book-
mark and share the subsection. This ability to record and 
retrieve subsections of documents is an integral part of the 
web experience, and one some users would miss if absent.

LABELING NAVIGATION LANDMARKS

We began by formulating a site-wide navigation landmark. 
Now we’ve spawned an in-page navigation landmark, intro-
ducing a second region to our pages. While some landmarks 
like banner and main can only occur once per page, it’s quite 
legitimate to use multiple navigation landmarks if the con-
tent merits them.



150 Inclusive Design Patterns

There’s a world of difference, however, between technical 
compliance and ensuring a good user experience. To make 
the most of these two complementary navigation tools, the 
user needs to know which is which. Visually speaking this 
is trivial, since their style and placement demarcate them. 
The site navigation should appear above the <main> content 
and the table of contents within it (preferably directly below 
the document’s principal <h1> heading, as it would in a 
Microsoft Word document).

Similarly, when browsing the page from top to bottom, the 
screen reader user would encounter the site navigation first, 
which is some indication of role and identity. A heading, 
such as the “Contents” <h2> in the previous example, helps 
if the user is navigating by heading shortcut.

However, as you may remember from “A Blog Post,” screen 
readers aggregate headings, links and landmarks into lists, 
providing tables of contents of their own. So that headings 
and links make sense decontextualized in such a fashion, 
you need to write autonomous, self-describing labels.

Unlike headings and links, landmarks do not constitute 
their own labels; they are simply identified by their role. 

Accordingly, two navigation landmarks would be listed as:

• Navigation
• Navigation



151Navigation Regions

Never fear: thanks to WAI-ARIA’s global aria-labelledby 
relationship attribute, we can provide an auxiliary label via 
the existing heading element. In the following example, the 
text node “Contents” (of the <h2>) becomes the label of the 
region using its id as the aria-labelledby value.

<nav class="toc" aria-labelledby="contents-heading">
 <h2 id="contents-heading">Contents</h2>
 <ul>
    <li><a href="#history">Our history</a></li>
    <li><a href="#services">The services we offer</a></li>
    <li><a href="#endorsements">Visit our office</a></li>
    <li><a href="#endorsements">Endorsements</a></li>
 </ul>
</nav>

Though a heading is recommended to support screen reader 
heading navigation, and to add lexical clarity for users of 
all kinds, it’s not obligatory. In which case, the aria-label 
attribute can be attached directly to the landmark instead.

<nav class="toc" aria-label="contents">
 <ul>
    <li><a href="#history">Our history</a></li>
    <li><a href="#services">The services we offer</a></li>
    <li><a href="#endorsements">Visit our office</a></li>
    <li><a href="#endorsements">Endorsements</a></li>
 </ul>
</nav>



152 Inclusive Design Patterns

In either implementation, there are two upshots:

1. When a screen reader user focuses a link inside the nav-
igation landmark, the label is added to the contextual 
information announced. By focusing the “Our histo-
ry” link in the previous example, “contents navigation 
landmark, list, one of four items, our history, link” (or 
similar) would be announced.

2. In the screen readers VoiceOver, NVDA and JAWS, the 
navigation landmark will be distinctly labeled as “Con-
tents navigation” in the landmark elements list.



153Navigation Regions

Summary

For this pattern, we progressively enhanced one of HTML’s 
primitives, lists, to create the inclusive means to navigate 
within and between web pages. Along the way, I covered 
design provisions transferable to many other patterns, 
including logical source order and the virtue of eliminating 
redundancy. When JavaScript was introduced to enhance 
scrolling behavior, we ensured it would both remain 
functional to keyboard users and degrade gracefully in the 
absence of the script.

THINGS TO AVOID

• Unconventionally designed or difficult to discover 
menu systems.

• Relying on color alone to indicate the current page or 
section.

• Hijacking link behavior without considering focus 
management.

• Foregoing unique labels where more than one <nav>  
is present.





155A Menu Button

A Menu Button
Sometimes we hide menus away (like the navigation 
regions of the last chapter), putting the content center stage. 
Revealing the menu should be at the user’s discretion, so we 
provide a button. Were menu buttons straightforward and 
uncontroversial, I could have folded this pattern into the last 
one, but, alas, there are a number of challenges and con-
cerns to address: the method of rendering the menu icon; 
how to make it easily intelligible; how to label it accessibly; 
the communication of open and closed menu states; the 
ergonomics of touch operation. All these things have to be 
taken into account.

First of all, though, it needs to be stated that — like drop-
down menus — if you don’t need a menu button, don’t 
involve one. As a rule of thumb, if the menu has fewer than 
five items, just lay them out; make them available to the 
user at all times. In desktop viewports, there’s rarely any 
reason to hide a navigation menu away, regardless of the 
number of items it contains. Hiding functionality away 
from users and requiring them to perform an additional 
action to reveal that functionality is always a last resort.

If only a few menu items are needed, the menu button is a 
solution to a problem that does not exist. Louie A points out in 
“Why and How to Avoid Hamburger Menus”98 that foregoing 

98 http://smashed.by/avoid-hamburger

http://smashed.by/avoid-hamburger


156 Inclusive Design Patterns

the button is often a question of information architecture. 
Nonetheless, not all applications are reducible to only a hand-
ful of views or actions and, since menu buttons are close to 
ubiquitous, we should formulate an inclusive implementation.

Appearance

It is well established that iconography can improve and 
accelerate comprehension for sighted users. To pick just one 
study, “Icons Improve Older and Younger Adults Compre-
hension of Medication Information” (PDF)99 found that 
medication dosage and routine were more quickly under-
stood when icons were used to represent the salient infor-
mation. A non-textual mode of communication also crosses 
language barriers, helping to internationalize an interface, 
and assists those with poor literacy.

A smiley face says “happy” to more people than any one language 
can manage.

99 http://smashed.by/iconimprove

http://smashed.by/iconimprove


157A Menu Button

Some icons are more intelligible than others and that’s a 
question of their place within a sign system.100 In the “Nav-
igation Regions” pattern we acknowledged the ubiquity of 
lists being used to enumerate navigation options. Since the 
three-line (☰) hamburger icon or navicon is a co-opted list 
icon, it is meaningful based on our knowledge of lists and 
their relationship to navigation.

With that in mind, the icon should be fairly widely under-
stood. This rather depends, though, on the menu that’s 
being revealed actually having the appearance of a list. Mak-
ing list items bear the same shape and background color 
as the horizontal strips in the icon itself makes the icon 
truly iconic (representative by physical approximation). As 
always, convention is a friend to inclusion, so extrapolating 
on the classic three-line symbol by adding lines or changing 
line orientation is to be avoided.

Leave creativity to the bad designers. This is not the place to do 
something different. If a convention exists, use it.” 

— Mark Boulton, “Icons, Symbols and a semiotic Web”101

100 https://en.wikipedia.org/wiki/Sign_system
101 http://smashed.by/iconsymbols

“

https://en.wikipedia.org/wiki/Sign_system
http://smashed.by/iconsymbols


158 Inclusive Design Patterns

Not everyone will see navigation when looking at some-
thing as pictorially reductive as three horizontal lines, and 
James Foster’s research102 ratifies this assumption. In A/B 
testing he found that the icon accompanied by the text 
“menu” was better understood.

He also found that menu buttons with a button-like shape 
(thanks to a bordered outline) were more apprehensible. In 
general, all the buttons in your interface should look like 
buttons, otherwise they lose perceived affordance:103 the 
appearance that they can be used. Perceived affordance is a 
cornerstone of cognitive accessibility for interaction design.

By drawing a perimeter line around the icon and text of the control it 
appears as a button.

By having the icon and the “menu” text present, we acceler-
ate the comprehension of well-versed mobile interface users 
without alienating newcomers. The voice activation term 
“menu” is also made clear to users of products like Dragon 
NaturallySpeaking.104

102 http://exisweb.net/mobile-menu-abtest
103 http://www.jnd.org/dn.mss/affordances_and.html
104 http://smashed.by/voice

http://exisweb.net/mobile-menu-abtest
http://www.jnd.org/dn.mss/affordances_and.html
http://smashed.by/voice


159A Menu Button

Rendering The Icon

You’d be forgiven for thinking you were spoiled for choice 
when it comes to rendering the icon: image tag; background 
image; Unicode character; icon font character; SVG — take 
your pick! Except, don’t. Not all of these options are as 
robust and inclusive as you might suppose. Let’s look at 
some of the pros and cons for each.

BACKGROUND IMAGE

Now that background images can be scaled using the 
background-size property, their viability in responsive 
design has improved. However, as you may recall from 
the <button> example in the introduction, background 
images are eliminated when users switch into Windows 
high contrast mode.105 If we provide the “menu” text (which 
will have its color inverted by high contrast mode to still be 
readable against an inverted background color) this isn’t a 
deal breaker. But without the additional text, the button has 
no visual presence at all.

IMAGE

A .png image which defines three black lines separated 
by transparent spaces has a similar issue: when the back-
ground becomes black, you get three black lines on a black 

105 http://webaim.org/blog/high-contrast/

http://webaim.org/blog/high-contrast/


160 Inclusive Design Patterns

background. You can, of course, provide a white, rather 
than transparent, background for your icon, but on a black 
background this becomes three black stripes in a white box, 
which is a slightly different proposition.

Encapsulated in white, on the high contrast mode’s black background, the 
icon appears differently and seems separate from the text label of “menu.”

A GLYPH FROM AN ICON FONT

Fortunately, icon fonts are text, so they behave like text. 
When high contrast mode inverts the color of the “menu” 
text, it will also invert the color of the icon. Another advan-
tage is that icon fonts scale without degradation, much 
like SVG.

Icon fonts become problematic when users choose their 
own fonts for web pages, as described by Seren D in “Death 
To Icon Fonts.”106 It’s important for inclusion to allow users 
to choose fonts which they are comfortable reading, espe-
cially if they experience difficulty with dyslexia. Your style 

106 https://speakerdeck.com/ninjanails/death-to-icon-fonts

https://speakerdeck.com/ninjanails/death-to-icon-fonts


161A Menu Button

sheets should be sensitive to this preference. The problem 
comes when the user-defined font does not support the 
characters used for the icons, and leaves generic “Glyph not 
defined” boxes in their place.

The familiar rectangular box 
indicates a glyph that is not sup-
ported and constitutes a fallback.

As with any web font, an icon font is a resource which may 
be blocked. This will result in the generic-boxes-all-over-
the-place effect. Opera Mini doesn’t load web fonts as a 
matter of course. This is workable where there are fallback 
system fonts defined, but icon fonts tend to use esoteric 
Unicode points which have no equivalent in normal system 
fonts. Bruce Lawson of Opera has a great article on “Making 
websites that work well on Opera Mini.”107 Successful Opera 
Mini support is a good litmus test of high performance.

Zach Leatherman of Filament Group writes that sometimes 
operating systems do use Unicode’s private use area,108 but for 
their own purposes. In practice, this means our menu icon 
font could fail to load and fall back to displaying a cat’s face. I 
imagine this might have a negative impact on cognition.

107 https://dev.opera.com/articles/making-sites-work-opera-mini/
108 https://www.filamentgroup.com/lab/bulletproof_icon_fonts.html

https://dev.opera.com/articles/making-sites-work-opera-mini/
https://www.filamentgroup.com/lab/bulletproof_


162 Inclusive Design Patterns

UNICODE

What if, instead of downloading an icon font, we used a 
standard Unicode symbol to represent the icon? In terms 
of performance and font stacking behavior, this is an 
improvement — and there is indeed an approximate Uni-
code symbol: U+2630.109

There are a couple of issues. The first is that not all devices 
support a Unicode set extensive enough to include this 
character, the “trigram for heaven.” The second is that, 
unlike an icon font which is mapped to Unicode points in 
the private use area,110 this character is more likely to be 
interpreted by assistive technology. Therefore, unless inter-
vention is taken, “Trigram for heaven” could be announced 
in some screen readers. To either English or Chinese screen 
reader users, this would be rather confusing.

To silence readout, you’d have to place the icon in an ele-
ment with aria-hidden="true" specified, which precludes 
the use of CSS pseudo-content for rendering it. CSS pseu-
do-content is, typically, announced by screen readers and 
there’s no “Don’t say this” property that’s supported well 
(although work is underway).111

 

109 http://www.fileformat.info/info/unicode/char/2630/index.htm
110 https://en.wikipedia.org/wiki/PrivateUseAreas#PrivateUseAreas
111 https://www.w3.org/TR/css3-speech/#speaking-props-speak

http://www.fileformat.info/info/unicode/char/2630/index.htm
https://en.wikipedia.org/wiki/PrivateUseAreas
https://www.w3.org/TR/css3-speech/#speaking-props-speak


163A Menu Button

<button>
 <span aria-hidden="true">☰</span>
 Menu
</button>

SVG SPRITES

SVG sprites are fast becoming the de facto solution for icon 
rendering — and with good reason. As Google’s 305-byte 
logo implementation112 attests, they can make very small 
assets. They are scalable by nature and can even change 
color in accordance with changes to font color.

SVG sprites work best cross-browser when they’re embedded 
in the page. This also eliminates a separate HTTP request. The 
following should appear directly inside the <body>:

<svg style="display: none;">
 <symbol id="navicon" viewBox="0 0 20 20">
    <path d="m0-0v4h20v-4h-20zm0 8v4h20v-4h-20zm0 8v4h20v-
4h-20z"/>
 </symbol>
</svg>

This hidden <svg> is for reference and defines the menu 
icon as a <symbol> containing the path that forms the icon’s 
shape. Note that it is hidden with an inline display: none; 

112 http://smashed.by/googlelogo

http://smashed.by/googlelogo


164 Inclusive Design Patterns

style. If it was hidden using CSS, the SVG would be visible 
to users whose CSS was not loaded. In fact, since <symbol> 
elements are not themselves rendered, there would be a 
blank gap in your design.

The <symbol> can be used within our menu button by refer-
encing its id with a <use> element.

<button>
 <svg><use xlink:href="#navicon"></use></svg>
 menu
</button>

In the CSS, we change the icons default 20×20px size (set 
in the referenced SVG’s viewBox definition) to fit and scale 
along with the “menu” text:

button svg {
 width: 1em;
 height: 1em;
}

To make the icon adopt the color of the button element’s font 
— both with high contrast mode on or off — we can use CSS’s 
currentColor value and set it on the <path>’s fill prop-
erty. SVG is clearly the most robust solution and already has 
very good support.113

113 http://caniuse.com/#feat=svg

http://caniuse.com


165A Menu Button

<svg style="display: none;">
 <symbol id="navicon" viewBox="0 0 20 20">
    <path d="m0-0v4h20v-4h-20zm0 8v4h20v-4h-20zm0 8v4h20v-
4h-20z" fill="currentColor" />
 </symbol>
</svg>

Labeling

All interactive elements should have an accessible name 
so they can be interpreted and communicated in assistive 
technologies. This relates to WCAG’s 4.1.2 criterion, Name, 
Role, Value.114

The simplest labels are both visible and parsable, based on 
textual content such as our “menu” text node. As discussed, 
there are cognitive benefits of including “menu,” not to 
mention the <button> would remain intelligible even if one 
of the less reliable icon rendering techniques fails.

However, there are circumstances in which you might pro-
vide the icon alone. If so, making sure the button is identi-
fied as “menu button” to screen reader users is paramount. 
The techniques expounded here are applicable to any kind 
of iconic control, such as a play or stop button in a media 
player. Many lessons in this book are transferable between 
patterns and to new patterns in this way.

114 http://smashed.by/rsv

http://smashed.by/rsv


166 Inclusive Design Patterns

THE VISUALLY HIDDEN <SPAN>

This method uses a CSS hack on a <span> to hide the 
“menu” text label without it becoming unavailable to 
screen readers. For that, we can harness our trusty 
.visibility-hidden class (set out in “A Blog Post”).

Used within our SVG implementation, the code would look 
like this:

<button>
 <svg><use xlink:href="#navicon"></use></svg>
 <span class="visually-hidden">menu</span>
</button>

THE ARIA-LABEL ATTRIBUTE

Another auxiliary method for labeling the icon is to use an 
aria-label115 attribute. This global property attaches alter-
native text to elements much like the alt attribute, but isn’t 
just applicable to <img> tags. We can attach an aria-label 
directly to the <button> element:

<button aria-label="menu">
 <svg><use xlink:href="#navicon"></use></svg>
</button>

115 http://smashed.by/aria-label

http://smashed.by/aria-label


167A Menu Button

One of the advantages of aria-label is that is overrides the 
text node of the element, if present. So, if I were to use the 
Unicode rendering method, I could replace the potential 
“Trigram for heaven” readout with “menu”:

<button aria-label="menu">
 &#x2630;
</button>

Since ▶ is read as “black right-pointing triangle” and × as 
“times” (multiplication), the same aria-label method could 
fix the labeling of your play and close buttons, among oth-
ers. Nonetheless, because of the described benefits, use SVG 
to render all your icons if you are able to.

I wrote an article on the UX of aria-label116 for Dev.Opera.

Older Browsers

Support for SVG is pretty much universal,117 with the stip-
ulation that IE9–11 cannot reference external files using 
xlink:href — not a problem with this implementation. 
Internet Explorer preceding version 9 and other older 
browsers need a fallback for inline SVG. This is where you 
can use the <switch> and <foreignObject> elements:

116 https://dev.opera.com/articles/ux-accessibility-aria-label/
117 http://caniuse.com/#feat=svg

https://dev.opera.com/articles/ux-accessibility-aria-label/
http://caniuse.com


168 Inclusive Design Patterns

<button aria-label="menu">
 <svg>
    <switch>
       <use xlink:href="#navicon"></use>
       <foreignObject>
        <img src="path/to/navicon.png" alt="" />
       </foreignObject>
    </switch>
 </svg>
</button>

In the example above, the SVG renders via the <use> ele-
ment if supported, but switches to rendering the fallback 
PNG if not. Note the empty or null value of the alt attrib-
ute on the fallback image: this tells screen readers not to 
acknowledge the image. Since the label of “menu” is pro-
vided via aria-label, the alt is not needed here. Omitting 
the alt attribute altogether will mean some screen readers 
will announce the image’s file name which is irrelevant and, 
frankly, irritating. Only alt="" is reliable.

One issue with the <img/> fallback is that the resource will 
almost certainly download, whether or not the browser 
supports SVG, affecting a needless performance hit. Artur 
Ampilogov has a workaround using background images.118

118 http://smashed.by/svgfallback

http://smashed.by/svgfallback


169A Menu Button

Operation

Now let’s talk about actually using the button. First of all, to 
create an inclusive UX, we need to take care with the place-
ment of the <button> and the menu it discloses.

