

II Hardboiled Web Design

III

Hardboiled Web Design
by Andy Clarke

Published in 2015 by
Smashing Magazine GmbH
Werthmannstr. 15
79098 Freiburg
Germany

On the web: hardboiledwebdesign.com
Please send errors to errata@stuffandnonsense.co.uk

Development editor (first edition): Chris Mills
Technical editors: Vitaly Friedman and Stu Robson
Editor: Owen Gregory
Art direction: Andy Clarke
Layout: Markus Seyfferth
Front cover illustration: Natalie Smith
Part opening illustrations: Elliot Jay Stocks
Copyright 2015 Andy Clarke

All rights reserved. No part of this publication may be reproduced or transmitted

in any form or by any means, electronic or mechanical, including photocopy,

recording or any information storage and retrieval system, without prior

permission in writing from the publisher.

ISBN: 978-3-945749-37-1

IV Hardboiled Web Design

For my wife Sue

V

I looked at Berin and laughed. He turned his head and stared right
into the muzzle of his own gun. The killer’s face was a vile mask of
hatred. Berin had his mouth open, screaming with all the furies of
the gods dethroned, but my laugh was even louder. He was
still screaming when I pulled the trigger.”

 — My Gun is Quick, Mickey Spillane, 1950

“

VI Hardboiled Web Design

Acknowledgements
To Vitaly Friedman and Markus Seyfferth and everyone at Smashing
Magazine, for helping to bring this fifth anniversary edition to life and for
giving me a platform to share my ideas.

To the best editor in the business, Owen Gregory, for being Lewis to my
Morse one more time.

To Natalie Smith and Elliot Jay Stocks, for their cover and
interior illustrations.

To Trent Walton and Jeffrey Zeldman, for their forewords.

To Marc Thiele, for my author photo.

To Rachel Andrew, Shane Hudson, Mandy Michael and Sara Soueidan, for
reading the first edition again and helping to shape the content in the second.

To my dear friends, Rachel Andrew (for the second time), Paul Boag, Vitaly
Friedman (again), Owen Gregory (again), Petra Gregorova, Jon Hicks, Leigh
Hicks, Drew McLellan, David Roessli, Jared Spool and Jeffrey Zeldman
(again), for being there when it mattered and for keeping me safe.

To our clients at Stuff & Nonsense, for agreeing to delay their projects for a
second time and being OK with me ignoring their calls and emails while I
concentrated on writing; and to Sue Davies, Steven Grant and Joe Spurling
for putting up with my bad temper while I wrote.

Finally, but most importantly, to my family, because all that really matters
is them.

VII

About the Author
Andy Clarke’s been called many things since he started designing for
the web over fifteen years ago. His ego likes words like “ambassador
for CSS”, “industry prophet” and “inspiring”, but he’s proudest that
Jeffrey Zeldman once called him a “triple talented bastard”.

Andy runs Stuff & Nonsense,1 a small web design company based in
North Wales in the United Kingdom, which specialises in creative
visual design for websites and web applications. For seventeen years
they’ve worked with clients from all around the world. You’ll see
examples of some of his designs later in this book. Andy’s a popular
public speaker and presents at web design conferences worldwide. He
teaches web design techniques and technologies to professional web
designers and developers at sold-out workshops all over the world.

He wrote the best-selling Transcending CSS: The Fine Art Of Web Design2
(New Riders, 2006) and the first edition of Hardboiled Web Design (Five
Simple Steps, 2010).3 He still writes occasionally on his blog And All
That Malarkey,4 and is the host of popular web design industry pod-
cast Unfinished Business.5 He tweets as @malarkey.

1 stuffandnonsense.co.uk
2 stuffandnonsense.co.uk/buy/transcendingcss
3 stuffandnonsense.co.uk/buy/hardboiledwebdesign
4 stuffandnonsense.co.uk/blog
5 stuffandnonsense.co.uk/podcast

http://stuffandnonsense.co.uk
http://stuffandnonsense.co.uk/buy/transcendingcss
http://stuffandnonsense.co.uk/buy/hardboiledwebdesign
http://stuffandnonsense.co.uk/blog
http://stuffandnonsense.co.uk/podcast

VIII Hardboiled Web Design

About the editor
Owen Gregory6 is a professional editor, copy editor and proofreader
based in Birmingham, United Kingdom. Owen has experience of work-
ing with small, independent and digital publishers from manuscript
to print and digital editions. His particular expertise encompasses all
aspects of front-end web design and development and he’s worked
with several well-known authors from the web industry.

About the reviewer
Vitaly Friedman7 loves beautiful content and doesn’t like to give
in easily. Vitaly is writer, speaker, author and editor-in-chief of
Smashing Magazine. He runs responsive web design workshops
and loves solving complex UX, front-end and performance problems
in large companies.

About the reviewer
Stuart Robson8 is a freelance front-end developer based in Wiltshire.
He helps companies and organisations with their front-end archi-
tecture and development workflows. He also speaks and writes about
Sass and front-end development.

Previous contributors
The 2010 edition of this book was edited by Chris Mills9 and the
technical editor was Tim Van Damme.10

6 twitter.com/fullcreammilk
7 twitter.com/smashingmag
8 twitter.com/StuRobson
9 twitter.com/chrisdavidmills
10 twitter.com/maxvoltar

http://twitter.com/fullcreammilk
https://twitter.com/smashingmag
https://twitter.com/StuRobson
http://twitter.com/chrisdavidmills
http://twitter.com/maxvoltar

IX

X Hardboiled Web Design

Foreword
Not every CSS design wizard still lives in his mum’s basement and
cries himself to sleep each night wearing a soiled Tron T-shirt. For
there’s also Andy Clarke: dapper, charismatic and perpetually brim-
ming with ideas, insights and enthusiasm for the design of great
experiences and the experience of great design.

The man is a walking epiphany‚ a King Midas of CSS-powered creativ-
ity. And the book you’re now browsing may be his greatest gold classic
yet. For here you’ll learn why, when and how to use HTML5 and CSS3
in your daily work. Daily as in every day. Daily as in right now, today.

Every web designer should possess this book, but be warned, it is not
for the timid. If you tremble at the thought of your web layout boasting
rounded corners in one browser but not another; if the mere notion
of even trying a CSS drop-shadow fills you with a sinner’s remorse,
Hardboiled Web Design is so not for you. Leave now. No judgements.
Return to your safe, soft-boiled life. Okay, maybe that was a judgement.

But if you’re among the restless, enlightened and daring few who
embrace the future of web design, and know that we can’t get there by
clinging to the past, brother slash sister, has Andy got a book for you.

Jeffrey Zeldman

XI

About Jeffrey Zeldman
What can I say about Jeffrey Zeldman11 that hasn’t been written a thou-
sand times or more? Sure, he was the co-founder of the Web Standards
Project during its formative years. Sure, he’s one of the most recognis-
able faces in the web industry with his blog, magazine A List Apart,12
conference An Event Apart13 and publisher A Book Apart,14 “for people
who make websites”.

Sure, he’s the author of Designing with Web Standards, the book that
popularised standards-based HTML and CSS. He’s also my inspiration,
my mentor, my critic and my friend. What more can I say?

11 zeldman.com
12 alistapart.com
13 aneventapart.com
14 abookapart.com

http://zeldman.com
http://alistapart.com
http://aneventapart.com
http://abookapart.com

XII Hardboiled Web Design

Foreword
If you’d have told me five years ago that the command-line would be a
core part of my web design workflow I’d have likely laughed you out of
the room. The same goes for compiling CSS or using something other
than floats for layout.

As web designers, we stand on ever-eroding foundations of technol-
ogies, techniques, and tastes. While core concepts might remain con-
stant, the innumerable orbiting details fluctuate as the web evolves.
Rarely is there a single solution to a problem, and answers to most
questions begin with, “It depends…” As thrilling as it is to work in an
industry developing so rapidly, the rate of change can be exhausting
and often terrifying. How do we keep up?

We work with a medium that encompasses the sum of all human
knowledge, but the web’s boundlessness can make staying up-to-date
overwhelming. It can be time consuming to wade through disparate,
often contradictory sources. Given the web’s nonlinear nature, learning
seldom feels comprehensive—more like grasping around in the dark.

It can be tempting to pillage pages for code snippets and quick fixes
rather than taking time to digest and fully comprehend the context of
the problem and the logic behind the solution. What does it say about
me that at one point I knew the ideal search terms to find Chris
Coyier’s guide to flexbox better than I knew how to actually use
flexbox itself? Ahem. Don’t answer that.

XIII

Using a shortcut may be fine for a busy work day. However, like any
discipline, it becomes necessary to carve out time and space to under-
stand the techniques and tools we use in order to maintain proficiency
and broaden our perception, ultimately allowing for more nimble
problem solving in the future.

As a developing industry, we need books like Hard Boiled Web De-
sign to organise and explicate the best practices for so many of the
new technologies and techniques used on the web today. The glori-
ous fact that the original Hard Boiled Web Design needs an update
after just five short years is a testament to our industry’s dedication
to push the web beyond current capabilities. Thanks to Andy’s dili-
gent research, we can continue to equip ourselves for the next phase
of the web’s evolution.

Trent Walton

About Trent Walton
What can I say about Trent Walton?15 Yes, he’s part of the three amigo
web design studio Paravel Inc.16 based in Austin, Texas. Yes, he’s been
responsible for some of the finest examples of responsive web design
at scale, including his work for Microsoft. Yes, he’s written some of the
most thoughtful pieces about designing responsively. Yes to all this. He’s
also one of the humblest people I know. He’s my Wild West hero. Let’s
just say that.

15 trentwalton.com
16 paravelinc.com

http://trentwalton.com
http://paravelinc.com

XIV Hardboiled Web Design

About this book
If you’ve been working on the web for any length of time, your book-
shelves may already be groaning and your ebook reader may be bulg-
ing under the weight of books about HTML and CSS. You may even
own the first edition of this very book. Do you really need another one?
Hardboiled Web Design: The Fifth Anniversary Edition is different.

It’s for creative people who want to understand why, when and how
to use the latest HTML and CSS technologies in their everyday design
and development work. Not tomorrow or next week, but today. It won’t
teach you the basics of writing markup or CSS but if you’re hungry to
learn about how the latest techniques and technologies will help the
websites and web applications you make be more creative as well as
more responsive, Hardboiled Web Design: The Fifth Anniversary Edition is
the book for you.

If you care about good, clean markup, you’re in for a treat as we’ll focus
on how best to use the semantic elements contained within HTML.
We’ll cover the latest microformats2 and WAI-ARIA landmark roles,
looking at how they’ll reduce your reliance on presentational elements
and attributes, helping to make your website perform faster.

If you’re a designer who wants to learn about the creative opportu-
nities offered by the latest CSS, this book will teach you how to use
those properties in browsers that support them, and offers a creative
approach on how to handle older, less capable browsers.

XV

Why a new edition?
We first published Hardboiled Web Design in 2010. Although that’s only
five years ago, at the time I’m writing now, so much about the web
that we design for has changed. In 2010, weeks before we launched our
first edition, Apple launched the iPad and it went on to change many of
the ways people interact with websites. Ethan Marcotte published his
“Responsive Web Design” article only five months before and the inev-
itable changes it caused to the web – and the industry that designs and
builds it – hadn’t begun to sink in when we published Hardboiled Web
Design. In 2010, designers and developers were in many ways looking
to the past while coping with the limitations of older browsers, rather
than to a future where more people access websites using a smart-
phone than they do a conventional PC.

Five years on and much has changed significantly. The legacy brows-
ers that some believed held back our creativity have faded into obscu-
rity. We no longer need to write hacks for browsers that don’t support
properties such as border-radius, box-shadow, opacity and even RGBa
colour values. Contemporary web browsers from Apple, Firefox, Goog-
le, Opera and even Microsoft all have high levels of support for CSS
and, better still, they’re close to parity on the properties they support.

For many of us, our bosses and clients, the focus today is on designing
digital products rather than websites. Whatever we make, the way we
design has changed as we’ve moved from designing static visuals of
complete web pages to systems of components. We make prototypes
using HTML and CSS earlier in our design process and we iterate by
writing code, not by making more visuals. Our clients have become used
to – in fact, many have come to expect – that we’ll demonstrate our re-
sponsive design concepts to them on their own smartphones or tablets.

XVI Hardboiled Web Design

Yet despite the differences that five years have made, many of our
attitudes to design and development have stayed the same. We might
not be bothered by border-radius support any more but we’re equally
as frustrated by support for flexbox. In the CSS workshops that I teach
I’m regularly surprised by the numbers of designers and developers
who hold off from using CSS properties such as border-image,
background-blend-mode, filter and multicolumn layouts because of
lack of support in even contemporary browsers.

The emerging technologies may have changed but the ways we think
about using them has not. That’s why the approach I outlined in Hard-
boiled Web Design is still relevant and is perhaps more important in the
mobile, multi-device and responsive web we design for today than it
was when I first wrote it. Are you ready to get started? Is the engine
running in your heap? Then buckle up, let’s go.

First, some assumptions
This book is about using the latest HTML and CSS technologies so
I’ll assume that you’re already familiar with writing well-structured,
meaningful HTML markup and CSS to implement your designs. Do
you need to know everything there is to know about CSS? No, although
understanding selectors and current layout techniques will help you
follow along. If you’re new to CSS, I hope that you’ll be inspired to
learn more about what it means to be hardboiled.

What you’ll need
So that you can see how the ‘Get Hardboiled’ examples are displayed
across screens of all sizes and types, you’ll need a Mac or PC with sev-
eral current web browsers and their developer tools installed, as well
as a smartphone, tablet or both. I recommend that you have the most
up-to-date versions of the following browsers installed:

XVII

Safari
On the Mac, make sure you go to Safari’s Preferences, click on the
Advanced tab and check Show Develop menu in menu bar. This will
give you access to Safari for OS X’s developer tools. Safari is also
the default browser and only rendering engine on Apple’s iOS.

Chrome
Whereas Safari uses the WebKit rendering engine, Google’s
popular Chrome web browser now uses Blink, its own fork of
WebKit. Chrome has extensions that help us design websites
using a browser and test them during development.

Firefox
Install the latest version of Firefox and any available beta ver-
sion. Firefox is still a popular browser because of its extensions.

Edge
While Edge’s logo may be reminiscent of Internet Explorer, Mi-
crosoft’s latest browser carries none of its baggage and, unlike
other browsers, Edge only runs on the Windows 10 operating
system for PCs, smartphones and tablets, and the Xbox console.
Edge can’t be used on previous versions of Windows.

Opera
Previous releases of the Opera browser used Opera’s own Presto
rendering engine, but more recent versions have used the same
Blink rendering engine as Chrome.

You won’t need any special code writing software, so feel free to use
your favourite text editor. Mine is still Espresso.17

17 macrabbit.com/espresso

http://macrabbit.com/espresso

XVIII Hardboiled Web Design

Introducing our examples, ‘Get Hardboiled’
Throughout this book we’ll be working through examples I designed
for the fictitious ‘Get Hardboiled’ site for fans of hardboiled detective
fiction. It illustrates the fabulous things we can achieve when we use
the most up-to-date technologies and leave behind old-fashioned atti-
tudes and ideas about designing for the web.

You’ll find links to the full repository of code on GitHub.18

Now, pick up your hat, slip on your raincoat and leave your comfort
zone behind, because you, ol’ buddy, are about to get hardboiled.

18 github.com/malarkey/hardboiledwebdesign

http://github.com/malarkey/hardboiledwebdesign

Piled high with examples, ‘Get Hardboiled’ will inspire and teach you to use
the latest HTML and CSS in everything you make for the web.

Contents

What the hell is hardboiled?

(give me that) ol’ time religion

the Way standards develop

it doesn’t have to look the same

atoms and elements

designing atmosphere

24

32

41

50

62

80

106

136

164

destination html5

hardboiled microformats 2

Wai-aria roles

Part 1 Getting Hardboiled

Part 2 Hardboiled HTML

Hardboiled foundations

flexible box layout

responsive typograpHy

borders

background images

gradients

172

199

237

274

294

307

330

354

388

416

439

background blends and filters

transforms

transitions

multi-column layout

it’s time to get Hardboiled

Part 3 Hardboiled CSS

Part 4 More Hardboiled CSS

22 Hardboiled Web Design

23What the hell is hardboiled?

The web we design and develop for haschanged beyond all recognition since theintroduction of smartphones and othermobile devices. But the way we designand demonstrate those designs to our bosses and clients, and our attitude toHTML and CSS, have changed very little.

In Getting Hardboiled, you’ll learn what it means to be hardboiled. You’ll discover why it’s important to constantly re-evaluateconcepts such as progressive enhancementand graceful degradation, and you’ll find out the cold, hard truth about how stan-dards are really developed. You’ll find out how to create the atmosphere of a design independent of responsive layouts and howto demonstrate those designs to our bossesand clients. Above all else, you’ll learn thatresponsive web design is an opportunity tomake fabulous creative work, an opportu-nity that you should grab with both mitts.

24 Hardboiled Web Design

What the hell is hardboiled?
Since I was in my teens I’ve been fascinated by detective
fiction. Not the English country house murders or whodunnit
mysteries of Agatha Christie — oh no, the Sunday evening
adaptations of those never did it for me — I’m talking about
gritty, hard-hitting, anything goes stories from writers like
Raymond Chandler, Dashiell Hammett and my own personal
favourite, Mickey Spillane.

Turn back a few pages and read the quotation at the beginning of this
book. That isn’t from the notes I made during a client meeting, nor is it
from the minutes of a W3C CSS Working Group meeting — although
it could quite easily be. No, it’s from one of my favourite books, the
hardboiled classic My Gun Is Quick by Mickey Spillane.

Even if you’re not a fan of detective stories, you might know a little about
them or have seen a few hardboiled film noir movies. You might be fa-
miliar with Humphrey Bogart’s portrayal of private detective Sam Spade
in Dashiell Hammett’s The Maltese Falcon from 1941.1 The Maltese Falcon is
the second best detective film ever made, after Who Framed Roger Rabbit.2

How about Stacey Keach? His 1980s portrayal of Spillane’s Mike Ham-
mer on TV was more poached than hardboiled but, still, better a slow
detective than no detective is my motto.

Then, of course, there’s this guy.

 1 en.wikipedia.org/wiki/The_Maltese_Falcon_(1941_film)
2 en.wikipedia.org/wiki/Who_Framed_Roger_Rabbit

No. 1

http://en.wikipedia.org/wiki/The_Maltese_Falcon_(1941_film)
http://en.wikipedia.org/wiki/Who_Framed_Roger_Rabbit

25What the hell is hardboiled?

Want to read some hardboiled for yourself? I hope so, but not until you’ve finished this
book. Start with a classic — the old ones are the best — perhaps Dashiell Hammett’s
The Maltese Falcon or Raymond Chandler’s The Big Sleep. In the mood for archetypal
hardboiled action with a big mug detective, dames and dirty cops? Mickey Spillane’s
Mike Hammer novels are my favourite. Start with My Gun Is Quick and Vengeance Is Mine.

In hardboiled detective stories since the 1920s, crime, violence and
characters both good and bad have been portrayed without a veneer of
sentimentality. The term ‘hardboiled’ means tough, like an overcooked
egg. The crimes are tough too, so the heroes have attitude, don’t sugar-
coat the truth and never play it cute. They — and, by association, we as
readers — demand the truth, no matter what it takes and how rotten it
might be.

It’s always been the heroes — Hammett’s Sam Spade, Chandler’s Philip
Marlowe and especially Spillane’s Mike Hammer — who have fascinat-
ed me most about hardboiled detective fiction.

26 Hardboiled Web Design

What’s with him?
Hardboiled heroes are almost always down at heel, usually broke,
often drunk and living on a diet of black coffee and smokes — hey, that
sounds like most web designers I know. They have a good woman to
help them stay on the straight and narrow but don’t always treat her as
well as they should. When a glamorous redhead walks in the room, a
hardboiled hero can’t help but turn his head. (OK, this is getting weird.
I could be describing myself.)

To a hardboiled hero, jamming a pistol into a guy’s temple or ramming
a fist into his guts is part of a day’s work. When you’re ‘that guy’, the
one who can get the job done when no one else can, rules are for sis-
sies — and cops.

Hardboiled detectives sometimes work alongside the police, but
they’re on the outside because they’re also not afraid to break the
law when they need to. Being hardboiled means they make their own
rules to get a case cracked and see a bad guy behind bars — or dead.
Laws, rules and conventions matter, of course, but sometimes those
same rules can get in the way of justice being served. When we can’t
do what we know is right, we need heroes who aren’t afraid to step
outside to get the right thing done.

Hardboiled detectives do what cops and the rest of society can’t —
because a detective’s actions aren’t limited by the rules or conventions
that society has imposed on itself. We cheer them on, no matter how
ugly or how brutal they can be — we root for them because we need
them. Web designers can learn a lot from hardboiled detectives. This
brings us to the title of this book and an approach I’ve called hardboiled
web design.

27What the hell is hardboiled?

What’s hardboiled web design?
‘Hardboiled’ web design is about never compromising on creating the
best work we can for the web. Hardboiled is about challenging assump-
tions. Hardboiled is never being afraid to push boundaries, break rules
or invent new ones. Hardboiled is stripping our markup to the bone to
make it more adaptable to whatever the web might throw at it. Hard-
boiled is not hesitating to make the most of new technologies.

Being hardboiled won’t be easy, but if you’re ready to challenge
yourself, light a smoke, take a lungful and steel yourself as
you’re in for a long night.

Here’s to the pencil pushers: may they all get
lead poisoning

In life, as well as on the web, we need rules, we need conventions, we
need standards — but we should always use them to inform what we
do, not define it, and certainly never limit it. Although the web’s twen-
ty-five years old (at the time I’m writing this), we’ve already developed
standards for it — standards bodies like the W3C act as the guardians of
so-called web standards technologies like HTML, CSS and JavaScript.

We’ve also built up a series of best practices, such as mobile first,
progressive enhancement and responsive web design, dictating how to
use these technologies to build websites that are usable, cross-browser
compatible, accessible, visually appealing, indexable by search engines,
and more.

But the world’s far from perfect and these standards and best practices
are only really recommendations — the W3C even uses this word to
describe the specifications they maintain.

28 Hardboiled Web Design

There’s no legal entity and no other body that can force browser ven-
dors and web professionals to adopt these standards and best practices,
other than through peer pressure and common sense. If it wasn’t for
them, this would be a very different kind of book.

We’ve also built up a series of best practices, such as mobile first,
progressive enhancement and responsive web design, dictating how to
use these technologies to build websites that are usable, cross-browser
compatible, accessible, visually appealing, indexable by search engines,
and more.

When I first wrote this book five years ago it was standard practice to
fight hard to create a website that looked and worked the same across
all browsers, no matter what their capabilities. To do this meant mak-
ing compromises such as avoiding using technologies not supported
by all browsers.

Was that hardboiled?

Don’t kid yourself, sweet cheeks. It wasn’t and still isn’t the way to
evolve our craft or build a better web. This kind of old-fashioned think-
ing holds us back. It forces us to make excuses for not doing what we
know is the right thing. The worst that we, as the current custodians of
the web, can do is allow anything to limit what’s possible.

But we have to do what our bosses and customers want! We have to do what
they expect!”

I’ve been around the block a few times — I know the score. But I also
know it’s possible to give our clients what they want while we use the
most up-to-date features in HTML and CSS to expand our creative
options. This is what hardboiled web design is all about.

“

29What the hell is hardboiled?

Before we look at how to move beyond approaches we take for granted,
let’s ask ourselves why we’re often so reticent to embrace new web
technologies.

Nice shirt. Who’s your tailor? Quasimodo?
When my first book, Transcending CSS, went to print in 2006, there was
very little support for CSS3. Only Firefox supported CSS3 multicolumn
layouts and only Safari supported multiple background images. Even
though Transcending CSS was described as an advanced book at the
time, those two properties were about as advanced as it got.

By the time I wrote the first edition of Hardboiled Web Design five years
later, the scene had changed beyond recognition. On the desktop, the
dominant browser of the time, Internet Explorer, had dipped to less
than sixty per cent market share.3 Rival browsers had gained ground
and mobile internet browsing was growing fast.

We had an amazing array of CSS properties and most had been im-
plemented by browsers at the time, including Internet Explorer 9. We
had amazing CSS tools at our disposal so you might think we were all
doing amazing things with them.

You’d be wrong. Think again, chump. Far from focusing on what we
could do, most of us focused on what we couldn’t. Far from embracing
the possible, most of us complained about limitations. Far from getting
excited, most of us whined and moaned.

3 http://smashed.by/losingshare

http://smashed.by/losingshare

30 Hardboiled Web Design

Using web standards-based HTML, CSS and JavaScript, it’s possible to make
emotionally engaging, powerful pieces of creative work such as Bryan James’s4

incredible In Pieces5, portraits of thirty endangered animal species.

Who are you callin’ a chump, chimp?
The pace of change in web design and development has been unprece-
dented. Technologies such as HTML, CSS and JavaScript have matured.

People’s use of websites and web applications on smartphones and tab-
lets has exploded to the point where more people use mobile devices
than PCs. Responsive web design has gone from being a concept to a
widely accepted approach for designing websites.

4 bryanjamesdesign.co.uk
5 species-in-pieces.com

http://bryanjamesdesign.co.uk
http://species-in-pieces.com

31What the hell is hardboiled?

The biggest changes have been in the ways we design and develop the
web. To help cope with the demands of responsive design, many de-
signers have moved from designing pages to designing systems made
up of components. We’ve reinvented style guides in HTML and CSS
and turned them into full-blown pattern libraries that serve as work-
ing design tools, not simply documentation.

To help manage style sheets on large scale websites, developers use
Sass6 to add extends, mixins and variables to CSS. They’ve also in-
troduced naming methodologies to HTML and CSS, including BEM
(block, element, modifier)7 to make relationships between HTML
elements and CSS styles clearer. Finally, the people we work for don’t
need to be convinced about the benefits of responsive websites any
more — they ask for them.

Breaking it up
I may not be one of the hardboiled heroes I dream about — I never was
much good in a brawl — but over the next few chapters I’ll challenge
many popularly held ideas about how we use new and emerging tech-
nologies. Then I’ll set out a plan that satisfies everyone’s needs while
allowing us to push ourselves creatively.

I’m passionate about how we can make the best designs using the best,
most up-to-date tools. So I won’t be afraid to tell it like I see it. Don’t
expect me to be soft-spoken.

6 sass-lang.com
7 en.bem.info

http://sass-lang.com
http://en.bem.info

32 Hardboiled Web Design

(Give me that) ol’ time religion
Progressive enhancement has been one of the founda-
tions of modern web development and my first exposure to
it was an entry posted by Dave Shea on his blog,8 when he
introduced what he called MOSe — Mozilla, Opera and Safari
enhancement. You should’ve heard of Dave, because he’s the
guy who created the CSS Zen Garden.9

Dave explained his MOSe method as follows:

[A]fter creating a basic, functioning page in IE, you add extra functionality
[for more capable browsers with advanced selectors]. […] This is the only way
we can keep moving forward in the next few years. Let’s embrace it.”10

Dave suggested we should first create a page that’s accessible and usa-
ble to low-capability browsers, most notably earlier versions of Inter-
net Explorer. Then — by using CSS child, sibling and attribute selectors
— apply styles understood only by more capable browsers. You’ll notice
that Dave discussed how a page should work, not necessarily how a
design should look.

Hold that thought.

8 mezzoblue.com
9 csszengarden.com
10 mezzoblue.com/archives/2003/06/25/mose

No. 2

“

http://mezzoblue.com
http://csszengarden.com
http://mezzoblue.com/archives/2003/06/25/mose

33(Give me that) ol’ time religion

Scotch on the rocks… and I mean ice
Earlier that same year, Steve Champeon11 wrote and spoke about what
he termed progressive enhancement. If you haven’t heard of Steve, he’s
the other guy who co-founded the Web Standards Project12 alongside
Jeffrey Zeldman.

Rather than hoping for graceful degradation, PE [progressive enhancement]
builds documents for the least capable or differently capable devices first, then
moves on to enhance those documents with separate logic for presentation, in
ways that don’t place an undue burden on baseline devices but which allow a
richer experience for those users with modern graphical browser software.”13

This notion of progressive enhancement is what many of us still regard as
the ideal way to design and develop websites — starting with a design that
can be rendered by less capable browsers, then layering on details that will
only be seen by more modern and generally more capable browsers.

In practical terms this means starting with widely supported CSS
selectors and properties, and only using new and emerging properties
sparingly. In theory this approach to progressive enhancement makes
sense, but in practice how we choose to apply the principles of progres-
sive enhancement can easily lead to creative work that never reaches
its full potential. Even though Steve used the term ‘inclusive web de-
sign’, I’m sure he never intended that we should limit our creativity to
the capabilities of a lowest common denominator browser. Even if he
did, can you guess when his and Dave’s articles were written? 2003!*

11 twitter.com/schampeo
12 webstandards.org
13 hesketh.com/publications/inclusive_web_design_for_the_future
* The same year that former US president George W. Bush declared “mission accomplished” in Iraq.

“

http://twitter.com/schampeo
http://webstandards.org
http://hesketh.com/publications/inclusive_web_design_for_the_future

34 Hardboiled Web Design

Work’s been kinda slow since cartoons went to colour
If you were carrying a bleeding edge MP3 player in 2003, you’d have
had a massive 30Gb iPod in your pocket or purse. If you were design-
ing, developing or just browsing the web in 2003, here’s what software
you were using:

• Apple Mac OS X 10.2 (Jaguar)
• Windows XP (SP2)
• Adobe Photoshop CS
• Macromedia Dreamweaver 7
• Microsoft FrontPage 2003
• Internet Explorer 6
• Apple Safari 1
• Mozilla Phoenix/Firebird
• Opera 7

In terms of software, we accept that time marches on and upgrades are
both necessary and desirable. But in other ways — particularly the way
we practically apply the principles of progressive enhancement — we
still doggedly stick by received wisdom.

I’m as good as dipped
That isn’t to say that the aims of progressive enhancement aren’t laud-
able, quite the opposite:

• Basic content and functionality should always be accessible.
• Lean, clean, semantic markup should describe content.
• Style sheets should accomplish all aspects of visual design.
• Behaviour should be enabled using unobtrusive scripting.

35(Give me that) ol’ time religion

When we develop following these principles, our content never relies
on CSS or JavaScript to be available or accessible. When we use mean-
ingful HTML, it will be lighter and more adaptable. CSS makes pages
easier to format for screens of every size and type.

Progressive enhancement still has much to offer, but we must be care-
ful not to allow adherence to its principles to limit creative potential.
Instead of rigidly applying its ideas — especially with regard to visual
design — we must continually re-evaluate how we use them to avoid
our work becoming stale and ordinary.

I’m not bad, I’m just drawn that way
In her presentation “Enhancing Responsiveness with Flexbox”15 about
the applications of CSS flexible box layout (flexbox), designer and
author of Flexible Web Design Zoe Gillenwater advocates using flexbox to
progressively enhance the implementation of a design.

The trouble is, enhancing still treats CSS properties, even powerful
tools like flexbox, as visual rewards for people who use the most up-to-
date browsers and devices.

Enhancement so often means starting at the bottom, with a lowest
common denominator design for less capable browsers — and that’s
never good enough. When we use new and emerging CSS simply as a
means — as Dan Cederholm wrote in his book Handcrafted CSS16 — to
“enhance documents [to] allow a richer experience for those users with modern
graphical browser software”, it’s no wonder that so much design for the
web today appears ordinary.