<nav aria-label="site">
 <button>
    <svg><use xlink:href="#navicon"></use></svg>
    menu
 </button>
 <ul hidden>
    <li><a href="#main">home</a></li>
    <li><a href="/about">about</a></li>
    <li><a href="/products">products</a></li>
    <li><a href="/contact">contact us</a></li>
    <li><a href="/login">login</a></li>
 </ul>
</nav>

• In the example above, we imagine that JavaScript has 
run, meaning it’s safe to hide the menu and reveal the 
button (hence the hidden attribute that JavaScript has 
added to the menu <ul>).

• The <button> is placed inside the navigation landmark, 
meaning it will be available to screen reader users who 
go to the landmark via a shortcut. If the button were 
outside, users would arrive at an empty landmark with 
no way to populate it.



170 Inclusive Design Patterns

• The menu is placed directly after the <button> in the 
source order, meaning the first menu item will be the 
next focusable element after the menu is opened. Be-
cause the menu is hidden with hidden, its contents are 
not focusable when it is closed. Invisible elements are 
not for operation, so they should never be focusable.

In cases where it is impossible (due to design constraints, 
company politics or whatever’s standing in your way) to 
place the subject menu directly after the menu button 
as prescribed, you can associate the two elements with 
aria-controls. As I wrote in “Aria-controls Is Poop,”119 this 
should be avoided. The attribute is only exposed in JAWS 
and JAWs implementation is incomplete and unsatisfactory. 
It announces, “press JAWS key plus Alt plus M to go to con-
trolled element” and offers no way to traverse back.

If you’re looking for a way to transport a user to a menu (or 
any other remote element in the page), a link is your best bet:

<a href="#nav-menu">navigation menu</a>
<!-- lots of other DOM stuff here -->
<nav aria-label="site" id="nav-menu" tabindex="-1">
 <ul>
    <li><a href="#main">home</a></li>
    <li><a href="/about">about</a></li>
    <li><a href="/products">products</a></li>

119 http://www.heydonworks.com/article/aria-controls-is-poop

http://www.heydonworks.com/article/aria-controls-is-poop


171A Menu Button

    <li><a href="/contact">contact us</a></li>
    <li><a href="/login">login</a></li>
 </ul>
</nav>

(Note the tabindex="-1" attribute which fixes sequential 
focus navigation, as discussed in “Navigation Regions”.)

Should you want to hide the menu until the user arrives 
at the landmark, you can use the :target pseudo-class. I 
removed the hidden attribute and would supply this CSS:

#nav-menu ul {
 display: none;
}

#nav-menu:target ul {
 display: block;
}

When you click the href="#nav-menu" link, the URL for 
the page is appended with the #nav-menu fragment identi-
fier and the landmark becomes the target, making display: 
block; applicable.

Let’s put that to one side and go back to discussing our but-
ton. Since proximity isn’t an issue in our case, the button is 
really a better fit. For one thing it lets the user close, as well 
as open, the menu at will. Using JavaScript and WAI-ARIA 
we can communicate this change in state non-visually.



172 Inclusive Design Patterns

COMMUNICATING STATE

Communicating the state of functional elements within 
web interfaces is an important part of making those inter-
faces inclusive of anyone using assistive technology and 
who is therefore dependent on the accessibility tree.120 
Remember, the accessibility tree is a version of the DOM that 
exposes the accessible role, property, value and state informa-
tion you provide in your markup to for non-visual use.

It is a popular misconception that screen readers are not 
reactive to JavaScript triggered DOM changes. All popular 
screen readers listen for changes and update their buffers 
(their interpreted versions of the DOM using the accessi-
bility tree) each time a change takes place. Changes to text 
nodes and attributes update the buffer, as well as adding or 
removing elements.

WAI-ARIA offers a host of state attributes with true and 
false values to communicate the presence or absence of the 
state. I think aria-expanded121 is probably the solution here 
because it prompts screen readers to explicitly announce 
“collapsed” (false) and “expanded” (true). Initially, the 
menu is not open, so false is applicable:

<nav aria-label="site">

120 http://smashed.by/a11ytree
121 http://smashed.by/ariaexpanded

http://smashed.by/a11ytree
http://smashed.by/ariaexpanded


173A Menu Button

 <button aria-expanded="false">
    <svg><use xlink:href="#navicon"></use></svg>
    menu
 </button>
 <ul hidden>
    <li><a href="#main">home</a></li>
    <li><a href="/about">about</a></li>
    <li><a href="/products">products</a></li>
    <li><a href="/contact">contact us</a></li>
    <li><a href="/login">login</a></li>
 </ul>
</nav>

When focusing the menu button, screen readers should 
announce something similar to “Site navigation, menu 
button, collapsed” — all the pertinent information about the 
region’s menu system.

CRITICAL JAVASCRIPT

Switching the state of the menu accessibly requires 
JavaScript. Because the operation of the menu is a fairly 
fundamental feature, I’ve written a vanilla JavaScript imple-
mentation to embed at the bottom of the page.

As described, the menu will be visible and usable where 
JavaScript fails or is switched off, but this way it’s less likely 
to fail: if the document itself loads, it’s already there in its 
entirety — no jQuery or other dependency to wait on.



174 Inclusive Design Patterns

(function() {
 // get the button and menu nodes
 var button = document.querySelector('[aria-label="site"] 
button');
 var menu = button.nextElementSibling;
 // set initial (closed menu) states
 button.setAttribute('aria-expanded', 'false');
 button.hidden = false;
 menu.hidden = true;
 button.addEventListener('click', function() {
 // toggle menu visibility
    var expanded = this.getAttribute('aria-expanded') === 
'true';
    this.setAttribute('aria-expanded', String(!expanded));
    menu.hidden = expanded;
 });
})();

A ROBUST DISCLOSURE

Note that I’ve not done anything fancy with CSS positioning 
or animation here. The menu just appears and disappears by 
switching the display state via the hidden attribute. This has 
three benefits:



175A Menu Button

• There’s no CSS dependency for the menu system, 
meaning it will function regardless of a CSS failure.

• The menu emerges as part of the document flow, 
meaning a taller-than-viewport menu is still scrollable 
into view and does not obscure page content beneath it. 
Absolute positioning cannot assure us of this.

• As previously mentioned, the hidden attribute  
(like display: none;) on a parent element makes any 
interactive element children unfocusable. Setting  
height: 0; and animating to full height would not have 
this effect, meaning keyboard users would have to tab 
through invisible elements while the menu is closed.

It’s possible that judicious animation effects can aid com-
prehension, if designed with care. Avoid the temptation, 
though, to add animations — especially ones which depend 
on CSS positioning — just to impress users. As I wrote in 
“The Precarious X In UX,”122 only other designers tend to be 
enamored with the finer aesthetic points of the interface 
itself. Most real users just want to get things done. Catering 
to them is top priority to an inclusive designer.

122 http://www.heydonworks.com/article/the-precarious-x-in-ux

http://www.heydonworks.com/article/the-precarious-x-in-ux


176 Inclusive Design Patterns

Here is a little revelation. People are not really into using products. 
Any time spent by a user operating an interface, twisting knobs, 
pulling levers or tapping buttons is time wasted. Rather, people are 
more interested in the end result and in obtaining that result 
in the quickest, least intrusive and most efficient manner possible.” 

— Goran Peuc “Nobody Wants To Use Your Product” 123

Touch Targets

As stated, hidden content which depends on a user action 
to be revealed is a last resort. Accordingly, the menu should 
be ever present at reasonably wide viewports. At narrower 
widths, touch operation is more likely — especially when 
we encroach on mobile and handheld dimensions. The ease 
of touch interaction for our hamburger menu needs con-
sideration. We especially want to be inclusive of users with 
limited dexterity due to rheumatic issues.

Small touch targets for interactive elements make operation 
needlessly challenging, so what is the minimum size we 
should aim for? The vast proliferation of device resolutions 
makes it near impossible to establish a universal figure.

123 http://smashed.by/nobodyproduct

“

http://smashed.by/nobodyproduct


177A Menu Button

Apple and Android differ in their advice on touch targets 
with Apple recommending 44 points × 44 points (a density- 
independent unit of measure related to pixels and unique 
to Apple) and Android 48px × 48px. At around this size or 
larger, the visual focus feedback is not obscured by the 
user’s finger, which would otherwise force them to use the 
precarious gestures described in Anthony Thomas’ “Finger- 
Friendly Design: Ideal Mobile Touch Target Sizes:”124

Users use the fingertip to hit small touch targets because it gives 
them the visual feedback they need to know that they’re hitting 
their target accurately. But when users have to reorient their 
finger, it slows their movement down, and forces them to work 
harder to hit their target.”

Patrick H Lauke has undertaken research for The W3C Mobile 
Accessibility Taskforce into touch / pointer target size.125

Touch target size issues are exacerbated in mobile-sized 
navigation regions because of the link’s proximity. When 
the surface of your finger spans more than one element, it 
could be either element that is activated when pressure is 
applied. This is not the sort of gamble anyone is interested 
in taking.

124 http://smashed.by/targetsize
125 http://smashed.by/mobilea11y

“

http://smashed.by/targetsize
http://smashed.by/mobilea11y


178 Inclusive Design Patterns

“Aaargh! I keep hitting the wrong one. Ever heard of vertical padding?”

The BBC Mobile Accessibility Guidelines126 recommend the 
inclusion of “inactive space” between elements to remedy 
this issue, but I suggest this would create a somewhat 
incomprehensible, broken-up appearance when it comes to 
navigation regions. 

I would recommend mobile viewports display navigation 
items in a single vertical column — one link per line — and 
provide a generous enough vertical padding to make each 
link higher than the diameter of an adult finger pad.

126 http://smashed.by/bbcspacing

http://smashed.by/bbcspacing


179A Menu Button

Summary

Though this pattern looked at menu buttons explicitly, it 
was really an exploration of the use of button controls, with 
icons, in general. By being mindful of the need for accessi-
ble labels, potential problems with Windows high contrast 
mode and ease of touch operation, we ensured our menu 
button — as well as the content it reveals — is inclusive of 
differing user settings, circumstances, devices, and assistive 
technology software.

THINGS TO AVOID

• Background images for icon rendering.
• Omitting accessible names and labels.
• Small touch (or hit) areas.
• Foregoing accessible state communication.

 



180 Inclusive Design Patterns

Inclusive Prototyping
This book offers a number of preconceived solutions 
to certain problems, approached with inclusion in mind. 
Though you’re likely to use some as presented (like the 
navigation region pattern) across many of your projects, 
they’re really just examples. They’re here to help you prac-
tice thinking inclusively as you formulate your own patterns 
to solve your own design problems. It’s investing this 
thought in the early stages of the design process that leads 
to a robust product.

Drawing on what we learn about our potential audience in 
the discovery phase127 of our project, we begin to think about 
what tasks our app will allow users to perform. In essence, 
we begin to stockpile verbs: create, sort, edit, buy, read, 
respond, move, capture, draw, upload.

It’s imperative we think first about how these actions might 
be taken rather than how the experience might look and 
feel. Thinking about aesthetics and delight is far too high-
level at this stage. We need to prototype for usability, and 
the more inclusive the prototyping experience, the more 
people will find the product usable.

127 http://www.uxapprentice.com/discovery/

http://www.uxapprentice.com/discovery


181Inclusive Prototyping

Paper Prototyping

Almost all of the successful projects I’ve worked on as a 
designer and developer have included interactive paper 
prototyping in the early stages of the design process. For 
example, the Great British Public Toilet Map128 started out 
with me drawing and cutting out pictures of toilets in the 
offices of Neontribe.129 

Not to be confused with sketching, paper prototyping is 
about creating an interactive prototype from paper, which — 
with the help of someone to manually operate it — allows 
user testers to play with a rough-and-ready demo version of 
the candidate app.

There are a number of advantages to paper prototyping over 
high fidelity and code-based demos.

• Most anyone can work with paper. Coded prototypes 
require some skill in front-end development. Commit-
ting to work with paper means other team members, 
including back-end developers and others not confi-
dent in their design skills, can have a try. Importantly, it 
also means stakeholders and test users can be included 
in iteration.

128 https://greatbritishpublictoiletmap.rca.ac.uk/
129 https://www.neontribe.co.uk/

https://greatbritishpublictoiletmap.rca.ac.uk
https://www.neontribe.co.uk


182 Inclusive Design Patterns

• It’s easy to iterate. Paper prototypes are mostly just 
pen on paper, held together with sticky tack. By using 
sticky tack to piece components together, it’s easy to 
move parts around. If you want new parts, just get out 
some spare bits of paper and your marker pens. This 
can be done during test sessions and can involve every-
one present — infinitely preferable to sitting around 
twiddling thumbs while a front-end dev fiddles anx-
iously with their laptop.

• It’s not polished. The trouble with high-fidelity 
mockups and prototypes is that they tend to look 
finished. People are polite and you won’t get honest 
feedback about something that looks like it’s had a lot 
of work put into it. That it’s made of paper at all means 
it’s clearly only an analogy of the real app, so feedback 
about aesthetic particulars is kept to a minimum. Focus 
remains on whether the idea solves the problem well.

WHAT YOU WILL NEED

Let’s imagine you’re embarking on a paper prototype. 
First, we’ll take care of what you need in terms of equip-
ment and why.



183Inclusive Prototyping

• Large pieces of paper (preferably A2)
• Scissors
• Sticky tack
• Permanent marker pens
• Sheets of acetate
• A dry-wipe (whiteboard-style) pen

LARGE PIECES OF PAPER

Whether your prototype is intended to demo an app for 
small handheld devices or large installation screens, it’s 
better to begin large. A large viewport (paper sheet to which 
smaller parts of the paper app are adhered) means more 
people in your test environment can simultaneously see it 
as it is being used. That means everyone can feel involved, 
and more and better notes can be taken. Obviously, you’ll 
need a table big enough to sit the prototype on!

SCISSORS

Just like a real app, the viewport will be divided into smaller 
sections or components. You’ll need to cut some of your 
larger sheets into smaller ones to be placed on top of the 
base sheet. If you have a guillotine handy all the better, but 
don’t worry too much about all the lines being parallel. The 
wonkier the prototype looks (within reason!), the less intim-
idating and more approachable it is.



184 Inclusive Design Patterns

STICKY TACK

Sticky tack is what makes the paper app modular and lets 
you quickly move components around, either as part of the 
app’s operation or as part of layout iteration. Whenever a 
part of a component is liable to be moved or replaced, use a 
separate piece of paper and stick it in place with tack.

PERMANENT MARKER PENS

Of course, you’ll need to write labels, draw borders around 
buttons and make various other markings, so some pens 
are essential. However, try to limit yourself to just a few 
colors — this isn’t an art project. I usually make sure I have a 
couple of black pens, then choose a red for errors, green for 
success messages, and blue for links and buttons.

SHEETS OF ACETATE

If you’re making an app, there are probably going to be some 
input fields. Acetate is great when it comes to prototyping 
input fields because it allows the user tester to write on the 
paper prototype non-permanently. They can correct their 
mistakes and the writing can be quickly removed ready for 
the next test session.

A DRY-WIPE PEN

Naturally, you’ll need one of these for use with the acetate 
(see above). This is not used in the construction of the pro-



185Inclusive Prototyping

totype, but is needed in the testing described below. Make 
sure the one you take to the test session has some ink in it!

After adhering sticky tack to each corner of your component (1), you can 
place it on a larger, parent component (2). You can always unstick it and 
move it later.

TESTING THE PAPER PROTOTYPE

Paper prototype testing is a slightly unusual ritual with a 
few things to remember and set up.

1. Bring plenty of spares. A good session leads to fevered
iteration. Lots of spare paper and plenty of pens and
scissors to go around are vital.

2. Write a scenario. Putting a user tester in front of your
prototype cold will amount to stunned inaction. Give
them a scenario to work through, something the app
should be able to solve for them. It’s important this sce-
nario is fictional, and not drawn from the individual’s
real experiences for the sake of privacy.



186 Inclusive Design Patterns

3. Appoint a computer. Someone who built the prototype
will have to operate it. That means reacting to (role-
played) input by the user tester. When the tester presses
a button, for instance, the computer will have to reor-
ganize the app in response. If the button deletes some-
thing this would mean unsticking the paper component
and putting it to one side.

4. Give clear instructions. Tell the user tester they can
touch any items in the interface they think are interac-
tive. Importantly, tell them to speak out loud what they
are thinking as they use the prototype. This is important
for understanding where there are usability failures and
what needs to be overcome.

5. Instill calm. It’s easy for the user
to feel tested, so make it clear
that you are not testing them but
the app itself. If they don’t know
how to operate it, make it clear in
advance that it’s not their fault,
but yours as the designer.

A T-shirt design I made for usability expert 
Lily Dart (http://lilydart.com/) during her time 
consulting my former employer, Neontribe.130 
It bears her mantra, “Test usability, not users.”

130 https://www.neontribe.co.uk/

http://lilydart.com
https://www.neontribe.co.uk


187Inclusive Prototyping

THE LAYOUT

To give you a better picture of the testing setup, here’s an 
annotated sketch.

1. The person playing the computer.
2. A collection of prototype bits and pieces (other screens,

yet-to-be-revealed functionality, etc.).
3. The app.
4. The user tester, operating the prototype.
5. It’s beneficial to have a passive second tester, sat with the

user tester for moral support and to encourage dialogue.
6. A note taker. Notice the neutral seating position between

the computer and testers. By sitting here, between the two
parties at either end, the testers should feel less scrutinized.



188 Inclusive Design Patterns

From Paper To Code

After a few sessions of paper prototype testing, you should 
have a lot of torn-up paper and a better idea of the app you 
should be building. The way you translate the surviving bits 
of paper into coded modules is critical for an inclusive end 
product. It’s in the creation of your living styleguide131 that 
you should be drawing on the inclusive coding practices 
you’ve been learning in this book.

In a large team, this can be a collaborative effort with some 
friendly competition to reach the best solutions. In her arti-
cle, “From Pages To Patterns: An Exercise For Everyone,”132 
Charlotte Jackson recommends that after agreeing on which 
components are which and what they should be named, you 
should get straight into coding. Charlotte sets it out simply, 
like this:

• Everyone grab a component.
• Code it up in HTML and CSS. Set a time limit and resist 

the temptation to perfect things. It’s fine to throw away 
the code if the designs change.

• Compare and discuss your code.
• Repeat.

131 http://smashed.by/style-guide-tools
132 http://smashed.by/pages-to-patterns

http://smashed.by/style-guide-tools
http://smashed.by/pages-to-patterns


189Inclusive Prototyping

I would suggest a couple of stipulations to really make the 
most of this in terms of inclusive design. First, I’d recom-
mend several individuals (or teams) work on the same com-
ponent so there are different solutions to compare. Second, 
accessibility should be a prerequisite for consideration. If a 
solution isn’t keyboard-accessible, uses a poor structure or is 
not explicable by screen reader, it’s out.