15 vimeo.com/124796320
16 handcraftedcss.com

http://vimeo.com/124796320
http://handcraftedcss.com

36 Hardboiled Web Design

Over the past few years, Zoe has produced some of the most educational and illuminating
examples of practical applications for flexbox. This edition of Hardboiled Web Design wouldn’t
have been possible without her teaching: zomigi.com/publications/#pub-fwd

37(Give me that) ol’ time religion

That’s because when we start at the bottom and design for the capabil-
ities of the lowest-performing browsers first, there’s only so far up we
can reach.

I had to shake the weasels
The hardboiled approach to web design doesn’t accept that our creativ-
ity must be limited by the capabilities of older, less capable browsers
and devices. Instead, we should take full advantage of new technol-
ogies, and design every user’s experience so that it’s appropriate to the
capabilities of the browser they are using. This way we can make the
most of everything that more capable browsers and emerging technol-
ogies have to offer, enabling us to reach higher and design better.

I can guess what you’re thinking. Isn’t this just graceful degradation?

You’ve been hanging around rabbits too long
The flip side to progressive enhancement — graceful degradation —
ensures that when styles and scripts are not available or understood,
the content of a document will remain accessible. Taking a graceful
degradation approach means that a website’s functionality will always
be usable, albeit to a lesser extent and perhaps with a lower fidelity
design, and its content will remain accessible.

This is how we handle things down in Toontown
Considering accessibility and how websites function in older or less
capable browsers is a fundamentally important part of what we do.
But the term graceful degradation, as traditionally applied to web
design, implies that we should compromise.

To hell with being graceful!

38 Hardboiled Web Design

The hardboiled approach pushes graceful degradation further and
demands that we use our creative talents to make designs that are not
only responsive to a device’s screen size but also tailored to its brows-
er’s capabilities. Hardboiled web design aims to redefine graceful
degradation for the challenges we face today.

If we’re going to create the inspiring websites that our customers
expect, we must look beyond how we’ve approached progressive
enhancement and graceful degradation in the past. Simply rewarding
people who use more capable browsers with enhancements or
enrichments isn’t enough.

Instead, we should take full advantage of new technologies, and craft
every user’s experience so that it’s appropriate to the capabilities of
the browser they are using. That will probably mean than designs
will look different — sometimes very different — across browsers
and across devices.

For some people this approach might seem radical — hardboiled even
— but it makes better use of today’s technologies and it is creatively
liberating. It allows us to reach higher and design better, more inspir-
ing and imaginative websites and applications.

I’ll bake you a carrot cake
When progressive enhancement and graceful degradation were first
described, the web was an altogether different place. There were
relatively few differences between competing browsers in terms of
absolute support for new features. Today, that’s all changed. The gap
between the most capable and the least capable browsers is wider than
ever. In contemporary browsers there’s solid support for even the new-
est CSS selectors and properties:

39(Give me that) ol’ time religion

• Selectors to bind styles to any element without using id and
class attributes.

• More ways to work with transparency, including RGBa, opacity
and CSS filters.

• More ways to work with backgrounds and borders.

• Transforms to translate (move), rotate, scale and skew elements.

• Transitions to add subtle interactive effects.

• Keyframe animations that were previously only possible using
JavaScript or Flash.

Support for CSS properties in current desktop browsers

Safari 9

background-blend

border-image

SVG

Filter Effects

Transitions

Gradients

Columns

Transforms

Flexbox

Keyframe Animations

Chrome 47 Firefox 43 Opera 32 Edge

Full support Partial support Prefix No support

40 Hardboiled Web Design

CSS has given us the tools and creative freedom to make amazing
things happen. To dismiss the creative possibilities of its newest prop-
erties as bells and whistles would be short-sighted and foolish. There
are no technical reasons why we can’t use every single one of these
new properties today. There really is no need to wait.

So what’s stopping us?

Nothing more than a few old-fashioned ideas.

Breaking it up
Neither progressive enhancement nor graceful degradation should
be treated as doctrine or applied without thinking to everything we
design for the web. Instead, they provide the starting points and now
it’s up to us to keep redefining how we adapt and apply their principles
to suit the changing landscape of the web.

41The way standards develop

The way standards develop
People often mistakenly believe that the W3C innovates
new technologies, but its role is primarily as a standards body,
not an innovation body. Its job is to standardise patterns of
existing technologies. CSS Working Group specification writ-
er Elika Etemad sums up the role of that group well.

The Working Group exists for the purpose of standardization. If nobody’s
interested in implementing something, we’re wasting our time writing a spec
on it. Also, if only one implementor is interested in implementing something,
we can’t really make a cross-platform standard out of it.”17

For a long time I thought that the W3C’s CSS Working Group first inno-
vated, then released working drafts and recommendations. I imagined
that when W3C recommendations were complete, browser makers
would implement them (or not). The reality is that a standard is formed
only when there is consensus on what’s already been implemented.

The CSS Working Group’s work is considered a success if there are multiple
independent complete and interoperable implementations of its deliverables
that are widely used.”18

17 fantasai.inkedblade.net/weblog/2009/css-wg-charter
18 w3.org/Style/2008/css-charter

No. 3

“

“

http://fantasai.inkedblade.net/weblog/2009/css-wg-charter
http://w3.org/Style/2008/css-charter

42 Hardboiled Web Design

If we care about standards and want to ensure that our work conforms
to them, what does this mean? How can we use new technologies
when a standard for them hasn’t yet been finalised? If we did, we’d
miss out on years of creative opportunities.

So we needn’t wait for HTML or CSS modules to become recommenda-
tions at the W3C: we can make the most of emerging standards today.

There’s no such thing as one CSS3 specification
Unlike previous versions of CSS, CSS3 isn’t a single, monolithic speci-
fication but is divided into modules. The CSS Working Group develops
each module separately and according to the group’s priorities:

CSS beyond Level 2 is being developed as a set of modules each of which may
advance on the W3C Recommendation Track independently. Among them
are modules for syntax, cascading and inheritance, and, of course, many
aspects of typography, page layout and presentation.”19

Breaking CSS3 into modules is good news for browser makers because
it enables them to gradually implement new features to fit with their
release schedules. It’s also great news for us because it allows us to
work with modules’ properties as they’re implemented — rather than
waiting for a single, large specification to be complete.

Standards in development
The CSS Working Group’s charter sets out the modules that are cur-
rently in active development. This isn’t an exhaustive list. I’ve chosen
ten modules that are most relevant to the work we do.

19 w3.org/Style/2008/css-charter#scope

“

http://w3.org/Style/2008/css-charter#scope

43The way standards develop

CSS Animations w3.org/TR/css3-animations

Animate the values of CSS properties over time, using keyframes. The
behaviour of these keyframe animations can be controlled by specifying
their duration, number of repeats, and repeating behaviour.

CSS Backgrounds and Borders w3.org/TR/css3-background

Enables us to control the size, repetition and fit of a background image,
use images within borders and round the corners of a box.

Compositing and Blending w3.org/TR/compositing

Allows us to mix the backgrounds of several elements using blending
modes similar to those you’ll find in tools such as Adobe Photoshop.

Filter Effects w3.org/TR/filter-effects

Apply filter effects similar to those you’ll find in tools such as Adobe
Photoshop using CSS.

CSS Flexible Box Layout w3.org/TR/css3-flexbox

An important new tool for making layouts in CSS, flexbox enables us to
easily arrange elements horizontally and vertically along two axes.

http://w3.org/TR/css3-animations
http://w3.org/TR/css3-background
http://w3.org/TR/compositing
http://w3.org/TR/filter-effects
http://w3.org/TR/css3-flexbox

44 Hardboiled Web Design

CSS Grid Layout w3.org/TR/css3-grid-layout

An emerging standard for dividing available space within a layout into
columns and rows. We won’t cover CSS Grid Layout in this book. Howev-
er, I recommend reading Rachel Andrew’s book CSS3 Layout Modules 2nd
Edition available from rachelandrew.co.uk/books/css3-layout-modules

CSS Multi-column Layout w3.org/TR/css3-multicol

Generate pseudo-columns without additional markup, and control their
quantity and width as well as gutters and dividers.

CSS Shapes w3.org/TR/css-shapes-1

Enables us to flow text around shapes set in CSS. Shapes can be geomet-
ric circles, polygons or rectangles and also created by images with alpha
channels.

CSS Transforms w3.org/TR/css3-transforms

Matching many of the controls available in SVG, this module adds con-
trols in CSS to translate (move), rotate, scale and skew an element.

CSS Transitions w3.org/TR/css3-transitions

Different to animations, CSS transitions enable a property to transition
smoothly between two states using CSS instead of scripting; for example,
the colour of a hyperlink as it changes between normal and hover states.

http://w3.org/TR/css3-grid-layout
http://rachelandrew.co.uk/books/css3-layout-modules
http://w3.org/TR/css3-multicol
http://w3.org/TR/css-shapes-1
http://w3.org/TR/css3-transforms
http://w3.org/TR/css3-transitions

45The way standards develop

Vendor-specific prefixes
When I demonstrate CSS in later chapters, you’ll soon notice a recur-
ring theme — not all browsers support the same properties in the same
ways. For example, Edge and Safari on both Mac OS X and iOS support
multicolumn layout in its native form:

.content {
columns : 10rem; }

But multicolumn layout needs vendor-specific prefixes to work in
other browsers. For example, Chrome, Opera and the Android browser
require the -webkit- prefix before the columns property, and Firefox
requires the -moz- prefix. Cross-browser multicolumn layout there-
fore means writing rules several times — vendor-prefixed properties,
followed by the W3C’s unprefixed syntax.

.content {
-moz-columns : 10rem;
-webkit-columns : 10rem;
columns : 10rem; }

If you find writing multiple vendor-prefixed properties tedious,
Autoprefixer20 is a handy tool which parses your CSS and adds vendor
prefixes to your rules using browser popularity and property support
data from Can I Use.21

You might also use Lea Verou’s -prefix-free.22 Simply include the
-prefix-free script anywhere on your page and it will postprocess every
linked or embedded style sheet to add those vendor-specific prefixes
where needed.

20 github.com/postcss/autoprefixer
21 caniuse.com
22 leaverou.github.io/prefixfree

http://github.com/postcss/autoprefixer
http://caniuse.com
http://leaverou.github.io/prefixfree

46 Hardboiled Web Design

You can use Autoprefixer in several
ways depending on your development
environment. Me? I’m over the moon that
Autoprefixer is built into CodeKit,23 the
tool I use to process my Sass into CSS
every day.

While standards emerge, writing long lists of vendor-prefixed prop-
erties is a hassle, so in 2010 Peter Paul Koch (PPK) called for browser
makers to stop using them altogether.24

Vendor prefixes force web developers to make their style sheets much more
verbose than is necessary. Why do we need to use several declarations for
obtaining one single effect? Guys, let’s stop the vendor prefix nonsense.
Enough’s enough.”25

23 incident57.com/codekit
24 Should I Prefix is a useful site that tells you which CSS properties need vendor-specific

prefixes. Press each property title to see code examples for that property: shouldiprefix.com
25 quirksmode.org/blog/archives/2010/03/css_vendor_pref.html

“

http://incident57.com/codekit
http://shouldiprefix.com
http://quirksmode.org/blog/archives/2010/03/css_vendor_pref.html

47The way standards develop

I respectfully disagreed. PPK would have found plenty more to com-
plain about if emerging properties had been implemented without
vendor prefixes and each browser had rendered them differently.

Does writing multiple vendor-prefixed properties take more time?
What, you expected being a web professional would be easy? There’s
still an upside though: we don’t need to write the box model hack26
any more. In fact, does anyone but me remember what they were?

Vendor-specific prefixes were originally intended for use only by
browser makers, and the CSS2 specification warned us (authors)
not to use them.27

Out here in the real world, vendor-specific prefixes are often still a
necessity so that we can use new and emerging properties today. Site-
Point also failed to take the rapidly changing landscape of the web into
account and suggested we played it safe on vendor-specific prefixes:

We don’t recommend that you use these extensions in a real application. It’s
fine to use them for testing purposes, and for trying out CSS properties that
haven’t been implemented yet.”28

But safe isn’t what the web needs now — it needs us to make the
most of emerging standards and technologies so that we can
create amazing things.

26 tantek.com/CSS/Examples/boxmodelhack.html
27 w3.org/TR/CSS2/syndata.html#vendor-keywords
28 reference.sitepoint.com/css/vendorspecific

“

http://tantek.com/CSS/Examples/boxmodelhack.html
http://w3.org/TR/CSS2/syndata.html#vendor-keywords
http://reference.sitepoint.com/css/vendorspecific

48 Hardboiled Web Design

Are vendor-prefixed properties valid?
In the standards development process, properties prefixed with a -
(dash) or an _ (underscore) are reserved for vendor-specific extensions.
Using these will render a style sheet technically invalid, but an invalid
style sheet has been a small price to pay for all we’ve achieved using
CSS standards as they’ve emerged.

Browser flags
There’s little doubt in my mind that, in general, we’ve benefited from
vendor-specific prefixes because they’ve allowed us to not only exper-
iment with emerging CSS properties but also use them in production
code long before they’ve been developed into a standard by the W3C.

As with any experimental technologies, there are problems associated
with using vendor-specific prefixes. When a browser vendor considers
that a CSS property is unlikely to change further, they can choose to
support it without their vendor-specific prefix.

However, it’s common for us to keep outdated prefixes in our style
sheets, often for years after they become unnecessary. This is especial-
ly true for prefixes of border-radius, still found in many sites, author-
ing tools and frameworks that have chosen not to remove them.

While still supporting properties prefixed with -webkit-, in Chrome,
Google has implemented a system of flags that users must turn on
in their browser to enable experimental properties. These flags allow
you to try out new CSS properties while they’re still being developed.
One example of this is CSS shapes support. While Chrome supports
shapes without a vendor prefix, users must have the experimental web
platform features flag enabled in order to see them.

49It doesn’t have to look the same

To see the effect of using CSS shapes and other experimental properties in Chrome,
navigate to chrome://flags/ in the address bar, search on the page for Enable experi-
mental web platform features and press Enable.

In my experience, it’s uncommon for users to know about the exist-
ence of flags, making it impossible for us to use the experimental prop-
erties they enable in our production code. Although this is sometimes
inconvenient in the short term, in the long term we and our users will
benefit from this sandboxing of experimental features.

Breaking it up
When we understand that CSS3 comprises a series of independent
modules, we can leave behind the idea that we should wait until a
single specification is finished before we use its properties. Instead,
by carefully using vendor-specific prefixes where necessary, we can
use these properties now; there’s no reason to wait any longer. Yet even
with the ever increasing rate of adoption of new CSS properties in
browsers, there will always be differences between browser and device
capabilities. Rather than hacking around these differences, we should
learn to embrace them.

50 Hardboiled Web Design

It doesn’t have to look the same
One preconception that’s long prevented us from
making the most of emerging technologies is that websites
should look and be experienced exactly the same in every
browser and on every device.

Dan Cederholm answers the question “Do websites need to look exact-
ly the same in every browser?”29 with an emphatic “No!” He’s right, too.

What about experience? Dan’s penchant for very long domain names
answers that question too — “Do websites need to be experienced
exactly the same in every browser?”

Of course they don’t.

29 dowebsitesneedtobeexperiencedexactlythesameineverybrowser.com

When we use a highly capable brows-
er such as Safari, we see a design
that is appropriate for a browser that
supports @font-face web fonts.

If a user has a less capable browser, such
as Opera Mini, they won’t see web fonts.
That’s OK, because Dan’s design doesn’t
look broken and they won’t know they’re
missing something.

No. 4

http://dowebsitesneedtobeexperiencedexactlythesameineverybrowser.com

51It doesn’t have to look the same

Move your mouse over “Do websites need to be experienced exactly the same
in every browser?” and the experience you have will depend entirely on the
capabilities of the browser you’re using. This is the cornerstone of the
hardboiled approach.

Dan may have a talent for choosing catchy domains but he wasn’t the
first person to raise this issue.

[W]e need to step back from our endless battle to make it look the same across
all platforms. We can’t make our site look the same on a PDA as a 21” monitor,
we can’t make our site ‘the same’ for someone on a speaking browser, and
although things are improving there are still differences in support and
implementation of various W3C standards. Let go, its [sic] not going to look
the same.”30

Rachel Andrew wrote that in 2002. Why are we still having that same
conversation today? Especially when we now use an even wider variety
of screen sizes and types — from watches to smartphones, tablets and
high-resolution PCs — to access the web? Of course, some people still
think that websites need to look and be experienced exactly the same
in every browser, but those people probably still put two spaces
after a period.

30 edgeofmyseat.com/blog/2002-04-01-it-doesnt-have-to-look-the-same

“

http://edgeofmyseat.com/blog/2002-04-01-it-doesnt-have-to-look-the-same

52 Hardboiled Web Design

Responsive design
The idea that websites need not look the same in every browser isn’t
new. John Allsopp explained this in his seminal A List Apart article,
‘The Dao of Web Design’, way back in 2000.

The control which designers know in the print medium, and often desire in
the web medium, is simply a function of the limitation of the printed page.
We should embrace the fact that the web doesn’t have the same constraints,
and design for this flexibility. But first, we must ‘accept the ebb and flow of
things.’”31

A few months before we published the first edition of this book, Ethan
Marcotte cleverly brought together several existing techniques and
technologies including fluid grids, flexible media and media queries,
into a practice that he called “responsive web design” and he wrote
about it for A List Apart magazine.32

In the five years since that article was published, responsive web
design has become the de facto standard approach to designing for dif-
ferent sizes and types of screens, and led to some of the most signifi-
cant changes in the ways that we design for the web. As well as helping
designers and developers cope with a constantly changing landscape,
responsive web design has also helped our bosses and clients accept
that website designs should respond to the shape, size and capabilities
of browsers and devices.

31 alistapart.com/article/dao
32 alistapart.com/article/responsive-web-design

“

http://alistapart.com/article/dao
http://alistapart.com/article/responsive-web-design

53It doesn’t have to look the same

What does browser support mean?
Many organisations maintain matrices that determine which browsers
their sites support. With so many different browser and device capabil-
ities to contend with today, some of the largest have redefined support
to mean (as the UK’s Government Digital Services (GDS) describes)
“displays [content] correctly and key functions work.”35

For GDS, it’s critical that people have access to content and function-
ality on GOV.UK, so they currently test any browser that has over 2%
usage. But unlike organisations that have quality assurance teams or
marketing department staff dedicated to ensuring that their websites
render near pixel-perfect across every browser in their matrix, GDS
understands that:

Not all browsers will render web pages in the same way, often there is a
marked difference between browsers in the way that they handle technologies
like cascading style sheets (CSS), HTML and javascript.”33

Accepting that not all browsers should render websites in the same
way will enable you to leave pixel-perfect rendering behind and
instead focus on providing the most appropriate experience for the
capabilities of a browser or device without anyone being left unable to
access content or features because support has been dropped.

The BBC also accepts that pixel-perfect rendering shouldn’t be made
a priority over providing readable content and usable functionality
to all users. Its Browser Support Standards describe sorting browsers
into levels:

33 gds.blog.gov.uk/2012/01/25/support-for-browsers

“

http://gds.blog.gov.uk/2012/01/25/support-for-browsers

54 Hardboiled Web Design

• Level 1: Supported
• Level 2: Partially supported
• Level 3: Unsupported

They accept small variations in experience within these levels of
support, and even allow for using new and emerging technologies as
long as they don’t compromise a user’s ability to access basic content
or functionality.

There’s nothing wrong with using all the latest bells and whistles to support
funky features of newer browsers, but try to do it in a way that still allows
users not supporting (or intentionally disabling) these features to access your
basic content.”34

The BBC doesn’t define what features in CSS it considers to be “bells
and whistles” and neither does the Guardian in its browser support
principles.35 Instead of deciding on a list of browsers to support or
not, the developers at the Guardian think about how their design will
specifically impact their users:

• What is the core experience for all users?
• What do we enhance when we detect the user has a modern web

browser with extra capabilities (e.g. web fonts, geolocation, etc.)

Considering the impact that specific properties may have on a fea-
ture-by-feature basis makes better sense to me than grading browsers
as a whole. At Stuff & Nonsense, when we’re asked by clients which
browsers we’ll support, we like to rephrase the question because we
don’t either support browsers or not support them.

34 bbc.co.uk/guidelines/futuremedia/technical/browser_support.shtml#support_table
35 github.com/guardian/frontend/blob/master/docs/browser-support-principles.md

“

http://bbc.co.uk/guidelines/futuremedia/technical/browser_support.shtml#support_table
http://github.com/guardian/frontend/blob/master/docs/browser-support-principles.md

55It doesn’t have to look the same

Design fidelity
When a browser hasn’t implemented an emerging property, don’t
grade it or exclude it completely, because that same browser may have
excellent support for a different new property. For example, Safari has
fully implemented flexible box layout yet only has partial support for
multicolumn layout.36 Instead of grading browsers, we decide on the
importance of individual features within the context of the design that
we’re making.

Can I Use has not only become an indispensable reference for checking current levels
of feature support in browsers, its data is behind many popular development tools
including Autoprefixer.

36 caniuse.com/#search=column

http://caniuse.com/#search=column

56 Hardboiled Web Design

Sometimes a design element is important enough that we need every-
one to see and experience it in the same way. A good example of this is
a company’s branding where it’s probable that a client will want every-
one to see their visual identity, corporate colours and typefaces. There
are also plenty of instances where design elements are less important
and need different considerations.

Considering the impact of specific properties means asking questions
about how important they are to the fidelity of the design. In practice
this means that when we add an element to a design, we consider how
important it is for as many people — across a spectrum of browser
capabilities — to see and experience it the same way.

For example, how important are web fonts? In some circumstances,
choosing a specific typeface is as important to a brand as it is to the
readability of its content.

What about multiple columns of text, rendered in CSS? Are they so
important that everyone should see them or can we allow them to de-
grade gracefully; or, even better, get hardboiled and design an alterna-
tive? Now consider rounded corners, generated gradients or transpar-
encies. How important are they to the fidelity of your design?

Circles of confusion
Long before I worked on the web, I trained professional photographers
on how to use large-format view cameras. These film cameras featured
swing and tilt movements to create a plane of sharpness — areas that
appear sharp and areas that don’t — within an image.

In photography, even the best camera lenses can’t focus light onto a
point. Instead, lenses focus light onto spots, or circles, in the film/im-
age plane. These circles have dimensions, despite being microscopical-
ly small, and these are known as circles of confusion.

57It doesn’t have to look the same

As the circles of light become larger, the more unsharp parts of a photo-
graph appear; and when the circles are smaller, an image looks sharper,
more in focus. This is the basis for photographic depth of field and with
it comes the knowledge that no photograph can be perfectly focused,
never truly sharp. Instead, photographs can only be acceptably unsharp.

Acceptable unsharpness

Although a modular, atomic process for design has been adopted by
many of us, occasionally our clients still expect us to demonstrate how
their completed website or application will look, in the form of a static
visual made in Adobe Photoshop or Bohemian Coding’s Sketch.

These visuals will contain every element of a design: branding, colour,
typography in all its various forms, as well as backgrounds, borders,
columns and gradients. We can think of these visuals as the highest-fi-
delity, sharpest interpretation of a design.

But how critical are these elements to the integrity of a design? Is a
particular typeface vital to a user’s experience of a brand? How impor-
tant are blended backgrounds? Are columns really necessary?

These decisions determine how sharp an element should look across
browsers and devices that have different capabilities and, therefore,
how much time and resources we devote to achieving consistency
between them. To help make those decisions, we can learn from the
principle of circles of confusion.

37 filamentgroup.com/lab/grade-the-components.html

The Filament
Group takes
a similar
approach when
they “Grade
components,
not browsers”.
Like Stuff & Non-
sense, they build
websites out of
modular compo-
nents and grade
each of those
components,
adding layers of
fidelity based
on the features
that a browser
supports.37

http://filamentgroup.com/lab/grade-the-components.html

58 Hardboiled Web Design

How critical is the choice of Omnes and Freight Text Pro to the integrity of Stuff & Non-
sense’s design for Code Enigma?38 Left: The design featuring the Omnes and Freight
Text Pro web fonts. Right: The same design using a system font, Times New Roman.

An environment for meaningful discussions

It may sometimes help to make a visual representation using three
concentric rings:

• The innermost ring should contain the design elements that we
decide will be sharpest. For example, if layout and typography
must remain consistent, place them in this central circle.

38 codeenigma.com

http://codeenigma.com

59It doesn’t have to look the same

• In the middle ring, place elements that are important, but not
vital, to a person’s experience of a design. An example might be
text that’s set into columns created entirely by CSS. Browsers
that have implemented multicolumn layout will split that text
automatically into columns. For browsers that haven’t, we might
adjust our typography to take into account the lack of columns.

• The outer ring is for elements that we allow to degrade gracefully
without us designing alternatives for them. If achieving blended
backgrounds or filters in all browsers isn’t important, save time
by not creating images or employing JavaScript workarounds.

I’ve found plotting aspects of a visual design into circles of confusion
to be a useful technique when explaining the natural differences
between browsers to clients. It sets more realistic expectations and
creates an environment for more meaningful discussions about pro-
gressive and emerging technologies. Best of all, it enables everyone to
make better and more informed decisions about design implementa-
tion priorities.

Enhancing a brand
Some organisations have quality assurance teams or marketing
department staff who are dedicated to ensuring that their websites
remain pixel-perfect across every browser in their matrix. For them,
experience and pixel-perfection are indistinguishable from a brand
and so differences between browsers are seen as imperfections.

The efforts of these teams should now be directed away from cross-
browser perfection and towards ensuring that brand values and a
great experience are maintained and tailored for every capability of
device. This change might not come easily — but it will come.

60 Hardboiled Web Design

We should reassure bosses and clients that when we adopt a hard-
boiled approach, differences between browsers will enhance a brand
because we can precisely tailor experiences. We can tell them that
differences are opportunities for us to be creative and therefore should
be embraced.

You should be so lucky
I’m lucky that at Stuff & Nonsense I work with clients who are
switched on technically and who appreciate that our time and their
money are better spent on creating tailored, responsive designs rather
than on workarounds to attempt cross-browser pixel-perfect render-
ing. But not all clients are the same.

Some care or know little about the changing capabilities of browsers and
devices. How can we help them understand that websites needn’t and
can’t look or be experienced the same in every browser? I’ve often heard
that it’s a web professional’s job to educate clients. I couldn’t disagree
more. Our job isn’t to educate, it’s to design and build amazing websites.

If clients raise the thorny issue that a design looks different in an
alternative browser or on a different size device, never be defensive.
Explain that making a design that’s tailored, depending on a browser’s
support for a property, will be better for everyone. This helps clients
understand the positive impact of differences, rather than seeing them
as imperfections.

61Atoms and elements

If you work within a traditional institution,
perhaps a large business, government depart-
ment or in education, how can you sell the
idea that your organisation’s website should
be accessible, responsive — even hardboiled?

Explaining these issues is less difficult today
than it was when I first wrote Hardboiled Web
Design. Back then, most people still experi-
enced the web through a PC on their desk
so the differences between browsers were
harder to grasp. Today, it’s a whole lot easier
because more people access the web using a
myriad of mobile devices than just PCs.40

Breaking it up
The reality is that the web changed, and our work and our clients’
expectations must move beyond the one-size-fits-all approach we have
laboured over for so long if we are to make the most of what it has to
offer. No two browsers and devices are the same, so to make the most
of emerging technologies, we need to banish the notion that websites
should look and be experienced exactly the same in every browser.

Perpetuating this idea will continue to cost us and our bosses and
clients time and money on expensive hacks and workarounds instead
of tailored experiences. It also prevents us from moving forward and
embracing change. To help make change possible, we should explain
that differences are not imperfections but are instead opportunities to
enhance a brand experience by making websites more responsive.

39 gs.statcounter.com/#mobile_browser-ww-monthly-201502-201507-bar
40 smashed.by/popular-smartphones

Chrome 32.45%

Safari 19.84%

Android 17.2%

UC browser 13.77%

Opera 9.98%

IEMobile 2.13%

Nokia 1.6%

Blackberry 0.96%

NetFront 0.49%

Other 1.59%

Worldwide mobile browser usage,39
February–July 2015

http://gs.statcounter.com/#mobile_browser-ww-monthly-201502-201507-bar
http://smashed.by/popular-smartphones

62 Hardboiled Web Design

Atoms and elements
At Stuff & Nonsense,41 the past five years have seen the
biggest changes to the websites we make and our process
for making them. Our design workflow has changed funda-
mentally as we’ve come to terms with responsive web design.
While our approach to design won’t suit everyone, it has
proved successful, so in this chapter I’ll explain our process.

Loving style guides
I’ve been fascinated by style guides and the ways that companies
present their branding through these guidelines since before I worked
on the web. I love seeing how varied similar components look and I
especially enjoy seeing typography decisions documented. Sometimes,
though, when I receive a company’s branding guidelines as part of a
project I’m working on, I still look for ways to add my own flourishes to
a design while staying within the guidelines.

Struggling with branding guidelines
Traditional style guides that cover all manner of media, including
packaging, print and web, aren’t always helpful to web designers. For
example, I worked on a project for HSBC. Its comprehensive guidelines
stipulated that product names — Advance Account, Premier Account
and Private Banking — should never be larger than the name of the
bank. This rule made their product names unreadable when squeezed
into a website banner only 80px tall.

41 stuffandnonsense.co.uk

No. 5

http://stuffandnonsense.co.uk

63Atoms and elements

An example of the branding guidelines Stuff & Nonsense designed for Houden Bags

Communicating not documenting

For years, I’d not been satisfied using static visuals of whole web pages
to present designs to our clients. These static visuals, made using Pho-
toshop or Sketch, are incapable of demonstrating important aspects of a
website’s design. They set expectations that the finished website will be
a facsimile of a frozen image and this clearly won’t be the case. Most im-
portantly, they’re poor vehicles for conversations about design and they
rarely lead to focused and productive discussions about specific issues.

Clients are often easily distracted when looking at static visuals. I
might need a conversation about typographic hierarchy but a client
wants their logo bigger. (Yes, I know. Old joke.) I may want a conversa-
tion about how search will function, but they comment on an out-of-
date product photo. These conversations are unfocused because the
static visuals we’re basing it on are also unfocused.

64 Hardboiled Web Design

Stuff & Nonsense also designed Houden Bags’ key website pages.42

When I used to show a client a static visual, they’d sometimes say,
“I’m not sure about that design.” I found this frustrating, especially
after we’d spent hours working on a detailed rendition of their design.
When I dug a little deeper I discovered that it often wasn’t the impor-
tant details they were commenting on. It wasn’t the typefaces or type
treatments we’d chosen. It wasn’t the way we’d used colour, line work,
borders or shading.

When we quizzed the client further they might say, “The sidebar
should be on the left, not the right.” In other words, they were talking
about layout but expressing their criticism in terms of the design as
a whole. Why was I surprised? What did I expect? After all, I’d shown
them a visual that mixed all aspects of design into one image.

42 houdenbags.com

http://houdenbags.com

65Atoms and elements

I knew there had to be a more effective way to present designs and
keep clients focused on the aspects I needed to discuss, and over time
my studio has developed ways to do that. Most importantly we start by
presenting what I call the atmosphere of a design and then designing
components separate from layout.

Describing atmosphere
Look up the word ‘atmosphere’ and the dictionary will tell you that it’s
“the pervading tone or mood of a place, situation, or creative work”.43
In the context of responsive web design, I think of atmosphere as
comprising the combination of colour, typography and texture, distinct
from layout. Let’s break that down.

Colour

We use colour to create mood and evoke an emotional reaction in some-
one using a website or application. We also highlight actions as part of
an interaction vocabulary; for example, “What can I click on?”, “What
have I clicked on already?”, “What’s potentially dangerous to click on?”

Typography

A good deal of a design’s personality comes from the typefaces we
choose, how we use them in combination, treat them — line height,
size and weight — and the white space around them.

Texture

Texture might include skeuomorphic textures like paper, stone or
wood, but it doesn’t have to. In design atmosphere, texture refers to
details including border styles, shading and the shapes of boxes and
other elements.44

43 oxforddictionaries.com/definition/english/atmosphere
44 shop.smashingmagazine.com/products/smashing-book-3

I wrote about the
concept of de-
sign atmosphere
in Smashing
Book 3, “Design-
ing Atoms and
Elements” in
March 2012.44

http://oxforddictionaries.com/definition/english/atmosphere
http://shop.smashingmagazine.com/products/smashing-book-3

66 Hardboiled Web Design

Designing atmosphere
Let’s look at a website design
that’s more than just a little
atmospheric: the 2015 dCon-
struct conference.45 What do
you think makes its visual style
so distinctive?

Of course, your eye is proba-
bly going to be drawn first to
Paddy Donnelly’s46 characterful
illustrations of this conference’s
theme, ‘Designing The Future’.
But there are other aspects that
give this design its personality:

• Its combination of typefaces:
Futura (naturally) — a humanist
sans — and Lamplighter Script.

• The skewed content boxes.

• The playful way the speakers
are presented.

Why am I highlighting dConstruct 2015? Visit the site on a device
with any size screen and those aspects will look the same. Of course,
their arrangement within the layout changes across responsive break-
points, but the atmosphere of the website is preserved whether you’re
viewing it on a smartphone, tablet or PC.

45 2015.dconstruct.org
46 lefft.com

The website for dConstruct 2015 was designed by
Paddy Donnelly and developed by Graham Smith
for conference organiser Clearleft.

Part of what
gives dCon-
struct 2015 its
personality is
the use of web
fonts Andes,
Futura and
Lamplighter
Script. You’ll
learn about
implementing
web fonts later
in this book.

http://2015.dconstruct.org
http://lefft.com

67Atoms and elements

In 201447, dConstruct’s atmosphere was alto-
gether different, defined by its use of a flat,
simple colour palette. The typeface chosen was
PT Sans, a humanistic sans serif, and its utility
carefully matches the stark lines around boxes
that tie in with that year’s theme of ‘Living
With The Network’.

2013’s dConstruct website48 had a different at-
mosphere altogether and so did the years before
that, but every year the designs have something
in common.

When you look closely at their colour, typogra-
phy and texture — the aspects of a design that
give each its unique personality — that atmos-
phere is present across responsive breakpoints.

If responsive web design has taught us anything, it’s that we should ac-
cept that colour palettes, textural backgrounds, borders and typograph-
ic designs maintain their characteristics across responsive screen
sizes. In other words, the atmosphere of a design transcends layout.

Using front-end style guides and component libraries
At Stuff & Nonsense, we noticed an immediate improvement in con-
versations with clients when we started designing atmosphere and
presented our designs in ways similar to the style guides that always
fascinated me. We’ve since been though several iterations of our style
guide format and we’ve followed with interest while a new form of
style guide for the web has become popular.

47 2014.dconstruct.org
48 2013.dconstruct.org

dConstruct’s organisers have done
an excellent job of preserving the
conference’s websites since 2005,
and looking back across a decade
of design work illustrates very well
how to determine the atmosphere
of any website’s design.

http://2014.dconstruct.org
http://2013.dconstruct.org

68 Hardboiled Web Design

Guiding visual identity
People looking after an organisation’s brand across media need a style
guide or branding guidelines to help them maintain consistency, place-
ment and treatment of branding assets. These guidelines commonly be-
gin by describing a brand’s personality and values. Here’s how chef Jamie
Oliver’s Fresh Retail Ventures describes his branding’s personality:49

honest & challenging — being direct, open-minded and genuine in all we do;
passionate & inspiring — true excitement and love for food and healthy living;
approachable & fun — unpretentious, accessible and playful, encouraging
everyone to have a go”

Most guidelines provide visual examples of how to use and not to use
a logo. They also give rules for the typefaces, and should leave you in
no doubt about colours and how to treat images. Jamie Oliver’s brand-
ing guidelines even explain that “Jamie will expect all [photo] shoots to use
natural light and freshly cooked food.”

The guidelines from Jamie Oliver’s Fresh Retail Ventures are a terrific example of a
strict set of branding guidelines for his retail product business that covers broad
branding principles, examples of packaging design and even tone of voice.

49 issuu.com/bellfrog/docs/jamie-oliver-frv-brand-guidelines — You’ll need Flash to view these
brand guidelines. Find this quotation on page 7.

“

http://issuu.com/bellfrog/docs/jamie-oliver-frv-brand-guidelines

69Atoms and elements

Making web design style guides
Sadly, I’ve often found that identity guidelines rarely translate well to
the web. Some have forced me to work with colours that — while looking
fabulous in a Pantone book — make uncomfortable viewing on screen.
In other cases, specific typefaces aren’t available as web fonts, and if they
are, they don’t make for comfortable reading. Experience has taught me
that identity guidelines should inform designs we make for the web, not
instruct them. What we need is a form of style guide that’s specific to
the web.

I don’t think that anything can illustrate this more clearly than a
project Stuff & Nonsense worked on with King’s College Hospital NHS
Foundation Trust51 in south London. Being part of the UK’s National
Health Service means the publications the Trust produces must take
the NHS brand guidelines52 into account.

As King’s College Hospital is an independent organisation, its website
needn’t adhere strictly to NHS brand guidelines. We made a design
that represents its values rather than those of the NHS, and while the
NHS brand guidelines gave us a starting point, we needed a style guide
that worked for King’s College Hospital on the web.

Visual identity guidelines are often delivered in PDF format, but
responsive HTML, CSS and JavaScript are a far better medium for
delivering a web design style guide. Instead of acting purely as a place
to document styles, our web design style guide became a working tool
during the design and development of the website.53

50 logodesignlove.com
51 www.kch.nhs.uk
52 nhsidentity.nhs.uk/all-guidelines
53 Anna Debenham has written Front-End Style Guides, a short but thorough guide to style

guides for the web: maban.co.uk/projects/front-end-style-guides

Logo Design
Love curates a
list of branding
guidelines
examples from
companies
including Code
For America,
GOV.UK and
even a mid-
1970s manual
by NASA.50

http://logodesignlove.com
http://www.kch.nhs.uk
http://nhsidentity.nhs.uk/all-guidelines
http://maban.co.uk/projects/front-end-style-guides

70 Hardboiled Web Design

The NHS brand guidelines are a compre-
hensive set of rules that cover use of the
NHS logo, typefaces (including several
weights of Frutiger) and how to use pho-
tography and illustrations.

During our project with King’s College Hospital,
Stuff & Nonsense designed a comprehensive
website design guide.

71Atoms and elements

Developing a web design style guide
Components are the blocks from which we develop templates, and by
adapting these templates we make pages. Our process of designing
atmosphere goes hand in hand with designing individual components
and building them into a library of these patterns.

Over the past several years there’s been an flurry of people develop-
ing component libraries. Several examples of component libraries
have been widely cited, including those made by the BBC,54 GOV.UK,55
MailChimp56 and Starbucks.57

The UK’s Government Service Design Manual helps their designers and developers to
achieve a consistent look across every part of the GOV.UK website.

54 bbc.co.uk/gel
55 govuk-elements.herokuapp.com
56 ux.mailchimp.com/patterns
57 starbucks.com/static/reference/styleguide

styleguides.io
is a growing
collection of
articles, books,
discussions and
examples of
pattern libraries,
code standards
documents
and content
style guides.

http://bbc.co.uk/gel
http://govuk-elements.herokuapp.com
http://ux.mailchimp.com/patterns
http://starbucks.com/static/reference/styleguide
http://styleguides.io

72 Hardboiled Web Design

Atomic design

One design system that’s become synonymous with responsive web
design is Brad Frost’s atomic design.58 Brad first discussed atomic
design in 2013 when he wrote:

Lately I’ve been more interested in what our interfaces are comprised of and
how we can construct design systems in a more methodical way.”59

Brad describes atomic design as “a methodology used to construct web
design systems.” That methodology even has a tool, Pattern Lab, to create
atomic design systems.60

Brad goes on to describe how his atomic design system consists of
atoms, molecules, organisms, templates and pages:

• Atoms: The building blocks of HTML, elements including
buttons, form inputs and labels.

• Molecules: Groups of elements that function together. For example,
a label, input and button that combine to make a search form.

58 atomicdesign.bradfrost.com
59 bradfrost.com/blog/post/atomic-web-design
60 patternlab.io

“

http://atomicdesign.bradfrost.com
http://bradfrost.com/blog/post/atomic-web-design
http://patternlab.io

73Atoms and elements

• Organisms: Groups of molecules joined together to form part
of an interface.

• Templates: Mostly organisms combined to form page-level objects.

• Pages: Essential for testing the effectiveness of the design system.

Not everyone has been convinced
about abstracting design the
atomic design way, though. Mark
Boulton wrote about his concerns
and I’m forced to agree with him:

Conformity and efficiency have a price.
And that price is design. That price is
a feeling of humanity. Of something
that’s been created from scratch. What
I described is not a design process.
It’s manufacturing. It’s a cupcake
machine churning out identical cakes
with different icing. But they all taste
the same.”62

When you work on aspects of
a design separately from one
another, it’s often hard to know
if they’ll come together to form
a consistent whole.

61 lightningdesignsystem.com
62 markboulton.co.uk/journal/design-abstraction-escalation

Done well, component libraries can be enor-
mously useful resources. Salesforce’s Light-
ning Design System is one of best available.60

“

http://lightningdesignsystem.com
http://markboulton.co.uk/journal/design-abstraction-escalation

74 Hardboiled Web Design

Without seeing everything together in one place, designs can easily
feel disjointed and lack connectedness. It’s also much harder to break
free from any default styling we may have given our component li-
brary. You need only look at the thousands of similar looking sites built
on frameworks such as Bootstrap and Foundation to appreciate that.

Reducing wasted time
Our component-based approach has made initial design stages more
efficient. We’re able to prototype our components faster and develop
them into responsive templates in far less time than it took to design
a set of complete pages using Photoshop or Sketch. Our projects run
more smoothly and we have more focused conversations and fewer
misunderstandings with our clients.

We’ve realised that developing components is only one part of the
story and we need a suite of tools — including, maybe surprisingly to
some, static visuals — as well as a flexible working environment in
which to design.

Setting up a web design style guide
At Stuff & Nonsense we’ve found that to keep our designs looking
original when we’re using a component-based approach, we need to
keep our process light and simple. Over-engineering a pattern library
or web design style guide can too easily get in the way of designing, so
we’ve built our own web design style guide toolkit using the simplest
HTML, CSS and JavaScript.

To avoid complexity we pull atmosphere and components onto a single
page and this allows us to experiment with ideas as freely as we can
when using Photoshop or Sketch.

75Atoms and elements

We’ve made the Stuff & Nonsense style guide available on GitHub. We hope that
people will use it and contribute ways to improve it.63

To keep our web design style guide easy to use we’ve separated our
styles into:

• Branding: Logo marks and types in several configurations
across responsive screen breakpoints.

• Colours: Tints of main, secondary, neutral and accent colours
for buttons, backgrounds, borders and hyperlinks.

• Typography: Primary and secondary typefaces in several
sizes and weights.

63 github.com/malarkey/hardboiled-style-guide

http://github.com/malarkey/hardboiled-style-guide

76 Hardboiled Web Design

• Type elements: Heading levels from 1–6. Paragraph styles
such as lead (big), secondary (small), tertiary (smaller), and milli
(smallest). Styles for block quotations and every type of list.

• Other HTML elements: Basic table styles, every type of form
input and buttons in different sizes, styles and states.

• Common component types: Boxes, blog, event and
news summaries and media components.

We include only what we need to start a project but can easily add
styles for new components as we need them.

Including only what we need
If we’re building a style guide toolkit to kick-start more than one project,
it’s often tempting to include many components (such as accordions,
groups of buttons or tabs) that may come in handy one day. Be wary of
doing that — when we bulk up our toolkits with components we don’t
need for the immediate job at hand, they can quickly become bloated.

There are literally dozens of pattern libraries and frameworks available
that offer ready to use components. For example, Sass library Bour-
bon64 includes Bitters65 and Refills,66 attractive and useful patterns of
HTML, CSS and JavaScript. These components are useful for rapid pro-
totyping, but think twice before you grab everything with both hands
and pile it all into your web design style guide. Every extra component
you add means more complexity and code to maintain, so include only
what you need and be ruthless when disposing of components you
don’t need throughout a project.

64 bourbon.io
65 bitters.bourbon.io
66 refills.bourbon.io

http://bourbon.io
http://bitters.bourbon.io
http://refills.bourbon.io

77Atoms and elements

Staying away from complex frameworks
Front-end frameworks like Bootstrap and Foundation might be per-
fectly suited for developers who want off-the-shelf grids and theming
systems, but a developer’s needs are different to those of a designer
working with HTML and CSS. Bootstrap and Foundation are powerful
but designers don’t need even a fraction of their features.

Instead of relying on a framework, we’ll start our own web design style
guide using just what we need, knowing that we can build on it later if
we need to. We’ll begin with colour, add typography and then common
components that include type. We’ll include common HTML elements
before bringing everything together to create components.

We must remember to keep things simple and bear in mind that we’re
making a creative tool, not a development environment. That doesn’t
mean we can’t make the most of developer tools where they’re appro-
priate, so if we’re used to dividing up style sheets into Sass partials,
by all means carry on. Just remember, it‘s the design we’re working
towards that matters, not the sophistication of our tools.

Making collaborative tools
Not everyone who designs writes code, and despite me thinking for a
long time that knowing how to write HTML and CSS is an essential
part of being a web designer, I’ve realised that some designers are better
when focusing on their graphic design, typography and colour skills.
Designers needn’t know how to write even a line of HTML or CSS.

78 Hardboiled Web Design

That said, designers should understand modern web design tools and
these are more frequently being made with HTML and CSS. I’d argue
that it‘s even more important that designers are involved in designing
these tools. That way they’ll be more likely to know how to use them
without much technical knowledge.

Making tools is a fabulous opportunity to get designers and develop-
ers working together. After all, these tools are intended to make collab-
orating easier. Made well, they can also reduce friction and eliminate
the misunderstandings which can so easily occur when people use the
wrong tools to communicate.

We’ve not only invested time in making our web design style guide a tool for use
inside our studio, we’ve made it an accessible demonstration tool for our clients.

79Designing atmosphere

At Stuff & Nonsense, we’ve found that our web design style guide isn’t
just useful in getting designers and developers working together more
efficiently. It’s also helped us to work more closely with our clients. We
realised that they were using our toolkit to demonstrate work to oth-
ers, so we made it more approachable by including their visual identity
and a contents pane, and we swapped our faux Latin text for snippets
of their own content.

We found that simply making our web design style guide more ac-
cessible turned it into something our clients wanted to share around
their organisations. People view our work more widely and on a larger
spectrum of devices and this means we receive better feedback. I’m
convinced our work has improved because of it.

Breaking it up
At Stuff & Nonsense our work and the processes and tools we use to
make it have changed almost beyond recognition in the past five years.
As we’ve learned to cope with the demands of responsive web design,
we’ve learned to design atmosphere and elements using a web design
guide. In the next chapter, we’ll work on building a new web design
style guide, starting with typography.

80 Hardboiled Web Design

Designing atmosphere
When two people are having an argument, you know
it the minute you walk into a room. There’s an atmosphere,
and not a good one. A fabulous concert or maybe a football
game can have incredible atmospheres too. It’s often hard to
describe, difficult to pin down. It’s the way that something
makes you feel. In a design, atmosphere comprises colour,
typography and texture, separate from layout, and in this
chapter we’ll explore this notion of atmosphere and learn
about designing it.

Starting with type
While people often focus on colourful graphics and images when
they look at a design, a good deal of its personality can come from the
typefaces you choose. That‘s why, when we made the web design style
guide that we use for clients at Stuff & Nonsense, we focused first on
typographic elements: headings, paragraphs, lists of all kinds, quotes,
form and table text, and other miscellaneous elements.

When we’re designing typography, we often look to balance personal-
ity with readability. Occasionally, we’ll find those two attributes com-
bined within one typeface; other times we need the combination of
two typefaces: one that acts as workhorse, the other to compliment it
with character and personality. In our studio, we spend a large amount
of time selecting the right typefaces for the job.

No. 6

81Designing atmosphere

Ours isn’t an uncommon collection of HTML type elements. Both Jeremy Keith’s
pattern primer67 and Bourbon Bitters68 start from a similar place. You’ll find plenty of
frameworks that take this approach.

When we designed for STEM Learning, we chose one typeface, the highly versatile
Bliss69 and used it in several styles and weights throughout the website.

67 patternprimer.adactio.com
68 bitters.bourbon.io
69 typography.net/fontfamilies/view/27

http://patternprimer.adactio.com
http://bitters.bourbon.io
http://typography.net/fontfamilies/view/27

82 Hardboiled Web Design

When Stuff & Nonsense designed for King’s College Hospital, we paired two typefaces,

Aktiv Grotesk and Lexia, both from type foundry Dalton Maag.70

Making type proofs
Choosing typefaces is only part of the process when working with
type. In the context of responsive web design we need our type to be
legible and readable on many different types of screen. That doesn’t
just mean considering how type looks across screen sizes; it also
means ensuring type displays well on low as well as high-
resolution screens.

Whereas in the past we might have spent hours sweating the details
of our type design using Photoshop or Sketch, today we can’t rely on
a graphics tool to give us an accurate rendering of responsive typog-
raphy. For that, we need to design our type with CSS and test it using
HTML in browsers on a variety of devices.

In our studio, we use what we call type proofs. These are HTML
and CSS documents that contain only typographic headings and
paragraph elements:

70 daltonmaag.com/library

http://daltonmaag.com/library

83Designing atmosphere

• Paragraphs in sizes 12px–21px
• Headings in sizes 12px–38px
• Small text in sizes 9px–12px

Testing readability
Type proofs aren’t just simple to make, they’re incredibly easy to use.
They help us work better together and with our clients to design the
best typography. In our process, we make deciding appropriate type
sizes a collaborative affair. We ask our clients to join us by testing on
whatever devices they’re carrying and we encourage them to invite
other people from elsewhere in their organisations.

One example of this was when we designed for King’s College Hos-
pital. We were concerned that the standard National Health Service
typeface, Frutiger 45, might not read comfortably when set in small
sizes on small screens. We searched for a more open typeface, one
with similar visual characteristics to Frutiger, and we tested several
alternatives before settling on Aktiv Grotesk by Dalton Maag.

To help us make our decision between typefaces, we made two
type proofs, the first containing Frutiger 45, the other Aktiv
Grotesk. We tested the readability of both side by side with our
client using several devices and this helped us arrive at a decision
quickly and more accurately than we might have had we looked at
type on static visuals.72

71 modularscale.com
72 type-scale.com

Modular Scale71
is a useful online
tool for develop-
ing typographic
hierarchies
based on ratios
and musical
intervals. Type
Scale72 by
Jeremy Church is
another helpful
tool for develop-
ing typographic
scales. It links to
Google Fonts to
make designing
with and testing
font families
and weights in a
browser easier.

http://modularscale.com
http://type-scale.com

84 Hardboiled Web Design

Within minutes, the team at King’s College Hospital were able to decide on whether
to choose Frutiger (left) and Aktiv Grotesk (right) for their new design.

Deciding minimum and maximum sizes
Deciding on the appropriate type size for a particular class of devices is
one of the first challenges in any design project. We use type proofs to
help us decide the minimum and maximum type sizes across a selec-
tion of screen sizes. Which specific devices we use doesn’t matter. The
exact sizes, makes, models or operating systems are irrelevant. What
matters are their general proportions and characteristics. At Stuff &
Nonsense, we base type size decisions on these classes of devices:

• Smaller smartphone: iPhone 5s
• Medium smartphone: iPhone 6s
• Smaller tablet: iPad mini (with and without retina display)
• Larger tablet: iPad Air
• Smaller PC: MacBook
• Large PC: iMac

85Designing atmosphere

We obviously love our Apple products, but if you have other makes of
smartphones, tablets and PCs in similar classes, they’ll work just fine
for working with type proofs.

Testing paragraphs, headings and small text
We start by looking at paragraphs on smaller screens and decide on
the minimum size when it stops being comfortable to read. Is 12px too
small without bringing the device closer to our faces? Would 13px or
14px be more comfortable?

On our type proofs, we size text using pixels as we’ve found that our clients
understand them better than they do em or rem units. Of course, we convert
type to flexible units later in our process.

Next, we check those same small paragraphs on a device with a larger
screen. Viewing distance matters and we generally hold larger devices
further from our eyes, so decide if the size we just chose is still appro-
priate, and if it isn’t we’ll need to increase it to suit those longer viewing
distances. Working this way, we can quickly determine the most appro-
priate text size for paragraphs for each class of device.

86 Hardboiled Web Design

Type proofs are a simple tool to help us determine the maximum sizes for
headings for each class of device.

We can follow the same process to determine appropriate sizes for head-
ings and other elements too. Large headings make a design look dramat-
ic, but while they suit larger screens, unless we’re careful they can look
clumsy when viewed on smaller ones where there’s room for only one
or two words per line. Start by deciding the appropriate heading sizes on
smaller screens, then work up through device classes, making a note of
any changes in sizes until we reach the largest screens.

Follow the same process for small text on buttons, in navigation and in
footers, always starting with the smallest screens and working up.

87Designing atmosphere

Adding CSS media queries
Type proofs enable us to quickly determine the most appropriate sizes
for our typography long before we might need to open Photoshop or
Sketch. We’ll add these styles to our web design style guide, but before
we do that it often helps to test our findings one more time by adding
CSS media queries that match our device class sizes.

At Stuff & Nonsense, we’ve made testing type using media queries the
next step in the collaborative process with our clients. We host infor-
mal workshops where we first load our updated type proofs onto sev-
eral classes of devices and then ask people to again judge the typogra-
phy. We’ve found that involving clients in our decision-making process
has several benefits. They’re more confident to sign off type sizes and,
because we encourage them to bring their own devices, we get to test
our typography on plenty of devices that we don’t own.

Judging typographic colour
Typographic colour doesn’t refer to the colour chosen to style text,
but instead the density of blocks of text on a page. Getting that density
right isn’t only important for the look of a design, it’s vital for good read-
ability — especially in responsive web design — and that helps everyone.

Several factors influence typographic colour: the typefaces we choose,
spacing between letters (we call that letter-spacing in CSS but it’s called
tracking in other fields of design), and the space between lines of text
(in our style sheets we call this vertical space line-height, but other
fields refer to something very similar as leading).

Did you know
that the term
leading came
from the strips
of lead that ty-
pographers used
between lines of
hot metal type?

88 Hardboiled Web Design

Look at these three screenshots of type on a small screen.

If you squint a little at these you should notice that the example in the
centre appears darker, even though its type is the same size and pixel
colour as the others. That’s because we’ve chosen a typeface that has
darker characteristics to its design.

Using that example again, I’ve increased our line-height to lighten the
typographic colour. This has an immediate effect on the look of the type.

This should tell us that when we’re optimising type across responsive
breakpoints, we need to pay close attention to how line-height affects
typographic colour and overall readability as much as we pay attention
to the size of our type.

89Designing atmosphere

Adjusting line-height

As a rule of thumb, when the width of lines of text gets longer — for
example, when displayed on devices of different sizes, or portrait and
landscape orientations of the same device — we should increase the
height of the space between the lines. However, it’s common to see
designers set line-height just once on the body element and then ne-
glect to adjust it as screen widths and line lengths increase. We should
always adjust line-height across responsive breakpoints and one place
to start doing just that is in a type proof. Let’s increase line-height on
text in wider columns and on larger screens.

In typography,
the length of a line
of text is referred
to as the measure.
This term comes
from a device
used by hot metal
typographers
to measure the
width of a column
and then set the
correct number
of characters
(including
spaces) into it.

90 Hardboiled Web Design

I’ve called the process of adjusting line-height across responsive breakpoints
proportional leading and I first wrote about it in July 2010.73

Checking font weights

Apple’s high-resolution Retina screens have got bigger over time, start-
ing with iPhone 4, before coming to iPad, MacBook and finally to the
iMac. However, not everyone’s fortunate enough to own a high-resolu-
tion display, so designers and developers must take into account how
type renders on both low- and high-resolution screens.

Type proofs are again an ideal way to check font rendering across
screen resolutions. After choosing a fashionably thin typeface for a
design, we should test to ensure that it renders well on a low-
resolution screen as well as a high-resolution one.

73 stuffandnonsense.co.uk/blog/about/proportional_leading_with_css3_media_queries

http://stuffandnonsense.co.uk/blog/about/proportional_leading_with_css3_media_queries

91Designing atmosphere

When low-resolution screens struggle to render thin type (left), we can easily
compensate by serving them a heavier weight from the same family (right).

Working with colour
Colour is the next aspect of atmosphere in a web design style guide.
Colour creates mood and evokes an emotional reaction in someone
using a website or application. We can also use colour to commu-
nicate what a user can, can’t and sometimes shouldn’t do as part of
what I refer to as an interaction vocabulary. Think about the interac-
tive elements of any website or application:

• Hyperlinks in active, hover and visited states.
• Form buttons of various types, including disabled as well as active

and hover states.
• Form inputs of various types.

92 Hardboiled Web Design

We can use colour to emphasise specific types of content, such as when we apply
backgrounds and borders to them.

We use colour to help us communicate throughout our design. For ex-
ample: “What can I click on? What can’t I click on? What have I already
clicked on? What should I be cautious about clicking on?”

A web design style guide is the perfect place to document these colour
choices. Working inside a guide instead of a static visual makes us
think more systematically about how the colours we choose will be
used. This helps the people who use our websites and applications
because they’ll find our designs simpler to use.

Choosing colours
Some clients bring their own set of colours to a project, often in the form
of branding guidelines. Other times they might have a single colour in
their logo and it’s our job to create a palette of colours to accompany that.
I expect that every designer has their own magical way to create colour
palettes. In my studio, we’re always looking for colour inspiration and
we take it from wherever we find it. We’ve developed several processes
that help us choose colours that have been inspired by the things that
our clients tell us about their organisations and their brands.

93Designing atmosphere

Deciding on a set of colours
We don’t need a complex array of colours to make a design effective.
I’ve found that the simpler the colour palette, the more connected a de-
sign will feel. At Stuff & Nonsense, the majority of our designs include
four colours or fewer. We categorise the colours that we choose into:

Main: Most commonly used in branding, but also the colour for hyper-
links and backgrounds of primary calls to action, including buttons.

Secondary: Often used to indicate that an element is being interacted
with; for example, the hover colour on hyperlinks and the background
colour on active buttons.

Neutral: For the background of buttons, boxes, striped table rows and
other elements. We often use darker or lighter shades of this neutral
colour for borders and horizontal rules.

Accent: Used sparingly, an accent often contrasts with the main colour.
Often used for the background or borders of error and warning boxes.

For our design for King’s College Hospital, we based our main colour
on its existing branding guidelines which were in turn influenced by
the NHS brand guidelines.

If you haven’t already realised, a web design style guide is the perfect
place to document our colour choices. It provides a reference for the
designers and developers who might follow us on the project, and it
also helps our clients to explain the choices we made to other people in
their organisation.

94 Hardboiled Web Design

Adobe Color CC (color.adobe.com) is an incredibly useful tool for creating colour pal-
ettes. For King’s College Hospital, we used it to help us define secondary and accent
colours. We then added not one, but two neutral colours to our palette.

A brand personality interview
At the start of almost every project, we ask our clients to answer ques-
tions about what they think about their brand. We call this a brand
personality interview74 and in it we ask our clients to:

74 A brand personality interview certainly isn’t unique to Stuff & Nonsense. Aarron Walter
has published his design persona template which has influenced our process:
aarronwalter.com/design-personas

http://color.adobe.com
http://aarronwalter.com/design-personas

95Designing atmosphere

Think of your brand as a person. That person can be real, alive today or a
historical figure. You might choose a fictional character from a book or a
movie. In fact, that person doesn’t have to be a human being at all.”

I’m not joking when I say that Morgan Freeman comes up in discus-
sion at every interview we conduct. Next we ask:

Describe the parts of that personality that appeal to you and how those
traits relate to the personality you want to convey through your brand.”

People often say that Morgan Freeman’s traits include him being
reassuring and trustworthy. Finally, we ask people to list six personality
traits that best describe how they’d like to think about their brand. At
the same time, we ask about traits they’d like to avoid. Here are some
personality traits we use as examples in our interviews:

• Fun but not silly
• Sensible but not boring
• Serious but not stuffy
• Professional but not corporate
• Friendly but not overfamiliar
• Contemporary but not trendy

We use the answers to these questions when we’re looking to find
inspiring colours in our photography research. When we’re working
with someone for the first time, it can be invaluable to help people
work through these brand personality questions by facilitating a
structured workshop. When a team is small — up to six people — we
work through the questions with everyone together. For larger teams
it’s better for people to work in smaller groups of three or four. At the
end of the session we bring everyone together to compare ideas.

“

“

96 Hardboiled Web Design

Making tones
One of the first entries on my blog — from May 2004 — described a
technique I used for creating a wider colour palette from a limited set
of core colours. These source colours were like the main, secondary,
neutral and accent colours that I described in the previous section.

A lot has changed since 2004, but incredibly the technique I described
has stayed exactly the same and I still use it on almost every project I
work on. The technique couldn’t be simpler:

• Create five squares and fill them with one of
the colours from your set.

• Adjust the opacity of the squares to dilute their strength.
I use 90%, 75%, 50%, 25% and 10%.

• Place all five squares over a solid black base to create
dark tones of your colour.

• Now do the same again, but this time place the squares
over a white base to create lighter tones.

• Repeat for every colour in your set to create all the tones
you’ll need for your design.

97Designing atmosphere

In STEM Learning’s branding guidelines, one colour represents science,
another technology, and so too for engineering and maths. When we
designed the new website we followed these branding guidelines and
introduced a cool neutral to counter the bright colours in the palette.

We needed more than just STEM Learning’s four lively colours, so we
used our trusty technique to add more subtle tones to the palette.
This technique may be old, but STEM Learning demonstrates that it
still creates colour palettes that are right up to date.

98 Hardboiled Web Design

Testing colour accessibility

The fact that many designers leave colour contrast and accessibility
testing until late in a project has always baffled me. For me, colour con-
trast and accessibility aren’t things we should test, they’re things we
should design, so we need to find ways to pay attention to them much
earlier in our design processes. One of the biggest benefits of design-
ing atmosphere is that we can pay attention to accessibility far earlier
and then devote more time to correcting potential problems.

When we’re testing colour accessibility, we need to ensure
there’s enough contrast between an element’s background
and any text inside it. We can alter contrast by either con-
trolling lightness or by choosing complementary colours
for backgrounds and foregrounds.

In this next example from Stuff & Nonsense’s work with
King’s College Hospital, our earliest design provided insuf-
ficient contrast between backgrounds and foregrounds.

Fortunately, we tested our colour contrast early and adjusted the
design before we’d sold the colour palette to our client.