The quickest way to prototype in code is to use stand-
ard HTML elements such as <input>, <select> <a> and 
<button>. They give you the behaviors you need to make 
your component functional. It’s usually only when we begin 
overengineering custom components that we encounter 
issues. By going straight from paper to HTML, we lay the 
foundations for efficient code and inclusive experiences. It 
is based on this foundation that we can enrich the experi-
ence with CSS and JavaScript.

After all, you can’t even have CSS or JavaScript without some 
HTML on which to stick them. So, you might as well get the 
HTML right first.





191A List of Products

A List Of Products

 “What religion are you?”

“Well if you’re going to reduce my identity to my religion, then 
I’m Sikh. But I also like hiphop and NPR. And I’m restoring a 1967 
Corvette in my spare time.”
 
“Okay. So, one Sikh, and…”
 — The Office, Season 4, Fun Run

Business tends to concern itself with targeting and commu-
nicating to a receptive audience. The creators of a photogra-
phy website, for example, would seek to identify and target 
people who like photography and, well, websites. For most 
marketers, research doesn’t stop there. They’ll look into age 
groups, related interests, competing websites, income, aspi-
rations and even gender.

Fortunately for you — the inclusive designer — the precari-
ous and error-prone art of marketing is none of your concern 
because abilities, preferences and circumstances have little 
to do with interests, tastes or lifestyle choices. And while sec-
ond guessing who might want to use our products is a game 
we have to play, making assumptions about how folks use 
them can only alienate potential fans and customers. 



192 Inclusive Design Patterns

Targeting a so-called average user is a disastrous interface 
design strategy, because average users do not exist — except 
for the handful of people teetering on the apex of your bell 
curve. The popular utensil firm OXO knows this well and by 
catering to extreme situations and disabilities first, they’ve 
produced highly ergonomic products with mainstream 
appeal. In OXOs own words:133

When all users’ needs are taken into consideration in the initial 
design process, the result is a product that can be used by the 
broadest spectrum of users.”

In the design of the hypothetical photography site, it’s 
tempting for the business to try to write off support for 
users they don’t think will be interested in it. That way, 
maybe they can save money. “Blind users aren’t likely to be 
interested in photography, so why bother making the site 
screen reader accessible?” they might think.

Meet Sandra. She was a photographer until the age of 
thirty-seven, when she lost her sight. Her interest in pho-
tography never really diminished, though. She enjoys being 
an active member of the online photography community 
where she can trade the technical know-how she’s picked up 
over the years for detailed descriptions of photographs.

133 http://smashed.by/oxo

“

http://smashed.by/oxo


193A List of Products

There’s always a Sandra, and she deserves an experience just 
as good as the Ryans, Barbaras and Xaviers of this world. 
But also consider the following:

• The features Sandra wants (a social dimension and text 
descriptions) are not exclusive to her or other blind 
users for reasons of being blind.

• Including these features does not alienate other types 
of user in favor of people like Sandra.

• Making these features accessible to blind and low- 
vision users has benefits for other types of user. For ex-
ample, alt text describes images in text-only browsers 
or where image requests return a 403, 404, 500 or 503 
status. Screen reader accessibility also requires key-
board accessibility, which helps folks with a range of 
rheumatic complaints, as well as conditions that cause 
inaccuracy with a mouse, such as Parkinson’s disease 
or dyspraxia. And that doesn’t begin to cover all of the 
folks who use the keyboard when browsing — clinical 
condition or no.



194 Inclusive Design Patterns

Everybody is a keyboard user when eating with their mouse hand.”
— Adrian Roselli134

No matter what the content or the commercial offer, there 
is no reason to second-guess how the user might operate 
the interface. In fact, doing so can only reduce the quality of 
the product. To save money, you are going to want to make 
just the one interface, not a different one for each imagined 
user group. So, you make it inclusive. You make inclusivity a 
quality of the product — not an expensive additional feature.

When inclusion is integrated into the design process in 
this way, it’s very little more work. In fact, using standard 
technologies in expected ways often means less work. For 
example, devising an inaccessible, custom-authored <div 
class="heading-3"> is actually more typing than using a 
standard <h3>. It gets even more verbose when you’re wed-
ded to using a <div> and have to fix the heading accessibil-
ity after the fact with ARIA attributes:

<!-- life is too short! -->
<div class="heading-3" role="heading" aria-level="3">Heading
text</div>

134 https://twitter.com/aardrian/status/388733408576159744

“

https://twitter.com/aardrian/status/388733408576159744


195A List of Products

The Virtue Of Lists

For this particular pattern, I want you to imagine a hypo-
thetical photography app has a built in shop, selling photo-
graphic prints. The product list is the set of prints returned 
after the user has entered a product search term. We need 
to look at how individual products might be marked up and 
presented, including illustrations and calls to action — the 
aim is to get users to buy things, after all.

I’ve expounded the virtues of lists in previous patterns. They 
itemize their contents accessibly, group content themati-
cally, and break up otherwise structureless, undifferentiated 
runs of prose. So far, we’ve only included text and inline 
elements (links) to make terse list items, but it’s perfectly 
acceptable to define more complex structures.

Though the pattern as documented in your pattern library 
is likely only to define the structure of one product item, it’s 
important to acknowledge context and belonging first. Let’s 
start a list of products and use the contents of the first list 
item as the product template.

Using an <h3> element, let’s give our product a title.



196 Inclusive Design Patterns

<li>
 <h3>
    Naked Man In Garage Forecourt 
    <a href="/photographer/kenny-mulbarton">by Kenny
Mulbarton</a>
 </h3>
</li>

Each product should have a heading of the same (third) level 
because they are equal in hierarchy as members of the same 
list. Though it’s tempting to use a higher heading level like 
<h2> to pick out featured products, this should be avoided 
as it would make for a nonsensical structure. Better to show 
that a product is featured or recommended using some 
descriptive text, highlighted with CSS.

<li>
 <h3>
    <strong class="highlight">Featured:</strong> Naked Man 
In Garage Forecourt
    <a href="/photographer/kenny-mulbarton">by Kenny
Mulbarton</a>
 </h3>
</li>

The highlight style makes featured items easy to identify 
visually while scanning and the “Featured” text provides the 
information non-visually to assistive technologies.



197A List of Products

Some screen reader users will explore the product list by 
heading. With the <h3>s in place, they can move from 
product to product using either the H key (next heading) or 
3 (next third-level heading). Other screen reader users might 
traverse the list using direct list navigation. For instance, 
JAWS offers the I (for item) shortcut key to move from 
one list item to the next. Giving users choice is the first of 
Henny Swan’s135 accessible UX principles, as developed at 
the BBC:

1. Give users choice.
2. Put users in control.
3. Design with familiarity in mind.
4. Prioritize features that add value.

In the absence of author CSS, the browser will display each 
list item with a bullet point and render the heading text in a 
large, bold font. The visual structure is therefore clear, even 
where CSS is (temporarily or permanently) unavailable or 
overridden with a user syle sheet. Separating content and 
presentation136 like this also makes it easier for users to 
apply their own user styles137 should they wish to.

135 http://www.iheni.com/
136 http://webaim.org/techniques/css/#sep
137 http://www.opera.com/docs/usercss/

http://www.iheni.com
http://webaim.org/techniques/css
http://www.opera.com/docs/usercss


198 Inclusive Design Patterns

If the user were to follow the link inside the heading to the 
photographer’s own page, the photographic prints listed at 
that location should be similarly marked up and presented. 
As “A Web For Everyone”138 implores:

Present things that are the same in the same way. One way to 
help users find their way around a site is to be consistent in how 
elements of the site are presented and labeled, which doesn’t mean 
that the site must be boring with no variation or texture.”

Key Information

So far, our product only has a title. The user will no doubt be 
interested in information such as size, price and customer 
rating. We can group and label these key pieces of informa-
tion clearly, using a definition list:

<li>
 <h3>
    Naked Man In Garage Forecourt    
    <a href="/artist/kenny-mulbarton">by Kenny Mulbarton</a>
 </h3>
 <dl>
    <dt>Size:</dt>
    <dd>90cm × 30cm</dd>
    <dt>Price:</dt>
    <dd>€35.95</dd>

138 http://smashed.by/aweb4everyone

“

http://smashed.by/aweb4everyone


199A List of Products

    <dt>Rating:</dt>
    <dd><img src="/images/rating_4_5.svg" alt="">4 out of 5 
stars</dd>
 </dl>

</li>

NOTES

• Like an unordered list (<ul>), the definitions list (<dl>) 
has its items enumerated by screen readers so users 
know how many to expect. When first encountered, 
screen readers like VoiceOver will announce “Defini-
tion list”, letting users know that they should expect 
key/value pairs.

• User agents style definition lists by indenting the <dd> 
elements, meaning a visual hierarchy is present in the 
absence of author CSS.

• “90cm × 30cm” is written using the correct (multipli-
cation) Unicode character, so that “Thirty C M times 
ninety C M” is announced in screen readers. Using 
a lowercase x would be a poor substitution. Not only 
would it be announced as “ex”, but it would also be 
visually unclear — especially when rendered with a 
serif font.



200 Inclusive Design Patterns

• We’re using the well-established convention of display-
ing stars to denote the customer rating. To reinforce 
what the stars represent, we’re also spelling out the 
rating adjacently. A null alt value (alt="") omits the 
image from screen readers. A description of the rating 
in place of the image and next to the image would mean 
a tedious duplication for screen reader users.

• To be more precise, the “Size” label should arguably 
be “Dimensions.” However, size is a simpler and 
more widely understood word and concept which 
— practically speaking, given the context — means 
the same thing. Ashley Bischoff’s presentation, 
“Embracing Plain Language for Better Accessibility”139 
offers some excellent advice on substituting the 
pretentious and robotic for the simple and human 
when choosing words.

Product Thumbnail

The intimate relationship between images and advertising 
hardly needs restating here. Suffice to say, unless you’re 
selling an intangible product like a six-month subscription 
or eternal happiness, your users are going to want to get a 
good look at their potential purchase.

139 http://www.handcoding.com/presentations/plaina11y/#cover

http://www.handcoding.com/presentations/plaina11y


201A List of Products

The product thumbnail is essentially the canonical image 
of the product. As such, it should show the product in its 
entirety, unobscured and with no distracting artifacts. Sim-
ilar products (such as green and blue versions of the same 
T-shirt design) should be presented the same way, from the 
same angle, denoting equivalency.

Art directed, creative product photography140 may be evoca-
tive, but increases cognitive load141 for users, forcing them to 
try to unpick exactly what form the product takes. It should 
be the preserve of the product’s permalink page, if at all.

140 http://smashed.by/productphoto
141 https://en.wikipedia.org/wiki/Cognitive_load

http://smashed.by/productphoto
https://en.wikipedia.org/wiki/Cognitive_load


202 Inclusive Design Patterns

ALTERNATIVE TEXT

Fortunately, our photographic print thumbnails are images 
of images so composition and lighting take care of them-
selves. That leaves the matter of prescribing alternative text 
so that the product appearance is described to blind and 
low-vision users.

Always including alt text is one of the first lessons we learn 
when embarking on accessible interface design, but it’s 
precisely what text we include that makes the difference be-
tween accessible and inaccessible, inclusive and exclusive. 
To avoid duplication in the last example, the correct answer 
was — perhaps counterintuitively at first glance — explicitly 
no alternative text.

Aware that the design of alt text — like the design of any-
thing else — should be informed by context, the WAI (Web 
Accessibility Initiative) offers the alt decision tree.142 For 
our thumbnail, which does not contain text or describe an 
action, we have to ask: “Does the image contribute meaning 
to the current page or context?”

The answer is: it can, if we provide information which isn’t 
already in the image’s title. Since the title is very terse and 
literal, we can seize the opportunity:

142 https://www.w3.org/WAI/tutorials/images/decision-tree/

https://www.w3.org/WAI/tutorials/images/decision-tree/


203A List of Products

<li>
 <h3>
    Naked Man In Garage Forecourt    
    <a href="/artist/kenny-mulbarton">by Kenny Mulbarton</a>
 </h3>
 <img src="/images/naked-forecourt-man.jpg" alt="High-
contrast black and white image of a naked man
nonchalantly leaning against a gas pump." />
 <dl>
    <dt>Size:</dt>
    <dd>90cm × 30cm</dd>
    <dt>Price:</dt>
    <dd>€35.95</dd>
    <dt>Rating:</dt>
    <dd><img src="/images/rating_4_5.svg" alt="">4 out of 5 
stars</dd>
 </dl>
</li>

Note that I’ve communicated an important category of the 
image (black and white photography) and also tried to cap-
ture the mood of the image (“nonchalantly leaning”). Neither 
piece of information is available elsewhere to blind users or 
users for whom images are otherwise unavailable. As a user 
on a slow network who has turned off images, or they’ve 
failed to load, the alternative text is visible to me. With de-
scriptive alternative text in place, I might still be convinced 
to bookmark the photographic print to have a look when I’m 
on a Wi-Fi connection.



204 Inclusive Design Patterns

IMAGE PERFORMANCE

In “A Menu Button” we looked at the many ways to render 
the simple, three-lined navicon. One of the advantages of 
using SVG is that its file size can be extremely small, espe-
cially when using repeated geometric shapes like rectangles, 
by way of the <rect> element.

Unfortunately, emblematic impressions of the photographs 
we have for sale, reimagined using rectangles and circles, 
are not going to cut it here. We’ll have to defer to a weight-
ier but more accurate raster format such as PNG or JPG. To 
get an impression of how slow loading a page full of raster 
thumbnails can be, find an existing site with the kind of 
content we’re discussing, then open Chrome’s developer 
tools. Next, press the Toggle device toolbar button (Cmd + 
Shift + M). Choose Show throttling from the menu and select 
“Regular 3G” — not the slowest or fastest connection.

Now reload the page and wait. And then wait some more.

But boredom isn’t the only issue. Loading this many images 
over a mobile network is costly too. To give you an impres-
sion, take the URL of the site you were just testing and head 
over to What Does My Site Cost143 to find out how many 
cents it’ll cost in data to retrieve just that one page, replete 
with all the images.

143 https://whatdoesmysitecost.com/

https://whatdoesmysitecost.com


205A List of Products

Web developers tend to have expensive data contracts and 
spend most of their working day connected to lightning-fast 
broadband. The experience is both a privileged and an 
unrepresentative one. To be inclusive of those on poor net-
works, with smaller budgets or being subject to huge roam-
ing charges, we need to mitigate the impact that loading all 
of these images is likely to have.

This book is not the place to discuss the ins and outs of han-
dling image assets for performance but, briefly, let’s consid-
er some important techniques.

1. Compression: If you do nothing else, make sure your 
images are compressed. Compressing images needn’t be 
the arduous, manual task it once was, now that we can 
make use of automation tools like ImageOptim.144

2. Lazy loading: There’s no need to load images unless they 
are to be seen. Using lazy loading means not download-
ing the image resource unless or until the <img/> element 
enters the viewport. There are a number of scripts and 
plugins available, each working by replacing a dummy 
src value with a real one contained in a data- attribute.  
 
 
 

144 https://imageoptim.com/

https://imageoptim.com


206 Inclusive Design Patterns

For our product list, each image’s markup might look like:

<img src="dummy.jpg" width="400" height="300" 
data-src="/images/naked-forecourt-man.jpg">

3. The <picture> element: This allows you to tailor im-
ages to viewports. Since smaller viewports are more 
likely to be used with mobile devices and networks, 
you can benefit from prescribing physically smaller — 
therefore less weighty and costly — images. We might, 
accordingly, incorporate markup similar to that in the 
following illustration:

<picture>
 <source media="(min-width: 800px;)" 
 srcset="/images/naked-forecourt-man_large.jpg">
 <img src="/images/naked-forecourt-man_small.jpg" 
 alt="High-contrast black and white image of a naked man
 nonchalantly leaning against a petrol pump.">
</picture>

Note that the <img/> element, included last, will have its 
src attribute automatically switched to that defined in the 
<source> element only if the viewport is more than 800px 
wide. Be aware that this is not an exact science. It’s entirely 
possible that some of your users will be connected via a 
slow mobile network on a device featuring a viewport great-
er than 800px in width.



207A List of Products

The “Buy Now” Action

Unless we’re entirely lacking in business acumen, we’re 
going to want to facilitate the user’s purchase of the print. 
Including a “Buy Now” button is perhaps the most straight-
forward way to go about this. Even so, there are some 
pitfalls to avoid.

BUTTONS VERSUS <BUTTON>S

The first pitfall regards the concept of buttons and their 
expected behavior. Despite so-called “Buy Now” buttons 
having the appearance of a button, their behavior links to a 
resource — they are hyperlinks.

<a href="/product/naked-man-in-garage" 
class="button">Buy Now</a>

In a noble attempt to create a more accessible experience, 
this leads some developers to mistakenly provide the 
role="button" attribute. This overrides the implicit accessi-
ble role of “link” with an explicit role of "button", meaning 
the link will be announced as a button in screen reader 
software. Since the linking behavior of loading a new page is 
still intact, this is deceptive and confusing for blind screen 
reader users and should be avoided.



208 Inclusive Design Patterns

<!-- don’t do this -->
<a href="/product/naked-man-in-garage" 
role="button">Buy Now</a>

Since the visual appearance of a button suggests button-like 
behavior, it is recommended to preserve that aesthetic for 
actual <button>s. I suggest you maintain a separate call-to-
action style for links which has more visual purchase than a 
standard link but which does not resemble a button.

a {
 /* standard link styles */ 
}

a.call-to-action {
 /* emphatic link styles */ 
}

button {
 /* <button> element styles */ 
}

Three controls: a basic link with underline; an action link with a border; 
and a button with a blue background.



209A List of Products

NOTES

• I highly recommend that, although each of these 
elements are treated differently, they share a common 
color — a color which denotes the shared interactive 
quality of the three elements. For the sake of easy cog-
nition, if links should be blue, so should buttons: blue 
comes to mean clickable.

• I have qualified the .call-to-action class with the 
element name a. You may have read elsewhere that 
this is redundant, but it serves an important purpose: 
it restricts the use of .call-to-action styles to the a 
element. By using .call-to-action on a <button>, or 
an inaccessibly interactive <div> element, the style 
will not be invoked. This effectively prevents a de-
veloper from using the wrong element for the job. In 
the excellent article “How Our CSS Framework Helps 
Enforce Accessibility,”145 Ian McBurnie details a number 
of similar provisions.

• Another way that <button>s are differentiated from 
links is that they don’t have a pointer cursor style. In 
“Buttons shouldn’t have a hand cursor,”146 Adam Silver  

145  http://smashed.by/enforcea11y
146  http://smashed.by/handcursor

http://smashed.by/enforcea11y
http://smashed.by/handcursor


210 Inclusive Design Patterns

explains why manually adding cursor: pointer to 
<button> elements is a usability mistake. It is not stand-
ard behavior to invoke this cursor style on <button>s, 
and it’s risky to break with long-held convention.

EMBRACE STANDARD BEHAVIOR

A second pitfall can be laid out much more succinctly: if the 
behavior is to link, use a link’s behavior to do it. It sounds sim-
ple when put like that, but we tend to overengineer interfac-
es. Client-side JavaScript frameworks especially have a habit 
of supplanting standard link behavior. This might help the 
framework developers because they like to work exclusively 
within the realm of JavaScript. It does not help users.

As well as basic linking behavior breaking when JavaScript 
is not available, even where it is available the experience is 
lacking: URLs only reveal “javascript:;” on hover and the 
link cannot be dragged into the browser tab list. The right-
click context menu intended for links is not invoked either. 
A browser only knows to provide these things if you use the 
<a> element in an expected way.



211A List of Products

<!-- this is robust and featureful -->
<a href="/product/naked-man-in-garage" class="call-to-
action">Buy Now</a>

<!-- this is not robust or featureful -->
<a href="javascript:;" data-action="naked-man-in-
garage" class="call-to-action">Buy Now</a>

 

UNIQUE, DESCRIPTIVE LINK TEXT

Let’s not forget that each link for each product currently has 
an identical “Buy Now” label, meaning screen reader aggre-
gated link lists will take the following unhelpful form:

• Buy Now
• Buy Now
• Buy Now
• Buy Now
• Buy Now

Since the title of the product is already present visually and 
in context via the <h3>, we should remedy this with some 
visually hidden text, placed within the link.

<a href="/product/naked-man-in-garage" class="call-to-
action"> Buy <span class="visually-hidden">Naked Man In
Garage Forecourt</span> Now
</a>



212 Inclusive Design Patterns

Now the link text makes sense independent of context. The 
visually-hidden class should, of course, correspond to a 
screen reader accessible hiding technique,147 as introduced 
in “A Blog Post.” Note that having the product name in the 
link text has an added advantage: it is a well-known tech-
nique for improving search engine visibility. Google recom-
mends using descriptive link text148 because its crawler can 
see that (where link text and the destination page’s <title> 
or <h1> are similar) relevance is likely to be high.

Here’s how the overall layout is shaping up:

BLOCK-LEVEL LINKS

In HTML5, it has been made acceptable to place block-level 
content inside link (<a>) elements.149 That is, I could wrap 
my entire product item’s contents in a link. This has the 
advantage of increasing the clickable area of the item. 

147  http://smashed.by/hidingcontent
148 http://smashed.by/linkarchitecture
149 http://html5doctor.com/block-level-links-in-html-5/

http://smashed.by/hidingcontent
http://smashed.by/linkarchitecture
http://html5doctor.com/block


213A List of Products

In our case, this comes at the cost of removing the child link 
to the photographer’s page.

<li>
 <a href="/product/naked-man-in-garage">
    <h3>Naked Man In Garage Forecourt</h3>
    <img src="/images/naked-forecourt-man.jpg" alt="high 
contrast black and white image of a naked man nonchalantly
leaning against a petrol pump." />
    <dl>
       <dt>Size:</dt>
       <dd>90cm × 30cm</dd>
       <dt>Price:</dt>
       <dd>€35.95</dd>
       <dt>Rating:</dt>
       <dd><img src="/images/rating_4_5.svg" alt="">4 out 
of 5 stars</dd>
    </dl>
 </a>
</li>

Now that the markup is not technically nonconforming, there 
are a number of more important UX concerns to address:

1. The link doesn’t have a dedicated label, either visually or 
determinable by assistive technologies. The outcome is 
that users will not know they can interact with the item 
until they interact with it (by hovering the cursor over it 
to produce a pointer, say, or by invoking a focus style).



214 Inclusive Design Patterns

2. This structure produces unexpected behaviors in some 
screen readers. For example, in VoiceOver, when I try to 
navigate to a product heading using Ctrl + Alt + Cmd + H, 
the surrounding link is focused and the heading seman-
tics (“Third-level heading”) are not announced.

3. In all assistive technologies, focusing the link is liable to 
trigger the readout of all its textual contents, which is 
rather verbose.

4. Operators of touch devices will undoubtedly find them-
selves accidentally following the link while pressing a 
part of the screen which appears to be uninteractive. Very 
annoying.

In general, it’s better to avoid block-level links like this one. 
Just because the specification mandates that something is 
technically valid markup doesn’t mean it produces an agree-
able user experience. In his article “To Hell With Compli-
ance,”150 accessibility consultant and trainer Karl Groves sets 
out why the bureaucratic box-ticking of compliance testing 
gains us little ground towards successful inclusion. 

150 http://www.karlgroves.com/2015/01/06/to-hell-with-compliance/

http://www.karlgroves.com/2015/01/06/to


215A List of Products

It’s the bare minimum we can offer. Complaints toward on-
line services are almost always from people unable to actu-
ally use an interface, but a 100%-compliant interface can still 
be entirely unusable. By the same token, an interface with 
the odd superficial error may be so simple, well structured 
and clear that it’s still a pleasure to use.

Because so many accessibility errors relating to assistive 
technologies are markup errors, and because markup errors 
are so easy to identify, we’ve grown up in an accessibility 
remediation culture that is assistive technology obsessed 
and focused on discrete code errors.

Inclusive design has a different take. It acknowledges the 
importance of markup in making semantic, robust interfac-
es, but it is the user’s ability to actually get things done that it 
makes the object. The quality of the markup is measured by 
what it can offer in terms of UX.

SERPs

Though our product pattern is now more than satisfactory, 
we need to accept that our own interface is not the only way 
our customers will find and consume our product informa-
tion. A well-indexed site will also expose products in search 
engine results pages, or SERPs.



216 Inclusive Design Patterns

The advantage of using SERPs like Google’s is that no mat-
ter the content you are searching, the interface remains the 
same. Notably, some assistive technology users rely heav-
ily on Google Search because it is a prelearned interface. 
A common tactic is to use the site: prefix to return results 
confined to a chosen website:

site:shop.the-photography-site.com [search term] 

We don’t have control over the aesthetic with which Google 
lists our content. But we do have control of the wording. 
For example, the listed page’s <title> doubles as the linked 
<h3> element of an individual search result. All the more 
reason to write descriptive, easily understood <title> 
text as described in “The Document.” In fact, well-written 
<title> text can elevate your search rankings, but avoid 
spammy <title>s.151 Not only will Google penalize you, but 
such <title>s tend to constitute unreadable, and therefore 
uninclusive, content.

Since we are dealing with products, we have an opportunity 
to enhance our product listing using structured data.152 In 
brief, structured data increases the meta information pars-
able by machines like Googlebot. It’s a little like WAI-ARIA, 
but for archiving rather than assistive technology support.

151   http://www.hobo-web.co.uk/title-tags/#spammy-title-tags
152 https://developers.google.com/structured-data/

http://www.hobo-web.co.uk/title
https://developers.google.com/structured


217A List of Products

Structured data affects the user directly since the search 
listing will be enhanced to include more detailed informa-
tion, such as the price and rating of the product. By bringing 
this information to search engine results, we enhance the 
experience of those who choose to browse our content in 
this context.

USING THE PRODUCT VOCABULARY

Structured data is divided into vocabularies which apply to 
different varieties of content. For our purposes there is a 
product vocabulary, defining product-specific properties, to 
be found at http://schema.org/Product.

The best place to include structured data for an individual 
product is at its permalink page: the page “Buy Now” will 
take the user to see greater detail about the product and 
choose purchasing options. At this page, the markup will 
use a template which might look like this:

<main id="main">
 <h1>
    Naked Man In Garage Forecourt
    <a href="/artist/kenny-mulbarton">by Kenny Mulbarton</a>
 </h1>
 <img src="/images/naked-forecourt-man.jpg" alt="High-
contrast black and white image of a naked man
nonchalantly leaning against a petrol pump." />

http://schema.org/Product


218 Inclusive Design Patterns

 <dl>
    <dt>Size:</dt>
    <dd>90cm × 30cm</dd>
    <dt>Price:</dt>
    <dd>€35.95</dd>
    <dt>Rating:</dt>
    <dd><img src="/images/rating_4_5.svg" alt="">4 out of 5 
stars</dd>
 </dl>
 <h2>Choose a payment method</h2>
 <!-- purchasing widget here -->
</main>

Now, let’s adapt the plain markup to include the structured 
data. I am basing this on an example provided by Google 
itself153 using microdata (one version of structured data).

<main id="main" itemscope itemtype="http://schema.org/
Product">
 <h1>
    <span itemprop="name">Naked Man In Garage Forecourt</
span>
    <a href="/artist/kenny-mulbarton">by Kenny Mulbarton</a>
 </h1>
 <img itemprop="image" src="/images/naked-forecourt-man.
jpg" alt="High-contrast black and white image of a naked man
nonchalantly leaning against a petrol pump." />

153 http://smashed.by/richsnippets

http://smashed.by/richsnippets


219A List of Products

 <dl>
    <dt>Size:</dt>
    <dd>90cm × 30cm</dd>
    <dt>Price:</dt>
    <dd>
       <span itemprop="offers" itemscope itemtype="http://
schema.org/Offer">
          <meta itemprop="priceCurrency" content="EUR" />
          €<span itemprop="price">35.95</span>
       </span>
    </dd>
    <dt>Rating:</dt>
    <dd>
       <img src="/images/rating_4_5.svg" alt="">
       <span itemprop="aggregateRating" itemscope 
itemtype="http://schema.org/AggregateRating">
          <span itemprop="ratingValue">4</span> stars, 
based on <span itemprop="reviewCount">13</span> reviews
       </span>
    </dd>
 </dl>
 <h2>Choose a payment method</h2>
 <!-- purchasing widget here -->
</main>



220 Inclusive Design Patterns

NOTES

• The itemscope Boolean attribute and itemtype refer-
ence are placed on the wrapping <main> element to 
define the context for our product data.

• Additional <span>s are used to define the properties 
where necessary. The name of the product is defined 
by wrapping the product’s title, “Naked Man In Garage 
Forecourt,” in a <span> bearing itemprop="name".

• The rating and price (‘offer’) are defined using the nest-
ed “Offer” and “Aggregate Rating” vocabularies.

• Some properties are not based on displayed content 
(text nodes), such as the three-letter ISO currency of 
“EUR.” Instead, we supply this information using a 
<meta> tag. A full list of ISO currency codes is available 
on Wikipedia.154

• You can test your structured data155 with Google’s tool 
to make sure the properties are valid and applicable.

154 https://en.wikipedia.org/wiki/ISO_4217#Active_codes
155 https://developers.google.com/structured-data/testing-tool/

https://en.wikipedia.org/wiki/ISO_4217
https://developers.google.com/structured-data/testing


221A List of Products

In Google’s results pages, the final product (no pun intend-
ed) will look something like the following:

Fortunately, Google has ensured that the additional struc-
tured information is accessible to our potential visitors. 
For example, they use a custom <g-review-stars> element 
which incorporates an aria-label to spell out the rating.

<g-review-stars>
 <span class="_ayg" aria-label="Rated 4.0 out of 5">
    <span style="width:66px"></span>
 </span>
</g-review-stars>

Summary

This pattern constitutes just one way to go about designing 
and coding a product list for a maximally inclusive experi-
ence. As with all the patterns herein, it’s really just an excuse 
to hone our inclusive design chops. As in previous patterns, 
the organization and structure of content is paramount. 



222 Inclusive Design Patterns

However, this was the first time we looked deeply into 
image accessibility, from both the perspectives of alter-
native text composition and performance. In catering to 
blind consumers, those who cannot afford generous data 
contracts, and anyone accessing your content from outside 
your interface, it was a chance to really push the limits of 
inclusive design.

THINGS TO AVOID

• Inconsistently composed or unoptimized product 
images.

• Unhelpful or misleading alternative text.
• Block-level links containing lots of text content.
• Links to product permalinks without the product name 

in the link text.



223A List of Products





225A Filter Widget

A Filter Widget
In the previous chapter we went commercial and looked 
at a pattern for displaying products. How we marked up 
individual product components and how we grouped them 
together were both pertinent to inclusive design. We even 
made sure they would be rich with accessible information 
outside of our own interface, as search engine results.

What we’ve yet to address is providing the tools for users 
to reorganize and sort lists of content. Filtering tools are 
important because they offer an additional dimension of 
control over search, facilitating users’ ability to prioritize 
the information they’re viewing. Put users in control is the 
second of Henny Swan’s principles.

1. Give users choice.
2. Put users in control.
3. Design with familiarity in mind.
4. Prioritize features that add value.

Like the navigation regions we covered earlier in the book, 
filtering widgets are meta content, provided as a tool to 
change the content of the page. To make ours inclusive, we 
need to consider blind and keyboard users, potential perfor-
mance issues and visual clarity.



226 Inclusive Design Patterns

The pattern will be founded on progressive enhancement 
and will work in the absence of both CSS and JavaScript, 
though we shall improve the experience inclusively with a 
careful application of those two technologies respectively.

How It Might Look

Note that the selected control is highlighted in a color-inde-
pendent fashion so that our color-blind and low vision users 
can determine the selected option.

The Markup

Some complex JavaScript widgets, like tab interfaces,156 
depend on WAI-ARIA semantics and custom (JavaScript) key-
board bindings to be made fully accessible by keyboard and to 
screen readers. However, the first rule of ARIA use157 states:

If you can use a native HTML element or attribute with the seman-
tics and behaviour you require already built in, instead of re- 
purposing an element and adding an ARIA role, state or property to 
make it accessible, then do so.

156 http://heydonworks.com/practicalariaexamples/#tab-interface
157 https://www.w3.org/TR/aria -in-html/#first-rule-of-aria-use

“

http://heydonworks.com/practicalariaexamples
https://www.w3.org/TR/aria


227A Filter Widget

Standard browser-enabled interactivity is more performant 
and robust than that facilitated by custom JavaScript. If you 
can use it, you should, so it’s worth investigating.

Solutions usually rely on harnessing the behavior of stand-
ard HTML form elements. These have idiosyncratic seman-
tics, key bindings and behaviors built in for our conveni-
ence. Just because JavaScript is (well, might be) available 
doesn’t mean you should use it to reinvent the wheel.158

Our sorting widget consists of a set of mutually exclusive 
options each with their own unique label, and grouped 
under a common label. We can create this structure using a 
<fieldset>, <legend> and radio buttons. Imagining we’re 
still dealing in products, this is how the widget might look:

<form role="form" class="sorter" method="get">
 <fieldset>
    <legend>Sort by</legend>
    <input type="radio" name="sort-method" id="most-recent" 
value="most-recent" checked>
    <label for="most-recent">most recent</label>
    <input type="radio" name="sort-method" id="popularity" 
value="popularity">
    <label for="popularity">popularity</label>
    <input type="radio" name="sort-method" id="price-low-
high" value="price-low-high">

158 http://www.heydonworks.com/article/reinventing-the-hyperlink

http://www.heydonworks.com/article/reinventing


228 Inclusive Design Patterns

    <label for="price-low-high">price (low to high)</label>
    <input type="radio" name="sort-method" id="price-high-
low" value="price-high-low">
    <label for="price-high-low">price (high to low)</label>
 </fieldset>
 <button type="submit">sort</button>
</form>

 

NOTES

• Having the ARIA role of form on a <form> seems 
counterintuitive, but it turns the widget into a region, 
making it navigable in screen readers using shortcuts. 
Since the basic functionality works without JavaScript 
and triggers a page refresh, this helps users navigate 
back to the form from the top of the document.

• The <form> contains a single <fieldset> which is used 
to group the radio options under the label “Sort by”, 
followed by a submit button. When a radio <input> is 
focused, the <legend> content is announced followed 
by the <input>’s <label>. To begin with, the first option 
(“most recent”) is checked. Standard behavior is that 
only this checked <input> is focusable by Tab. Focusing 
it would trigger the announcement of “Sort by most 
recent, selected, radio button, one of four.” “Sort by” is 
the group label; “most recent” is the element label; 



229A Filter Widget

“selected” is the element state; “radio button” is the ele-
ment role. The number four is the total number of radio 
buttons which share a common name="sort-method".

• The browser delegates arrow keys (left and right, up 
and down) for selecting different options. Pressing 
the right arrow key, for instance, will focus and select 
the next radio button with the name="sort-method" 
attribute - “popularity.” In screen readers this will 
announce something similar to “Sort by popularity, 
selected, radio button, two of four.” Note that “Sort 
by” is read whichever radio button is selected. This 
ensures that if I were to leave the widget and begin 
focusing other page elements and then return to it, I’d 
be reminded of the sorting function no matter which 
option is currently selected.

• We’re using the get method on the form to rebuild the 
page from the server without relying on client-side 
JavaScript, at this stage. For example, submitting the 
form with the popularity option selected will build a 
page with ?sort-method=popularity as the query 
parameter. We’ll enhance the experience with JavaScript 
in the “JavaScript Enhancement” section to come.

 



230 Inclusive Design Patterns

CSS Enhancement

By designing our sorting widget with conventional, 
well-supported markup, we’ve already ensured it is accessi-
ble to keyboard and screen reader users. It can also be ma-
nipulated without a dependence on JavaScript and assumes 
a familiar form.

Despite the inclusive nature of standard radio buttons, they 
offer limited styling opportunities. This is the main reason 
why we dispense with them in favor of either completely 
inaccessible <div>- and <span>-based solutions, or compara-
tively fragile and complex WAI-ARIA implementations.

• However, as I wrote in “Replacing Radio Buttons 
Without Replacing Radio Buttons,”159 you don’t actually 
have to style the <input type="radio"> element 
directly. You can hide it and style the <label> as a proxy.

In the following structure, the for/id relationship means 
that clicking (or pressing) the <label> operates the associat-
ed <input>. That is, the <label> extends the click area of the 
<input>.

<input type="radio" name="sort-method" id="most-recent" 
value="most-recent" checked />
<label for="most-recent">most recent</label>

159 http://smashed.by/radio-buttons

http://smashed.by/radio-buttons


231A Filter Widget

• Not only does this help provide a larger, more ergonomic 
hit area for touch users, but we can use CSS to indicate 
the <input>’s :focus and :checked states in CSS. Note 
the use of adjacent sibling combinators to pass state to 
the label:

[type="radio"] + label {
 cursor: pointer;
 /* other basic styles */ 
}

[type="radio"]:focus + label {
 /* focus styles */ 
}

[type="radio"]:checked + label {
 /* selected styles */ 
}

Now that all the interaction and visual feedback is attached 
to the label, we can safely hide the obstinately ugly radio 
button from view.