The Web Content Ac-

cessibility Guidelines

(WCAG) 2.0 defines

three levels of acces-

sibility conformance:

(lowest), AA and AAA

(highest). Each level

has its own minimum

contrast ratio.

99Designing atmosphere

I find designing in greyscale to be one of the most effective ways to test colour
accessibility. Not only does removing colour help to focus our attention on contrast,
it removes distractions when we’re designing layout and typography.

There are several fabulous tools to help check that our colour combi-
nations offer sufficient contrast. My personal favourite is Lea Verou’s
contrast ratio checker75 as it’s quick and simple for everyone to use.

75 leaverou.github.io/contrast-ratio

http://leaverou.github.io/contrast-ratio

100 Hardboiled Web Design

Adding texture
When we’re creating the atmosphere of a design, texture refers to
the decorative aspects that help give a design its personality. Texture
includes border styles, shading and the shapes of boxes. Of course,
texture can, and sometimes does, include skeuomorphic textures,
so there’s nothing to stop you indulging in faux leatherette and torn
paper edges when you need to.

Decisions about borders and dividers are decisions about texture.
I doubt there’s a site design out there that doesn’t include a border
somewhere on something, but there’s more to using a border than first
comes to mind. Sure, we can make them solid, double or dashed. We
can even use long-forgotten CSS values like groove and ridge, inset and
outset if we’re aiming for a retro look.

There are still bigger decisions to make, like how wide
our borders should be and whether those widths will
be uniform. For one design, we may want all borders
the same width; for another, we might vary the width
to create the impression of three dimensions.

Another question might be how to use various divid-
ing line styles to create hierarchy. We could choose
dashed borders between elements inside an article,
then a single solid border between the articles them-
selves. A thicker, double border can illustrate the top
of a hierarchy.

Decisions about background treatments are also about texture. How
will we use backgrounds to shade content areas? Will we succumb to
the fashion for flat colours or will our backgrounds be graduated or
even patterned?

101Designing atmosphere

Box designs are texture too. Will we make box edges rounded or
square? If they’re rounded, will the four corners have equal radii, or
will some be more rounded than others to create unusual shapes?

The look of buttons is also texture. Will we make on-screen buttons look
like physical buttons? If we aim to make them appear physical, how will
light fall on them to make them skeuomorphic? Will gradients make
buttons look glossy, and will shadows lift them from the background?
Will we give them backgrounds or make them transparent? Will we
follow fashion and add thin outlines and uppercase button text?

How will we treat inline images? Will we give them thin borders? Will
we add thick, white borders to simulate the look of Polaroid prints?
What style of icons will we choose? Will they be graphic or hand-drawn?

All these design decisions involving texture help to give a design its
individual personality. These questions make the difference between
a fun design and one that looks sensible; one that’s serious and profes-
sional but still manages to be friendly.

Finding value in static visuals
Designing atmosphere has tremendous advantages for responsive web
design but there are disadvantages, too. When we’re working on at-
mosphere and components separately, it’s sometimes difficult to bring
them together to form a consistent whole.

102 Hardboiled Web Design

Because of this, designs can easily feel disjointed and lack connected-
ness. We need to look at every aspect of design together in one place to
prevent this from happening.

Industry discussions about designing in a browser versus making
static visuals can very easily descend into arguments. In truth, there’s
a need for both code and visuals, HTML and CSS editors and graphic
tools, and we should use them both where they’re most effective. At
Stuff & Nonsense, we start almost every project by sketching ideas on
paper because pencils and paper are absolutely the best tools for work-
ing through early ideas.

When we’ve settled on a direction, we move to code to experiment
with layout, prototype interactive elements and test early designs in
browsers. There’s no doubt in our minds that HTML and CSS are the
best tools for this part of our process.

Along the way we design typography, colour and texture and we do
this almost exclusively in a browser using HTML and CSS because we
know that it gives us the most realistic results. We use code to iterate
quickly and sometimes to swap between design directions. We’ve
found that code and browsers are by far the best tools when we
need to be flexible.

We love designing using HTML and CSS in a browser, but there are
some parts of our process where there’s no better tool than Photoshop
or Sketch. It might come as a surprise, but at Stuff & Nonsense we
often create static visuals — sometimes of complete web pages — be-
cause we want to see where our design as a whole might be heading.

We make visuals of strategic pages, perhaps a list of articles or a range of
products, a blog or news entry — sometimes even a home page — because
we find that designing strategic visuals helps keep our designs connected.

103Designing atmosphere

But unlike in the past, we don’t make visuals of every page. There’s
little or nothing to gain from that. We don’t design small or medi-
um-sized screen versions either — our visuals are strictly desktop only
— because we know that a static visual isn’t the tool to solve responsive
design issues.

Working with a static version of a design can still be useful when we
need to add an extra level of design fidelity. Somehow — no matter
how proficient we’ve become designing using a browser — there’s
often no substitute for taking a design back to Photoshop or Sketch to
experiment with a subtle outline, a shadow or some shading.

These tiny details can make all the difference and can easily turn an
ordinary design into an interesting one. You might be asking now,
“What aspect of that can’t be done in a browser?” In truth, the answer’s
nothing. Yet somehow the environment of a graphics tool — working
away from the practical concerns of implementation in HTML and
CSS — helps us focus more clearly on those visual details.

Breaking it up
The past five years have seen the biggest changes to the websites and
applications that we make and the process we follow when making
them. As we’ve come to terms with designing responsive websites,
designing atmosphere and then developing components has become a
more commonplace design practice. Designing colour, typography and
texture, and developing using web design style guides and pattern li-
braries as working tools and not just documentation, have also helped
us focus more clearly on the aspects of design that transcend respon-
sive breakpoints.

104 Hardboiled Web Design

105Destination HTML

Fit and lean HTML makes the web a

better place for everyone. The trouble is,

our pages are often built on less than

optimal markup. Divisions, classes and

identifiers are perfectly valid HTML,

so what’s the problem? Unless you’re

obsessive about keeping your markup in

shape, it can all too easily become flab-

by, but never fear, there is a better way.

In Hardboiled HTML, you’ll learn

about the latest semantic elements.

You’ll also discover microformats2

— an evolution of those simple pat-

terns for giving your markup added

structure — and investigate WAI-ARIA

roles. All of these will reduce your

reliance on presentational elements

and attributes. Get ready, it’s time

to make your HTML hardboiled.

106 Hardboiled Web Design

Destination HTML
Coffee, email and Twitter are part of my morning ritual.
I look at photos on Instagram, then check screenshots uploaded
to Dribbble. Then I still read RSS feeds using Digg Reader and
see where friends checked into on Swarm. These sites don’t
have pages in the traditional sense. They’re web applications
that behave more like desktop software.

Web applications have become extremely powerful and complex,
but the markup languages we traditionally used to build them have
stayed pretty much the same as they were in the early days of the web.
HTML, then later the stricter and XML-inspired XHTML, are tools
designed to make pages, not applications. That’s where HTML5 came
in — but first a little history.1

After publishing HTML 4.0, the W3C shut down its HTML Working
Group. HTML was done. The future — or so they thought — wasn’t
HTML, it was XML. Then, in 2004, the W3C held a workshop attend-
ed by several of the big browser makers. On their minds was how a
document language could be used for making web applications.

Mozilla and Opera responded with their recommendations2 but the
W3C ignored them.

“At present, W3C does not intend to put any resources into […] extensions to
HTML and CSS for Web Applications.”3

1 Mark Pilgrim has written a thoroughly readable history of HTML5: diveintohtml5.org
2 w3.org/2004/04/webapps-cdf-ws/papers/opera.html
3 w3.org/2004/04/webapps-cdf-ws/summary

No. 7

http://diveintohtml5.org
http://w3.org/2004/04/webapps-cdf-ws/papers/opera.html
http://w3.org/2004/04/webapps-cdf-ws/summary

107Destination HTML

Like it or not, in the real world it’s browser makers, not the W3C, who are
the big cheeses. When the W3C refused outright to take up their sugges-
tions, several of these companies took their ideas outside the W3C. They
formed the Web Hypertext Applications Technology Working Group4
(WHATWG), a “loose, unofficial, and open collaboration of Web brows-
er manufacturers and interested parties”5 that includes Apple, Google,
Mozilla and Opera. Only Microsoft was originally absent from the
group. WHATWG called its specification Web Applications 1.0.

Meanwhile, back at the W3C, work continued on what it saw as a
future document language, XHTML 2. Its goals were ambitious and
revolutionary, but were also ignored by the big gun browser makers
and, without their support, XHTML 2 was doomed. As Mark Pilgrim
astutely observed, “The ones that win are the ones that ship.”6

In the web standards business, browser makers hold the cards. Those
players at WHATWG threw their weight behind HTML5, quickly de-
veloping the specification and implementing many parts of it in their
browsers. The result? HTML is not only ready to use today, it’s already
become a de facto standard even though the W3C may not give its
stamp of approval until 2022.

Are we going to wait until then before we start using HTML5? Good
luck with that. If we do wait, we’ll miss out on making a generation of
exciting and innovative websites and applications.

I can hear you asking, “What happens when the specification changes?
Will I need to rework my HTML?” The short answer? Yes. But we do
that anyway.

4 whatwg.org
5 whatwg.org/news/start
6 diveintohtml5.org/past.html

http://whatwg.org
http://whatwg.org/news/start
http://diveintohtml5.org/past.html

108 Hardboiled Web Design

No HTML stays frozen forever and rewriting and relearning
markup as HTML5 evolves will just become part of our normal
development process.

HTML5 is built on how we already worked with markup — it isn’t a
new markup language: it’s the same markup we’re already used to, but
with powerful features built on top. From now on we’ll simply refer to
HTML5 as HTML. Learning it won’t be difficult, so let’s get started.

Get Shorty
Getting started with HTML couldn’t be simpler. Simply declare
that the document you’re writing is HTML with a short and simple
document type:

<!DOCTYPE html>

That’s it. No version number, no language, no URI. Nothing. Just
plain HTML.

The doctype is case-insensitive too, so we can write it as
<!doctype html>, <!DOCTYPE html> or even <!Doctype HTML>.

But you know what? The latest version of HTML doesn’t even require a
doctype, so you could leave it out altogether and it would still be valid
HTML5 — although you probably shouldn’t.

The doctype isn’t the only thing that got shorter: character encoding
did too. Here’s a meta element for a document written in HTML.

<meta charset="UTF-8">

We needn’t specify a type value of text/css on every link to every style
sheet. We can simply write:

109Destination HTML

<link rel="stylesheet" href="Hardboiled.css">

Because browsers don’t need to know, we needn’t include
text/javascript on script links either. We simply write:

<script src="modernizr.js"></script>

HTML isn’t fussy about how we write our markup. Whether we like
lowercase, uppercase or mixed case HTML elements, we can use our
preferred style. Whether we self-close images or not, or use quote marks
around our attributes or not, HTML won’t mind. Neither will browsers,
so we can carry on writing HTML in whatever style we prefer.

Semantic elements in HTML
HTML5 introduced several new elements to improve the structure of
our pages. Your documents may still be full of divisions — what the
HTML 4.01 specification described as a “mechanism for adding
structure”7 — to group together related content.

<div class="branding"> […] </div>

<div class="nav"> […] </div>

<div class="content">
 <div class="content_ _main"> […] </div>
 <div class="content_ _sub"> […] </div>
</div>

<div class="footer"> […] </div>

Any semantic meaning in these attributes is largely implicit and
they aren’t machine-readable so, in practice, user agents will treat
content_ _main no differently than they would you-dumb-mug.

7 w3.org/TR/html401/struct/global.html#h-7.5.4

http://w3.org/TR/html401/struct/global.html#h-7.5.4

110 Hardboiled Web Design

Adding presentational id and class attributes simply to build a visual
layout dilutes any tenuous meaning even further.

We can replace some of our divisions with more semantically precise
structural elements to help reduce our reliance on divisions and
presentational id and class attributes. As a result, our markup will be
fitter, leaner and less tied to a single visual layout or design.

In 2005, Google surveyed over three billion web pages8 to find out
what id and class attributes web designers most commonly use to
name HTML elements. The findings became the names of HTML5
structural elements and many are already widely supported in con-
temporary browsers. They include:

• section

• article

• aside

• header

• footer

• nav

This list isn’t exhaustive because this book isn’t intended to be a
HTML reference. For that I’d recommend HTML5 For Web Designers by
Jeremy Keith.9

8 developers.google.com/webmasters/state-of-the-web/2005/classes?csw=1
9 abookapart.com/products/html5-for-web-designers

http://developers.google.com/webmasters/state-of-the-web/2005/classes?csw=1
http://abookapart.com/products/html5-for-web-designers

111Destination HTML

Section
Pick apart the structure of a typical web page and we’ll find divisions.
These elements group related areas of content and help us build a
visual layout using CSS. Take this example from the ‘Get Hardboiled’
archives page:

<div class="banner"> […] </div>

<div class="navigation"> […] </div>

<div class="content">
 <div class="content_ _uk"> […] </div>
 <div class="content_ _usa"> […] </div>
 <div class="content_ _world"> […] </div>
</div>

<div class="footer"> […] </div>

This markup pattern is perfectly valid, but even though we un-
derstand that the divisions represent sections of a page, browsers
make no distinction between them and render them as anonymous
block-level containers.

Instead, the section element groups content not into generic con-
tainers but into explicit, semantic sections. Think of them as distinct
and possibly self-contained parts of a document. In the next example,
sections contain news stories from different geographical regions, and
all stories from each region are directly related. Notice that because
each section should be able to stand alone, we’ll include a descriptive
heading in each one.

If necessary, we could add id attributes to each section to make them
individually addressable via a fragment identifier such as
http://hardboiledwebdesign.com#content_ _uk:

112 Hardboiled Web Design

Converting to BEM
If you’ve followed my writings over the years, you might remember that
for a long time I’ve been fascinated by naming conventions in HTML
and I’m a keen proponent of reducing reliance on class attributes in our
markup. Writing the cleanest HTML was almost my religion.

In the past I’ve gone to extreme lengths to eliminate as many class at-
tributes from my markup as possible. I’d use attribute selectors to bind
styles to anchors using their href or even title, like this:

a[title="Get Hardboiled"] {

border-bottom : 5px solid #ebf4f6; }

I’d use child selectors (with a > combinator) to style elements that are
the direct descendants of a specified element, as in this example where
an unordered list is a child of the header:

header > ul {
list-style-type : none;
display : flex; }

Of course, I used so many adjacent sibling selectors it could’ve been con-
sidered unhealthy. These selectors style elements that immediately follow
a previously specified element, as in this next example, where the header
that follows a top-level heading is styled with a blue bottom-border:

h1 + header {
border-bottom : 5px solid #ebf4f6; }

Once, I even delivered a prototype that contained no classes at all, not a
single one. I pity the poor developer who had to work from that.

113Destination HTML

Over the past few years, as Stuff & Nonsense has worked on larger projects,
delivering our designs as HTML and CSS, and collaborating more closely
with developers, I’ve realised there is a real need to deliver code that is
not only well-structured and meaningful, but displays clear relationships
between elements, not only in HTML but also in CSS. This is one problem
that the BEM syntax or naming convention aims to help solve.

Block, element, modifier

When you look closely at the ‘Get Hardboiled’ examples that accom-
pany this book, you should notice that on many of the elements, the
class attribute values I’ve chosen contain either two underscores or two
hyphens. These hyphens and underscores are part of the BEM system
where BEM means block, element and modifier. They’re used like this:

.block is used for a higher-level element that contains others that we’ll
also style. For example, in ‘Get Hardboiled’, a division given a class at-
tribute value of container holds several child elements, including main
and complementary content. This container is a typical BEM block.

.block_ _element represents an element that’s a descendent of our
container. Our main and complementary content divisions are good
examples of these and we can describe their relationship to their con-
tainer by using two underscores between them and their block in their
attribute value: .container_ _main and .container_ _complementary.
Descendent elements could also include headings (for example,
.container_ _heading) or specific paragraphs such as .container_ _lead.

.block--modifier describes a modification to a block element. On the ‘Get
Hardboiled’ home page, the majority of containers have a light-coloured
background. Some, however, have certain design attributes that have
been modified, in this case a darker background. We can describe this
modification by using two hyphens between the value that describes the
modification and the original block. For example .container--dark.

114 Hardboiled Web Design

Using this convention has helped me and the developers I work with
define the precise relationships between elements in my design. The
developers can do this not just by examining the HTML structure but by
reading my style sheets. .container_ _main is clearly a descendent of an
element called container, as is a heading called .container_ _heading.
Developers need not think about the purpose of .container--dark
since the BEM naming convention tells them that it’s an alternative
design of the standard .container.10

Using BEM has transformed my work and although part of me still
yearns for HTML that is clean and free from class attribute values for
many elements, I’m prepared to sacrifice my punctilious coding tenden-
cies for the clarity and ease of working that the BEM syntax brings.11

<section id="content_ _uk">
 <h1>Stories from the UK</h1>
</section>

<section id="content_ _usa">
 <h1>Stories from the USA</h1>
</section>

<section id="content_ _world">
 <h1>Stories from around the world</h1>
</section>

Let’s continue building our document by adding articles.

10 Harry Roberts has written plenty about BEM and namespaces inside HTML. His article
‘MindBEMding — getting your head ‘round BEM syntax’ is an excellent place to start learning
about BEM. csswizardry.com/2013/01/mindbemding-getting-your-head-round-bem-syntax

11 The BEM website is a community-driven resource that explains the key concepts, and links
to useful articles and tutorials about the naming convention: smashed.by/bem-naming

http://csswizardry.com/2013/01/mindbemding-getting-your-head-round-bem-syntax
http://smashed.by/bem-naming

115Destination HTML

Article
When we write for a blog or online magazine or news site, we publish
articles. In HTML, an article is just like an individual story, in that it
should be understandable outside the context of a page. That might
sound similar to a section, but there’s a big difference. Whereas an
article represents a story that can stand apart, a section is a self-
contained part of the page and could contain several related articles.

One way to check if article is the most appropriate element is to see if
an article’s content makes sense on its own; for example, would it make
sense on its own when viewed in an article reader like Pocket for iPad?

If you own an iPad, Pocket12 is one of the nicest ways to read articles. In Pocket,
content is isolated and shown without advertising, branding, navigation — or
other articles that might give it context. Safari on both iOS and Mac OS X offers
similar functionality.

12 getpocket.com

http://getpocket.com

116 Hardboiled Web Design

If you’re still confused about the difference between sections and arti-
cles, Doctor Bruce Lawson explained more in his ‘HTML5 articles and
sections: what’s the difference?’13

Let’s carry on building up the outline of the ‘Get Hardboiled’ archives
page by adding three articles to each of the sections:

<section id=“content_ _uk">
 <h1>Stories from the UK</h1>
 <article> […] </article>
 <article> […] </article>
 <article> […] </article>
</section>

<section id="content_ _usa">
 <h1>Stories from the UK</h1>
 <article> […] </article>
 <article> […] </article>
 <article> […] </article>
</section>

<section id="content_ _world">
 <h1>Stories from around the world</h1>
 <article> […] </article>
 <article> […] </article>
 <article> […] </article>
</section>

Sections can contain articles, and guess what? An article element can
contain sections too! What, you thought learning new HTML elements
was going to come without a little head-scratching?14

13 brucelawson.co.uk/2010/html5-articles-and-sections-whats-the-difference
14 To help us understand when to use each HTML5 element, the HTML5 Doctors

have prepared their handy ‘HTML5 Sectioning Element Flowchart’.
 html5doctor.com/downloads/h5d-sectioning-flowchart.pdf

http://brucelawson.co.uk/2010/html5-articles-and-sections-whats-the-difference
http://html5doctor.com/downloads/h5d-sectioning-flowchart.pdf

117Destination HTML

To help clear that up — the article /section confusion, not your
dandruff — this next article has three sections, each about a
famous fiction writer:

<article>
 <section id="chandler"> […] </section>
 <section id="hammett"> […] </section>
 <section id="spillane"> […] </section>
</article>

Header
A page’s branding area or masthead can be described with the
header element. These headers traditionally appear at the top of a
page, although we could position a header on the side, at the bottom
or anywhere we choose. We’ll replace that classified banner division
with a much more appropriate header element:

<header>
 <h1>It’s Hardboiled</h1>
</header>

We can also add a header to any section or article: we’re not limited to
using just one header on a page either. This means we can use a header
in several different ways: as the masthead or branding for a entire page,
to introduce sections and articles, or a combination of all of the above.

In this next example, we’ll add one ‘Hardboiled authors’ header to
describe the article, followed by another in each of the sections:

118 Hardboiled Web Design

<article>
 <header>
 <h1>Hardboiled authors</h1>
 </header>

 <section id="chandler">
 <header>
 <h1>Raymond Chandler</h1>
 </header>
 </section>

 <section id="dashiell-hammett">
 <header>
 <h1>Dashiell Hammett</h1>
 </header>
 </section>

 <section id="mickey-spillane">
 <header>
 <h1>Mickey Spillane</h1>
 </header>
 </section>
</article>

The specification describes the header element as a container for “a
group of introductory or navigational aids,”15 leaving us free to include
a search form and the time and date that a page, section or article was
written or updated.

Footer
In an amazing turn of events (or was it simply coincidence?), some of
the results of my 2004 non-scientific survey of element names16 were
the same as Google’s. We both found that the most common name web
designers gave to the foot of a page — the one that typically contains
contact and copyright information — was ‘footer’.

15 w3.org/TR/html5/sections.html#the-header-element
16 stuffandnonsense.co.uk/blog/about/whats_in_a_name

http://w3.org/TR/html5/sections.html#the-header-element
http://stuffandnonsense.co.uk/blog/about/whats_in_a_name

119Destination HTML

In a typical HTML 4.01 or XHTML 1.0 document, this footer would be
marked up using a division, perhaps with a class attribute value of
‘footer’ applied to it. You too might choose to mark up this footer
using a division, perhaps with a class of ‘footer’:

<div class="footer"> […] </div>

Even better, though, we should replace that anonymous division
with a more appropriate footer element:

<footer>
 <h3>It’s Hardboiled</h3>
 <small>Creative Commons Attribution-ShareAlike 4.0
International License.</small>
</footer>

Contrary to its name, we needn’t position a footer at the bottom of a
page, section or article. In fact, we can place one anywhere inside
its containing element. Like header, we can use footer to define meta
information for any section or article. Inside an article, a footer
might contain information about the author, or the date and time it
was published. A section footer could include when it was updated
or new articles added:

<section id="spillane">
 <header>

<h1>Mickey Spillane</h1>
 </header>

 <footer>
<small>Published by Andy Clarke on 20th Nov. 2015</small>

 </footer>

</section>

120 Hardboiled Web Design

Aside
Mickey Spillane was a prolific fiction writer and if we were writing
an article about his life and work our biography might include re-
lated information about one of my favourite books, My Gun Is Quick.
Conversely, if we were writing a review of that book, we might want
to include a biography of its author. HTML5 defines the relationship
using the aside element and despite its name, aside needn’t be visually
positioned in a sidebar.

We can use aside to describe content that’s related to — but not es-
sential for understanding — an article. Let’s start writing that bio-
graphical article of Mickey Spillane. We’ll include a header containing
the title, and a footer containing the author’s name and the article’s
publication date for good measure.

<article>
 <header>
 <h1>Mickey Spillane</h1>
 </header>

 <footer>
 <small>Published by Andy Clarke on 20th Nov. 2015</small>
 </footer>

 <p>Frank Morrison Spillane, better known as Mickey Spillane,
was an author of crime novels…</p>
</article>

Sweet, just like I take my coffee. Now let’s add an aside that contains
related information about My Gun Is Quick.

121Destination HTML

<article>
 <header>

<h1>Mickey Spillane</h1>
 </header>

 <footer>
<small>Published by Andy Clarke on 20th Nov. 2015</small>

 </footer>

 <p>Frank Morrison Spillane, better known as Mickey Spillane,
was an author of crime novels…</p>
 <aside>

<h2>My Gun Is Quick</h2>
<p>Mickey Spillane’s second novel featuring private

investigator Mike Hammer.</p>
 </aside>
</article>

Perhaps our page contains information about other fiction writers.
This content would be less strictly related to our biography, so we’ll
place that aside outside the article. In this case, we should also wrap
both the article and aside inside a section element to make it explicit
that the two are related.

<section>
 <article>

<header>
<h1>Mickey Spillane</h1>

</header>

<footer>
<small>Published by Andy Clarke on 20th Nov. 2015</small>

</footer>

<p>Frank Morrison Spillane, better known as Mickey Spillane,
was an author of crime novels…</p>

<aside>
<h2>My Gun Is Quick</h2>
<p>Mickey Spillane’s second novel featuring private

investigator Mike Hammer.</p>

122 Hardboiled Web Design

 </aside>
 </article>
 <aside>
 <h2>Other crime fiction writers</h2>

 Raymond Chandler
 Dashiell Hammett
 Jonathan Latimer

 </aside>
</section>

Nav
Readers shouldn’t need to hire a detective to help them find something
on a website — that’s what navigation is for. Often when we’re building
pages our navigation looks something like this.

<div class="nav—-main">

 What’s Hardboiled?
 Archives
 Hardboiled Authors
 Classic Hardboiled

</div>

We’ve become accustomed to marking up navigation using lists, but
the trouble is, we mark up other things using lists too. How the hell is
a browser supposed to know the difference between a list of links and
a list of people we owe money to?

Thankfully, we now have the nav element for one or more “major
navigation blocks”17 on a page. Not all links, or even groups of links,
are major navigation blocks, so we should reserve nav for the primary
ways that people navigate.

17 dev.w3.org/html5/spec/Overview.html#the-nav-element

http://dev.w3.org/html5/spec/Overview.html#the-nav-element

123Destination HTML

Navigation will probably include lists of links to your most important
pages in the page’s header, a sidebar, or possibly in the page footer.
Next, we’ll replace the previous anonymous division with a meaning-
ful nav element.

<nav>

What’s Hardboiled?
Archives
Hardboiled Authors
Classic Hardboiled

</nav>

When our visitors use search to find content, add a search form inside
your nav. If we’ve included skip links, these could also be considered as
major navigation blocks for people who use assistive technologies.

Figure
Like all private dicks, I appreciate a good figure. This has got me into
hot water on more than one occasion. In printed media, images, charts
and diagrams are often paired with written captions. Instead of strug-
gling to decide on the right element for captioning, use the figure and
figcaption elements to associate captions with images, charts, dia-
grams and even code examples.

<figure>

 <figcaption>I, The Jury by Mickey Spillane</figcaption>
</figure>

When we need to caption a group of elements we can nest multiple
images, charts or diagrams and label them with a single figcaption.

124 Hardboiled Web Design

<figure>

 <figcaption>Books by Mickey Spillane</figcaption>
</figure>

HTML5 dates and times
You might imagine that writing a date in HTML would be as simple as.

<footer>
 <small>Published by Andy Clarke on 06/05/2015</small>
</footer>

But the problem is, software finds it hard to know that this string of
numbers is a date. People, on the other hand, are far more intuitive, but
even we sometimes have different interpretations of the same num-
bers depending on where we live. Coming from the UK, I read those
numbers as the sixth (day) of May (month) in the year 2015, but if you
live in the United States, you might read the date as June 5th, 2015.

To solve that problem, the time element is readable by people — 6 May
2015; May 6th, 2015; next Thursday — and formatted for parsers.

<time>May 6th 2015</time>

The time element is made from two versions of a date or date/time.
The first is a human readable, natural language date and the second
is a datetime attribute with a machine readable, ISO-formatted date:
YYYY-MM-DDThh:mm:ss. That’s year–month–day followed by time in
hours, minutes and seconds (if we need to be that precise):

<time datetime="2015-05-06">May 6th 2015</time>

125Destination HTML

time has had a chequered history. First introduced by HTML5, it was
dropped from the specification in 2011 and replaced with a more
generic — and in my mind, less semantic — data element. Thankfully,
time returned later that year and while away gained some useful extra
functionality. Whereas previously its datetime format required precise,
ISO-formatted dates, the improved format allows for fuzzy dates:

<time datetime=”2015”> means the year 2015
<time datetime=”2015-05”> means May 2015
<time datetime=”05-06”> means 6th May (in any year)
<time datetime=”2015-W1”> means week 1 of 2015

When you need to describe how long an event lasts, you can use the
datetime attribute and prefix the duration with a “P” (standing for peri-
od). Add suffixes for days “D”, hours “H”, minutes “M” and even seconds
“S” if you want to markup how long I’d stay standing in a fist fight.
This describes an event that lasts one day:

<time datetime="P 1 D">

And the next event lasts one day, six hours, ten minutes and thirty
seconds. Can you spot the extra “T” (for time) prefix to denote a more
precise duration?

<time datetime="PT 1D 6H 10M 30S">

By bringing together precise, structured date formats with dates and
times set out in natural language, we’ve implemented a format that is
readable by both people and machines.

126 Hardboiled Web Design

Form elements
What website or application would be complete with a form or two?
Love building them or hate styling them, the web without forms would
be like a private eye’s night out without a voluptuous redhead. HTML5
introduced more than a dozen input types and attributes that make
implementing complicated controls and functions — like sliders, date
pickers and client-side validation — a breeze. These elements include
email, url, tel and search. Don’t worry about legacy browsers, even
ancient ones: these input types degrade to simple text fields when a
browser doesn’t understand them.

Email

Lift the floorboards covering most web forms and we’ll probably
uncover a field asking for an email address. Contact forms, comment
forms, registration forms and sign-ups all demand an email address
for their grubby little databases. Choose an email input type to describe
a field that’s intended to grab an email address.

Software keyboards adapt to the job at hand. Here, the iPad’s keyboard includes
a set of keys to make entering an email address easier.

127Destination HTML

<input type="email">

All kinds of interesting functionality is now possible, including check-
ing that a form submission includes a valid email address that con-
tains an @ symbol and that it’s properly constructed. Tap into an email
input and Safari on iOS brings up a software keyboard that places an @
symbol and a dot prominently at the foot of the keyboard.

URLs

When we use a URL input — dedicated to entering a website address
— Apple’s iOS keyboard adapts by adding a prominent slash, a dot and
a ‘.com’ key.

<input type="url">

Our thoughtful use of form elements makes life easier for people on the go.
When we use url, the iPhone’s keyboard automatically includes a ‘.com’ button.

128 Hardboiled Web Design

Telephone

If we use the tel input type, iOS automatically pulls up a numbers-
only keypad.

<input type="tel">

iOS does a great job of adapting its interface to the type of inputs we’re using.
Now, if only it could call my bookmaker…

Search

If there’s plenty of content on a site we’ll probably include a search
form. Luckily, we have an input type that’s dedicated to search:

<input type="search">

129Destination HTML

Whereas in Safari on iOS, a
search input appears more
rounded than a normal text
input, in Safari on Mac OS X
(as well as most other desktop
browsers) search looks identical
to a text input. That is until we
interact with it. Start typing
a query into a search input in
Chrome, Opera or Safari and
a handy clear icon appears to
make clearing your search easier.

There’s more to search than meets the eye, as adding some distinctly
hardboiled attributes will make your search forms pack more of a
punch. Add the autosave attribute, along with a value that’s unique to
your website — in our case ‘gethardboiled’ — and Safari will not only
add a small magnifying glass icon in our search input but will also dis-
play a dropdown list of previous searches. We can control how many
searches are remembered using the results attribute. Our form will
remember ten searches:

<input type="search" results="10" autosave="getHardboiled">

search inputs are notoriously
difficult to style and results are
often unpredictable, so my ad-
vice is to leave them as the good
browser makers intended.

130 Hardboiled Web Design

Number

If we use the number input type, iOS again automatically pulls up a
numbers-only keypad, but in most desktop browsers something even
more interesting happens. Chrome, Firefox, Opera and Safari all add
input arrows or spinners to the right of the number input. Pressing
these arrows or using a keyboard’s
arrow keys or your mouse’s scroll
wheel will adjust the inputted
number up or down in the steps
you specify:

<input type="number" steps="10">

Should you ever need to, you can
remove a number input’s arrow for
Chrome, Firefox, Opera and Safari
using a little non-standard, but
nonetheless useful CSS:

input[type=number]::-webkit-inner-spin-button,
input[type=number]::-webkit-outer-spin-button {
-webkit-appearance: none;
-moz-appearance : textfield;
margin: 0; }

number’s functionality remains unchanged and people can still incre-
ment numbers using their keyboard’s arrow keys or their mouse’s
scroll wheel.

Native date pickers

As a designer and not a developer, implementing the sort of date pick-
ers we find on airline, car rental and hotel sites always puts me behind
the eight-ball. The native date pickers in HTML have made adding
them less painful.

131Destination HTML

Placeholder text

Damn those troublesome form labels. I bet I’m not the only one who
sometimes wants to provide a visual cue for how to use a form element
without showing label text. A placeholder attribute adds text to any
input that’s either empty or not in focus. Browsers that don’t support
placeholder will safely ignore it by leaving the input blank.

time for hours, minutes and seconds
(10:10:00)

month for a year and a month
but no day (2015-11)

week from 1–53

date for a year, month and day
(2015-11-20)

An input
containing a
placeholder
can be used
instead of label
text and, when
used correctly,
can remove
clutter from an
interface design.
Focusing on the
search input
removes the
placeholder text
faster than a bar-
tender takes bills
from my billfold.

132 Hardboiled Web Design

<input type="search" title="Search this site"
placeholder="Search this site">

label text isn’t required for accessibility when the purpose of a form
is simple and the text can be substituted with a title or an explicitly
titled button.

Autofocus

Like millions of others, when I do a Google search my cursor automat-
ically focuses on its search field. Unlike millions of others, you and I
notice these small enhancements. In the past, we were forced to use
a script to do this, but we now have the autofocus attribute to tell a
browser to do the hard work for us. Browsers that don’t support
autofocus will ignore it:

<input type="search" autofocus>

Autocomplete

We can dictate which form inputs will be prefilled with information
from a visitor’s previous form submissions:

<input type="text" name="name" autocomplete="on">

Use autocomplete wisely, though, as some fields are best left
alone, in particular anything that relates to credit cards or
other financial information:

<input type="text" name="credit-card" autocomplete="off">

133Destination HTML

List and datalist

Often, one of the best ways to help a visitor complete a form is to sug-
gest an answer to a question or to give them options. The list attrib-
ute, including a datalist, combines the convenience of a select with
a visitor’s own ability to enter text.

Imagine we wanted to ask someone who their favourite detective is.
To help them along, we could suggest a few hardboiled heroes in a
datalist, then associate that list with a text input using the list
attribute as an id:

<input type="text" list="detectives">
<datalist id="detectives">
 <option value="Mike Hammer">Mike Hammer</option>
 <option value="Sam Spade">Sam Spade</option>
 <option value="Philip Marlowe">Philip Marlowe</option>
</datalist>

A visitor can type in their
own entry, or they can
choose from the options
available in the datalist.
Any browser that doesn’t
support list and datalist
will ignore them and
display a normal text
input field instead.

Min and max

Perhaps you sell books online and your site has a minimum order
quantity, or, like me, you run training courses and limit the maximum
number of places available to be booked in one go. The min and max
attributes to allow us to specify upper and lower limits for the data.

134 Hardboiled Web Design

<input type="number" id="book" min="1">
<input type="number" id="course" max="6">

It’s worth knowing that currently min and max attributes don’t work
with the required attribute in any browser. In fact, we can’t use
required with a number input at all.

Client-side validation

Writing form validation scripts is one of my least favourite jobs. May-
be that’s the reason I pay someone else to do it for me. JavaScript librar-
ies make the job easier but I bet that even the most hardcore JavaScript
nerds don’t actually enjoy implementing these scripts. Wouldn’t it
be better if a browser handled form validation for us? This would not
only make life simpler, it would also make it harder for unscrupulous
types to bypass JavaScript validation (by simply turning JavaScript
off). The good news is that HTML includes simple features that make
client-side form validation a breeze.

Required

HTML5 added the required attribute which will prevent a browser
from submitting any form data until all required fields (text, email,
url, etc.) have been completed correctly:

<input type="email" required>

135Destination HTML

novalidate

If you’d prefer a browser not to validate for you, simply add the
novalidate attribute to your form to prevent native validation:

<form action="search" method="get" novalidate>

Breaking it up
HTML5 brought markup into the web application age and there’s far
more to the specification than just the elements I’ve covered in this
book. There are ways to embed video and audio files, and play them
without needing browser plugins, plus ways to enable interaction with
web pages and applications offline. How far you go will depend entire-
ly on your specific work and the needs of the people you work for. One
thing’s for sure, HTML is here to stay and if we’re to stay ahead of the
curve we should be working with as much of it as possible.

136 Hardboiled Web Design

Hardboiled microformats2
If you care about making every html element and attrib-
ute that you use count and you want to make their semantics go
further, I hope that you’ll soon be getting excited about micro-
formats2. These HTML-based patterns are part of a continuing
effort to improve how we mark up specific types of information
— such as contact details, events, reviews and content like blog
entries — so that they become parsable by machines as well as
human-readable. I think that Brian Suda explained the purpose
of what are now classic microformats best:

Microformats are all about representing semantic information encoded
within a web page, allowing that information to be leveraged in ways that
were possibly never conceived by the original publisher.”18

Microformats were developed around existing standards (attributes
added to the elements describing our content) so the only thing we
needed to know to start using them was how to write HTML. The
same is true of microformats2. In fact, they’re simpler and require
fewer extra HTML elements than classic microformats did, owing to
the way they imply particular content. But what made classic micro-
formats hardboiled and why are microformats2 more so?

View source on any website and we’ll see a mass of id and class attrib-
utes used to bind CSS styles to those elements. I’d hope the values you
choose describe the content; for example, using a semantic value like
‘tagline’ instead of a presentational value like ‘bold-heading’.

18 http://www.sitepoint.com/microformats-meaning-markup/

No. 8

“

http://www.sitepoint.com/microformats-meaning-markup/

137Hardboiled microformats2

Even so, the values we commonly choose add little real value to our
content and are of no use to our visitors. Coming up with these names
and building our own set of conventions for them can take time, and
over the long term they can be tricky to maintain.

When we follow microformatted patterns, we can largely give pres-
entational id and class attributes a concrete overcoat, because mi-
croformats2 brings with it more class attributes than you can hang a
raincoat on. Using microformats2 will help make your HTML leaner,
fitter and less tied to just one design or layout — in short, more hard-
boiled. We’ll start by investigating some of the most commonly used
classic and microformats2 patterns.

Link-based microformats
If you’re familiar with links to external files in the head of an HTML
document, you’ll recognise this as a link to an external CSS style sheet:

<link rel="stylesheet" href="screen.css" media="screen">

This attribute defines the relationship between an HTML document
and the link’s destination. This relationship is one of a style sheet.
We’re used to taking a similar approach when linking to RSS feeds:

<link rel="alternate" type="application/rss+xml" href="articles.rss">

We can also define a relationship to a favicon or an apple-touch-icon,
one that’s been designed for the home screens of Apple’s iOS devices:

138 Hardboiled Web Design

<link rel="shortcut icon" href="favicon.jpg" type="image/gif">
<link rel="shortcut icon" href="favicon.png" type="image/png">
<link rel="apple-touch-icon" href="ios.png">

All link-based microformats apply this idea to describe other
relationships between documents.

Rel-license
Linking to a licence is one of the most common uses of link-based mi-
croformats. When we use rel-license, we mean explicitly that this link
points to a licence for this content:

Creative Commons Attribution-ShareAlike 4.0 International License

You’re probably thinking that any dumb mug can link to a licence using
a microformat — and you’d be right on the money. After all, one of the
principles of microformats is that they should have a low barrier to
entry — in this case, really low. But the benefits can be huge, especially
as Google added a usage rights option to its advanced search.

Want to search for something that’s free to use, share and modify, even commercially?
Hidden in Google’s advanced search are options to filter by usage rights.

What’s rel-license got to do with being hardboiled? Well, perhaps we
want to style a licence link differently to other links on a page, perhaps
by adding a small icon. We could added a class attribute to that link:

139Hardboiled microformats2

<a href="http://creativecommons.org/licenses/by-sa/4.0/"
rel="license" class="license">Creative Commons Attribution-
ShareAlike 4.0 International License

But we’ve no need for that extra class because we can style the link in
exactly the same way by using a CSS attribute selector:

a[rel="license"] {
padding-left : 20px;
background : transparent url(cc.png) no-repeat 0 0; }

By using a microformat, we’ve immediately made our HTML more
hardboiled by eliminating a presentational attribute that offered
nothing of value to us or our users.

HTML link relationships
HTML5 introduced more link relationships that enable us to define the
meaning of links to other pages. Here are some of the most useful to me:

author
The author of the content; for example, their biography or
contact information on the same site or another.

bookmark A complete page or section element.

next
When the document is a part of a series, indicates
a link to the next document in the series.

nofollow
First adopted by Google in an attempt to combat spam com-
ments, this attribute makes it explicit that
a link is not an endorsement of the destination.

previous
When the document is a part of a series, indicates
a link to the previous document in the series.

search A dedicated search page or a search interface.

140 Hardboiled Web Design

Although there’s some overlap between HTML link relationships and
both microformats and WAI-ARIA roles, don’t let that put you off using
them. They all add deeper semantics and provide hooks for us to style
links using CSS.

h-card: People, places and organisations
Wouldn’t it be cool if, when we find a person’s contact information
online, we could add them to an address book in just a couple of clicks?
Guess what: if they publish contact information using the h-card
format, we can. Take a close look at the following paragraph:

Andy Clarke (Malarkey) is a web designer and wannabe detective based in
the United Kingdom. He runs a small agency called Stuff & Nonsense, writes
books and speaks at conferences. If you’d like to hire Andy, you can email
him at dropadime@hardboiledwebdesign.com or call him on 01745 851 848.

That paragraph is chock-full of information and you shouldn’t need
to be a detective to spot my full name, nickname, place of work, email
address and work telephone number.

Our brains have the smarts to notice these pieces of information and
realise that they stand apart from the words around them but, for now
at least, machines can’t easily make the same distinctions.

Markup languages have a limited vocabulary and can’t adequately con-
vey all the meaning in this content. Headings and paragraphs, sections
and articles: they’re no trouble; but what about elements that describe
a person’s contact information? Where are they? Nowhere. But h-card19
is a format that adds that missing meaning to a person’s or an organi-
sation’s contact information.

19 microformats.org/wiki/h-card

http://microformats.org/wiki/h-card

141Hardboiled microformats2

vCard information inside Apple’s Contacts application has a structured data format.

Structured data in markup
The contact management application on Macs and iOS devices uses
an open standard called vCard so you’ll already be familiar with seeing
this type of structured information. You can open a vCard in a text
editor to find the details, including: a name (FN for formatted name);
organisation (ORG); address (ADR); telephone (TEL); email address
(EMAIL), and more.

The best way to learn h-card is to make a card. You could head over
to the microformats website, but if you do, you’ll wonder what is so
damned hardboiled about these formats when you see a mass of div
and span elements. What’s so revolutionary about this?

<div class="h-card">
 Andy Clarke

dropadime@Hardboiledwebdesign.com
 United Kingdom
 01745 851848
</div>

142 Hardboiled Web Design

It’s true that on first impression the sheer quantity of attribute values
looks excessive, but those values are important because they enable
our content to be more easily extracted and used by other applications.
Keeping that in mind, let’s go back and review that earlier block of text.
We’ll add class attribute values from h-card to make my details more
meaningful, starting with applying a class of h-card to the paragraph
as it’s the root element of this format:

<p class="h-card">Andy Clarke (<span
class="p-Nickname">Malarkey) is a <span class="p-job-ti-
tle">web designer and wannabe detective based in the <span
class="p-country-name">United Kingdom. He runs a small
agency called Stuff & Nonsense, writes
books and speaks at conferences. If you’d like to hire Andy,
you can e-mail him at <a class="u-email" href="mailto:dropadime@
Hardboiledwebdesign.com">dropadime@Hardboiledwebdesign.com or
call him on 01745 851848.</p>

Remember when you learned that html is the root element of an HTML
document? Microformats need their own root element to tell an appli-
cation that a microformat is present. For h-card, it really is as simple as
adding the class attribute h-card.

Names
Now let’s dig deeper by looking at the values that make up an h-card
and how to structure them. We’ll start by describing a person’s name —
there are two ways we can choose to do this:

1. A full, formatted name of a person or organisation.
2. A structured name containing separate prefixes,

given, middle, family names and suffixes.

143Hardboiled microformats2

Class attributes with prefixes
One significant change between classic microformats and microfor-
mats2 class attribute values is that newer versions are prefixed to help
differentiate microformats from styling hooks. There are five prefixes:

h-* root classnames mark that any element is a microformat;
 for example, h-card.
dt-* parses an element as a date or time.
e-* includes all the HTML within an element.
p-* denotes that an element contains plain text,
 such as Andy Clarke.
u-* signifies an element as a URL, including email and website.

Confusion with namespaces
Attribute naming systems such as BEM20 help to communicate the rela-
tionships between HTML elements by using their class attribute values.
Developer Harry Roberts has been looking to extend these principles
to include namespaces21 that describe the role of an attribute; for exam-
ple, components, objects, utilities and themes. Sadly his
u-utility value conflicts with microformats2’s URL value.

Formatted name
When we present a person’s name as it would appear on a business
card or nameplate on their office door, we can roll up several values
including a prefix, their given name, middle name, family name and
suffix into a single string. To do this, we need only apply a single value
of p-name to an element and we’re done:

Nick Jefferies

20 en.bem.info/method
21 csswizardry.com/2015/03/more-transparent-ui-code-with-namespaces

http://en.bem.info/method
http://csswizardry.com/2015/03/more-transparent-ui-code-with-namespaces

144 Hardboiled Web Design

Structured names
Now we’ll structure a name, separating the parts of that name into
individual elements, the first for a person’s given name, Nick, and the
second for his family name, Jefferies.

Nick
Jefferies

If Nick Jefferies’ business h-card includes an honorific prefix (Mr, Mrs,
Sir, Professor, etc.) or, more likely, his nickname (Sawbuck), we can
include those too:

Mr.
Sawbuck

Mr Nick (Sawbuck) Jefferies’ structured name, with all of its separate
components, now looks like this.

Mr.
Nick
Sawbuck
Jefferies

All that remains for us to do is to enclose Nick’s structured name in
the most appropriate root HTML element — in this case a division,
although it could just as easily be a list, paragraph, section, article or
footer if one of those is more appropriate — and apply the class attrib-
ute value h-card to that:

<div class="h-card">
 Mr.
 Nick
 Sawbuck
 Jefferies
</div>

145Hardboiled microformats2

URLs
Today’s contacts wouldn’t be much use without at least one website
address, so it shouldn’t come as a surprise to find out that h-card
includes a value for one. The most obvious way to add a URL to an
h-card is like this:

http://Hardboiledwebdesign.com

Organisations
Describing the company or organisation that a person works for helps
me to demonstrate the nesting capabilities of h-card. First, we’ll create
an h-card for the individual, Cole Henley. Cole’s card will contain just
his name and URL:

<div class="h-card">
 <a href="http://Hardboiledwebdesign.com" class="p-name
u-url">Cole Henley
</div>

Now we’ll include the name of the organisation that Cole works for
and describe it using the p-org attribute value. Because the organisa-
tion’s a separate entity, we give it its own h-card, nested inside Cole’s:

<div class="h-card">
 <a href="http://Hardboiledwebdesign.com" class="p-name
u-url">Cole Henley
 The No. 1 Detective Agency
</div>

When we need to display an employee’s organisation’s logo, we can
embed an image inside their h-card and apply the class attribute value
of u-logo to that.

146 Hardboiled Web Design

Implied properties in microformats2
Microformats2 are simpler formats than their predecessors because
our use of some properties imply the existence of others. For example,
we could mark up someone’s full, formatted name using p-name and
their website address using u-url:

<div class="h-card">

 Andy Clarke
</div>

However, microformats2 make that pattern simpler and more hard-
boiled by removing the need for the extra parent element. Now we can
simply apply the value of h-card to the anchor and remove both p-name
and u-url because both are implied with h-card:

Andy Clarke

Addresses
Tracked the guy down? Know where he lives or works? Now add that in-
formation to his h-card. We can add values including p-street-address,
p-locality, p-region and p-postal-code:

221b Baker Street,
London,
NW1 6XE,
United Kingdom

At this point you could be wondering, “Why not use an HTML address
element?” Despite what you may infer from its name, address should
only be used for marking up contact information for the author of a
specific page or block of content. address was, rather confusingly, nev-
er designed solely to describe physical addresses. Don’t take my word
for it — here it’s from the horse’s mouth at WHATWG:

147Hardboiled microformats2

The address element represents the contact information for its nearest
article or body element ancestor. […] The address element must not be
used to represent arbitrary addresses (e.g. postal addresses), unless those
addresses are in fact the relevant contact information.”22

Need more than one address?

What if someone has more than one address? Unless you run an agen-
cy from home like I do, you’ll have both a home and a work address.
Not to worry, we can include both addresses in an h-card; and to make
sure it’s clear which p-street-address, p-locality, p-region and
p-postal-code values belong to which h-card, we’ll group them
together inside individual h-adr elements:

<div class="h-adr">
 221b Baker Street,
 London,
 NW1 6XE,
 United Kingdom
</div>
<div class="h-adr">
 8-10 Broadway,
 London,
 SW1H 0BG,
 United Kingdom
</div>

Phone numbers
I still prefer to talk on the phone. I guess that I’m old-fashioned like
that. Lucky for me, then, that including a phone number (or two, or
three) in an h-card is a piece of cake. We simply use the p-tel value:

<div class="p-tel">01745 851848</div>

22 whatwg.org/specs/web-apps/current-work/multipage/sections.html#the-address-element

“

http://whatwg.org/specs/web-apps/current-work/multipage/sections.html#the-address-element

148 Hardboiled Web Design

Most people have more than one number: at home, in their office and,
of course, a mobile. We can add telephone numbers for all of those
using the same format.

Email
You shouldn’t be surprised to learn that to add email addresses to an
h-card we use the u-email value:

<a href="mailto:dropadime@Hardboiledwebdesign.com"
class="u-email">Drop me a dime

Other h-card properties
h-card is an ideal format that helps structure information about a
person or an organisation. Of course, there’s far more to a person or
company than just their name, addresses and how to contact them,
so h-card includes plenty more optional values. Here are some of the
values that I find most useful:

u-photo
Indicates a specific photo, possibly an avatar,
that’s associated with a person’s h-card.

p-note Additional notes included in a person’s h-card.

dt-bday
Their birthday. Mine’s November 20th,
in case you were wondering.

p-job-title A person’s job title.

p-role Their role. It might be different to their job title.

p-sex A person’s biological sex.

p-gender-identity Their gender identity.

Marking up the ‘Get Hardboiled’ authors page
There’s no better way to understand the nuances of h-card than to work
with them. We’ll build a series of h-cards for the ‘Get Hardboiled’ authors
page. Each detective’s business card uses slightly different values.

149Hardboiled microformats2

<div class="h-card">
<h3 class="p-org">
The No. 1 Detective Agency</h3>
Cole
Henley

Esq.

</div>

<div class="h-card">
<h3 class="p-name">
Shades & Staches Detective Agency</h3>
<p class="p-role">Private investigator
extraordinaire</p>
</div>

<h3 class="h-card">
Command F Detective Services</h3>

150 Hardboiled Web Design

<div class="h-card">
<h3 class="p-name">The Fat Man</h3>
<p class="p-role">Private Investigator</p>
<p>$50 a day plus expenses.
By appointment only</p>
<p>Dial: M for Murder</p>
</div>

<div class="h-card">
<h3 class="p-name">Nick Jefferies</h3>
<p>
Private Eye,
WA6-0089
</p>
</div>

<div class="h-card">
<h3 class=“p-name">
Elementary, My Dear Watson</h3>
<p class="p-role">Private Investigator</p>
<p>Don’t call us, we’ll find you</p>
</div>

151Hardboiled microformats2

h-event for publishing events
Think for a moment about the event information that you see around
the web every day. You’ll find details about conferences, sporting
events, concerts and movie screenings. Sometimes event information
appears structured, other times it might appear in natural language.
For example, on my blog I might write, “This November, I’m seeing
Kacey Musgraves in concert at the Albert Hall in Manchester.”

You don’t have to look hard to find event information online, but
the HTML used to mark up this information varies enormously from
site to site. This is how that Kacey Musgraves concert is marked up
on Ticketmaster:

<tr>
 <td class="event">
 <div class="summary"> </div>
 <div class="ratingContainer" title="4.8 out of 5 stars"></div>
 </td>
 <td class="location">Albert Hall Manchester, GB</td>
 <td class="date">Mon 16/11/15 19:00</td>
</tr>

Seetickets published the same event with different HTML:

<div class="browse-width result-text">
 <h3>Kacey Musgraves</h3>
 <p>Albert Hall, Manchester</p>
 <p>at 7:00 PM</p>
</div>

People can easily understand this contains an event, but there’s noth-
ing in that HTML that can help a machine. This makes events a perfect
problem for a microformat to solve.

152 Hardboiled Web Design

A calendar event will most likely contain:

• Name or summary
• Description
• Location
• Start and end dates and times
• URL pointing to the event page or site
• Venue contact information

We’ll build a a single event, starting by specifying the root element
for it using the h-event attribute value. Just as with h-card, we could
keep our events simple and add that attribute to a single element as
p-name and even u-url are implied:

<div class="h-event>The Maltese Falcon</div>

We’ll need a little more information about this showing of The Maltese
Falcon before we have a really useful event, though, so we’ll turn that
division into an article and add the p-name value to its main heading:

<article class="h-event">
<h1 class="p-name">The Maltese Falcon</h1>

</article>

Summary

Next, we’ll add a short summary by applying the p-summary value to
an appropriate HTML element; in our case, it’s a paragraph:

<article class="h-event">
 <h1 class="p-name">The Maltese Falcon</h1>
 <p class="p-summary">A special showing of the remastered
mystery that kicked off the film noir genre of the 1940s…</p>
</article>

153Hardboiled microformats2

If our summary contains more than just a single paragraph, we can
group headings, paragraphs, lists or any other elements inside a divi-
sion or even a section and apply the description to that. We mustn’t
include more than one summary per h-event, though, as that would be
an invalid event.

<section class="p-summary">
 <p>A special showing of the remastered mystery that kicked off
the film noir genre of the 1940s…</p>
 <p>Private detectives Sam Spade and Miles Archer are hired by a
woman to follow a man called Thursby…</p>
</section>

Location

Letting people know where an event will take place involves nothing
more than applying the p-location value to an element, in this case a
text-level span wrapped around the venue’s name:

<p>Showing at
The Scala Cinema and Art Centre</p>

Should we need to provide more information about the venue, per-
haps by including its address, we should create an h-adr element for
the venue and embed it inside our h-event. That h-adr will contain the
same address values we used when made our h-cards.

<div class="p-location h-adr">
 47 High Street
 Prestatyn
 Denbighshire
 Wales
</div>

154 Hardboiled Web Design

URL

If the event has a website, we’ll use the same u-url value as we did
when building an h-card:

The Scala
Cinema website

Start date and duration

Our h-event microformat is almost complete, but it’s still missing
a start date to tell people when to show up. We’ll first mark up the
event’s start time using a time element and a datetime attribute:

<time datetime="2015-11-20 T19:30">Nov. 20th, 2015 at 7:30pm</time>

To make it explicit that this is a start date, we’ll also need to add a
dt-start class attribute value to the time element:

<time datetime="2015-11-20 T19:30" class="dt-start">
November 20th, 2015 at 7:30pm</time>

As our event runs for just one evening and finishes at 10pm, we can
also add that period to our datetime attribute:

<time datetime="2015-11-20 T19:30 P 150M" class="dt-start">
November 20th, 2015 at 7:30pm</time>

Mixing events and contacts

Microformats are designed to be modular and embeddable, so we can
easily include a contact’s h-card in an h-event.

Do you remember earlier when we specified the location of this show-
ing of The Maltese Falcon? We added the p-location value to the name of
the venue:

155Hardboiled microformats2

<p>Showing at
The Scala Cinema and Art Centre</p>

Now would be a good time to add more precise information about the
venue, so we’ll create an h-card and embed it inside our h-event.

<div class="p-location h-card">
 The Scala Cinema and Art Centre
 47 High Street
 Prestatyn
 Denbighshire
 Wales
</div>

h-review for publishing reviews
I hope you’ve enjoyed what you’ve read so far and that you’ll write a
glowing review because h-review is what’s coming next.

If we listen to almost any conversation or read almost any article, we’ll
find people expressing opinions about almost everything. Our brains
are adept at recognising all kinds of reviews wherever we see them:

“Last week I rented the DVD of the 1941 movie The Maltese Falcon starring
Humphrey Bogart as Sam Spade. It remains one of my favourite movies and
I give it a big thumbs up.”

“Movie: The Maltese Falcon. Rating: 10/10”

“I had pretty low expectations of Who Framed Roger Rabbit but I’m giving
it five stars.”

156 Hardboiled Web Design

Computers are less able to recognise the delicate nuances of language.
To them, the information in each of these reviews is nothing more
than a string of characters. h-review addresses this by providing a rich
semantic schema for review content — one that’s built on the lessons
learned from established microformats such as h-card and h-event.

As with the other microformats we’ve learned, an h-review comprises
elements contained within a root element. This time it’s h-review and
we can apply that value to any appropriate HTML element, in this case
an article.

<article class="h-review">
 <h1>The best detective film ever made</h1>
</article>

Writing an h-review will take less time than you might think, because
h-review reuses values you should recognise from both h-card and
h-event. First, we’ll name our review using the p-name value that we’ve
seen in other microformats. It’s worth noting that the name of our
h-review can be different to the name of the item that we’re reviewing.

<article class="h-review">
 <h1 class="p-name">The best detective film ever made</h1>
</article>

Now let’s define the item we’re reviewing. What we include in the
p-item element needn’t only be the name of a business, person, place
or product; we can be creative and include other information related
to the item.

<p class="p-item">Who Framed Roger Rabbit, starring the late Bob
Hoskins as private investigator Eddie Valiant.</p>

157Hardboiled microformats2

Should we need to include more detailed information about the item
– rather than about the review — we can embed h-card when review-
ing a person, h-adr for describing a business’s or venue’s location,
h-product for a product review, and h-item for any other type of item.
These microformats structure information about a specific type of
item. As we’re reviewing a film and not a business or product, we’ll
choose h-item and add that to our p-item element,

<p class="p-item h-item">Who Framed Roger Rabbit, starring the
late Bob Hoskins as private investigator Eddie Valiant.</p>

A review wouldn’t be much use without an opinion and for this we’ll
use the e-description value. If a review is short, apply this to one ele-
ment, perhaps a list or, in this case, a paragraph:

<p class="e-description">How much do I know about show business?
Only that there is no business like it, no business I know.</p>

If the description covers more than one paragraph or includes other
HTML elements, group them all into a containing element and apply
the e-description value to that. As the review is something I’m saying,
using a blockquote seems appropriate:

<blockquote class="e-description">
<p>How much do I know about show business? Only that there is no
business like it, no business I know.</p>
<p>A Classic film has to work on several different levels and ani-
mated action movie Who Framed Roger Rabbit scores on all of them.
It’s a fantastic children’s film with characters like Roger, the
Weasels and Benny the Cab for them to enjoy. It also plays per-
fectly as a detective story for adults. And who will ever forget
Jessica Rabbit?</p>
</blockquote>

158 Hardboiled Web Design

URL

You should be able to guess by now how we’ll include a permanent
URL for the review that we’re writing as we’ve seen it already in both
h-card and h-event. Yes, it’s the u-url value:

Canonical Permalink

Adding a rating

Star ratings are a popular way to indicate a positive or neg^ative
review. They help people see at a glance whether an item’s considered
either good or bad and we’ll find them on thousands or review and
shopping websites. We’ll stick with convention and use stars to create
a scale from zero, the worst rating, to five, the best.

To describe the five stars I’m rating Who Framed Roger Rabbit we’ll use
HTML5’s data element. If you haven’t used data before, it’s simple: data
handles the human readable, visible part of the element — in our case
the rating’s stars — and a value attribute provides that same informa-
tion in a machine readable form:

<data class="p-rating" value="5">★★★★★</data>

If we need to be more specific and show the best and the worst ratings in-
stead of just an average, we can use both p-best and p-worst respectively:

<data class="p-best" value="5">★★★★★</data>
<data class="p-worst" value="0"></data>

Review date

Of course, we should also include a date. This will help other people
judge the relevance of our review and it can be especially important
for hotel and restaurant reviews. We’ll simply reuse the same time
element and datetime attribute that we’ve already seen in h-event and
then add the dt-reviewed value:

159Hardboiled microformats2

<time datetime="2015-11-20 T19:30" class="dt-reviewed">
November 20th, 2015 at 7:30pm</time>

Mixing reviews and contacts

As it’s not essential to know who wrote a review, h-review doesn’t
require us to include a name, but we may choose to add one because a
person’s identity can greatly enhance a review’s credibility. We should
always use h-card to describe a reviewer and we can include as much
contact information as we want, but here we’ll only add the reviewer’s
name using the p-reviewer value together with their h-card:

<a class="p-reviewer h-card"
href="http://stuffandnonsense.co.uk">Andy Clarke

h-entry for news articles, blog posts and podcasts

Next, you’ll learn about h-entry, a microformat that’s been designed
for publishing syndicated content such as news articles, blog posts and
podcasts. h-entry describes a single entry which we can group with
other entries into a collected h-feed. Let’s write an h-entry blog post.

As the microformats community suggests, we should start by using
“the most accurately precise semantic XHTML building block for each
object etc.”23 Here’s our initial HTML, which starts with a heading
followed by a paragraph:

<h1>The Maltese Falcon</h1>
<p>The film stars Humphrey Bogart as private investigator Sam
Spade and Mary Astor as his femme fatale client.</p>

Now that we know how to use an article element for standalone en-
tries like this, we’ll group those elements inside that article:

23 http://microformats.org/wiki/semantic-xhtml-design-principles

http://microformats.org/wiki/semantic-xhtml-design-principles

160 Hardboiled Web Design

<article>
 <h1>The Maltese Falcon</h1>
 <p>The film stars Humphrey Bogart as private investigator Sam
Spade and Mary Astor as his femme fatale client.</p>
</article>

To turn an article into an h-entry, we’ll add a class attribute value of
h-entry as this is the root element for each individual entry:

<article class="h-entry">
 <h1>The Maltese Falcon</h1>
 <p>The film stars Humphrey Bogart as private investigator Sam
Spade and Mary Astor as his femme fatale client.</p>
</article>

Some properties of h-entry are implied — including p-name for the title
of the article, post or podcast — and while every property is optional,
it’s best to include certain properties such as the publication date and
the name of the author in every entry. The values for those properties
should be very familiar to you by now. Let’s first apply an explicit
p-name value to our main heading:

<h1 class="p-name">The Maltese Falcon</h1>

When we need to say explicitly that a date or time refer to an article
publication date, we use the h-entry dt-published value:

<time datetime="2015-11-20 T19:30" class="dt-published">
November 20th, 2015 at 7:30pm</time>

If an h-entry is updated after the published date, we should change the
dt-published value to one of dt-updated:

<time datetime="2015-11-20 T21:30" class="dt-updated">
November 20th, 2015 at 9:30pm</time>

161Hardboiled microformats2

Our final value to add to an h-entry entry is its author. You should be
familiar with h-cards by now, so here we’ll combine the h-card value
with that of p-author:

<address class="h-card p-author">
Andy Clarke
</address>

There’s no need for either p-name or u-url values here as these are
implied by h-card.