.sorter [type="radio"] {
 position: absolute !important;
 width: 1px !important;
 height: 1px !important;
 padding:0 !important;
 border:0 !important;
 overflow: hidden !important;
 clip: rect(1px, 1px, 1px, 1px);
}



232 Inclusive Design Patterns

In summary: never fix with JavaScript and WAI-ARIA what 
can be achieved with HTML and CSS. “WTF, forms?”160 by 
Mark Otto provides similar CSS enhancement solutions for 
checkboxes, <select> elements, and file inputs.

JavaScript Enhancement

The pattern we’ve devised is already fully functional and ro-
bust. It’s fair to say it’s a bit clunky, though. Where JavaScript 
is available to the user, we ought to enhance the experience 
where we can. But just because JavaScript is available, doesn’t 
mean we should get carried away tearing everything up and 
rewriting it. The foundation is solid; there’s no need to recre-
ate in JavaScript the parts that already work without it.

Each time a user chooses a new filtering option and hits the 
sort button, there’s currently a page refresh. By now, you’ll 
know what this means for screen reader and keyboard us-
ers: having to hear all the page information again or having 
to traverse through all the document’s preamble to get to the 
content they were just interacting with. Or both.

160 http://wtfforms.com/

http://wtfforms.com


233A Filter Widget

Where possible, we should aim to repopulate our list 
with XHR.161 That way, new content can be added with-
out reloading the page and the keyboard-dependent user 
can progress directly from the widget (where focus will 
remain) into the content.

WAITING

Telling users that content is pend-
ing and will arrive in a matter of 
time is the preserve of the ubiqui-
tous loading symbol, which looks a 
bit like this:

The trouble is, this is only determinable by sighted users. 
It’s important to communicate that content is being fetched 
to screen reader users as well. Otherwise they might be left 
wondering if hitting the sort button did anything at all.

The WAI-ARIA specification provides live regions162 for just 
this kind of thing. Usually, content is only announced in 
screen readers when either:

161   http://smashed.by/xmlhtml
162 http://smashed.by/livereg

http://smashed.by/xmlhtml
http://smashed.by/livereg


234 Inclusive Design Patterns

• An element is focused either by the user or program-
matically.

• The user navigates to an element using their screen 
reader’s own navigation commands (such as pressing 9 
in NVDA to announce the following line).

But live regions announce their content simply when that 
content changes. In practice, this means we can provide 
commentary to screen reader users without asking them 
to leave their location in the page. After the sort button is 
pressed, we can populate a live region with the message, 
“Please wait. Loading products.”

<div aria-live="assertive" role="alert">
 Please wait. Loading products.
</div>

Then, when the products are loaded, we can change the live 
region content to inform the user:

<div aria-live="assertive" role="alert">
 Loading complete. 23 products listed.
</div>



235A Filter Widget

NOTES

• The aria-live="polite"163 property and the status164 
role are equivalent. Both are provided to maximize 
compatibility across platforms and screen readers (in 
some setups, only one or the other is recognized).

• We would populate the live region with the mes-
sage using simple JavaScript DOM manipulation: 
liveElement.textContent = 'message'.

• The equivalent assertive and alert values mean the 
current readout of the screen reader will be interrupted 
to announce the live region’s new message. Since the 
user might move away from the widget to read some 
other content, this means they will be told that the 
products are ready immediately. Alternative polite and 
status values would mean the live region contents are 
announced only after the screen reader has finished 
announcing the content it is currently set to announce.

• For app notifications, you would need to style and 
display the live region’s contents so that it doubled as a 
visual message. However, the loading symbol (and its 

163 http://w3c.github.io/aria/aria/aria.html#aria-live
164 http://w3c.github.io/aria/aria/aria.html#status

http://w3c.github.io/aria/aria/aria.html#aria-live
http://w3c.github.io/aria/aria/aria.html#status


236 Inclusive Design Patterns

eventual removal) already say what needs to be said. In 
which case, we can hide our live region from view, so 
that it is only available non-visually. Once again, we’d 
call on a screen reader accessible hiding method.165

• Deque offers a live region playground166 for exploring 
a number of settings. If you’re a Mac user, the quickest 
way to get started testing with this is to open it in 
Safari and turn on VoiceOver (Cmd + F5).

FOREGOING THE SUBMIT BUTTON

Now that we’re not making use of our get functionality, 
we’ll need to prevent the page refreshing by suppressing the 
submit button’s default form submission functionality. We 
do this by catching the submit event.

var sortForm = document.querySelector('.sorter');
sortForm.addEventListener('submit', function(event) {

 // keep the browser from submitting the form,
 // because we’re handling this with XHR
 event.preventDefault();

 // XHR request handling here
});

165  http://smashed.by/hidingcontent
166 http://smashed.by/contentfeedback

http://smashed.by/hidingcontent
http://smashed.by/contentfeedback


237A Filter Widget

This begs the question whether we need the submit button 
at all. Perhaps, for greater immediacy, we could remove the 
submit button with JavaScript and attach the XHR function-
ality to the change event.

var sortForm = document.querySelector('.sorter');
sortForm.addEventListener('change', function(event) {
 if (event.target.type !== 'radio') {
    return;
 }

 this.submit();
}, true);

Since we’ve styled our radio controls to look like buttons 
and provided clear feedback via our loading symbol and live 
region, this seems like a fairly safe course of action. How-
ever, we must be mindful of the give users control principle 
mentioned at the beginning of this chapter. By removing an 
explicit submission action, it’s possible that triggering the 
XHR will be unexpected to some users. They may feel their 
control has been usurped and this may diminish their trust 
in the interface.

In addition, note that keyboard users operating the widget 
must use their arrow keys to move through the radio op-
tions. Each arrow keypress not only focuses adjacent radio 
buttons but selects them as well. 
 



238 Inclusive Design Patterns

This means moving through the options in either direction 
would fire the change event three times in total.

It’s possible to limit this enhanced XHR-on-choosing-filter-
option functionality to mouse and touch users by switching 
from using the change event to using click.

var sortForm = document.querySelector('.sorter');
sortForm.addEventListener('click', function(event) {
 if (event.target.type !== 'radio') {
    return;
 }

 this.submit();
}, true);

However, this would mean hiding the now redundant 
submit button and trusting that keyboard users would 
know to press Enter to submit the form. Note that you can’t 
simply remove the submit button because some platforms 
(notably iOS) will not submit forms where a submit button 
isn’t present. In which case, we’d have to use our special 
.visually-hidden class, plus tabindex="-1" to make sure 
the button isn’t user-focusable:

<button type="submit" class="visually-hidden" 
tabindex="-1">sort</button>



239A Filter Widget

Even with these measures in place, whether users actually 
understand or like this enhancement is a question for user 
testing. Recruiting a diverse test group is the best way to 
properly confirm inclusive design decisions.

Include disabled participants as part of a wider user testing recruit-
ment process. The numbers will be small, but aim to capture a range 
of disabilities and assistive technologies. 

— Government Digital Services (UK)

The Government Service Design Manual has an informa-
tive section on accessibility testing167 as a complement to 
standard user testing. For smaller budgets and timeframes, 
diverse users should be made part of the main test group.

Loading More Results

If we have a large inventory of products, some search terms 
and filtering options are likely to match a considerable 
number of items. Retrieving and rendering all of them at 
once would cause a serious performance bottleneck, as well 
as producing an intimidating and unwieldy page. Far better 
to load a smaller set of results, then retrieve more as and 
when the user needs them. I can think of a few different 
ways to do this. One of them — infinite scroll — has some 
serious problems regarding inclusivity.

167 http://smashed.by/a11ytesting

“

http://smashed.by/a11ytesting


240 Inclusive Design Patterns

INFINITE SCROLL

The infinite scroll168 pattern harnesses the user’s scroll 
behavior to automatically load new content at the point that 
they reach the current content’s end. The aim is to provide 
a stream of new content to the user without necessitating 
an action on their part. Unless implemented very carefully, 
infinite scroll tends to result in a frustrating experience for 
a number of different input modes.

As a mouse user, I might scroll the page by dragging the 
scrollbar’s handle. When new results load, this handle will 
move upwards in accordance with the greater amount of 
content. Not realizing the handle has moved away from 
reach, I may click the scroll track instead and make the page 
lurch downwards from my current location: a hugely coun-
terintuitive and annoying experience, wherein I’m liable to 
skip over unread content.

As Derek Featherstone writes,169 infinite scrolling is also a 
frustrating experience for keyboard users. When items with-
in the stream have interactive elements (such as our “Buy 
Now” buttons), focusable elements are added to the stream ad 
infinitum, making it impossible to tab past the main content 
to interactive elements that reside below it in the footer.

168 http://smashed.by/infinitescroll
169 http://simplyaccessible.com/article/infinite-scrolling/

http://smashed.by/infinitescroll
http://simplyaccessible.com/article/infinite


241A Filter Widget

Derek offers two solutions. He’s so fond of one that he lists 
it twice:

1. Just don’t implement infinite scrolling.
2. Replace automatic infinite scrolling with a “Load more 

results…” button or link that explicitly invites the user to 
add more. Once they do a few times, prompt them to ask 
if they’d like to turn auto-loading of more results on.

3. No, really, just don’t implement infinite scrolling.

THE “LOAD MORE” BUTTON

The “Load more” button — and it should be a <button> —  
resides at the end of the current crop of results and clicking 
it sends an XHR request to load the next set.

 <li><!-- penultimate item --></li>
 <li><!-- last item --></li>
</ul>
<button data-load-more>Load more</button>

After the new content is rendered, it’s important that 
keyboard focus is moved from the data-load-more but-
ton to the first of the newly loaded items. Otherwise, the 
user’s view will not change and focus will remain on the 
data-load-more button which has now been pushed off-
screen by the added content.



242 Inclusive Design Patterns

Note that most implementations only remove focus from 
the button, and don’t move it elsewhere. This results 
in what’s sometimes called freak out mode whereby the 
browser doesn’t know what to focus and defaults to fo-
cusing the document body. The outcome is that keyboard 
(including screen reader) users are sent right to the start 
of the page content.

An effective course here is to switch focus to the title (<h3>) 
of the first newly returned product. This will place that 
product at the top of the viewport (which benefits all kinds 
of sighted users) and trigger the announcement of the 
<h3>’s text in screen readers, naming the first instance of 
the new content.

Note that tabindex="-1" has to be applied to the first item’s 
<h3> to make it focusable with JavaScript’s focus() method. 
Unlike tabindex="0", elements are not focusable by key-
board users directly. In this case, user focus is not desirable 
because the <h3> is not an actionable (interactive) element. 

We are only focusing the <h3> to place the user in the 
correct context and to trigger announcement. A press of the 
Tab key will take them to the artist link, and another press 
to the “Buy now” link.



243A Filter Widget

<li>
 <h3 tabindex="-1"> <!-- make the title focusable -->
    Naked Man In Garage Forecourt
    <a href="/artist/kenny-mulbarton">by Kenny Mulbarton</a>
 </h3>
 <img src="/images/naked-forecourt-man.jpg" alt="high
contrast black and white image of a naked man nonchalantly 
leaning against a petrol pump." />
 <dl>
    <dt>Size:</dt>
    <dd>30cm × 90cm</dd>
    <dt>Price:</dt>
    <dd>€35.95</dd>
    <dt>Rating:</dt>
    <dd><img src="/images/rating_4_5.svg" alt="">4 out of 5 
stars</dd>
 </dl>
 <a href="/product/naked-man-in-garage" class="call-to-
action">
    Buy <span class="visually-hidden">Naked Man In Garage 
Forecourt</span> Now
 </a>
</li>
<li>
 <!-- second newly returned product -->
</li>
<li>
 <!-- etc -->
</li>



244 Inclusive Design Patterns

As with choosing a filtering option, an XHR has to be han-
dled. We should, therefore, supply a loading graphic and live 
region. In this case, we can replace the “Load more” button’s 
text node with that graphic. The order of events should be 
as follows:

1. The user clicks the “Load more” button.

2. The button’s text is changed to “Loading:” and is set to 
handle no further clicks. You can catch the click and sim-
ply return if the loading state is detected (for instance, by 
looking for “Loading” in the button’s textContent).

3. A hidden live region announces, “Loading more products.”

4. The XHR is handled.

5. On success, the content is rendered.

6. The live region announces, “Products loaded.”

7. Focus is moved from the button to the first of the newly 
loaded product items. A smooth scrolling action could be 
used here, as described in “Navigation Regions.”

8. The “Load more” button has its original text node rein-
stated and click events are handled again.



245A Filter Widget

The “Load more” button in its initial state (left) and after being  
pressed (right).

Infinite scroll hijacks the user’s scrolling action to perform 
an unexpected behavior, commandeering user control and 
diminishing the user experience. The “Load more” button 
invites the user to take an explicit, labeled action at their 
convenience and therefore conforms to the second of Henny 
Swan’s UX principles, to give users control.

Display Options

Typically, designers see it as their job to foresee their user’s 
needs and make intelligent decisions on their behalf. That’s 
what design is, right? Perhaps, but we have to contend with:

• Users having different preferences.
• Users encountering different circumstances.

One example of making a decision on users’ behalf is to dis-
able zoom, using user-scalable=no on the viewport <meta> 
tag. This is to decide for the user what font size and magni-
fication level suits them, and prevents them from adjusting 
it themselves. An audacious act, and foolhardy given the 
inevitable diversity of your audience.



246 Inclusive Design Patterns

We still have to make some decisions in isolation, of course, 
because not every part of a design can be informed directly 
by user research. But when we do, we can increase our con-
fidence by deferring to:

• Convention: Using widely adopted patterns, motifs or 
language.

• Choice: Allowing the user to decide how they want to 
consume something.

To complete our filtering widget pattern, we’re going to 
give our users a choice over the way the filtered content is 
displayed.

LIST OR GRID?

In this final enhancement to our filtering interface, we’ll 
give the user the choice between displaying results in list or 
grid format. That way, they can select a visual display that 
best suits their cognitive needs. A list is a simple format, but 
necessarily longer vertically; a grid gives a better overview 
but compresses more information into the viewport at once.

The adapted filter widget might look like the following:



247A Filter Widget

The submit button now reads “apply:” a broader action which relates to 
both the sorting and display settings.

Here’s the extended markup:

<form role="form" class="sorter" method="get">
 <fieldset>
    <legend>Sort by</legend>
    <input type="radio" name="sort-method" id="most-recent" 
checked>
    <label for="most-recent">most recent</label>
    <input type="radio" name="sort-method" id="popularity">
    <label for="popularity">popularity</label>    
    <input type="radio" name="sort-method" id="price-low-
high">
    <label for="price-low-high">price (low to high)</label>
    <input type="radio" name="sort-method" id="price-high-
low">
    <label for="price-high-low">price (high to low)</label>
 </fieldset>
 <fieldset>
    <legend>Display as</legend>
    <label for="list">
       <svg>
          <use xlink:href="#list-icon"></use>
          <text class="visually-hidden">a list</text>
       </svg>
    </label>



248 Inclusive Design Patterns

    <input type="radio" name="display-as" id="list"
value="list" checked>
    <label for="grid">
       <svg>
          <use xlink:href="#grid-icon"></use>
          <text class="visually-hidden">a grid</text>
       </svg>
    </label>
    <input type="radio" name="display-as" id="grid"
value="grid">
 </fieldset>
 <button type="submit">apply</button>
</form>

NOTES

• The “Display as” functionality is in its own <fieldset> 
to demarcate it from the principal filtering options.

• The list and grid icons are provided as inline SVGs, 
with visually hidden <text> elements providing each 
radio button’s screen reader accessible label text.

• Focusing the selected display option radio button 
would announce the <legend> first, then the <label> 
and additional information in screen readers. So, if the 
list item is focused (and selected) it would read, “Dis-
play as a list, radio button, selected” or similar.



249A Filter Widget

• I’ve changed the submit button label from “sort” to 
“apply” so that it applies to both settings, if you’ll excuse 
the wordplay.

A SELF-GOVERNING GRID

Whether grid or list in terms of layout, the products should 
always be formed as a list (<ul>) in the markup. Users not 
actually seeing a list benefit from list semantics regardless. 
This also saves on client-side DOM manipulation: all we 
should need to change is a class on the parent <ul> item: 
.list-display for a single-column layout or .grid-display 
for multiple columns.

The question is: “How many columns is the right number?” 
In responsive design, the answer depends on how much 
space there is. We typically proceed to match column num-
bers to viewport widths — the wider the viewport, the great-
er the number of columns we can afford. This necessitates a 
lot of manual media query writing and an ever-watchful eye 
for layout problems.

Using Flexbox, we can instead use flex-basis to define an 
ideal width at an element level. By switching on flex-grow 
and flex-shrink, the grid elements can expand and collapse 
around this ideal, preserving a complete and orderly grid 
across an infinite range of viewports.



250 Inclusive Design Patterns

.grid-display {
 display: flex;
 flex-direction: row;
 flex-wrap: wrap;
}

.grid-display li {
 flex-grow: 1;
 flex-shrink: 1; /* the default value, in fact */
 flex-basis: 10em;
}

 

NOTES

• The flex-basis value is key. This is the width the 
flexbox algorithm considers ideal for individual items. 
Each item will try to be 10em wide but will flex to share 
the available space completely (see flex-grow and 
flex-shrink below).

• The flex-basis value is set in ems so that it is relative 
to font size. This means that the automatic reflow of 
columns that we’ve established is sensitive to font size.

• The flex-grow value of 1 means items will grow 
beyond the 10em width to fill the available space.

• The flex-shrink value of 1 (can be omitted, in fact, 
because it’s the default) ensures items will shrink if 
needed.



251A Filter Widget

• flex-wrap is switched on so items will wrap to the 
next row when there is not enough room to fit them 
alongside other items greater than 10em in width.

ENSURING ACCEPTABLE MEASURE

What we’ve established is a self-governing grid system. 
With very little code, we are able to ensure our content re-
mains unbroken across an infinite range of viewport widths. 
That’s a highly inclusive layout strategy.

All that’s left is to ensure the content remains readable. If 
you remember from “A Paragraph”, we shouldn’t allow the 
measure to get too wide. That’s currently a danger at wider 
viewports, especially when the wrapping algorithm places 
the final item on a single line.

In the adapted code example to follow, items are restricted 
to having a max-width of 20em. My preference, for symmetry, 
is to group the content around the center line, hence the 
justify-content: center; declaration on the flex container.



252 Inclusive Design Patterns

.grid-display {
 display: flex;
 flex-direction: row;
 flex-wrap: wrap;
 justify-content: center;
}

.grid-display li {
 flex-grow: 1;
 flex-basis: 10em;
 max-width: 20em;
}

Now the grid items are organized around the vertical center line and can-
not become more than 20em wide.

Flexbox works algorithmically, which is what makes it so 
powerful. To get the best results for your own content, you’ll 
need to tweak the 10em and 20em values.

(Note: IE10 and IE11 have an unpleasant bug whereby the 
children of focusable items within a flex container can 
become focusable themselves. The handy a11y.js library has a 
fix for this.)170

170   http://allyjs.io/api/fix/pointer-focus-children.html

http://allyjs.io/api/fix/pointer-focus-children.html


253A Filter Widget

RIGHT-TO-LEFT GRIDS

As we established in the chapter “The Document,” it’s im-
portant to declare the language of a web page because this 
gets the most out of assistive technologies and translation 
tools. An international audience is a big step for inclusion. 
Some languages, like Arabic, are supposed to be read right to 
left, unlike languages like English that are read left to right. 
Setting the text direction for the document is possible by 
including the dir attribute (alongside the lang attribute) on 
the HTML element.

<html lang="ar" dir="rtl">

Float-based CSS layouts are unaffected by this provision. 
That is, you have to manually reverse the layout of floated 
content.

.content {
 float: left;
 width: 60%;
}

[dir="rtl"] .content {
 float: right;
}

.sidebar {
 float: right;
 width: 40%;
}



254 Inclusive Design Patterns

[dir="rtl"] .sidebar {
 float: left;
}

Flexbox, rather beautifully, handles direction automatically. 
Any flex container inside a document with dir set to rtl 
will display each row of content from right to left as ex-
pected: it switches the row and row-reverse values of the 
flex-direction property.

Should you, despite the right-to-left direction setting, want 
your grid to be laid out in a left-to-right configuration, you 
can force this using the CSS direction property on the flex 
container:

.grid-display {
 display: flex;
 direction: ltr;
 flex-direction: row;
 flex-wrap: wrap;
 justify-content: center;
}

(Note: This automatic reversal is also true of <table> 
elements which switch their column order. We don’t use 
<table> elements for layout because they provide incorrect 
semantic information to assistive technologies.)



255A Filter Widget

Tolerating Dynamic Content

As ever, we should be mindful of the content that our pro-
posed structure is designed for. Since we’ve covered word-
ing and tone in previous chapters, let’s take some time to 
consider fluctuating quantity.

One of the main reasons static mockups of interface 
components are defunct is that they tend to represent 
idealized content: people’s names of a particular length, and 
descriptions all exactly five lines high, for instance. When 
the front-end is built, problems can occur where variable 
content has an unexpected effect on layout.

To make sure our product’s grid interface can tolerate 
fluctuating content length at the prototyping stage, we can 
make use of a tool like forceFeed.js.171 This script allows you to 
feed the proposed layout with randomized arrays of content 
within certain parameters.

For example, to test the interface’s tolerance of dif-
ferent names, I might add the following forceFeed.js 
data-forcefeed attribute to the artist link’s <cite>:

<a href="/artist/kenny-mulbarton">by <cite data-
forcefeed="words|2">Kenny Mulbarton</cite></a>

171   https://github.com/Heydon/forceFeed

https://github.com/Heydon/forceFeed


256 Inclusive Design Patterns

The words parameter refers to an array of words of dif-
ferent lengths. The 2 parameter refers to the number of 
randomized words I want to include. Since most names are 
composed of two words — a forename and surname — two 
seems reasonable. To run this over all of the artist <cite>s in 
a page, I first include forceFeed.js, then script the following. 

Note that I’m using a short set of lorem ipsum words just for 
brevity, but you can populate your array how you like.

window.words = ['lorem', 'ipsum', 'dolor', 'sit', 'amet', 
'adipsing', 'consectetur', 'elit', 'sed', 'commodo', 
'ligula', 'vitae', 'mollis', 'pellentesque', 'condimentum', 
'sollicitudin', 'fermentum', 'enim', 'tincidunt'];

var cites = document.querySelectorAll('cite');

[].forEach.call(cites, function(cite) {
 cite.addAttribute('data-forcefeed', 'words|2');
});
forceFeed({words: window.words});

Testing the tolerance of these word combinations is a 
simple case of reloading the page repeatedly to see whether 
any randomized combinations of words appear to break the 
layout, by causing an ugly wrapping behavior, for example.



257A Filter Widget

THE PRODUCT TITLE

There’s another dimension to forceFeed.js. The script also 
allows you to add between x and n numbers of array items. 
This helps to test dynamic content for the title of the print. 

Note that forceFeed.js needs a wrapper element to work, so 
let’s pretend we’ve used a script to place a <span> around the 
title before the link.

<h3 tabindex="-1"> <!-- make the title focusable -->
 <span data-forcefeed="words|1|10">Naked Man In Garage 
Forecourt</span>
 <a href="/artist/kenny-mulbarton">by <cite data-
forcefeed="words|1">Kenny Mulbarton</cite></a>
</h3>

When two numbers are provided, as in words|1|10, the 
script will place between the first number and second num-
ber of array items as the text node. Between one and ten 
words is the kind of variability we can expect for the titles. 

Now it’s back to refreshing the page and adapting the grid to 
tolerate any visual breakages better. Usually problems arise 
due to wrapping causing height differences between items, 
or failures to wrap meaning content breaks out of its box.



258 Inclusive Design Patterns

Summary

In this pattern we discovered two things. First, sometimes 
HTML already provides the behaviors we often find our-
selves needlessly and flimsily recreating in JavaScript. 
Second, when using semantic HTML, CSS can be used as a 
form of progressive enhancement. In addition, we explored 
the importance of giving user’s choice and control over how 
their content is arranged. 

We also used some techniques to make sure our design 
was tolerant of dynamic and fluctuating content. As we’ve 
been discussing throughout the book, inclusive design 
also means a visual design which is not too strict about the 
nature of the content imparted to it.

THINGS TO AVOID

• Creating behaviors in JavaScript that HTML already 
offers.

• Grid systems which don’t allow right-to-left language 
support.

• Infinite scrolling.
• Prototyping with idealized content.



259A Filter Widget





261A Registration Form

A Registration Form
My first forays into web design at the turn of the cen-
tury revolved around images, image maps to link parts of 
those images to other pages of images, and nested <table> 
elements to hold the whole debacle together. Underperform-
ing, unresponsive, not cross-browser compatible: just some 
of the things you could condemn my early handiwork for.

My current output is hardly perfect, but it has benefited 
from a change in mindset; an acknowledgement that web 
pages aren’t merely pinboards for images. Really, web pages 
are terminals: they accept information (input) and display 
information (output).

Web forms take care of the input part. Making sure forms 
are inclusive is paramount, because all people should be 
able to contribute to and not just consume the web. So, what 
are we dealing with? It’s a mixed bag: form elements piggy-
back OS functionality and are keyboard and screen reader 
accessible as standard — at least when marked up correctly. 
So that’s good. On the other hand, forms are a 10,000-volt 
electromagnet for attracting usability problems.

For this simple registration form pattern, we shall embrace 
standards while attempting to tiptoe nimbly around poten-
tial usability failures. The relationship between standards 
and usability is where we find inclusion.



262 Inclusive Design Patterns

The Form In Context

Before diving into constructing the registration form itself, 
it’s worth acknowledging the context in which we are likely 
to find it. Despite the virtues of modularity, it can’t be helped 
that some patterns are informed by context and are better 
designed where context is considered first.

Conventionally, registration forms are counterparts to 
login forms provided for users who already have accounts. 
In fact, it’s usually the login form that you would encoun-
ter first, with an option to register instead. This registra-
tion option usually takes the form of some tiny link text 
reading “Don’t have an account?” and placed after the login 
form’s submit button.

The thinking here is often that the no account option 
doesn’t need to be a big deal because most new users will 
have gone directly to the homepage, read the entire sales 
pitch for the application and pressed the sign-up call-to-
action there.



263A Registration Form

Making assumptions about the way visitors enter and move 
through your app is dangerous territory anyway, but for 
certain users the usability here is even more aggravating. 
Screen reader operators traversing the page from top to 
bottom methodically will not realize the option to register 
is present unless they go past the login form. In addition, by 
linking to the registration form on a separate page, they’d 
have to make their way down to the form from the top of 
that newly loaded page.

This is one of the reasons we create the ability to bypass 
blocks of content using skip links, headings and landmark 
regions, as discussed in “A Blog Post.” This comes under 
WCAG’s 2.4.1 Bypass Blocks172 success criterion.

However, a clearer solution for all users would be to present 
them with a choice of login or registration at the outset. In 
the illustration below, “Login” is selected by default but in a 
clear relationship with the unselected register option.

172 https://www.w3.org/TR/WCAG20/#navigation-mechanisms

https://www.w3.org/TR/WCAG20


264 Inclusive Design Patterns

THE LOGIN/REGISTER TOOLBAR

It’s important the choice being presented to the user is clear 
both visually and non-visually. But despite what certain 
vocal accessibility pundits might have you believe, there’s 
really no right or wrong way to achieve this kind of thing. 
It’s down to your discretion as a designer to find the most 
effective solution.

One option would be to design the login and register 
options as tabs in a fully-fledged WAI-ARIA tab interface. I 
talk about such interfaces at length in the book “Apps For 
All: Coding Accessible Web Applications.”173 Also available is 
an accompanying demo.174

Since we are only dealing with two options (tabs), I think 
this complex widget is overkill. A simpler way to commu-
nicate the choice and the current selection would be to 
construct a little toolbar,175 like the following.

<h1>Welcome</h1>
<div role="toolbar" aria-label="Login or register">
 <button aria-pressed="true">Login</button>
 <button aria-pressed="false">Register</button>
</div>

173 http://smashed.by/apps4all
174 http://smashed.by/tab-interface
175 http://w3c.github.io/aria/aria/aria.html#toolbar

http://smashed.by/apps4all
http://smashed.by/tab
http://w3c.github.io/aria/aria/aria.html


265A Registration Form

<div id="forms">
 <div id="login">
    <form>
   <!-- the login form -->
    </form>
 </div>
 <div id="register">
    <form>
   <!-- the registration form -->
    </form>
 </div>
</div>

 

NOTES

• Pressing a button changes that button to 
aria-pressed="true"176 and reveals the correspond-
ing form. A CSS style should be provided to show 
that this button is the selected one, possibly with the 
[aria-pressed="true"] attribute selector.

• When screen reader users focus the first button, “Login 
or register toolbar, login toggle button, selected” (or sim-
ilar, depending on the screen reader) is announced. This 
informs users that they are interacting with a toolbar 
widget presenting them with a choice of “Login or regis-
ter” and that the “login” option is currently activated.

176 https://www.w3.org/TR/wai-aria-1.1/#aria-pressed

https://www.w3.org/TR/wai


266 Inclusive Design Patterns

• The displayed form (either login or register) is in focus 
order following the toolbar so is easily reached by 
keyboard or screen reader controls. No explicit relation-
ship between the toolbar and forms area is therefore 
necessary. As previously discussed, aria-controls can 
provide an explicit relationship but it should not be re-
lied upon because of low support. Source order is your 
friend in these situations.

The Basic Form

Now let’s shift our focus to just the registration form itself. 
We’ve already touched on harnessing form controls in “A 
Filter Widget.” This form takes a more familiar, well, form, 
facilitating text input by the user.

<form id="register">
 <label for="email">Your email address</label>
 <input type="text" id="email" name="email">  
 <label for="username">Choose a username</label>
 <input type="text" id="username" name="username" 
placeholder="e.g. HotStuff666">
 <label for="password">Choose a password</label>
 <input type="password" id="password" name="password">
 <button type="submit">Register</button>
</form>



267A Registration Form

LABELING
In Inclusive Forms 101, we must ensure that all interactive 
elements have an accessible label associated with them. In 
the case of the submit button, the text node is the accessi-
ble label. That is, when you focus the button, “Register” is 
announced as the label.

For elements that accept user input like text inputs, an 
auxiliary label must be associated with it. The standard 
way to achieve this is by using a <label> element, which 
takes a for attribute. The for attribute associates the label 
with an input using its id value. This is one of the reasons 
you should ensure ids are unique. When they are not, you 
would fail WCAG’s 4.1.1 Parsing177 rule.

In case of the password input, the agreed cipher — the match-
ing content of the for and id values — is simply “password”:

<label for="password">Choose a password</label>
<input type="password" id="password" name="password">

To appreciate why labels have to be explicitly associated 
with controls in this way, you have to appreciate how screen 
reader operators traverse forms. Unlike prose content, 
where users may use the down arrow to go from element 
to element, forms are operated by moving directly between 

177  https://www.w3.org/TR/WCAG20/#ensure-compat

https://www.w3.org/TR/WCAG20/#ensure-compat


268 Inclusive Design Patterns

one field and the next. Label elements, therefore, are jumped 
over: if they weren’t explicitly connected to the interactive 
elements they were describing, they’d be missed.

In my example, when a screen reader user focuses the pass-
word field, “Choose a password, secure input” (or similar) 
would be announced.

Senior accessibility engineer Léonie Watson notes that a 
role of password is being mooted178 for the WAI-ARIA (2.0) 
specification. This would enable developers to communicate 
the security of a custom field without necessarily ensuring 
that security (masking the inputted characters) is actually 
present. WAI-ARIA only affects semantics, not general 
behavior. This is why standard elements and attributes such 
as type="password" are a safer choice where available. They 
pair semantics with standard behaviors automatically.

THE PLACEHOLDER ATTRIBUTE

The placeholder attribute is a relatively new addition to the 
HTML specification. It was created in response to develop-
ers wanting to give hints for the type of content the user 
should provide. The key word here is hints: the placeholder 
is not a labeling method by itself and should only be used to 
provide supplemental information.

178 http://tink.uk/proposed-aria-password-role/

http://tink.uk/proposed


269A Registration Form

In the #username example, “Choose a username” is the 
(accessible) label and “e.g. HotStuff666” is provided just to 
get the user’s imagination kick-started.

 <label for="username">Choose a username</label>
 <input type="text" id="username" name="username"
 placeholder="e.g. HotStuff666">

By default, the placeholder attribute is shown as gray text, 
which can cause contrast issues, especially where the input 
uses a background color. Instead of differentiating the 
placeholder by diminishing its contrast, I suggest using a 
different method, such as italicization.

The left example shows the placeholder text in default gray. The right 
uses a custom italic style with a darker color.

Styling the placeholder is possible in most browsers with 
the help of some standard and proprietary properties:

::placeholder {
 color: #000;
 font-style: italic;
}



270 Inclusive Design Patterns

::-webkit-input-placeholder {
 color: #000;
 font-style: italic;
}

::-moz-placeholder {
 color: #000;
 font-style: italic;
}

(Note: Each rule is in a separate declaration block rather 
than a comma-delimited list. Browsers will not parse a 
combined block if it contains unrecognized, proprietary 
selectors.)

Some screen readers and browsers do not support 
placeholder, so using it to supplant a proper label will 
result in missing information. But that’s not the only prob-
lem: any sighted users interacting with the input will find 
the surrogate label disappears as soon as they start typing. 
This produces cognitive accessibility issues and is broadly 
uninclusive as an interface pattern. The browser’s auto-
completion routine could also populate multiple fields, of 
course. This too would eradicate visible labels and make it 
difficult for the user to check the automatic values against 
what the fields intended.



271A Registration Form

Using placeholder as a label is esp. bad when combined with 
autofill. Just had a whole form autofilled and I have no clue what 
anything is. 

— Lea Verou, on Twitter 179

Sometimes it’s tempting to remove visible labels and rely 
on placeholder attributes to save space (or screen estate if 
you prefer) but that’s hardly a good reason to diminish the 
usability of a form.

Left unfocused text field shows the placeholder. Right focused text field 
does not, leaving the user to ponder what it was for.

You should prioritize making room for the label from 
the outset, in mockups and prototypes. However, there 
exists an innovative solution which uses the label as the 
placeholder. The float label pattern180 by Matt D Smith181 
animates the label out of the way of the user’s cursor on 
focus. Be aware, though, that since it treats the label and 
placeholder as one and the same, there is no opportunity 
to supply a hint or example.

179 https://twitter.com/LeaVerou/status/758386597012185088
180 http://bradfrost.com/blog/post/float-label-pattern/
181   https://twitter.com/mds

“

https://twitter.com/LeaVerou/status/758386597012185088
http://bradfrost.com/blog/post/float
https://twitter.com/mds


272 Inclusive Design Patterns

A NOTE ON GROUPING

The <fieldset> element is proffered for grouping related 
form fields under a common label: a <legend>. In most 
screen readers, this results in the <legend>’s content being 
concatenated with each field’s <label>. We could adapt our 
form to include this grouping mechanism like so:

<form id="register">
    <fieldset>
        <legend>Registration</legend>
        <label for="email">Your email address</label>
        <input type="email" id="email" name="email">
        <label for="username">Choose a username</label>
<input type="text" id="username" name="username"
placeholder="e.g. HotStuff666">
    <label for="password">Choose a password</label>
    <input type="password" id="password" name="password">
    <button type="submit">Register</button>
 </fieldset>
</form>

This is technically valid, but it creates a lot of unnecessary 
noise; that is, focusing each input in turn would announce 
the extended labels of “Registration: Your email address,” 
“Registration: Choose a username,” and so on.

When programming code day in and day out, we habituate 
ourselves to thinking of things as right or wrong, true or 
false. That a <fieldset> in this context is not technically 
invalid or nonconforming might lead us to think it is the 
opposite: virtuous, correct — mandatory even.



273A Registration Form

HTML does not hold fast to the clear, procedural logic of 
imperative programming languages, so it’s better not to 
think of them as similar. Structures of HTML, like the struc-
tures of natural language it annotates, should be judged in 
similarly nuanced terms: what helps or hinders; what’s too 
little or too much. In the current context, the <fieldset> 
and <legend> create too much verbosity for little to no gain, 
so probably shouldn’t be there.

Bearing in mind that <fieldset>s are pointless without 
<legend>s, you can use the following three rules of thumb 
to decide if a <fieldset> is appropriate.

1. Is there more than one distinct set of fields in total, in 
the same form or context? Yes? Use <fieldset>s. No? 
Don’t use <fieldset>s.

2. Does a set actually only have one field in it? Yes? You 
don’t need a <fieldset>. No? Use a <fieldset> if (1) 
applies.

3. Can you think of a <legend> that would make sense 
or aid comprehension if used with each of the 
<fieldset>’s field labels? Yes? Use a <fieldset>.  
No? Don’t use a <fieldset>.



274 Inclusive Design Patterns

Required Fields

Our register form has some required fields, which cannot be 
left blank. In fact, all the fields are required: for the sake of a 
simple UX we’re not asking anything which isn’t completely 
critical to signing up the user.