But wait. W… wh… what’s with that address element?

As mentioned earlier, the address element wasn’t intended to describe
physical addresses but it is absolutely the right element to use for an
author’s contact information. Because we’re adding a link to this au-
thor’s website we should define the relationship to that page as one of
author using an HTML link relationship:

<address class="h-card p-author">
Andy Clarke
</address>

Some authors often like to split blog entries across more than one
page; for example, we might have summaries on our home page or in
our archives, then present the full entry on its own page. h-entry can
define a short segment of an article as a summary using p-summary.

For our example, here we’ll use the first paragraph:

<p class="p-summary">The film stars Humphrey Bogart as private in-
vestigator Sam Spade and Mary Astor as his femme fatale client.</p>

162 Hardboiled Web Design

For a longer summary — one that consists of several elements — group
them together in a section and then apply p-summary to that:

<section class="p-summary">
 <p>The film stars Humphrey Bogart as private investigator Sam
 Spade and Mary Astor as his femme fatale client.</p>
 <p>The story follows a San Francisco private detective and his
 dealings with three unscrupulous adventurers, all of whom are
 competing to obtain a jewel-encrusted falcon statuette.</p>
</section>

When a p-summary appears on a different page, it’s important to include
a permanent link to the full article. To make it clear that the link des-
tination is related to the p-summary, add a rel attribute with a value of
bookmark:

Permalink

Today, its common for people to republish their content in several
places. For example, you might publish an entry on your blog, but also
on Medium to possibly gain a wider audience. When you link to a copy
of your entry elsewhere, it’s important to mark that link as syndicated
content using the u-syndication value:

Also published on Medium

163Hardboiled microformats2

Managing multiple h-entry instances

So far, we’ve been working with a single h-entry, but many websites
have lists of related articles on their home and archives pages. These
entries combined are known as an h-feed. To assemble a feed, all we
need is an an appropriate parent element and for this we’ll use a
section. As a section should make sense when taken out of the
context of a page, we’ll also give it a descriptive heading:

<section class="h-feed">
 <h1>Hardboiled archives</h1>
 <article class="h-entry"> […] </article>
 <article class="h-entry"> […] </article>
 <article class="h-entry"> […] </article>
</section>

Breaking it up
Microformats supercharge the meaning of your HTML and give it
some often desperately needed structure. For web designers and devel-
opers, microformats offer a way to break away from the presentational
ways we have written HTML in the past, and to liberate our docu-
ments by making them more flexible, adaptable and hardboiled.

164 Hardboiled Web Design

WAI-ARIA roles
You’ve already learned how html elements and
microformats have brought markup into the web appli-
cation age. You might not have heard that there’s another
specification that has different but complementary goals.
That specification is WAI-ARIA, the Accessible Rich Inter-
net Applications suite.24

WAI-ARIA aims to make web content easier to use by people who use
assistive technologies and it includes:

• Roles for widgets such as a navigation menus, sliders and
progress meters.

• Properties that define dynamically updated sections of a page.
• Ways to enable keyboard navigation.
• Roles to describe the structure of a page, including

headings, regions, and tables (grids).

All this sounds great, but what makes WAI-ARIA hardboiled? As well
as providing valuable help to people who rely on assistive technolo-
gies, web designers and developers can use WAI-ARIA roles to help us
reduce our reliance on presentational id and class attributes. After
all, why would we add a class of banner to an HTML element just for
the purpose of styling, when we can do away with the class altogeth-
er and use a CSS attribute selector to bind styles to a WAI-ARIA role?

24 w3.org/TR/wai-aria

No. 9

http://w3.org/TR/wai-aria

165WAI-ARIA roles

WAI-ARIA landmark roles
WAI-ARIA includes a set of navigation landmark roles, which help
people with disabilities identify common sections of a page or web
application and navigate around them using assistive technologies.
These roles can be used in combination with HTML elements to
maximise their semantics.

We’ll be covering several specific WAI-ARIA roles that offer us the
opportunity to hard boil our HTML and CSS by making it less neces-
sary to pack our markup with class and id attributes. These WAI-AR-
IA roles include banner, complementary, contentinfo, main, navigation
and search.

To add a WAI-ARIA role, we simply apply the role attribute to any
appropriate element. For example, when we’re marking up a branding
area or masthead, apply a role of banner.

Banner role
In HTML, the header element can be used for a branding or masthead
area, and it often appears at the top of a page. The WAI-ARIA banner
role helps people who use assistive technologies recognise this
particular header and distinguish it from others on the page:

<header role="banner">
<h1>It’s Hardboiled</h1>
</header>

But unlike a plain HTML header element — which can be used as many
times as we need inside multiple section and article elements — we
must use a header with the role of banner only once.

166 Hardboiled Web Design

Complementary role
The WAI-ARIA complementary role is similar in function to the HTML
aside element. It delineates content that is somehow related to and
supports other content, although it doesn’t have to be either contained
by or visually linked to that content. If we‘re writing an article about the
hardboiled author Mickey Spillane, we could apply the complementary
role to an aside about his famous book My Gun Is Quick.

<aside role="complementary">
 <h2>My Gun Is Quick</h2>
 <p>Mickey Spillane’s second novel featuring private
 investigator Mike Hammer.</p>
</aside>

Contentinfo role
WAI-ARIA defines the contentinfo role as a “perceivable region that
contains information about the parent document.”25 Does that sound
like a HTML footer to you? Me too. Let’s continue developing our ‘Get
Hardboiled’ archives page by adding the contentinfo role to the main
page footer.

<footer role="contentinfo">
 <h3>It’s Hardboiled</h3>
 <p>Hardboiled Web Design, designed by Andy Clarke.</p>
</footer>

Just like the banner role and unlike HTML’s plain footer element, we
must only use a footer with the role of contentinfo once on each page.

25 w3.org/TR/wai-aria/roles#contentinfo

http://w3.org/TR/wai-aria/roles#contentinfo

167WAI-ARIA roles

Main role
Skip-to-content links form one of the most commonly used web
accessibility techniques, intended to help people who rely on assistive
technologies to skip past repetitive blocks of navigation. WAI-ARIA’s
main role aims to eliminate the need for skip links because it helps
assistive technology users navigate straight to a page’s main content.

Where we apply the main role depends entirely on our content, and on
the ‘Get Hardboiled’ archives page we’re developing, we might choose
to add it to a section that contains the latest, most important news.

<section id="content_ _uk"> […] </section>
<section id="content_ _usa" role="main"> […] </section>
<section id="content_ _world"> […] </section>

If we’re developing a page that contains just one story, we should add
the main role to an article element.

<article role="main">
 <header>

<h1>Mickey Spillane</h1>
 </header>
 <p>Frank Morrison Spillane, better known as Mickey Spillane,
was an author of crime novels, many featuring his detective char-
acter Mike Hammer. More than 225 million copies of his books have
been sold internationally, including my personal favourite, ‘My
Gun Is Quick’.</p>
</article>

168 Hardboiled Web Design

Navigation role
WAI-ARIA’s navigation role is similar in function to HTML’s nav
element as it’s intended to describe the major navigation blocks in a
page or web application. We’ll apply the role even though navigation
and nav serve the same purpose to give the widest possible support.

<nav role="navigation">

What’s Hardboiled?
Archives
Authors
Classics

</nav>

Search role
On many sites, searching is the primary way people navigate to con-
tent. In HTML, it’s therefore perfectly acceptable to embed a search
form inside a nav element, but the same isn’t true of an element given
WAI-ARIA’s navigation role. Why? Because WAI-ARIA includes its own
dedicated role for search.

WAI-ARIA’s search role describes a complete search interface —
including labels, inputs, buttons and other HTML elements. In the
past, when we wanted to style a search form, we gave it a unique id
or perhaps a class attribute. Now we can stop adding presentational
attributes and use WAI-ARIA’s search role and a CSS attribute selector
instead:

169WAI-ARIA roles

<form method="post" action="search.html" role="search">
 <fieldset>
 <input type="search" title="Search this site">
 <button type="submit">Go</button>
 </fieldset>
</form>

Breaking it up
Accessibility matters, not only to those people who rely on our work
being readily available through screen readers and other assistive
technologies, but for the integrity of the work that we make. WAI-ARIA
roles are just one of the ways that we can help improve accessibility.

But there’s more to them than that. Like microformats, WAI-ARIA roles
in HTML allow us to reduce our reliance on presentational elements
and attributes, setting our markup free and untying it from a single
design. By binding CSS styles to WAI-ARIA roles instead of attributes
which serve only a visual design, our documents become more flexible
and better equipped to render in the many different browsers and
devices that people now use to access our websites and applications.

In Hardboiled CSS, you’ll learn about

flexible box layout — a new foun-

dation for responsive layouts — web

fonts for better type and typography,

how to layer colour with RGBa and

how to use opacity. You’ll discover

how use multiple background images

and how to make borders rounded

and full of images. You’ll wind up

knowing how to replace many imag-

es with CSS gradients to make your

designs lighter and more responsive.

All the while you’ll be making your

design look fabulous across respon-

sive breakpoints and that’s where

we’ll start, with CSS media queries.

HARDBOILED CSS

172 Hardboiled Web Design

Hardboiled foundations
It seems incredible now, looking back, but I chose to
end the first edition of Hardboiled Web Design with a chapter
that included CSS media queries and I didn’t mention them
anywhere else in that book. The example sites that I chose
to illustrate media queries were the personal sites of well-
known web designers because at that time designers and
developers were still coming to terms with the challenges
of responsive web design and there were few, if any, high-
profile commercial examples.

It seems fitting that what was the final chapter in the the last edition
is the first technical chapter in this one, because today our industry,
what we make and how we make it are very different indeed. So much
so, that there’s very little we can do without working with the tools and
technologies that we’ll cover in this chapter.

CSS media queries
CSS2 introduced media types that gave us the ability to specify dif-
ferent styles — and even entirely different style sheets — based on a
type of device. In the example below, the styles in screen.css will only
be applied on screen, while a printer will use styles from the print.css
style sheet.

Serving alternative style sheets to screens and printers is as simple as
adding a media attribute:

<link rel="stylesheet" media="screen" href="screen.css">
<link rel="stylesheet" media="print" href="print.css">

No. 10

HARDBOILED
CSS

173Hardboiled foundations

CSS3 media queries then made it possible for us to define precisely
which styles get applied under which circumstances. They work by
querying a device’s features including its:

aspect-ratio color device-aspect-ratio device-height

device-width height monochrome max-width

max-height orientation resolution width

A media query combines a media type, such as a screen or printer, with
a device or screen attribute, such as its size or shape or characteristics.
This combination of two or more queries enable us to serve style decla-
rations to devices or screens which match those queries.

Linking media queries

We can use media queries in two ways, the first by linking to an exter-
nal style sheet that contains styles that suit that particular query; for
example, smaller, medium and larger screens. We’ll include our query
in the link element and serve styles to screens with a minimum width
of 48rem.

Using this method we might choose to serve styles for all browsers
in our first style sheet, then follow that with other media queries and
style sheets:

<link rel="stylesheet" media="screen and (min-width: 48rem)"
href="medium.css">
<link rel="stylesheet" media="screen and (min-width: 64rem)"
href="large.css">

This might seem at first like a sensible method for keeping styles for
different media queries separate — but beware. A browser will down-
load every style sheet linked to every media query — even when it
doesn’t apply its styles — slowing down the performance of a website
or application.

HARDBOILED
CSS

174 Hardboiled Web Design

Embedding queries
We might also embed media queries and styles into an external style
sheet using the @media at-rule. This increases the size of an individual
style sheet but it also reduces the number of requests that a browser
makes to a server, which also has a positive impact on performance.
In this next example we’ll move a figure element’s caption to the top
using display:flex and flex-direction:row-reverse only when a
browser is more than 48rem wide:

@media (min-width: 48rem) {
.figure--horizontal-reverse {
display : flex;
flex-direction : row-reverse; }
}

In addition to changing page layouts, we can use media queries to enhance
the look of individual page elements across responsive breakpoints.

175Hardboiled foundations

It’s possible to choose any minimum or maximum width, or even
height, for our media queries, and we can use units from other parts of
CSS in those queries too, including px, em and rem. But how should we
choose at which point to break to a new set of styles?

Starting with common styles
It’s important for the performance of our websites and applications —
as well as for our own sanity — that we don’t write styles more often
than we need to. There’s little point in writing the same style decla-
ration several times across several style sheets or media queries, so
instead we should layer styles progressively, starting from the smallest
breakpoint, which is in fact no breakpoint at all.

Styling the colour, typography and texture of elements
before applying layout is one of foundation principles
of a small screen, content first approach to responsive
web design.

176 Hardboiled Web Design

The styles we create when we design a website’s atmosphere will stay
pretty much the same across all responsive breakpoints. Sure, we’ll no
doubt change our font sizes and leading, but the typefaces we chose
for the smallest screens will almost certainly be the same for the larg-
est. The padding within our buttons and form elements may vary, but
their basic styles will stay exactly the same.

Before we add our first media query we should organise the styles that
form the atmosphere of our design. How we organise our style sheets
is often a very personal choice. I organise mine into six groups of ele-
ments whose styles transcend breakpoints:

Organising styles this way makes it simpler to identify and style ele-
ments across breakpoints as a design demands. While we will probably
later make a myriad of changes throughout our breakpoints, this small
screen first approach means we’re building on top of core styles only
when needed, resulting in simpler and more maintainable style sheets.

Choosing breakpoints
When designers and developers first started to come to terms with
responsive web design, it was commonplace to find us defining
breakpoints at the precise widths of specific devices, most commonly
iPhone, then iPad and finally every other screen wider than that.

1. Reset or normalise
2. Site-wide page styles
3. Typography
4. Form elements
5. Tables
6. Images

177Hardboiled foundations

We shouldn’t blame ourselves for thinking that way, as often our
bosses or clients asked us to design an “iPhone or iPad version” of our
websites or applications. As the number of devices and screen sizes
grew, this approach not only became impractical, it was undesirable.

As our knowledge of how to design responsively has developed, defining
breakpoints more generally to suit the look of our content rather than
device sizes has become more common. Choosing breakpoints like this
isn’t always easy and it demands that we think differently about the ways
we approach implementing our designs. Ultimately, though, it will make
our designs more adaptable.1

Let’s use this example of a layout that’s divided into columns using
CSS multicolumn layout. You’ll learn about implementing these col-
umns in a short while.

If we’re following a device-specific approach, we might base our deci-
sion on the number of columns on the width of a device; for example,
an iPhone 6s in landscape orientation:

@media only screen
and (max-device-width : 41.6875rem) {
section {
column-count : 2; }
}

Rather than tie our design to a specific screen size, we should use our
knowledge of typography to decide the number of columns based on
the readability of the measure. Too few words per line and the reading
experience will be awkward; too many and it will be difficult.

1 BreakpointTester is a Chrome plugin to test a sites responsiveness at various screen sizes,
helping us to choose breakpoints based on content rather than devices:
smashed.by/breakpointtester

http://smashed.by/breakpointtester

178 Hardboiled Web Design

There are no hard and fast rules for when to add breakpoints and we should
create them at widths that make sense for the content that we’re styling.

Knowing our font size, we can count the number of characters per line
and then add columns to produce a layout that’s optimised for reading:

@media only screen
and (min-width: 48rem) {
section {
column-count : 2; }
}

@media only screen
and (min-width: 76.250rem) {
section {
column-count : 3; }
}

I know from my own experience that shifting my approach to choos-
ing breakpoints away from device types and towards content-based
media queries has been more difficult than I imagined. I’d been think-
ing about my designs in terms of a canvas, as well as its contents, for
too many years for my old habits to die easily. It’s helped me to use a
transitional approach, one that includes general, major breakpoints as
well as content-based, adjustment breakpoints.

179Hardboiled foundations

Transitioning breakpoints
Brad Frost wrote that:

“ Every time you see 320px, 480px, 768px, 1024px used as breakpoint values, a
 kitten gets its head bitten off by an angel…or something like that.2

I’m no fan of kittens and I’m certainly no angel, but while I agree
with Brad that we shouldn’t base our breakpoints on particular pixel
dimensions, a more general range of widths in combination with
content-based queries is not a bad approach. In fact, it’s one I now use
every day.

Distinctions between screen sizes on larger smartphones and smaller
tablets have blurred, as have those between larger tablets and smaller
PCs. There’s very little difference today between designing a layout
for an iPhone 6s in its landscape orientation or an iPad mini.

There are now so many device types and screen
sizes that attempting to make styles for all of them
is pointless. Instead we should attempt to make
designs that are size agnostic.

2 bradfrost.com/blog/post/7-habits-of-highly-effective-media-queries/

http://bradfrost.com/blog/post/7-habits-of-highly-effective-media-queries/

180 Hardboiled Web Design

Instead of using pixel units based on the size of screens, we can sub-
stitute them for em and rem units for more flexible media queries.
As these units are based on the size of our text, our layouts will
change at breakpoints that are related to the size of our content.
When someone uses their browser controls to zoom our content,
our layout will adapt accordingly and they will see a layout that’s
appropriate to their zoom factor.

We can group classes of screen sizes together to form major break-
points at which significant aspects of our design, in particular its
layout, could change. These major breakpoint sizes are from the
toolkit we’ve developed for our projects at Stuff & Nonsense:

/* 768px/16px (base font size) = 48rem */
@media (min-width: 48rem) {
[…]
}

/* 1024px/16px (base font size) = 64em */
@media (min-width: 64em) {
[…]
}

/* 1220px/16px (base font size) = 76.25em */
@media (min-width: 76.25em) {
[…]
}

/* 1400px/16px (base font size) = 87.5em */
@media (min-width: 87.5em) {
[…]
}

Styles within these breakpoints build on each other as screen
width increases.

181Hardboiled foundations

Using major and adjustment breakpoints
Even if we adopt a content-based approach to choosing breakpoints,
many of the biggest changes to our design will occur at major break-
points. We might move navigation from the bottom of a page to the top
using flexbox. We may need to implement a sidebar when screen width
allows, or change the number of columns in our content from two to
three. But not every change will happen at these major breakpoints.

Perhaps we’d like to divide an unordered list of items into two columns
to maximise its use of space. Perhaps we need to change the padding
on a group of buttons, to prevent them from wrapping onto two lines
instead of one. Sometimes we need to change the look of elements at
breakpoints that are different from the major ones we chose earlier.
That shouldn’t be a problem — in fact, that attention to detail is really
what responsive web design is all about.

The arrangement of elements into different
layouts happens at major breakpoints, but
it’s thoughtful attention to detail at minor
breakpoints that can turn an average design
into a special one.

182 Hardboiled Web Design

Even though styles at our first major breakpoint won’t be applied
until a screen is 48rem wide, we should still ensure that our group of
buttons looks its best.

/* Minor breakpoint */
@media (min-width: 30rem) {
.btn {
padding : 1rem 1rem .75rem; }
}

/* Major breakpoint */
@media (min-width: 48rem) {
.btn {
padding : 1.25rem 1.25rem 1rem; }
}

Jeremy Keith — who has a knack for coming up with useful and
witty ways to describe what are often dry, technical subjects — calls
these minor breakpoints tweakpoints:

“ It feels a bit odd to call them breakpoints, as though the layout would
“break” without them. Those media queries are there to tweak the layout.
They’re not breakpoints; they’re tweakpoints.3

Dealing with specific issues
With the possible exception of BlackBerry’s square-shaped Passport
smartphones, every smartphone and tablet I’ve ever seen has two
orientations: portrait, where its height is greater than its width; and
landscape, where the reverse is true.

3 adactio.com/journal/6044

http://adactio.com/journal/6044

183Hardboiled foundations

Orientation queries
While we should always strive for screen independence, there may be
occasions where we might need to style elements differently based on
a device’s orientation and not just its viewport width.

Who said that a figure’s caption must always go below an image? A change that’s
unexpected can surprise and delight someone using our websites and applications,
so dare to be different.

In that example, we’ll place a figure element’s caption above its image
when a device is held in portrait orientation:

@media (orientation:portrait) {
.figure {
display : flex;
flex-direction : row-reverse; }
}

184 Hardboiled Web Design

Now, to make the best use of a device’s landscape screen, we’ll change
the layout of that figure’s elements by placing the image on the left and
the smaller figcaption on the right.

Making the most of available space is important on smaller screens and media
queries are a useful tool for adapting designs to suit landscape orientation screens.

To make the design of this figure even more interesting, we’ll align
both image and caption to the bottom of the figure:

@media (orientation:landscape) {
.figure {
display : flex;
align-items : flex-end; }
img {
flex : 2 0 360px; }
figcaption {
flex : 1; }
}

185Hardboiled foundations

Regardless of whether the device we’re holding is a smaller smart-
phone or a medium-sized tablet, this figure’s layout will change
between those two orientations.

Aspect ratio queries
Should a project make it necessary to style elements differently
depending on a screen’s aspect ratio, there are two queries that can
help us, aspect-ratio and device-aspect-ratio.

The aspect-ratio relates to the ratio of height to width of a browser’s
window and styles within a query will only apply at that precise size.
Should someone resize their browser’s window and the aspect ratio
change, those styles will no longer apply. The device-aspect-ratio
refers to the fixed aspect ratio of a device itself.

Aspect ratios are rep re sented by two num bers separated by a colon.
Two of the most commonly used ratios are 4:3 and 16:9, where the first
number represents the horizontal and the second the vertical. In CSS
these numbers are separated not by a colon but by a slash.

In our next example we’ll change this list of books by detective fiction
writer Dashiell Hammett, so that their layout suits first 4:3:

@media (device-aspect-ratio: 4/3) {
[…]
}

186 Hardboiled Web Design

The iPad’s 4:3 ratio suits its larger form factor, whereas
the iPhone’s 16:9 suites its smaller size better.

Then a wider format 16:9 device-aspect-ratio:

@media (device-aspect-ratio: 16/9) {
[…]
}

While it’s unlikely that you’ll use these aspect-ratio queries in the
majority of your projects, they’re incredibly useful for fine-tuning the
layout of your designs for different sizes and types of screens. After all,
that is what responsive web design is really about.

Height-based queries
So far, most of the media queries we’ve looked at have used width of
some kind as their most important factor, but a device’s or screen’s
height can also play an important factor in our decisions about layout.
We can’t always assume that people reading our content or using the
functionality on our sites will have a screen that’s tall enough to make
doing that comfortable.

187Hardboiled foundations

Apple’s 11″ MacBook Air laptop is a wonderfully portable computer, but
its screen height is short enough to make our designs look awkward.
Fortunately, there are several queries that can help us: height,
min-height and max-height; and device-height, min-device-height
and max-device-height.

For this device and those like it with vertically challenged screens, we
could reduce the vertical spacing between and within elements; for
example, a design’s overall line height, and top and bottom padding
within banners and navigation:

p {
line-height : 1.5; }
[role="banner"],
[role="navigation"] {
margin-top : 1.5rem; }
@media (device-height: 56.25rem) {

p {
line-height : 1.4; }
[role="banner"],
[role="navigation"] {
margin-top : 1.3rem; }
}

Small adjustments like this can make an enormous difference to a
person’s experience of using a site or application when their device
has a shorter screen.

Combining queries
We might need to target those people who use Apple’s 11″ MacBook
Air even more precisely by combining two or more media queries.
We do this by including and, only and not operators between our
queries, like this:

188 Hardboiled Web Design

@media screen
and (min-width: 48rem) {
[…]
}

Styles within these declarations will only apply when a device has a
screen that’s wider than 48rem. Printers that have that same width
won’t apply those styles.

In this next example, styles will be applied when a device is only a
screen with a device-height above 900px:

@media only screen
and (min-device-height: 56.25rem) {
[…]
}

This way we can be extremely precise to combine type,
min-device-height and device-aspect-ratio media queries that will
match that 11″ MacBook Air laptop:

@media only screen
and (min-device-height: 56.25rem)
and (device-aspect-ratio: 16/10) {
[…]
}

So far, these combinations have all resulted in a single query, and
styles will only be applied when all of the queries return true. If we
should ever need to make two queries, perhaps to match the different
possible screen resolutions of that 11″ MacBook Air, we can make a
comma-separated list of media queries which will return true if any of
the media queries returns true:

189Hardboiled foundations

@media only screen
and (min-device-height: 56.25rem)
and (device-aspect-ratio: 16/10),

screen
and (min-device-height: 37.5rem)
and (device-aspect-ratio: 4/3) {
[…]
}

You spin me right round, baby, right round
When we first began to make responsive web designs, it was common-
place to target specific devices — in particular iPhone and iPad — now
that people use an ever increasing number of device types and screen
sizes to look at our work, it makes little sense today.

However, there can be situations when we may need to serve styles
to a specific device type, perhaps if we’re styling an application that’s
used by people who use an iPad Pro in landscape orientation. Target-
ing specific devices involves combining two or more queries to form
one long conditional query, so to target that landscape iPad Pro screen
we’ll group both min-device-width and max-device-width queries, an orien-
tation query and one that filters out low-resolution screens:

@media only screen
and (min-device-width: 96rem)
and (max-device-width: 128rem)
and (orientation: landscape)
and (-webkit-min-device-pixel-ratio: 2) {
}

4 responsivedesign.is/podcasts
5 responsivedesign.is/articles/why-you-dont-need-device-specific-breakpoints

Justin Avery,
host of the
Responsive
Design Podcast4,
has written
about why we
should neither
need nor use
device-specific
media queries:5

http://responsivedesign.is/podcasts
http://responsivedesign.is/articles/why-you-dont-need-device-specific-breakpoints

190 Hardboiled Web Design

Proportional leading with
media queries
Responsive website designs often cry out for fine control over
typography. One of the most effective ways to improve readability
is to adjust text size and leading (line-height) in relation to the
width of the measure (text-column width).

For our work for WWF, we
increased the leading of
paragraph and other text
when screen sizes become
wider, here demonstrated
on iPhone in portrait and
landscape orientation and
iPad.

191Hardboiled foundations

As a general rule of thumb, leading should increase as the measure
increases. This helps our eyes follow where one line ends and the next
begins. Media queries allow us to precisely control leading, using a
query of the window’s or device’s width and descendant CSS selectors.
In this example we’ll set line-height to 1.4 for the smallest of screens
and the narrowest of columns:

p {
line-height : 1.4; }

As the screen width and columns become wider, leading should be
increased. By how much will depend on the font size we’ve chosen and
the typeface itself. We’ll increase the line height in increments, start-
ing with a minimum width of 48rem and a line height of 1.5:

@media (min-width: 48rem) {
p {
line-height : 1.5; }
}

Finally, we’ll set line height to 1.6 when the minimum window width
is 64rem:

@media (min-width: 64rem) {
p {
line-height : 1.6; }
}

As the measure becomes wider, the more open the leading will become.
The narrower the measure, the tighter the leading, improving readabil-
ity and a person’s overall experience of our design.

192 Hardboiled Web Design

Feature queries
Media queries use the @media at-rule, but they’re not the only condi-
tional rules in CSS that use an at-rule. Whereas media queries test for
media characteristics and then apply media-specific styles, feature
queries use their own @supports at-rule to apply styles when a browser
supports certain CSS declarations.

In this first example, we’ll reduce the font-size of a figcaption when a
browser supports display:flex. This will help make the caption more
readable in the smaller width that we might apply to it.

@supports (display:flex) {
.figure--horizontal figcaption {
display : flex; }
}

Look closely at that example and you might notice that the query isn’t
simply testing for support of the display property, but for a property/
value pair that includes both display and flex. In practice this means
we’re able to be precise about the support we’re testing for. For example,
we might want to apply CSS multicolumn layout styles when we know
a browser supports the column-span:all; declaration. This declaration
isn’t yet supported in Firefox, making multicolumn layout less useful.

@supports (column-span:all) {
section {
column-count : 2; }
}

Unlike when we build media queries, it’s best practice when using
feature queries to provide two alternative sets of styles, depending
on whether a browser supports a CSS declaration or not.

6 davidwalsh.name/css-supports

If you want to
dive deep into
@supports
feature queries,
David Walsh’s
article is a
terrific place
to jump to.6

http://davidwalsh.name/css-supports

193Hardboiled foundations

We do this using the not operator. Let‘s apply that best practice to our
CSS multicolumn layout example and add padding to reduce the meas-
ure when a browser like Firefox doesn’t yet support column-span:all:

@supports (column-span:all) {
section {
column-count : 2; }
}

@supports not (column-span:all) {
section {
padding : 0 4rem; }
}

All browsers that support column-span:all will render those two columns, but
browsers like Firefox that don’t will adding padding to the section instead.

As well as simple feature queries like this, we’re able to apply styles
only when a browser passes two or more @supports tests. This can be
particularly useful for targeting browsers that support both the native
and vendor-specific prefixed version of a property. We can do this
using the or operator:

194 Hardboiled Web Design

@supports (column-count:2)
or (-webkit-column-count:2) {
section {
column-count : 2; }
}

We might also use the and operator to ensure that a browser
supports two or more declarations. Using Firefox’s lack of support
for column-span:all as an example again, we can write a feature
query that applies style to a section when a browser supports both
column-count:2 and column-span:all declarations:

@supports (column-count:2)
and (column-span:all) {
section {
column-count : 2; }
}

Supporting browsers
Microsoft’s Edge browser is its first to implement CSS feature queries
and Edge completes the line-up of all contemporary desktop and mo-
bile browsers that have implemented the @supports at-rule. Unless you
demand that styles contained within feature queries be visible to older
versions of Microsoft’s Internet Explorer, there are no reasons to avoid
using @supports.

Modernizr
As I was planning the first edition of Hardboiled Web Design, an email
landed in my inbox asking if I’d like to try an as yet unreleased JavaScript
feature detection library. I couldn’t have imagined that Modernizr would
be so important that it would become the foundation that underpinned
the entire concept of hardboiled web design in that first book.

195Hardboiled foundations

While the technologies in Modernizr have changed almost beyond
recognition as the library has been developed, its principles and
how we use it have stayed very much the same. Modernizr is a light-
weight JavaScript library and it detects HTML and CSS features that
are supported by a browser. When a page loads, Modernizr runs its
feature tests and adds class attribute values to the html element based
on its results. These are the feature tests that I commonly configure
Modernizr to perform.

Background Blend Mode Flexbox

Border Image Gradients

Calc Shapes

Columns Supports

Filters Vw and vh units

We can take advantage of those classes and apply different styles to
browsers that either do or don’t support the property tested.

Is Modernizr still relevant?
That’s a good question. When Modernizr was released and the first
edition of Hardboiled Web Design was published a few months later,
browser support for many new CSS properties was patchy at best.
There was still a significant gap between the best and worst perform-
ing browsers, and Modernizr was an essential tool for either dividing
style sheets into blocks of support or no support, or for progressively
enhancing elements using more specific selectors, like this:

section {
padding : 0 4rem; }

.csscolumns section {
padding : 0;
column-count : 2; }

196 Hardboiled Web Design

Today that gap has closed so much that almost all current desktop and
mobile browsers offer similar levels of support for most CSS prop-
erties. So much so that whereas five years ago I used Modernizr on
every website I made, my use of it is now much more targeted. Today I
use Modernizr to test for very specific CSS technologies, in particular
columns and flexbox, plus its detection of SVG. For those purposes,
Modernizr is still incredibly relevant and remains a very powerful
tool when put to the right jobs.

Using Modernizr
We don’t need to carry a gun to be a hardboiled web designer. We
won’t be bumping anyone off, unless our clients start being bunnies.
What we do need is a pocketful of tools to make hardboiled web design
practical and Modernizr is exactly the right type of tool.

On the Modernizr website, choose between a larger development
version of the script, or a customised version that includes only the
features we’re testing for. With performance so critical today, we
shouldn’t use the development version on a live website. When we’ve
configured the appropriate build, download the script and link to it in
a document.

<script src=”js/modernizr.js”></script>

Keeping one principle of progressive enhancement in mind — that
when using any script it’s important to consider instances when Java-
Script might not be available — add the class no-js to the html element
to ensure basic styling for non-JavaScript enabled browsers and to
enable Modernizr’s functionality:

<html class="no-js">
</html>

197Hardboiled foundations

When Modernizr runs, it replaces no-js with js and allows us to know
when JavaScript is enabled. Modernizr helps us to grade browsers, not
by sniffing their user-agent strings but by adding class attribute values
to the html element based on its tests.

<html class="js backgroundblendmode borderimage csscalc csscol-
umns cssfilters flexbox flexboxlegacy flexboxtweener cssgradients
shapes cssvhunit cssvmaxunit cssvminunit cssvwunit">

When a browser lacks support for a property or feature, Modernizr
adds a no- prefix to each class.

<html class="js no-backgroundblendmode no-borderimage no-csscalc
no-csscolumns no-cssfilters no-flexbox no-flexboxlegacy no-flex-
boxtweener no-cssgradients no-shapes no-cssvhunit no-cssvmaxunit
no-cssvminunit no-cssvwunit">

With these attribute values, we can take advantage of support for CSS
properties in browsers that support them and decide how to tailor a
design for browsers that don’t.

Take this example of multiple background images. We might start
by declaring basic styles that are understood by even the least
capable browsers, in this case a single background image applied
to a section element:

section {
background : url(section.png) no-repeat 50% 0; }

When Modernizr detects that a browser is capable of rendering more
than one background image on a single element, we can serve multiple
background images via a more specific descendant selector:

198 Hardboiled Web Design

.multiplebgs section {
background-image : url(section-left.png), url(section-right.png);
background-repeat : no-repeat, no-repeat;
background-position : 0 0, 100% 0; }

The aim of Modernizr isn’t to bolt on property support to browsers
that don’t natively support them. It doesn’t attempt to make designs
look the same in all browsers. Instead, Modernizr’s feature detection
makes it possible to serve different designs based on the results of its
tests. This means Modernizr is still an essential part of a web profes-
sional’s toolkit.

Breaking it up
With new device types and screen sizes becoming available all the
time, the one-size-fits-all approach to web design we clung to for so
long now seems like a distant memory. It’s essential that the designs
we create are responsive to the different ways users access our con-
tent. CSS3 media queries have been implemented in every contempo-
rary browser, so our decision is no longer whether to use them, but
how best to use them so that they meet the needs of our designs and
the people who use them.

199Flexible box layout

Flexible box layout
When i learned how to use css to create page layouts, the
most influential tutorials of the day — Rob Chandanais’ Blue
Robot Layout Reservoir,* Eric Costello’s CSS Layout Tech-
niques7 and others — taught CSS positioning.

It’s hard to imagine today how revolutionary the techniques they
taught were, and although fully positioned layouts were often fraught
with problems, they gave us a glimpse of what could be possible using
CSS. It wasn’t long before positioning techniques gave way to the float
as our preferred property and for over fifteen years countless websites
have used floats to underpin their layouts.

*The Blue Robot Layout Reservoir was one of the most important sites in web layout
history and I can’t tell you how sad I am that it’s no longer online except via the
Internet Archive Wayback Machine.

7 http://glish.com/css

No. 11

http://glish.com/css

200 Hardboiled Web Design

Anyone who has struggled with a float-based layout will know that
floats have never been the ideal layout tool. Often at the mercy of
browser bugs, box sizing issues and, let’s not forget, clearing, floats
have been an imperfect standard whose suitability as a layout tool has
only worsened as the complexity of responsive layouts has increased.

While the emerging flexible box layout or flexbox standard wasn’t sta-
ble enough to write about in the first edition of Hardboiled Web Design,
boy oh boy, girl oh girl, have things changed since then.

Not only is browser support now solid across all contemporary desk-
top and mobile browsers, flexbox has captured the imagination of
designers and developers.

Flexbox is a next generation layout tool that gives enormous benefits
over old-fashioned methods. It enables more responsive layouts. It
makes it possible to visually reorder content without laying a hand
on our markup, and it lays to rest common frustrations such as equal
height backgrounds on unequal height columns.

It’s not that you could use flexbox today, you should use it. Unless you
have to provide very similar layouts for Microsoft Internet Explorers
9 and 10, there really are no reasons why you can’t use flexbox on your
websites and applications today.

8 github.com/philipwalton/flexbugs
9 heydesigner.com/flexbox

There can be
bugs in any new
technology and
flexbox is no
different. Philip
Walton curates
a list of flexbox
issues8 and work-
arounds for them
and he hosts the
list on GitHub
for anyone to
contribute to.

It seems that
flexbox has cap-
tured designers’
and developers’
imaginations
like no other CSS
property that I
can remember.
Hundreds of ar-
ticles have been
written about it
and HeyDesigner
maintains a list
of the best of
them.9

http://github.com/philipwalton/flexbugs
http://heydesigner.com/flexbox

201Flexible box layout

Coming to terms with flexbox
The most difficult part of learning flexbox is understanding its visual
model. You see, with floats the model is easy as they arrange the
elements they affect along a one-dimensional, horizontal axis. Flexbox
operates in two dimensions and has both horizontal and vertical axes.

When we make an element flex, we arrange its descendants along a
main axis, another axis that crosses it — and sometimes both. This
gives us the ability to create layouts that are impossible to make
when using floats.

You might find it useful to think of a flex as an imaginary line of string
that’s been stretched and taped inside two sides of a box or container.
In flexbox, this first flex axis is called the main axis and we arrange
what we’ll call flex-items along this line. These flex-items can be al-
most any HTML elements used to form a layout.

Just like we justify text to the left, right or centre, we can do the same
to any flex-items along a main flexbox axis. In practice, this means
flex-items can stick to one side of a flex-container or another, be cen-
tred or even stretched between the start of a flex and the end.

We can change the direction of a flex so that its flex-items appear to
run in the opposite direction to what’s specified in our markup. This
offers us a major advantage over traditional layout techniques because
what people see on screen can be different from our source order.

10 slideshare.net/zomigi/enhancing-responsiveness-with-flexbox-css-conf-eu-2015
11 smashingmagazine.com/2015/08/flexible-future-for-web-design-with-flexbox

Zoe Mickley
Gillenwater’s
presentations on
flexbox are always
worth watching
and while her
talks are best
when you can
hear her explain
examples, the
slide deck from
her ‘Enhancing
Responsiveness
with Flexbox’
talk is packed
with practical
information.10

Ben Gremillion’s
‘Laying Out A Flexi-
ble Future For Web
Design With Flex-
box’ for Smashing
Magazine is also a
great starting point
when learning
about the the con-
cepts of flexbox.11

http://slideshare.net/zomigi/enhancing-responsiveness-with-flexbox-css-conf-eu-2015
http://smashingmagazine.com/2015/08/flexible-future-for-web-design-with-flexbox

202 Hardboiled Web Design

We can even switch easily from horizontal rows to vertical columns
simply by changing the direction of a flex.

Finally — and perhaps most interestingly — we can change the order in
which elements are displayed to create layouts that are more appropriate
to specific viewport sizes. There’s no doubt that flexbox is a powerful
tool, so let’s get started using it to create the simple list of pulp maga-
zines that’s the foundation of many of our ‘Get Hardboiled’ examples.

Creating a flex container
For ‘Get Hardboiled’ we’re going to create many different designs, but
when you look later at our results, you might be surprised to remem-
ber that they’re based on largely identical markup.

A list of hardboiled detective
novels where we’ve styled the
images and descriptions using
flexbox.

203Flexible box layout

We’ll start with a division and classify it as an item. Inside, we’ll
add two further divisions, one for our item’s image, the other for
a description:

<div class=”item”>
 <div class=”item__img”>

 </div>
 <div class=”item__description”>

<h3>The Scarlet Menace</h3>
 </div>
</div>

Because of their order in the source, the image division and descrip-
tion will naturally be displayed vertically, one on top of the other, but
we’re going to change all that by turning the item into a flex-container.
flex is an a new display value that joins block, inline, inline-block, none
and table with its various subproperties.

.item {
display : flex; }

flex turns our item into a flex-container and doesn’t remove its block
attributes, so the division continues to fill all available space inside its
own parent element.

Like all block-level elements, this item fills the entire width of its parent element
unless we specify otherwise.

204 Hardboiled Web Design

When we’d prefer our items not to fill the available horizontal space,
or we’d like to turn an inline element into flex-container, we can also
create an inline flex:

.item {
display : inline-flex; }

Look at the first example using display:flex and you’ll notice that
our image division and description are no longer displayed vertically.
That’s because by turning their parent division into a flex-container,
we’ve also turned their descendants into flex-items that are automat-
ically arranged horizontally along the default main axis. The authors
of flexible box layout included some very smart default behaviours; for
some designs, this could very well be all you’ll need.

Flex direction
We’re able to arrange flex-items horizontally or vertically and changing
these directions is another useful way to create layouts that respond to
different screen sizes and orientations. When we specify an element’s
flex-direction, we also specify the direction of its main axis. When we
don’t specify any direction at all, the initial value is flex-direction:row.
Let’s return to our novel list example and apply a flex-direction:

.item {
flex-direction : row; }

Unless we’ve set the dir attribute to rtl, for right-to-left languages,
this flex starts on the left and ends on the right. As row is the initial
direction, you shouldn’t need to type that last declaration at all, unless
you’re using it to overwrite a previously applied flex-direction.

12 tympanus.net/codrops/css_reference/flexbox/#section_flex-direction

Sara Soueidan
wrote a fabulous
overview of
flex-direction
as well as other
flexbox
properties.12

http://tympanus.net/codrops/css_reference/flexbox/#section_flex-direction

205Flexible box layout

Reversing rows
You might remember that the image division came first in our markup
and the description second. When we need to display the image on the
right instead of its normal position on the left, we don’t need to change
our HTML. Instead we can simply change the direction of the flex:

.item {
flex-direction : row-reverse; }

Reversing the flex-direction changes this horizontal layout without altering
the markup.

With the dir attribute set to rtl, the flex starts on the right instead of
the left and arranges flex-items in the opposite direction. This tiny
change can have an enormous impact on our layouts.

Reversed columns

Unlike floats which are one-dimensional, flex-containers are two-
dimensional as they can be either horizontal rows or vertical columns.
Although block-level elements stack vertically, as you’ll soon see there
are occasions when we need to specify a flex-direction as a column:

13 bennettfeely.com/flexplorer

Bennett Feely’s
Flexplorer is a
fabulous visual
tool to help you
understand the
behaviour of the
various flexbox
properties. It’s
particular good
at demon-
strating tricky
concepts such as
flex-basis and
flex-shrink13

http://bennettfeely.com/flexplorer

206 Hardboiled Web Design

.figure--classic {
flex-direction : column; }

For our next example, we’ll use flex-direction to make a figure element
and its caption more interesting. Our markup includes a figure, image
and its associated figcaption:

<figure class=”figure--classic”>

 <figcaption>Pulp magazines were inexpensive fiction magazines
published until the ’50s.</figcaption>
</figure>

In this conventional figure design, the layout matches the source order.

207Flexible box layout

Our figcaption is normally displayed below the image, matching its
position in the source, but some figures deserve a more interesting lay-
out, so we’ll use flex-direction to display our caption above the image:

.figure--reverse {
flex-direction : column-reverse; }

Reversing the flex-direction makes this column design all the more interesting.

So simple, but already so very effective in making this figure look more
interesting. Now let’s finish off that distinctive figure by limiting its cap-
tion to fifty percent width when viewed on medium and large screens:

.figure--reverse figcaption {
max-width : 50%; }

208 Hardboiled Web Design

Small details like this on common elements are so often overlooked, but they can
make the difference between an ordinary design and an interesting one.

We’ll return to the interesting uses flexible box layout’s two axes can
be put to later in this book, when we develop more complex designs
using flexbox.

Creating a flex axis
Float behaviour has become ingrained in the way we think about lay-
outs. For example, when the width of two floated elements exceeds the
width of their parent container, one element will drop down below the
other. Flexible box layout has a different model and flex-items behave
differently in relation to a flex-container’s width.

I’ll illustrate the fundamental differences between the float model and
flexbox by putting four article element boxes inside a section:

209Flexible box layout

<section class=”hb-shelf”>
 <article class=”item”> […] </article>
 <article class=”item”> […] </article>
 <article class=”item”> […] </article>
 <article class=”item”> […] </article>
</section>

With nothing more than some basic styling, those articles will
stack vertically.

We have little or nothing to do to prepare this list for smaller screens.

Now let’s apply display:flex to the section and watch as the browser
creates a horizontal main axis and arranges our articles along it. With-
out us needing to specify any more flexbox properties, our browser
sizes the articles so that, combined, they fit all of the width available in
the section.

210 Hardboiled Web Design

Arranging articles in a row along a section element‘s default main axis.

You might be surprised by what happens when we specify a width for
each article.

.item {
width : 400px; }

In a float-based layout, our browser will display as many articles as
there is space to fit in a row before starting the next row.

As we increase the articles’ width, fewer of them will be displayed on
one row. However, in flexbox layout, flex-wrap: nowrap value overrides
the width property on these articles.

211Flexible box layout

Wrapping flex-items
Unlike float-based layouts, flexbox will automatically expand the
width of a flex-container to match the combined width of flex-items
within it. That’s because the people who designed flexible box layout
made a smart choice when they decided that the initial flex-wrap value
should be nowrap. Change that flex-wrap value to wrap and something
entirely different happens, as our browser now respects the width that
we gave our flex-item articles and wraps them onto new lines accord-
ing to the available space in the section flex-container:

.hb-shelf {
flex-wrap : wrap; }

Change flex-wrap from the initial nowrap to wrap and the layout resembles floats,
but with some significant differences.

If you’ve been paying attention to our example articles, you might have
noticed that they’re numbered 1–4. Whether these articles have been
set to nowrap or wrap, they’re displayed in the same order as the source,
starting in top-left corner. Flexbox gives us even more control over
the way these articles wrap, and changing the flex-wrap value to
wrap-reverse starts the articles from the bottom-left corner instead:

212 Hardboiled Web Design

.hb-shelf {
flex-wrap : wrap-reverse; }

Wrapping flex-items in reverse alters their starting position from when we change
their flex-direction.

I can guess what you might be thinking now: “How is this result
different from using row-reverse value for flex-direction?” That’s a good
question, so let’s change the flex-wrap property back to wrap and instead
change the flex-direction to row-reverse:

.hb-shelf {
flex-wrap : wrap;
flex-direction : row-reverse; }

With these values the flex-items start wrapping in the top-right in-
stead of the bottom-left.

213Flexible box layout

Seeing the difference between flex-wrap and flex-direction gives us a better
understanding of the creative potential of flexible box layouts.

The flex-flow property
The flex-flow property is shorthand, combining flex-direction and
flex-wrap. You might remember the initial value for flex-direction is
row and for flex-wrap it’s nowrap, so this is one shorthand declaration you
shouldn’t ever need to write:

.hb-shelf {
flex-flow : row nowrap; }

Both flex-direction and flex-wrap are powerful layout properties on
their own, but combined they can make layouts that would’ve been
extremely difficult or even impossible using older methods. Flexbox is
only getting started and when you see the incredible creative potential
of sizing and ordering flex-items, I’m sure you’ll be as excited as I am
about implementing designs using flexible box layouts.

214 Hardboiled Web Design

Sizing flex-items
If your method for making layouts using floats was anything like
mine, it included more mathematics than we’d like. Even the simplest
of layouts required us to calculate the width of our items based on
how many of them were to fit inside a parent container. Two elements,
fifty percent. Three elements, thirty-three percent and so on. Margins
between elements affected our calculations too, making developing
layouts more a mathematical challenge than a creative one.

Flexible box layout changes all that, making implementing interesting
designs much simpler but, most importantly, more responsive. To il-
lustrate how, let’s return to our previous boxes. This time we’ve applied
a width to our flex-item articles:

.item {
width : 240px; }

At narrower viewport widths, our articles resize so that they fit equally
along the main axis.

Making our section a flex-container arranges items along the main axis, but
sometimes we leave space available.

215Flexible box layout

When the flex-container width is wider than the combined width of
the flex-items, space opens up on the right-hand side of our layout.
This may well be acceptable for some designs, but in others it would
make better sense for those articles to grow to fill that available space.
Flexible box layout includes properties that give us options for how
flex-items will grow or shrink according to space available inside their
flex-containers.

The flex-grow property
flex-grow sets the grow factor of a flex-item. This grow factor number
determines how much a flex-item will grow, proportionally to other
flex-items, when additional space is available inside a flex-container.
flex-grow is one of the trickiest parts of the flexbox model to under-
stand, so let’s use those article elements again to illustrate how it
works.

In our last example, we set a width of 240px on each of our four arti-
cles. Below 960px, display:flex on the flex-container ensured that the
articles all shrank by an equal amount. Above 960px, space appears to
the right of our layout.

Giving all flex-items the same flex-grow factor — in this first instance, a
grow factor of 1 — instructs those items to expand by an equal amount
to take over all available space within a layout.

.item {
flex-grow : 1; }

216 Hardboiled Web Design

Giving all flex-items the same flex-grow factor makes them expand equally
to fill any available space.

Our articles all expanded wider than their set 240px width until all the
available space in our layout was filled. But what if we want those flex-
items to be different sizes? What if we want the available space to be
distributed in different proportions? To illustrate this, in our next ex-
ample we’ll allocate twice the amount of available space to the second
flex-item. Here, all our items receive a grow factor of 1, then the second
item receives a grow factor of 2.

.item {
flex-grow : 1; }

.item:nth-of-type(2) {
flex-grow : 2; }

Using the flex shorthand
There’s more to sizing elements with flexible box layout than just the
flex-grow property. In a moment we’ll learn about flex-shrink — the
opposite of flex-grow — and flex-basis. For now, we just need to know
that in most cases flex-grow is used in conjunction with these other
properties and written using the shorthand flex property. From now
on we’ll use flex instead of the longhand values.

217Flexible box layout

Allocating different proportions of available space to individual elements is a
fundamental principle of implementing layouts using flexbox.

This second article has been allocated twice the amount of available
space as its siblings and is therefore now twice their width.

The flex property sees some action
To help us understand flex-grow and to reinforce that flexible box
layout can be used on all kinds of HTML elements, we’ll put it to use
making some layouts for figure images and their associated captions.
This is an ideal application for flexbox as with just a few lines we can
transform a simple figure with a design that — while popular in mag-
azines and newspapers — is rarely seen on the web. Our markup isn’t
anything out of the ordinary:

<figure class=”figure--horizontal”>

 <figcaption>Pulp magazines were inexpensive fiction magazines
published until the ’50s.</figcaption>
</figure>

218 Hardboiled Web Design

Until we intervene, our figcaption will be displayed in its default posi-
tion underneath the image, but we can do better than that. At medi-
um screen sizes we’ll first turn our figure into a flex-container using
display:flex. As the initial values are row and nowrap, we don’t need to
declare those values.

@media (min-width: 48rem) {
.figure--horizontal {
display : flex; }
}

The figure’s image and caption have now become flex-items, arranged
evenly along the flex’s main axis line. So far, so good, As the image is
first in our source order, it will appear on the left — because the initial
flex-direction is row — and the figcaption comes second and appears
on the right.

I’d like to allocate four times the amount of the figure’s width to our
image than to the caption, so we’ll add a flex-grow factor of 4 to the
image and another of 1 to the caption:

@media (min-width: 48rem) {

.figure--horizontal img {
flex : 4; }

.figure--horizontal figcaption {
flex : 1; }
}

219Flexible box layout

Arranging the figure’s image and associated caption along the flex’s main axis
line and sizing them both using proportions of available space is simpler than
using older layout methods.

What if we’d like to shake things up a little bit and swap the visual
order of the image and its caption? There’s no need for us to change
the order in our markup, as we simply need to change the initial
flex-direction from row to row-reverse:

@media (min-width: 48rem) {
.figure--horizontal-reverse {
flex-direction : row-reverse; }
}

220 Hardboiled Web Design

Changing a layout’s visual order doesn’t mean changing its source order any more.

The flex-basis property
The flex shorthand property is one of the most powerful in flexbox
because it packs in three flexible box layout properties: flex-grow,
flex-basis and flex-shrink. While we commonly use the powerful
shorthand to distribute space within a flexbox layout, it’s important
that we understand the principles behind all three properties, starting
with flex-basis.

So far we’ve dealt with how flex-items grow and shrink as their
flex-containers change size inside a responsive layout. We’ve allowed
our items to be completely fluid and not specified their size in any way.
There will be situations where our designs demand that a flex-item
should start at a particular size, before we allow it to either grow or
shrink. In flexbox, we use the flex-basis property to set the starting
size for an element before it flexes.

221Flexible box layout

To illustrate this, we’ll return to our earlier example, but this time there
are only two boxes:

<section class=”hb-shelf”>
 <article class=”item”> […] </article>
 <article class=”item”> […] </article>
</section>

Start by turning the section into a flex-container by applying dis-
play:flex. We won’t need to specify row as the flex-direction, or nowrap
instead of wrap for flex-wrap, as these are the initial values:

.hb-shelf {
display : flex; }

Whereas before our flex-item articles started flexing from their initial
width, this time we’ll specify that they are both 420px wide:

.item {flex-basis : 420px; }

In horizontal layouts, flex-basis acts in precisely the same way as width.
Notice that on screens larger than the flex-item’s combined width of
840px there’s still space available on the right of our layout.

Setting a flex-basis gives us control over the size of our flex-items.

222 Hardboiled Web Design

We’ll distribute that available space between our two flex-items. Look
what happens when we distribute that space to just the first of our
items: that first flex-item expands to fill all the available space, while
the second remains at the size of its flex-basis.

.item:first-of-type {
flex-grow : 1; }

Distributing space to just one flex-item increases its size while other items remain at
the size we specified using flex-basis.

The flex-shrink property
While flex-grow specifies how flex-items should increase in size when
a flex-container is larger than the combined sizes of items, flex-shrink
specifies how flex-items should decrease in size when the flex-con-
tainer’s width is less than their combined width. In other words, while
flex-grow specifies the proportions of space that a flex-item will gain,
flex-shrink specifies the proportion of space that an item will lose.

When we set the flex shorthand property to 1, we’re specifying that
all flex-items should grow and shrink in the same proportions. So the
shorthand declaration:

14 codepen.io/noahblon/post/practical-guide-to-flexbox-dont-forget-about-flex-shrink

Changing the
size of images
inside a flexbox
layout can
sometimes
change their
proportions.
Noah Blon
has written a
thorough expla-
nation of how
to use the flex-
shrink property
to avoid this.14

http://codepen.io/noahblon/post/practical-guide-to-flexbox-dont-forget-about-flex-shrink

223Flexible box layout

.item {
flex : 1; }

Gives the same results as:

.item {
flex-grow : 1;
flex-shrink : 1; }

That’s because in flexbox, when there’s not enough space in a flex-
container to display the flex-basis of all items, the normal behaviour is
to divide space evenly between flex-items. When that won’t give us the
layout we need, we can alter that behaviour and change the way flex-
items shrink using flex-shrink.

This can be one of the most difficult flexible box layout concepts to
understand, so to help explain it we’ll add a large number value to the
flex-shrink property on the first of our flex-items. To begin with we’ll
go with 8:

.item:first-of-type {
flex-shrink : 8; }

Adjust the width of your browser and you should notice that as long as
the width of the flex-container is sufficient to display both flex-items
at their flex-basis or larger, there’ll be no change in what you see. The
magic happens when the width of the container isn’t sufficient. Then,
although our second item maintains its flex-basis, the first reduces in
size due to its flex-shrink value.

224 Hardboiled Web Design

Specifying the proportions of space that a flex-item will lose helps us to control
layouts at smaller screen sizes as well as larger ones.

Now reduce that flex-shrink value to just 2 and you should notice the
first flex-item increase in size, and we’re specifying that it lose propor-
tionally less of its size as screen sizes reduces.

.item:first-of-type {
flex-shrink : 2; }

Using flex-shrink, we control the ratio by which flex-items shrink. Ex-
periment with different flex-shrink values and watch how the propor-
tions of our layout change.

Understanding the flex property shorthand

As I mentioned earlier, we can and should combine flex-grow, flex-
shrink and flex-basis into a single flex property, and browsers interpret
these values in that order:

.item {
flex : 1 1 420px; }

If we leave out flex-shrink, browsers use the initial value of 1. When we
omit flex-basis, browsers default to 0%.

225Flexible box layout

Ordering flexible boxes
Before we leave flexible box layout for now — don’t worry, there’s still
plenty to learn and we’ll cover those topics in the context of other
hardboiled CSS properties — it would be wrong not to learn about one
of the most powerful features of flexbox. It’s something that designers
and developers have wanted for many years and that I couldn’t have
imagined would be possible when I wrote the first edition of this book.
It’s the ability to visually reorder content without changing its order in
the HTML source.

Now, you might be wondering if we’ve seen this before with the
flex-direction property — and we have — but order gives us much more
precise control and allows us to move a flex-item to any position in a
flex-direction.

To demonstrate flexbox order, we’ll use a series of flex-item article
elements inside a flex-container section. This example should be
familiar to you by now:

<section class=”hb-shelf”>
 <article class=”item”>1 […] </article>
 <article class=”item”>2 […] </article>
 <article class=”item”>3 […] </article>
 <article class=”item”>4 […] </article>
</section>

There are no id attributes to identify these articles, but each one has a
number, placing it in order inside what’s known as an ordinal group.
The first article has an ordinal value of 1, the second 2 and so on.

15 unravelingflexbox.com

If you’re looking
for more prac-
tical examples
of using flexbox,
Landon Schropp
has written
the excellent
‘Unraveling
Flexbox’ ebook15
and video series.

http://unravelingflexbox.com

226 Hardboiled Web Design

In flexbox, flex-items are displayed in the same order as they appear in
the document, but there are plenty of instances where we might want
to reorder our flex-items to improve our layout at particular responsive
viewport sizes. We’ll start by turning our section into a flex-container
and giving it a flex-direction value of column.

.hb-shelf {
display : flex;
flex-direction : column; }

Stacking an ordinal group of flex-items into a vertical column. Each article has an
ordinal value that we can change using the flexbox order property.

227Flexible box layout

You might be wondering why we need to use display:flex, especially as
block-level elements naturally stack to form a column, but we’ll need
that property so we can reorder the flex-items inside it. Now let’s go
ahead and make the last article element display first, using the flexbox
order property. Notice that unlike other flexbox properties, order isn’t
prefixed with flex-.

.item:last-of-type {
order : -1; }

Changing the order a flex-item is displayed visually doesn’t change its position in the
DOM, so screen readers will continue to use the source order.

228 Hardboiled Web Design

The initial value for all flex-items inside an ordinal group is zero (0)
so we don’t have to set that on every flex-item. Any order value we add
to specific flex-items starts their ordering after the initial group, so in
that example we need to apply an order value of minus one (-1) to make
it display before the rest of the group.

If we prefer to start all order values from 1 and not use negative val-
ues except for a particular effect, we can give all flex-items the same
initial value:

.item {
order : 1; }

With a small number of flex-items in this group, it’s very possible that
we might give each one its own order value and display them in an
order that’s very different from how they’re ordered in our markup:

.item:nth-of-type(1) {
order : 3; }

.item:nth-of-type(2) {
order : 4; }

.item:nth-of-type(3) {
order : 1; }

.item:nth-of-type(4) {
order : 2; }

229Flexible box layout

Using nth-of-type pseudo-selectors can be an ideal way to target flex-items without
adding unnecessary class or id attribute values.

Let’s put these simple box examples behind us and move on to using
flexbox order for something I’m particularly excited about: changing
the order of page sections across responsive breakpoints so the layout
is the most appropriate for different screen sizes.

230 Hardboiled Web Design

The order property sees some action
There have been countless times when I’ve needed to change the
display order of a page for a responsive website design. One example
that springs to mind immediately is changing the visual position of a
website’s navigation across viewport sizes. Typically, the order of page
sections looks something like this:

<header> […] </header>
<nav> […] </nav>
<section> […] </section>
<footer> […] </footer>

I can’t think of many reasons why we’d need to change the display or-
der of either our header or footer in this layout, but I have seen plenty of
instances where it would help people using smaller screens by moving
a nav from near the top of a page to near the bottom. This makes it un-
necessary for someone to scroll past what could be a long list of links
to get to the content section.

The flexbox order property is ideal for doing this, so let’s start by
adding applying display:flex to the body of the page, turning it into a
flex-container. As we’re changing the order vertically, we’ll also specify
the body’s flex-direction as column:

body {
display : flex;
flex-direction : column; }

Now, we’ll give each of our flex-items a specific order value:

16 flexbox.io

Developer Wes
Bos has created
a free, fun and
informative vid-
eo series about
flexbox that I
highly recom-
mend. It covers
everything from
flexbox basics
to practical
examples like
this one.16

http://flexbox.io

231Flexible box layout

header {
order : 1; }

nav {
order : 2; }

section {
order : 3; }

footer {
order : 4; }

Ordering flex-items to match
their order in our markup isn’t
necessary, so this example is purely
to demonstrate how flexbox order
works.

232 Hardboiled Web Design

We can swap the visual position of the nav and section elements,
placing our navigation between the section and footer which helps the
layout work better on smaller screens:

nav {
order : 3; }

section {
order : 2; }

Swapping the display position of our
nav prevents people from having to
scroll past it to get to the content
section on smaller screens.

233Flexible box layout

This order works well for people who view our websites on smaller
screens, but on larger displays I doubt anyone will expect to find nav-
igation at the bottom of a page. For people using medium and larger
screens, we’ll reset the order of our elements by using the original
order values inside a media query:

@media (min-width: 48rem) {
nav {
order : 2; }

section {
order : 3; }
}

Resetting the order
of our elements for
people using medium
and larger screens.

234 Hardboiled Web Design

Cross-browser flexible box layout
Flexible box layout had a long and well-documented development pro-
cess and went through several iterations and revisions to its syntax. If I
had written this edition of Hardboiled Web Design two years ago, I might
have recommended we make use of all available vendor-specific prefixes
to ensure that our flexbox layouts work across different browsers.