Denoting required fields inclusively is a mixture of 
standards and convention. For many people, an asterisk 
(&#x002a;) character suffixing the field label is familiar. I 
can place it in a <strong> element for the purposes of mak-
ing it red, if I think that will increase its comprehensibility:

<label for="email">Your email address <strong class="red">*</
strong></label>
<input type="text" id="email" name="email">

For screen reader users, the label is announced as usual, 
including the asterisk, as “Your email address asterisk.” The 
term “asterisk” in this context is well enough understood by 
screen reader users to mean “required,” but it’s not exactly 
robust. Imagine we were marking up a quiz question about 
a certain Gaulish cartoon character:182

<label for="quiz-question">What is the name of Goscinny and 
Uderzo’s famous cartoon Gaul?<strong class="red"*</strong>
</label>
<input type="text" id="quiz-question" name="quiz-question">

182 https://en.wikipedia.org/wiki/Asterix

https://en.wikipedia.org/wiki/Asterix


275A Registration Form

More correctly, placing aria-required="true"183 on the 
input itself will announce “Required” in the set language 
of the page. This just leaves us the job of silencing the 
asterisk, for which we can use aria-hidden. You can 
think of aria-hidden="true" as the aural equivalent of 
display: none;.

<label for="email">Your email address <strong class="red" 
aria-hidden="true">*</strong></label>
<input type="text" id="email" name="email" aria-
required="true">

(Note: Both aria-hidden="true" and aria-required="true" 
have explicit values rather than being written in the Boolean 
form that is possible with certain HTML5 attributes.184 This is 
correct for ARIA attributes and significantly more reliable.)

A NOTE ON THE REQUIRED ATTRIBUTE

You may be aware that there is an HTML5 required attrib-
ute. Why aren’t we using this? Usually it is better to use the 
HTML5 base semantics rather than the WAI-ARIA exten-
sion, but only if vendor (read: browser and screen reader) 
support is acceptable. 

183 http://w3c.github.io/aria/aria/aria.html#aria-required
184 http://smashed.by/html5forms

http://w3c.github.io/aria/aria/aria.html#aria-required
http://smashed.by/html5forms


276 Inclusive Design Patterns

The required attribute is not implemented uniformly185 
across browsers. It also tends to invoke an undesirable fea-
ture: marking empty required fields as invalid from the out-
set. For our purposes this is rather verbose and aggressive.

Showing The Password

You’ll recall the discussion on the cognitive stress of disap-
pearing placeholder attributes, especially when they are 
unaccompanied by proper labels. Having to type a password 
without being able to see if you’ve hit the right keys is a 
matter of similar discomfort.

Some interfaces provide an auxiliary field, similar in all 
respects but its id, and implore you to type your proposed 
password a second time, so the system can compare the two. 
Bothersome and off-putting.

To preserve security but give users the option to check their 
entered password, instead we shall provide a checkbox to 
reveal the password at will.

<label for="password">Choose a password</label>
<input type="password" id="password" name="password">
<label><input type="checkbox" id="showPassword"> show
password</label>

185 http://caniuse.com/#feat=form-validation

http://caniuse.com/#feat=form-validation


277A Registration Form

The form with a “show password” checkbox to its bottom-right.

A short script simply toggles the field type from password to 
text and back again:

var password = document.getElementById('password');
var showPassword = document.getElementById('showPassword');

showPassword.addEventListener('change', function() {
 var type = this.checked ? 'text' : 'password';
 password.setAttribute('type', type);
});

Note that Internet Explorer and Microsoft Edge provide 
this functionality natively, using an interactive eye icon 
associated with the ::ms-reveal pseudo-class.186 Since we’ve 
provided our own (cross-browser) solution, it would be wise 
to suppress this feature:

input[type=password]::-ms-reveal {
 display: none;
}

186 https://developer.mozilla.org/en-US/docs/Web/CSS/::-ms-reveal

https://developer.mozilla.org/en-US/docs/Web/CSS


278 Inclusive Design Patterns

At this stage, it’s become a habit of ours, as inclusive design-
ers, to not only improve an interface’s UX but to do so in 
a way that supports users in unusual circumstances or 
using auxiliary software. This little, screen reader accessible 
show-password provision is another reusable micropattern. 
We only have to think about and work on the accessibility 
aspect once.

Validation

Our biggest challenge is to provide an inclusive form vali-
dation experience. This involves a lot of moving parts and, 
without care, can produce a jarring and unusable experi-
ence for some users. The trick is in communicating two key 
messages during validation as separate concerns:

1. Something is broken (the form has errors).
2. What needs fixing (what will make the form valid).

As with the HTML5 required attribute, there are concerns 
about the support and uniformity of HTML5 form valida-
tion based on browser’s interpretation of input types like 
url. There is also no functionality within HTML5 to vali-
date a password field. In which case, we are going to rely 
on WAI-ARIA to indicate invalidity, with JavaScript for the 
actual validation (pattern matching).



279A Registration Form

SOMETHING IS BROKEN

When the user tries to submit the form, we need to check if 
there are any errors. If there are, we need to suppress form 
submission temporarily. Note that we are suppressing the 
submission of the form itself rather than merely the click 
handler on the submit button.

var form = document.getElementById('register');
form.addEventListener('submit', function(event) {
 if (errors) {
    event.preventDefault(); // do not submit
 }
});

This is all well and good, but literally nothing currently 
happens when the user tries to submit (where form errors 
are present). This is our cue to provide some feedback in 
the form of an error message. At this point, all we want to 
communicate is the presence of errors and that they need 
attention. A simple live region that is populated by the error 
message on an attempted submission will suffice.

Following is the initial markup. Note that I am placing the 
region directly above the submit button. Since the submit 
button is where the user is looking and working, this does 
the best job of bringing the error to their attention. Remem-
ber that users can (and will!) zoom their content. Therefore, 
an error which appears above the form may not even appear 
within the current viewport.



280 Inclusive Design Patterns

<div id="error" aria-live="assertive" role="alert"></div>
<button type="submit">Register</button>

Here’s how we populate the live region using our script:

var form = document.getElementById('register');
form.addEventListener('submit ', function(event) {

if (errors) {
   event.preventDefault(); // do not submit
   document.getElementById('error').textContent = 'Please 

make sure all your registration information is correct.'
}

});

VISUAL DESIGN

The #error live region should only be visible when it is 
populated. To ensure that the empty box is not visible in its 
initial state (and does not otherwise affect the form’s layout) 
you can employ the :empty pseudo-class:

#error:empty {
 display: none;
}

Conventionally, errors are displayed in red, so it’s advisable to 
give the message box a red border or background. However, 
you should be wary of red being the only visual characteristic 
that classifies the message as an error. To support at the same 
time screen reader users and people who cannot see color, we 
can prepend a warning icon containing alternative text.



281A Registration Form

<div id="error" aria-live="assertive" role="alert">
<p>
   <svg role="img" aria-label="error:">
      <use xlink:href="#error"></use>
   </svg>
 Please make sure your registration information is correct.

</p>
</div>

A red error message with white text prefixed with a triangular warning 
sign containing an exclamation mark.

When the form’s submission event is suppressed, the live 
region is populated, switching its display state from none to 
block thanks to the :empty pseudo-class becoming inap-
plicable. This population of DOM content simultaneously 
triggers screen readers to announce the content, including 
the prepended alternative text: “error: Please make sure your 
registration information is correct.” Note that the ARIA role 
of img187 and aria-label force the <svg> element to behave 
like a standard <img/> element carrying an alt attribute 
with the content “error:”.

The advantage of declaring the presence of errors using a 
live region is that we don’t have to move the user to bring 

187 https://www.w3.org/TR/wai-aria-1.1/#img

https://www.w3.org/TR/wai-aria-1.1/#img


282 Inclusive Design Patterns

this information to their attention. Typically, form errors 
alert users by focusing the first invalid form field. This 
unexpected and unsolicited shift of position within the 
application risks disorientating users. In our case, the user 
remains focused on the submit button and is free to move 
back into the form to fix the errors when ready.

WHAT NEEDS FIXING

Now we can safely move on to handling the invalid fields. 
Each one needs two pieces of information, available visually 
and non-visually:

1. That the field is invalid.
2. What would make the field valid.

Except for the wording of error descriptions, the pattern 
will be the same for each invalid input, so we’ll just use the 
password field as an exemplar. For (1) we can deploy the 
well-supported aria-invalid attribute.188

<label for="password">Choose a password</label>
<input type="text" id="password" name="password" 
aria-invalid="true">
<label><input type="checkbox" id="showPassword"> 
show password</label>

188 http://smashed.by/invalidattr

http://smashed.by/invalidattr


283A Registration Form

That’s about it, really. When the user moves back into the 
form and focuses the input it will now announce “Invalid” 
(or similar) in screen readers.

You can harness the aria-invalid attribute to provide 
a visual indication too. By linking the parsable state of 
aria-invalid="true" to a visual style, you save yourself the 
bother of managing style and state as separate concerns. 
Usually a separation of concerns is beneficial, but when-
ever a field is marked as invalid, that’s when it should look 
invalid. Using the attribute selector for the state makes sure 
the form and underlying function of your interface don’t get 
out of sync.

[aria-invalid="true"] {
 border-color: red;
 background: url () center right;
}

(Note the inclusion of a background icon for color-blind 
users who cannot perceive the red border-color change.)

Just knowing that the field is invalid is little use unless 
the user knows how to fix it too. For this purpose we can 
provide an accompanying description. In this case, the pass-
word is not acceptable because it is fewer than six charac-
ters long.



284 Inclusive Design Patterns

<label for="password">Choose a password</label>
<input type="text" id="password" aria-invalid="true" aria-
describedby="password-hint">
<div id="password-hint">Your password must be at least 6 
characters long</div>
<label><input type="checkbox" id="showPassword"> show
password</label>

The password input with error message directly below in red text, pre-
fixed by a warning symbol.

The #password-hint element is connected to the 
input using the aria-describedby189 attribute and the 
password-hint id as a cipher. That is, the description is 
connected much like the label. The only difference is in 
terms of order: the description is read last. Now, when a 
screen reader user focuses the input, this accessible descrip-
tion will be read out after the label, current value, input type 
and (invalid) state information. All the pieces are in place.

189 https://www.w3.org/TR/wai-aria-1.1/#aria-describedby

https://www.w3.org/TR/wai


285A Registration Form

RERUNNING THE ROUTINE

Some fancy form validation scripts give you live feedback 
as you type your text entries, letting you know whether 
what you type is valid as you type it. This can become very 
difficult to manage. For entries requiring a certain number 
of characters, the first few keystrokes are always going to 
constitute an invalid entry. So, when do we send feedback to 
the user and how frequently?

Not wanting to be the overbearing waiter continually inter-
rupting customers to check in with them, we didn’t flag 
errors on first run. Instead, only when errors are present 
after attempted submission do we begin informing the user.

Once the user is actively engaged in correcting errors, I think 
it helpful to reward their efforts as they work. For fields 
now marked invalid, we could run our validation routine 
on each input event, switching aria-invalid from false to 
true where applicable.

var password = document.getElementById('password');
password.addEventListener('input', function() {
 validate(this);
});



286 Inclusive Design Patterns

DEBOUNCING

For users who type quickly, the above validate() function 
will fire very frequently. Not only will this produce some 
performance issues, but in implementations where a live 
region is populated and repopulated to declare invalidity, you 
put screen readers into 80’s remix mode: “Y—your—y—your 
pass—your password must be at least 6 characters long.”

We want to make sure the validate() function is only 
called when the user is idle. By debouncing, we divide 
clusters of keypress events into blocks and only execute 
validate() once per block.

Lodash’s .debounce190 utility accepts a wait parameter. In our 
case, we need to set this to be slightly shorter than what we 
imagine is the average interval between keystrokes. When 
debouncing, the single function execution can take place 
at the beginning (leading) or end (trailing) of the block. 
We need the validation to happen only when the user has 
stopped typing. Accordingly, in the options object, options.
leading should be false and options.trailing true.

var password = document.getElementById('password');
var handleInput = _.debounce(validate.bind(null, this), 150, 
{
 leading: false,

190 https://lodash.com/docs#debounce

https://lodash.com/docs


287A Registration Form

 trailing: true,
});
password.addEventListener('input', handleInput);

Whether you actually want to implement a live region per 
field for feedback is up to you. Certainly, without one it 
won’t be immediately obvious when the field has become 
valid or invalid. However, since the aria-invalid attrib-
ute will have been set to true regardless, when the user 
blurs and refocuses the field, they will be told it is valid. 
Most screen readers also provide shortcuts to reannounce 
element information. NVDA, for example, will speak the 
focused password input when pressing Insert + Tab.

Microcopy

As ever, we need to be mindful not just of the code and 
the visual design but our choice of words. In forms, where 
labels and instructions mean the difference between 
succeeding to complete a form and failing, we need to take 
extra care — especially if the site we’re developing provides 
a crucial service, such as registering to vote.

The article “Five Ways To Prevent Bad Microcopy”191 by Bill 
Beard offers some key pointers:

191  http://smashed.by/bad-microcopy

http://smashed.by/bad


288 Inclusive Design Patterns

1. Get out your own head and get to know the user.
2. The user is a person. Talk to them like one.
3. Use copy as a guide, not a crutch.
4. Treat every moment like a branding moment, 

even when it’s not.
5. If content is king, then treat context like a queen.

All good advice, and I recommend you read the article in 
full. But Id like to emphasize Bill’s stipulation regarding 
point four:

Your brand’s tone and voice are essential to consider when writing 
all of your copy, but it should not get in the way of a user who is 
trying to take action.”

In other words, don’t put your brand before your usability. In 
an official capacity, WCAG echoes Bill’s sentiments with the 
2.4.6 Headings and Labels192 success criterion, imploring that 
“headings and labels describe topic or purpose.” Branding 
whimsy in your copy can diverge too much from transpar-
ent wording, confusing and infuriating the user.

Take the password label in our registration form, for exam-
ple. If our form is for an online fantasy role-playing game, 
it might be tempting to relabel the field “Secret incanta-
tion,” “Spell of entry,” or maybe “Cryptic charm”; all more 

192 http://smashed.by/topic-purpose

“

http://smashed.by/topic


289A Registration Form

evocative than “Password” but in danger of leaving the user 
wondering what they’re really being asked for.

Summary

By exploring a specific form pattern, this chapter has given 
you most everything you need to develop inclusive forms 
in general. It’s by using standard form elements, effective 
labeling, and facilitating the correction of errors that a max-
imal number of users are able to access and contribute to 
your websites and apps. But by keeping the form simple and 
avoiding irritating experiences — like disappearing labels, 
and passwords that you cannot check — we’ve made sure 
using the form isn’t just possible but somewhat agreeable. 
Well, not entirely disagreeable anyway!

THINGS TO AVOID

• Putting content that needs to be read first last in the source.
• Input focus styles that are too subtle.
• Missing, invisible or unassociated labels and 

descriptions.
• Uninteractive content in a <form> context that isn’t 

associated with form fields.





291Test-Driven Markup

Test-Driven Markup
Test-driven development193 (TDD) allows developers 
working with frequent iterations to move forward with 
confidence. By writing tests first, to prescribe outcomes, 
then creating the functionality to achieve them, you can 
ensure successful builds behave in a predictable and reliable 
fashion. Thrill seekers who relish their “What the hell is 
going on?” moments may find TDD a little boring, but it’s a 
solid approach.

In application development, tests are usually written 
against functions and what those functions are expected 
to produce. For example, if I wanted to test that the add() 
function from my add.js Node module worked correctly, I 
could use Mocha194 and the Chai195 assertion library:

var expect = require('chai').expect;
var add = require('../lib/add.js');
describe('Add module', function() {
 describe('The add() function', function() {
    it('should give 4 when adding 3 to 1', function() {
       add(3, 1).should.equal(4);
    });
 });
});

193 https://en.wikipedia.org/wiki/Test-driven_development
194 https://mochajs.org
195 http://chaijs.com/

https://en.wikipedia.org/wiki/Test
https://mochajs.org
http://chaijs.com


292 Inclusive Design Patterns

Now I can just run npm test (or whatever alias I have set up) 
and I’ll find out if my function is doing what I hoped it would.

That’s all very well, but it’s designed for the largely impera-
tive language of JavaScript. What if we could write similar 
tests for declarative languages like HTML? Then we could 
ensure the correct structure of markup as we write it as well. 
Since well-formed markup is a big contributor to web acces-
sibility, a kind of TDD for markup can keep us from building 
uninclusive patterns.

It turns out there’s already a language perfectly suited for 
this task. Appropriately, it is itself a declarative language 
and, fortuitously, it does not take the form of an additional 
library dependency. I’m talking, of course, about CSS.

The Logic Of Selectors

Despite CSS being a declarative language, there is a logic in 
the formulation of selectors. Selectors are condition-based 
expressions which are used to match HTML structures. So 
good are CSS selectors at doing this that tools for writing 
markup like Emmet196 are based on selector-like syntax. 

196 http://emmet.io/

http://emmet.io


293Test-Driven Markup

The inherent logic of CSS selectors becomes clear when you 
reimagine selectors in JavaScript syntax. 
 
For example, I might want to match all buttons that are not 
disabled:

button:not(:disabled) { … }

Rewritten in JavaScript:

if (element.nodeName === 'button' && !element.disabled) { … }

Typically, CSS selectors are used to match expected patterns 
but, by the same token, we could use selectors to target 
broken or malformed patterns. Where these are present, an 
error style could be elicited to highlight the problem.

[undesired pattern] {
 /* error style, such as 
 outline: 0.5em solid red;
 */ 
}

Now all we need is a method for describing the issue to the 
user on inspection of the highlighted element. Let’s see how 
this might work using a tab interface as our subject pattern.



294 Inclusive Design Patterns

The Test-Driven Tab Interface

I detail the formulation of accessible, ARIA-enhanced tab 
interfaces in my book, “Apps For All: Coding Accessible Web 
Applications.”197 Also available are a demo and explanation.198 
If you’re not familiar with this integrated pattern and its 
expected behaviors, please refer to either of these resources.

The following code example sets out a tab interface as 
marked up in its initial state. Our job is to write tests against 
the elements properties and relationships within the tab 
interface, to make sure it is structured as expected. With 
relatively complex patterns like tab interfaces, it’s easy to 
slip up and miss out or badly form part of the structure. This 
is our opportunity to stop that from happening.

 <div class="tab-interface">
    <ul role="tablist">
        <li role="presentation"><a href="#panel1" id="tab1" 
role="tab" aria-selected="true">First Tab</a></li>
        <li role="presentation"><a href="#panel2" id="tab2" 
role="tab" tabindex="-1">Second Tab</a></li>
        <li role="presentation"><a href="#panel3" id="tab3" 
role="tab" tabindex="-1">Third Tab</a></li>
    </ul> 

197 http://smashed.by/apps4all
198 http://heydonworks.com/practical_aria_examples/#tab-interface

http://smashed.by/apps4all
http://heydonworks.com/practical_aria_examples


295Test-Driven Markup

 <div role="tabpanel" id="panel1" aria-labelledby="tab1">
  <!-- tab panel 1 content -->
 </div>
 <div role="tabpanel" id="panel2" aria-labelledby="tab2">
  <!-- tab panel 2 content -->
 </div>
 <div role="tabpanel" id="panel3" aria-labelledby="tab3">
  <!-- tab panel 3 content -->
 </div>
</div>

THE TESTS

Let’s start from the top. I know that my tabs will only func-
tion correctly in assistive technologies if they belong to an 
element with the special tablist role to group the indi-
vidual tabs. My selector should identify the <ul> element 
within the class="tab-interface" container and highlight 
it if it doesn’t have a role="tablist" attribute.

.tab-interface ul:not([role="tablist"]) {
 outline: 0.5em solid red;
}

Now, if no well-placed tablist semantics are present, an 
ugly red outline will appear on the list element.



296 Inclusive Design Patterns

As stated in the tablist role specification,199 tablists require 
“owned elements” with the explicit tab role, in the form 
role="tab". Some implementations place this attribute 
directly on each <li> element, but I prefer to use <a> ele-
ments so that the structure easily degrades as a list of links. 
See the “Navigation Regions” chapter for more on link lists 
and navigation.

Having decided that it is the <a> element which should take 
the tab role, I can add a corresponding test to my suite.

.tab-interface ul:not([role="tablist"]),
[role="tablist"] a:not([role="tab"]) {
 outline: 0.5em solid red;
}

Where JavaScript has added the tab interface semantics, the 
list semantics become redundant, which is why we suppress 
them with role="presentation" on each <li> element. 
This test selector follows similar logic to the previous test.

.tab-interface ul:not([role="tablist"]),
[role="tablist"] a:not([role="tab"]),
[role="tablist"] li:not([role="presentation"])
{
 outline: 0.5em solid red;
}

199 https://www.w3.org/TR/wai-aria/roles#tablist

https://www.w3.org/TR/wai-aria/roles


297Test-Driven Markup

In correctly behaving tab interfaces, there should 
always be one selected tab, defined accessibly using the 
aria-selected200 state. This should be the only element 
focusable by the user with the Tab key. All other tabs 
should take the tabindex="-1" attribute and be selectable 
using only the arrow keys. This requires two more test selec-
tors. The second is essentially a negated version of the first.

.tab-interface ul:not([role="tablist"]),
[role="tablist"] a:not([role="tab"]),
[role="tablist"] li:not([role="presentation"]),
[role="tablist"] a[aria-selected][tabindex="-1"],
[role="tablist"] a:not([aria-selected]):not([tabindex="-1"])
{
 outline: 0.5em solid red;
}

We can even detect incorrect patterns used to formulate the 
tabpanel aria-labelledby attibute values. The additional 
test selector in the following example matches tab panels 
with the correct role, but with an aria-labelledby value 
not commencing with “tab”. This fuzzy matching is possi-
ble using the starts with ^ modifier in the attribute selector, 
[aria-labelledby^="tab"].

200  http://w3c.github.io/aria/aria/aria.html#aria-selected

http://w3c.github.io/aria/aria/aria.html


298 Inclusive Design Patterns

.tab-interface ul:not([role="tablist"]),
[role="tablist"] a:not([role="tab"]),
[role="tablist"] li:not([role="presentation"]),
[role="tablist"] a[aria-selected][tabindex="-1"],
[role="tablist"] a:not([aria-selected]):not([tabindex="-1"]),
[role="tabpanel"]:not([aria-labelledby^="tab"])
{
 outline: 0.5em solid red;
}

Of course, this catches the complete absence of 
aria-labelledby as well.

Finally, let’s make sure all the tab panels have the tabpanel 
role. We know that the tab panel set should appear after the 
list, so we can use the general sibling combinator ~ in this 
test to ask if there are any <div>s following the tablist that 
are not tabpanels.

.tab-interface ul:not([role="tablist"]),
[role="tablist"] a:not([role="tab"]),
[role="tablist"] li:not([role="presentation"]),
[role="tablist"] a[aria-selected][tabindex="-1"],
[role="tablist"] a:not([aria-selected]):not([tabindex="-1"]),
[role="tabpanel"]:not([aria-labelledby^="tab"]),
[role="tablist"] ~ div:not([role="tabpanel"])
{
 outline: 0.5em solid red;
}



299Test-Driven Markup

Having content between the tablist and tab panels would 
fragment the interface and cause confusion. As an accom-
paniment to the last test, we can make sure a <div> with the 
tabpanel role is the first sibling element after the tablist. 
This test selector uses the adjacent sibling combinator201 (or 
next-sibling selector) +:

.tab-interface ul:not([role="tablist"]),
[role="tablist"] a:not([role="tab"]),
[role="tablist"] li:not([role="presentation"]),
[role="tablist"] a[aria-selected][tabindex="-1"],
[role="tablist"] a:not([aria-selected]):not([tabindex="-1"]),
[role="tabpanel"]:not([aria-labelledby^="tab"]),
[role="tablist"] ~ div:not([role="tabpanel"]),
[role="tablist"] + div:not([role="tabpanel"])
{
 outline: 0.5em solid red;
}

ERROR MESSAGES

So far, we’ve provided a red outline for any elements which 
match undesired patterns. But that’s not much use unless 
we also provide an explanation of the error. In the exper-
imental CSS testing bookmarklet revenge.css,202 I used test 
selectors to identify generic accessibility-related markup 
errors and provided error messages using pseudo-content. 

201 http://smashed.by/siblingselectors
202  http://heydonworks.com/revengecssbookmarklet/

http://smashed.by/siblingselectors
http://heydonworks.com/revengecssbookmarklet


300 Inclusive Design Patterns

For example, the following prints a lurid message for lists 
which are badly formed:

ol > *:not(li)::after,
ul > *:not(li)::after {
 content: 'Only <li> can be a direct child of <ul> or <ol>.';
}

However, actually printing that error to the screen is 
fraught with problems. Since it piggybacks a site’s own CSS, 
I had to be very careful about overriding certain styles for 
pseudo-content that would mess up the appearance and 
readability of the error messages. 

Where there are errors for successive sibling elements 
(like the erroneous <li> replacements the last example is 
designed to detect) space becomes an issue too.

A11y.css203 — a more advanced CSS accessibility testing tool 
by Gaël Poupard204 — overcomes this by positioning each 
pseudo-content message at the top of the document and 
reveals it on hover.

203  https://ffoodd.github.io/a11y.css/
204  https://twitter.com/ffoodd_fr

https://ffoodd.github.io/a11y.css
https://twitter.com/ffoodd_fr


301Test-Driven Markup

But why bother showing the error messages within the page 
itself at all? Instead, I can use the developer tools CSS inspec-
tor like a JavaScript console and provide the error messages 
there. The red outline should remain, but only as an indicator 
of which elements the developer should be inspecting.

In which case, I could just hide the pseudo-content message 
with display:none;:

There are a couple of small issues here. The first is that 
when two errors apply to the same element, all but the 
last in the cascade will be grayed out (with a line-through 
style) in the CSS inspector. That is, it looks misleadingly as 
if all but the last error is not applicable. The other is that 
display:none; is supplemental to the error message — 
unnecessary noise.
 
THE ERROR PROPERTY
The is no such thing as the ERROR property in CSS and there 
are no plans for one — let me make that clear right away!



302 Inclusive Design Patterns

But there are a few benefits to using an unrecognized CSS 
property to log errors to the CSS inspector. The first is that 
pseudo-content becomes entirely redundant, along with 
the display:none; property, reducing an individual CSS 
error to this:

.tab-interface ul:not([role="tablist"]) {
 ERROR: The tab interface <ul> must have the tablist WAI-
ARIA role
}

Second, as an unrecognized property it is not entered into 
specificity calculations. Depending on the browser, this 
either means no more graying out, or a grayed-out style for 
all ERROR declarations: a slight improvement. 

My favorite part is that the Chrome browser’s way of high-
lighting unrecognized properties is to prefix them with a 
little warning sign (“⚠”). We automatically co-opt this sign 
to help highlight our errors, producing something like this:

A declaration block from Chrome dev tools showing the error declaration 
with a line-through style.



303Test-Driven Markup

Unfortunately, like overriden declarations, unrecognized 
declarations still take a line-through style as illustrated. 
For my money, this isn’t a deal-breaker because the capi-
talized ERROR property name picks these declarations out 
quite clearly. 

Nonetheless, with the help of Dan Smith,205 I can provide a 
small Chrome extension206 for removing this line-through 
style and replacing it with a more error-like white-on-red 
appearance:

Note that it’s no longer necessary to encapsulate the error in single quo-
tation marks as a string.

Be aware that this style will be honored by most unrec-
ognized declarations. However, thanks to the extension’s 
omission of the .has-ignorable-error class, the most 
common unrecognized properties — browser prefixes — are 
not styled this way.

205  https://twitter.com/dansketchpad
206  https://github.com/Heydon/css-error-property-style/blob/master/

https://twitter.com/dansketchpad
https://github.com/Heydon/css-error-property-style/blob/master


304 Inclusive Design Patterns

.overloaded.not-parsed-ok.inactive:not(.has-ignorable-error) 
{
 text-decoration: none !important;
 background: red !important;
 color: #fff !important;
}

.overloaded.not-parsed-ok.inactive:not(.has-ignorable-error) 

.webkit-css-property {
 color: #fff !important;
}

PUTTING IT TOGETHER

Our tab interface pattern should now have a tab-interface.
css file and, in an effort to establish a naming convention, an 
accompanying tab-interface.test.css file — something like this:

.tab-interface ul:not([role="tablist"]) {
 ERROR: The tab interface <ul> must have the tablist
WAI-ARIA role to be recognized in assistive technologies.;
}

[role="tablist"] a:not([role="tab"]) {
 ERROR: <a> elements within the tablist need to each have 
the WAI-ARIA tab role to be counted as tabs in assistive
technologies.;
}

[role="tablist"] li:not([role="presentation"]) {
 ERROR: Remove the <li> semantics with the WAI-ARIA 
presentation role. Where the tab interface is instated, these
semantics are irrelevant.;
}



305Test-Driven Markup

[role="tablist"] a[aria-selected][tabindex="-1"] {
 ERROR: Remove the -1 tabindex value on the aria-selected
tab to make it focusable by the user. They should be able to 
move to this tab only.;
}

[role="tablist"] a:not([aria-selected]):not([tabindex="-1"])

{
 ERROR: All unselected tabs should have the -1 tabindex value 
and only be focusable using the left and right arrow keys.;
}
[role="tabpanel"]:not([aria-labelledby^="tab"]) {
 ERROR: Each tabpanel should have an aria-labelledby 
attribute starting with "tab" followed by the corresponding
tab's number. This is the convention of tab systems in our 
interface.;
}

[role="tablist"] ~ div:not([role="tabpanel"]) {
 ERROR: Each tabpanel needs to have the explicit tabpanel 
WAI-ARIA role to be correctly associated with the
tablist that controls it.;
}

[role="tablist"] + div:not([role="tabpanel"]) {
 ERROR: The first element after the tablist should be a tab 
panel with the tabpanel WAI-ARIA role. Screen reader
users must be able to move directly into the open tab panel 
from the selected tab.;
}

.tab-interface ul:not([role="tablist"]),
[role="tablist"] a:not([role="tab"]),
[role="tablist"] li:not([role="presentation"]),



306 Inclusive Design Patterns

[role="tablist"] a[aria-selected][tabindex="-1"],
[role="tablist"] a:not([aria-selected]):not([tabindex="-1"]),
[role="tabpanel"]:not([aria-labelledby^="tab"]),
[role="tablist"] ~ div:not([role="tabpanel"]),
[role="tablist"] + div:not([role="tabpanel"])
{
 outline: 0.5em solid red;
}

Of course, none of this can technically fail a build in its 
current form; it just highlights errors visually, for the front-
end developer to see. However, the .test.css files certainly 
don’t want to be included in production. Using the .test.css 
convention helps when it comes to omit them from being 
copied to your production build folder.

Not One-Size-Fits-All

The difference between this test-driven markup approach 
and standard automated accessibility testing is clear: 
whether using a CSS-based bookmarklet like a11y.css207 or an 
advanced API like tenon.io,208 generic errors are disclosed. 
This testing is important, especially for WCAG compliance. 
But writing your own tests for your own tailored patterns 
and structures means you can be more granular and specific 
about their expected form.

207  https://ffoodd.github.io/a11y.css/
208  http://tenon.io/

http://tenon.io
https://ffoodd.github.io/a11y.css
http://tenon.


307Test-Driven Markup

Implementations of tab interfaces can differ. For instance, 
the relationship between the tabs and their panels can be 
achieved using aria-controls rather than aria-labelledby. 
The tests written here ensure that my implementation — 
my specific pattern — is structured in the prescribed way. 

Where additional JavaScript and CSS hooks (data and class 
attributes) should be present, this is also an opportunity to 
test for them.

As you develop your own library of inclusive design pat-
terns, I recommend you try writing some tests like these. As 
the pattern evolves over time and between colleagues, you 
can make sure its integrity remains intact. Where an error 
does emerge, you will have taken the opportunity — via the 
error message — to explain your decision-making and how 
the structure you’ve chosen makes the markup inclusive.



308 Inclusive Design Patterns

Further Reading
Thank you for reading my book!

One of the best things about writing a book about patterns 
is that there are always more patterns to talk about. And 
you know what that means: I can write a sequel! If you can 
think of any inclusive patterns you’d like me to explore, 
you can find me on Twitter as @heydonworks. Also, if 
you spot any inconsistencies or errors here  (it happens!), 
please contact myself or Smashing Magazine so we can 
update the errata page.209  

In the meantime, here’s a list of resources I recommend 
for reading about and around inclusive design, covering 
everything from responsive design to UX, technical accessi-
bility, performance, and internationalization.

209  http://smashed.by/errata

http://smashed.by/errata


Books

• A Web For Everyone by Sarah Horton and Whitney 
Quesenbery: http://smashed.by/aweb4everyone 

• Apps For All by Heydon Pickering:  
http://smashed.by/apps4all

• Designing With Web Standards by Jeffrey Zeldman with 
Ethan Marcotte http://smashed.by/webstandards 

• Adaptive Web Design by Aaron Gustafson: 
http://adaptivewebdesign.info/

• The Design Of Everyday Things by Donald A Norman:  
http://smashed.by/everydaythings

• Colour Accessibility by Geri Coady 
https://gumroad.com/l/loura11y — 

• Don’t Make Me Think by Steve Krug: 
http://smashed.by/dontmakemethink

• Responsible Responsive Design by Scott Jehl 
http://smashed.by/resres

• Web Performance by Andy Davis: 
http://andydavies.me/books/#webperformance

• Front-end Style Guides by Anna Debenham: 
http://www.maban.co.uk/projects/front-end-style-guides/ 

http://smashed.by/aweb4everyone
http://adaptivewebdesign.info
https://gumroad.com/l/loura11y
http://smashed.by/dontmakemethink
http://andydavies.me/books/#webperformance
http://www.maban.co.uk/projects/front


  

• International User Research by Chui Chui Tan: 
https://gumroad.com/l/international-user-research

• Service Design — From Insight To Implementation by Andy 
Polaine, Lavrans Løvlie, Ben Reason: 
http://smashed.by/servicedesign

• Design Meets Disability by Graham Pullin: 
http://smashed.by/desdis

• The Joy of UX — User Experience and Interactive Design for 
Developers by David Platt: 
http://smashed.by/joyux

• Including Your Missing 20% By Embedding Web And Mobile 
Accessibility by Jonathan Hassell: 
http://www.hassellinclusion.com/landing/book/

• Design For Real Life by Eric Meyer & Sara Wachter-
Boettcher: http://smashed.by/reallife

• The Timeless Way Of Building by Christopher Alexander: 
http://smashed.by/timelessway

https://gumroad.com/l/international
http://smashed.by/servicedesign
http://smashed.by/desdis
http://smashed.by/joyux
http://www.hassellinclusion.com/landing/book
http://smashed.by/timelessway


Blogs

• Marco’s Accessibility Blog: https://www.marcozehe.de/ 

• Paciello Group’s blog: https://www.paciellogroup.com/blog/

• Accessibility Wins: https://a11ywins.tumblr.com/

• Tink.uk: http://tink.uk/ (Léonie Watson)

• Adrian Roselli: http://adrianroselli.com/

• Simply Accessible: http://simplyaccessible.com/articles/

• Web Axe: http://www.webaxe.org/ (Dennis Lembrée)

• Web Aim’s blog: http://webaim.org/blog/

• Karl Groves: http://www.karlgroves.com/

• SSB Bart Group’s blog: http://www.ssbbartgroup.com/blog/

• Deque’s blog: http://www.deque.com/blog/

• Terrill Thompson: http://terrillthompson.com/blog/

• Nielsen Norman Group: https://www.nngroup.com/articles/

• GOV.UK accessibility blog: https://accessibility.blog.gov.uk/

• lukew: http://www.lukew.com/ff/ (Luke Wroblewski)

• UX Booth: http://smashed.by/a11yforms

https://www.marcozehe.de
https://www.paciellogroup.com/blog
https://a11ywins.tumblr.com
http://tink.uk
http://adrianroselli.com
http://simplyaccessible.com/articles
http://www.webaxe.org
http://webaim.org/blog
http://www.karlgroves.com
http://www.ssbbartgroup.com/blog
http://www.deque.com/blog
http://terrillthompson.com/blog
https://www.nngroup.com/articles
https://accessibility.blog.gov.uk
http://www.lukew.com/ff


More From Smashing Magazine 

• Apps For All: Coding Accessible Web Applications 
by Heydon Pickering

• Hardboiled Web Design: Fifth Anniversary Edition 
by Andy Clarke

• Smashing Book #5: Real-Life Responsive Web Design 
Our latest web community book with chapters con-
tributed by John Allsopp, Daniel Mall, Vitaly Friedman, 
Eileen Webb, Sara Soueidan, Zoe M. Gillenwater,  
Bram Stein, Yoav Weiss, Fabio Carneiro, Tom Maslen, 
Ben Callahan and Andy Clarke.

• Digital Adaptation 
by Paul Boag

• Smashing Book #4 : New Perspectives on Web Design 
Our 4th web community book written by Harry  
Roberts, Nicholas Zakas, Christian Heilmann, Tim 
Kadlec, Mat Marquis, Addy Osmani, Aaron Gustafson, 
Paul Tero, Marko Dugonjić, Corey Vilhauer, Rachel 
Andrew, Nishant Kothary and Christopher Murphy. 

Visit smashingmagazine.com/books/ for our full list of titles.

http://www.smashingmagazine.com/books/

	Inclusive Design Patterns (PDF)
	Table of Contents
	Introduction
	The Document
	A Paragraph
	A Blog Post
	Evaluation By Pattern
	Navigation Regions
	A Menu Button
	Inclusive Prototyping
	A List of Products
	A Filter Widget
	A Registration Form
	Test-driven Markup
	Further Reading