Fortunately, today it’s a very different situation as we have almost uni-
form support for flexbox across all contemporary mobile and desktop
browsers. Unless you need to support versions of Microsoft Internet
Explorer older than 11, Safari 8 on Mac OS X and iOS, you’ll need no
vendor prefixes at all. At Stuff & Nonsense, we include only -webkit-
vendor prefixes for Safari and deploy other methods when our clients
need to include older browsers. Here’s a typical flexbox declaration,
with vendor-specific prefixes first, followed by the standard syntax:

.hb-shelf {
display : -webkit-flex;
-webkit-flex-direction : column;
-webkit-flex-wrap : wrap;
display : flex;
flex-direction : column;
flex-wrap : wrap;
flex : 1; }

235Flexible box layout

Autoprefixer
Like many people, we rarely type these long lists of prefixed properties
by hand. Instead, we use Autoprefixer,17 a plugin that parses our style
sheets and adds the appropriate vendor prefixes according to data
from Can I Use.18 Autoprefixer runs on the command line, but if you’re
Terminal-phobic like me, you’ll find it built in to tools like Codekit.19

Modernizr
Modernizr20 is the feature detection library that played such a big part
in the first edition of Hardboiled Web Design. It detects support in brows-
ers for all variations of flexbox syntax from its different development
versions and outputs class attribute values based on a browser’s level of
support. These values help us quarantine properties designed for legacy
browsers from the contemporary browsers that don’t require them:

.hb-shelf {
display : flex; }

.no-flexbox .hb-shelf {
display : table; }

Although there is now less need to use Modernizr to detect support
for what were cutting-edge CSS properties five years ago, it remains
an incredibly useful tool for developing alternatives to flexbox for the
legacy browsers that require them.

17 github.com/postcss/autoprefixer
18 caniuse.com/#search=flexbox
19 incident57.com/codekit
20 zomigi.com/blog/using-modernizr-with-flexbox

Modernizr (mod-
ernizr.com) and
flexbox go together
like detectives and
redheads, and Zoe
Mickley Gillenwater
explains how in
her article ‘Using
Modernizr with
Flexbox’20

http://github.com/postcss/autoprefixer
http://caniuse.com/#search=flexbox
http://incident57.com/codekit
http://zomigi.com/blog/using-modernizr-with-flexbox
http://modernizr.com
http://modernizr.com

236 Hardboiled Web Design

Breaking it up
Throughout my professional career working with CSS, like so many
other designers and developers I’ve got to know, I’ve been frustrated by
the fragility and limitations of developing page layouts using proper-
ties that were never designed for the applications that we put them to
today. For years we’ve needed a better way to arrange elements within
a layout and we’re fortunate that now we have flexible box layout and
widespread support for it among contemporary browsers. Flexbox is
packed with properties that make responsive designs more flexible,
but we mustn’t stop there. We should use flexbox to help us push our
creativity as well as our technical abilities.

237Responsive typography

Responsive typography
Information architects’ oliver reichenstein wrote
in 2006 that “Web Design is 95% Typography”.1 I’m not
110% sure if that’s true, but I do know that much of the web
content I consume every day consists of the written word.
When we first published this book, many people still relied
on a limited set of commonly installed fonts — those usual
suspects like Arial, Georgia, Times, Verdana and others —
and so typography on the web was, not to put too fine a
point on it, often incredibly dull. Skip ahead five years and
we’re now incredibly fortunate that our typographic hori-
zons have been expanded beyond that rudimentary selec-
tion of fonts to include vast libraries of typefaces that are
now available as what we call web fonts.

A short history of web fonts
In the late 1990s both Netscape and Microsoft released browsers that
allowed us to embed fonts into a web page. Given the competition
between them, they didn’t make it easy. I can remember trying — but
mostly failing — to use their incompatible TrueDoc and Embedded
OpenType (EOT) formats. That makes me feel old as I bet that many
people reading this never used a Netscape browser.2

1 ia.net/know-how/the-web-is-all-about-typography-period
2 Netscape launched its first web browser in 1994 and Netscape Navigator was once the

dominant browser with over 90% usage share. After competition from Microsoft Internet
Explorer, Netscape’s market share dropped to less than 1% by the end of 2006 and its final
browser, Netscape Navigator 9 (which was by then based on Firefox), was released in 2008.

No. 12

http://ia.net/know-how/the-web-is-all-about-typography-period

238 Hardboiled Web Design

Netscape lost the browser war and although Internet Explorer con-
tinued to support font embedding, its EOT format was never imple-
mented by other browser makers. For a decade, web fonts stalled and
it wasn’t until ten years later — ten years, dammit! — that Apple’s
Safari 3.1 became the first browser to support embedding fonts in
TrueType and OpenType formats (but not EOT). Mozilla followed and
so did Opera. When Google launched Chrome and later Android, and
Apple launched Safari on its iOS platform, they both included support
for web fonts.

Why web fonts matter
Web fonts offer a way to use more varied fonts. With all contempo-
rary browsers now supporting web fonts, we can largely assume that
people will experience our type designs as we intend them to.

Web fonts are simple to implement and when we use them our text
stays accessible, selectable and friendly to search engines. To embed a
web font we need three things:

1. A font file in a format that browsers will understand. We can use any
copyrighted or licence-free font.

2. A @font-face declaration at the start of our style sheet. This will
define the font-family name, where the font file is hosted, and its
format (WOFF2 in the following example). A simple declaration looks
like this:

@font-face {
font-family : 'Aller Light';
src : url('fonts/aller_std_lt.woff2') format('woff2');}

239Responsive typography

3. A font-family property, which applies the embedded font to an
element, id, class, child, sibling, attribute, pseudo- or any other
CSS selector. Let’s make top-level headings look hardboiled with
a typeface called Eastmarket, from Font Squirrel:3

h1 {
font-family : Eastmarket; }

We’ll work through the details of embedded web font syntax in
just a moment.

Web font formats
There are six font formats that have been used widely on the web —
EOT, OpenType, SVG, TrueType, WOFF and WOFF2 — and different
browsers typically support some, but not all, of these formats. The
font formats we choose to use depends entirely on the browsers we
need to support. The newer our target browsers, the fewer formats
we need. Conversely, when we have older browsers in our supported
browser list, we’ll need to serve more varied formats.

Embedded OpenType (EOT)

Designed by Microsoft specifically for embedding web fonts, EOT
contains a wrapper for TrueType that makes it more difficult to
download, extract and reuse an embedded font. This makes it easier
to uphold font licences, or at least that’s the theory. Although Mi-
crosoft submitted EOT to the W3C in 2007, it has never been part of
any standard.

3 You can use Font Squirrel’s online web font generator1 to create EOT versions of your
fonts: fontsquirrel.com/tools/webfont-generator

http://fontsquirrel.com/tools/webfont-generator

240 Hardboiled Web Design

OpenType (OTF)

OpenType is an extension of TrueType that offers better control over
typography because it provides up to 65,000 different glyphs and has
better rendering of complex script typefaces.

SVG

SVG isn’t a font format at all — it’s a technology for making scalable
vector graphics — but we can include font information inside an SVG
document and link to that in the same way we would any other type
of font. We can convert fonts to SVG using Font Squirrel’s web font
generator. Web font services such as Typekit4 also provide an option
for serving fonts as SVG.

TrueType (TTF)

Apple introduced TrueType in the late 1980s as an alternative to Ado-
be’s PostScript Type 1 format. With TrueType, all aspects of a typeface
— including its kerning and hinting information — are contained
within a single file. This can make some TrueType font files large and
impractical to use as web fonts.

Web Open Font Format (WOFF)

WOFF isn’t strictly a font format. It’s a compressed wrapper for
TrueType and OpenType fonts — a transfer format, similar to a com-
pressed ZIP file. This makes it small in size and therefore eminently
suitable for using on the web. Because WOFF includes ownership
information, it’s more attractive to font foundries that are concerned
about protecting their intellectual properties.

4 typekit.com

http://typekit.com

241Responsive typography

WOFF2

WOFF2 is the latest generation of the WOFF format and is notable
for its higher compression rates and, therefore, its better perfor-
mance, especially on mobile devices. WOFF2 is clearly a future web
font standard5 and before long could easily be the only web font
format we need.

Including @font-face in a style sheet
To link web fonts to our style sheets, the first step is to specify the
name of the font file and where it’s hosted. We’ll link to the Aller Light
web font we downloaded from Font Squirrel. Aller Light is the typeface
we’re using for body copy in our ‘Get Hardboiled’ example files.

@font-face {
font-family : 'Aller Light';
src : url('fonts/aller_std_lt.woff2') format('woff2'); }

In that example we’re only linking to the WOFF2 format of our font
which, in an ideal world, should be all we need. Sadly the world isn’t
ideal and even today some of the most modern browsers — including
Safari on iOS and Mac OS X don’t support WOFF2. To help them we’ll
also include a font in the previous version of WOFF which currently
has wide support in contemporary browsers except Opera Mini. We’ll
separate the two formats with a comma in our new declaration:

@font-face {
font-family : 'Aller Light';
src : url('fonts/aller_std_lt.woff2') format('woff2'),
url('fonts/aller_std_lt.woff') format('woff'); }

5 The State of Web Type is a comprehensive reference of support for type and typographic
features on the web. Choose a font property and the site will tell you which browsers and
versions support that feature: stateofwebtype.com

http://stateofwebtype.com

242 Hardboiled Web Design

For wider support among older browsers, Android and Safari on iOS,
we could include a TrueType format font in our declaration:

@font-face {
font-family : 'Aller Light';
src : url('fonts/aller_std_lt.woff2') format('woff2'),
url('fonts/aller_std_lt.woff') format('woff'),
url('fonts/aller_std_lt.ttf') format('truetype'); }

And for the most complete support that includes even legacy versions
of Microsoft Internet Explorer, we could include the EOT format, too:

@font-face {
font-family : ‘Aller Light’;
src: url(‘aller_std_lt.eot’);
src: url(‘aller_std_lt.eot?#iefix’) format(‘embedded-opentype’),
url(‘aller_std_lt.woff2’) format(‘woff2’),
url(‘aller_std_lt.woff’) format(‘woff’),
url(‘aller_std_lt.ttf’) format(‘truetype’); }

Place this new @font-face declaration at the top of a style sheet (or the
top of your typography section) so that it’s available to any declarations
below. The font-family name we choose needn’t match a font’s file
name: we can name it anything that makes referencing it in our style
sheets easier. This web font font should appear first in our font stack,
followed by a backup made from commonly installed system fonts:

body {font-family : 'Aller Light', Helvetica, Arial, sans-serif; }

Specifying commonly installed backup fonts in our stack is essential
as we can’t always rely on our own web fonts being loaded into a vis-
itor’s browser. Likewise, we can’t assume 100% uptime from the web
font delivery services we use.

6 smashingmagazine.com/2015/11/using-system-ui-fonts-practical-guide/
7 smashed.by/outage

In August 2015,
a problem at
Amazon S3 (where
Adobe Typekit
stores its font and
kit configuration
files) left thou-
sands of Typekit’s
customer websites
without their
carefully chosen
web fonts and
exposed the fact
that many hadn’t
specified a backup
font stack.7

Marcin Wichary’s
‘Using System
UI Fonts In Web
Design: A Quick
Practical Guide’6
is an excellent
primer for using
an operating
systems’ fonts.

http://smashingmagazine.com/2015/11/using-system-ui-fonts-practical-guide/
http://smashed.by/outage

243Responsive typography

Web fonts and performance
We may be tempted to include several web fonts when implementing
our designs, but we must remember that every font represents an
extra file for a user to download. Go heavy-handed on web font use
and our pages will soon become heavyweights, so ask yourself if any
font you want to include is really necessary.

Font files can be large and as well as their weight, web fonts present
another challenge to performance-minded designers and developers.
Many browsers hide all the text content on a page until they have
downloaded a web font. This means our visitors can be left staring
at a blank page of hidden content for up to three seconds. If our font
hasn’t loaded in this time, a browser stops downloading it and dis-
plays a system font instead.

To help work around the problem of font loading, Scott Jehl of the Fil-
ament Group has written about their approach to loading web fonts
and avoiding the FOIT (flash of invisible text).9

Designing type for high-resolution displays
There can be no doubt that Apple’s introduction of higher resolution
Retina displays (first on the iPhone 4, then iPad, MacBook Pro and
5K iMac), followed by similar displays from other smartphone and
PC manufacturers, made web designers’ and developers’ jobs more
complicated. Not only do we often need to serve different size (2x)
images to browsers on high-resolution devices, we also need to
pay attention to how our fonts render differently on both low- and
high-resolution screens.

8 speakerdeck.com/bramstein/web-fonts-performance
9 filamentgroup.com/lab/font-events.html

Bram Stein’s
presentation8
on web font per-
formance issues
and how they
block page ren-
dering explores
workarounds
while still
delivering a good
user experience.

http://speakerdeck.com/bramstein/web-fonts-performance
http://filamentgroup.com/lab/font-events.html

244 Hardboiled Web Design

We can’t assume that everyone
reading our text will have a
high-resolution display, so it’s
important to test our typography
on different resolution screens.
Top: iPad mini with Retina
display. Bottom: low-resolution
iPad mini.

245Responsive typography

Lightweight typefaces with thin arcs, ascenders and descenders can
look stunning on high-resolution displays, but can render poorly
and provide an even poorer reading experience when viewed on
low resolution screens.

When we choose to use thin typefaces, it’s always good practice to
check font rendering across resolutions and, where necessary, serve
different weights to different screen types: a heavier weight for lower
resolutions and a lighter weight for higher ones. We can do this
easily using a min-resolution media query.

First, we’ll specify the web font we’re serving to low-resolution screens.
In our example, this is the regular weight of our chosen Aller typeface:

body {
font-family : 'Aller Regular', Helvetica, Arial, sans-serif; }

Next, we’ll specify a minimum resolution threshold for the lighter,
thinner version of Aller, in our case 192dpi. Devices with screens
above that resolution will display the thinner Aller Light typeface:

@media
(min-resolution: 192dpi) {
font-family : 'Aller Light', Helvetica, Arial, sans-serif; }

Currently, Safari on both iOS and Mac OS X supports only the
non-standard, vendor-prefixed max-device-pixel-ratio alternative
property, so we’ll need to include that in our style declaration to
serve those light typefaces to iOS devices and Macs:

@media
(-webkit-min-device-pixel-ratio: 2),
(min-resolution: 192dpi) {
font-family : 'Aller Light', Helvetica, Arial, sans-serif; }

246 Hardboiled Web Design

In our example, we’ve specified the resolution in dots per inch. A
screen typically has a lower number dpi — as low as 72dpi for a con-
ventional screen — whereas print is typically higher. Dots per inch
isn’t the only resolution unit. We can also use:

• dpcm: number of dots per centimetre.
• dppx: number of dots per pixel unit.

Internet Explorer 9–11 support only dpi, as does Opera Mini at the
time of writing.

Sourcing web fonts
There are now plenty of options of where to find, license and serve
web fonts to include in our designs. In the five years between editions
of this book, many type foundries and their resellers have licensed
versions of their fonts for use on the web. For example, Hoefler & Co.10
has made their popular Gotham, Knockout, Whitney and other fonts
available to purchase for desktop and license for web use.

Adobe Typekit11 and Fontdeck12 — a partnership between UK design
studio Clearleft and OmniTI — are both popular services that sell
and serve libraries of thousands of typefaces from many designers
and type foundries.

Typekit and Fontdeck have slightly different pricing models. While
Fontdeck charges an annual fee for every font you use, Typekit offers
a limited set of fonts that are free to use, then either a paid-for plan or
one that’s included in their Creative Cloud subscription. Both paid-for
options include using all the fonts in their library.

10 typography.com
11 typekit.com
12 fontdeck.com

http://typography.com
http://typekit.com
http://fontdeck.com

247Responsive typography

Websites such as Font Squirrel have become popular sources of
licence-free web fonts. Font Squirrel also offers an online generator
for converting desktop fonts to web fonts. This generator is a useful
service, but always be sure to check the end user licence agreement
(EULA) of the fonts you’re converting as it’s neither fair nor legal to
use fonts that aren’t licensed for use on the web.

Finally, Google provides a smaller but nevertheless useful selection
of fonts.

Web fonts’ 404 adventure
I hope that you’re not feeling lost among all this talk of web fonts,
because now we’ll put what you learned to work on a 404 page for
‘Get Hardboiled’. This page uses two web fonts, an image and a splat-
tering of CSS. Don’t worry that one or two of the CSS properties aren’t
supported by all browsers. We’ll make sure that everyone who finds
themselves on this page will get an appropriate experience.

This design doesn’t need much markup — two divisions, a heading
and a couple of paragraphs:

<div class="splatter">
 <div class="splatter_ _content">

<h1 class="splatter_ _heading">404</h1>
<p class="splatter_ _lead">You dumb mug!</p>
<p>You can look all you want, but what you're looking for

just ain't here. Did you click a link that I bumped off? Maybe
that page is hot? Either way,don't be a bunny.</p>
 </div>
</div>

With its mixture of web fonts,
images and utter rudeness,
this is a 404 page that people
won’t forget in a hurry.

249Responsive typography

Our first job is to add a bloody background image to the outer
splatter division. We’ll make sure the whole splash will always
be visible by setting a minimum height on that division:

.splatter {
min-height : 900px;
background-image : url(blood.png);
background-repeat : no-repeat;
background-position : 50% 0; }

Centre the content division horizontally and make sure that it’s only
just wide enough for the large heading to fit inside. It should also fit
neatly into the width of a small screen.

.splatter_ _content {
width : 280px;
margin : 0 auto; }

Now link to two bloody typefaces — ChunkFive and Boycott. We’ll
use just three formats: TrueType, WOFF and WOFF2:

@font-face {
font-family : 'ChunkFive';
src : url('fonts/chunkfive.woff2') format('woff2'),
url('fonts/chunkfive.woff') format('woff'),
url('fonts/chunkfive.ttf') format('truetype'); }

@font-face {
font-family : 'Boycott';
src : url('fonts/boycott.woff2') format('woff2'),
url('fonts/boycott.woff') format('woff'),
url('fonts/boycott.ttf') format('truetype'); }

With these links in place, let’s style the main heading with Chunk-
Five in white:

250 Hardboiled Web Design

.splatter_ _heading {
font-family : ChunkFive;
font-size : 16rem;
text-align : center;
color : rgb(255,255,255); }

Next, we’ll style the two paragraphs using Boycott in a very light grey
to emphasise the heading above it:13

p {
font-family : Boycott;
font-size : 1.6rem;
text-align : center;
color : rgb(224,224,224); }

To complete the design for all web font-capable browsers, we’ll style
the “You Dumb Mug!” paragraph.

.splatter_ _lead {
font-family : ChunkFive;
font-size : 3rem;
text-transform : uppercase; }

Experimental WebKit properties
In the past, browsers implemented experimental properties using ven-
dor-specific prefixes, and even though these might not be standards,
they can be extremely useful to add visual flourishes to a design. We’ll
use a WebKit-specific property, -webkit-text-stroke, to add a subtle
stroke to our text that will be rendered by Chrome, Opera and Safari.

.splatter_ _heading,

.splatter_ _lead {
-webkit-text-fill-color : transparent;
-webkit-text-stroke : 4px rgb(255,255,255); }

13 webfonter.fontshop.com

Want to preview
how web fonts
look on any
website, even one
that’s not yours?
WebFonter from
FontShop does
just that with its
bookmarklet,
Chrome extension
and online tool13

http://webfonter.fontshop.com

We should always be
cautious when using
experimental CSS
properties that aren’t
part of an ongoing
standards process.

252 Hardboiled Web Design

Text shadows
Although using shadows has fallen out of fashion as designers have
followed the trend towards flatter designs, text shadows are still an
effective tool to add depth or to simply enhance the legibility of our
text against more complex backgrounds. Here’s a simple text-shadow
declaration applied to a heading.

h1 {
text-shadow : 2px 2px 0 rgb(204,211,213); }

Let’s break down those text-shadow values.

The first 2px value is the shadow’s horizontal offset, and the second
its vertical offset. In our example, those two values are the same, but
they can be different depending on the lighting effect that we’re cre-
ating. The greater the offset, the further away a shadow will appear
from the text.

Our third value (0) is the shadow’s blur radius. In this example, the
radius is small, resulting in a very hard shadow. The greater the blur
radius, the softer our shadow will look, as if we’re moving a light
source closer to our text.

Finally, we’ll declare the colour of the shadow. We can use either solid
or semi-transparent colours. If you’re not familiar with RGBa colour,
you’ll learn about how to use it in the next chapter.

In this example, we’ll add just one primary shadow to our text.

Next, we’ll make a softer shadow by increasing the vertical offset to
three pixels and the blur radius to six pixels.

h1 {
text-shadow : 2px 3px 6px rgb(204,211,213); }

This primary shadow is softer as we’ve increased its blur radius from zero to ten pixels.

Text shadows can accept negative as well as positive values, so in this
next example we’ll change the vertical offset to minus five pixels to
move the light source and cast a shadow above the text.

h1 {
text-shadow : 2px -3px 6px rgb(204,211,213); }

By changing the horizontal and vertical offsets we can cast a shadow on all sides
of our text.

Working with multiple text shadows
If our designs demand a more natural-looking result, we can layer
multiple shadows, separating their sets of values using a comma:

h1 {
text-shadow :
2px 2px 0 rgba(125,130,131,.75),
2px 5px 10px rgba(125,130,131,.65); }

254 Hardboiled Web Design

We can even create three-dimensional text objects by using three
shadows. Here, we’ll cast one white shadow above the text and two
darker shadows beneath.

h1 {
text-shadow :
2px 2px 0 #0f2429,
2px 5px 10px rgba(15,36,41,0.5),
2px -2px 5px rgb(56,143,162); }

text-shadow can be used to create many different effects and, when combined
with web fonts, they reduce our need to use images of text enormously.

Breaking it up
After a decade of promise and frustration, web fonts have definitely
arrived. Mature delivery services such as Fontdeck and Adobe Type-
kit, along with libraries from Font Squirrel, Google and dozens more
font foundries and designers, mean that we don’t have to design with
a limited set of typefaces. We can use (almost) any font we choose.
Web fonts are easy to apply and style in contemporary browsers, and
although there are (and will likely remain) differences in the ways
that browsers handle type, there are very few reasons not to be using
web fonts in our websites and applications.

255RGBa and opacity

RGBa and opacity
There’s more than one way to define a colour in
CSS — colour names, hexadecimal values, RGB/RGBa and
HSL/HSLa — but no matter which you choose, the colour
displayed by a smartphone, tablet, PC, Mac or TV screen is
made from a combination of red, green and blue transmitted
light (RGB), these days usually in 24-bit.

In 24-bit RGB, zero indicates no light and 255 indicates the maxi-
mum. So when red, green and blue channels are all zero, the result is
black. When they’re all 255, the result is white — with a wide gamut
of over 16 million colours in between.

Switching to RGB
Open either Photoshop or Sketch and one of the options in the colour
picker is the familiar hexadecimal value, where white is defined as
#ffffff and black as #000000.

a {
color: #388fa2; }

In CSS, we can describe that same blue using RGB, first declaring the
colour space and then, in parentheses, the quantities of red, green
and blue in values between 0 and 255:

a {
color : rgb(56, 143, 162); }

No. 13

256 Hardboiled Web Design

The blue colour I’ve chosen for the links on ‘Get Hardboiled’ is represented in
hexadecimal as #388fa2.

You might ask why you should choose RGB over hexadecimal. There’s
no technical reason to use RGB colour over hexadecimal — after all,
every colour we see on screen is RGB — but when we’re choosing
colours for our style sheets, hex values can be tougher to visualise.
Pub quiz question: what colour is #003399? Stumped?*

When we understand that for each channel, 0 is no colour and 255 is
the maximum, RGB becomes a piece of cake to visualise.

* #003399 is a deep blue.

257RGBa and opacity

Layering colour with RGBa
At art school, subtlety wasn’t my style — but then, you’ve probably
guessed that by now. My friend Ben, on the other hand, made exqui-
site paintings because he laid on hundreds of layers of paint. In CSS,
RGBa values help us to layer colour and add depth in a similar way.

RGBa is short for red, green, blue, plus a fourth channel — an alpha
channel — which defines the transparency of the resulting colour.
This alpha value can range between zero (fully transparent) and one
(fully opaque). If you use either Photoshop or Sketch you’ll be used to
working with alpha-transparency.

(0, 0, 0)

(0, 0, 255)

(255, 255, 255)

(255, 255, 0)

(255, 0, 0)

(0, 255, 255)

(0, 255, 0)

(255, 0, 255)

258 Hardboiled Web Design

In the ‘Get Hardboiled’ site, the back-
ground colour of our overlaid panels has
ninety-five percent transparency. We’ll
add a fourth value, an alpha channel value
of 0.95, to our CSS declaration to turn
RGB into RGBa.

.item_ _description {
background-color :
rgba(223,225,226,0.95); }

Our ability to use RGBa to subtly adjust col-
our transparency levels in this way opens
up a world of elegant design possibilities.

RGBa vs. opacity
There’s another CSS property we can use
to make elements appear semi-opaque —
it‘s the opacity property.

In CSS, both RGBa and opacity vary the
alpha channel, but there are subtle differ-
ences between them. While RGBa changes
the transparency of just one colour on one
element, opacity affects an element and
all of its children. To demonstrate this,
we’ll use those overlaid panels from ‘Get
Hardboiled’. We’ll replace the RGBa back-
ground colour with a ninety-five percent
opacity level:

.item_ _description {
opacity : .95; }

Making a layer semi-transparent in
Sketch.

Opacity works in a similar way to
how we adjust the transparency of a
layer in Photoshop or Sketch.

259RGBa and opacity

Opacity gets us out of a tight spot
Let’s head back to the ‘Get Hardboiled’ website. We’ll make a grid of
eight images hide a secret.

For this interface, we’ll arrange the images into a grid and then hide their
associated descriptions using absolute positioning and opacity.

With opacity, all children are now
semi-opaque.

Using RGBa, only the background
colour is affected.

260 Hardboiled Web Design

To build this interface, we need only a tiny amount of hardboiled
HTML. We’ll start with a container that will hold all of our items. All
the example modules in this book, including this one, have an hb- pre-
fix so that you can spot them easily if you use them in your projects.

<div class="hb-target"> […] </div>

Our items have one division each and we’ll add a class attribute value
of item. To make our CSS-only interactions work, we’ll also give an
item a unique id so we can address each of them individually:

<div class="item" id="hb-target-01"> […] </div>
<div class="item" id="hb-target-02"> […] </div>
<div class="item" id="hb-target-03"> […] </div>
<div class="item" id="hb-target-04"> […] </div>
<div class="item" id="hb-target-05"> […] </div>
<div class="item" id="hb-target-06"> […] </div>
<div class="item" id="hb-target-07"> […] </div>
<div class="item" id="hb-target-08"> […] </div>

Now add two more divisions inside each item. One will contain an
image, the second a description or some other information about
that item.

You don’t have to
go too far before
you stumble
across someone
telling you not to
use IDs in your
HTML. Ignore
them. They’re cra-
zy people. While
using IDs does give
an element higher
CSS specificity,
using them to
address elements
individually, as in
a fragment iden-
tifier, is perfectly
acceptable.

261RGBa and opacity

<div class="item" id="hb-target-01">
 <div class="item_ _img">

 </div>
 <div class="item_ _description">
 <h3 class="item_ _header">The Scarlet Menace</h3>
 <ul class="list--plain">
 Vol. 1 Number 3
 Issue #3
 May ‘33

 Add to cart
 </div>
</div>

Our designs need to look good and work well across every size and
type of screen, from the largest to the smallest. As the smallest
screens are often on mobile devices, to help our websites and applica-
tions load quickly on them, we should start by styling them using the
minimum amount of CSS.

It’s a good idea to check your HTML in a browser before you start styling it.
Ask yourself what’s the minimum amount of styling you can add.

Make a mental
note of this markup
pattern as we’ll
be reusing it
several times.

262 Hardboiled Web Design

For people who use devices with smaller screens, our aim should
be to reduce complexity, so we’ll develop a simple and stylish list of
items. We’ll use flexbox to arrange both our image and description
divisions along a horizontal axis:

.item {
display : flex; }

Now let’s give our items a little style with some margin to separate
them, and padding and borders to frame their content:

.item {
margin-bottom : 1.35rem;
padding: 10px;
border: 10px solid rgb(235,244,246); }

Define a flex-basis for our image divisions that’s appropriate for a
smaller screen, then a little margin on the left to help separate them
from the description. We should add a border to our images too, to
reflect the style of our items:

.item_ _img {
margin-right : 20px;
flex: 0 0 133px; }

.item_ _img img {
border: 10px solid rgb(235,244,246); }

I love how easy flexbox makes laying out modules like these. With
just a few lines of CSS we’ve transformed our simple HTML markup
into a good-looking list of pulp detective magazines. But although
that list would look just fine even on larger screens, we can do better
than that. In the next section we’ll turn that list into an interactive
module that uses changes in opacity to hide, then show our descrip-
tions and bring our design to life.

263RGBa and opacity

Our design for smaller screens is a simple but stylish list of items.

Flexbox justify-content
In all of our flexbox examples so far, we’ve arranged flex-items along
the along the main axis line of a flex-container. In a similar way to
justifying blocks of text to either the left, centre or right of a column,
we can also justify items in a flex-container in several different ways
using the justify-content property:

.item {
justify-content : flex-start; }

When our design demands that we justify the content in different
ways, flex-end justifies content to the opposite point from where the
flex starts. When flex-direction is set to row, this will be on the right.
When it’s set to column, this will be at the bottom — and I’ll bet you can
already guess what center will do.

We shouldn’t need to type that declaration very often, though, as flex-start is
the initial value.

Using the justify-content property with values like flex-end, we can change
where content is packed along the main axis line.

There are two more values with names that you might not recog-
nise. They are space-around and space-between. With space-around,
flex-items are evenly distributed along the main axis line. A browser
uses the width of the space between each item to calculate a half-size
space that’s added before the first and after the final flex-item.

With space-around, flex-items are evenly distributed along the main axis line.

Using space-between, flex-items are again evenly distributed along
the main axis line with the first item positioned at the flex-start
position and the final one at the flex-end. Any remaining space is
distributed evenly between the flex-items.

Remaining space between flex-items is calculated automatically by browsers.

266 Hardboiled Web Design

Adapting to larger screens
With our hardboiled HTML all set and our smaller screen styling in
place, we’ll now give our design an extra level of fidelity and interac-
tion that makes the most of the space available on larger screens. We’ll
redevelop our vertical list into a grid of eight magazine covers that re-
veal their descriptions when we press on them. We can do this simply
by applying relative positioning, but no horizontal or vertical offsets:

@media (min-width: 48rem) {
.hb-target {
display : flex;
flex-wrap : wrap;
position : relative;
max-width : 700px; }
}

We’ll style our flex-items by allowing them to grow from a basis of
130px, and set margins that will space them evenly, horizontally and
vertically:

@media (min-width: 48rem) {
.item {
display : block;
flex : 1 0 130px;
margin : 0 20px 20px 0; }
}

We won’t need any right margins on the fourth and fifth items, so
we’ll remove that using :nth-of-type pseudo selectors:

@media (min-width: 48rem) {
.item:nth-of-type(4) {
margin-right : 0; }
.item:nth-of-type(8) {
margin-right : 0; }
}

267RGBa and opacity

To make this interface load faster, we can use each image twice: once
for the main grid, and again as a background-image on each item’s
description overlay.

Now it’s time to turn our attention to the descriptions. We’ll position
them absolutely to the top and left of each item and give them zero
(0) opacity. This makes them completely transparent:

@media (min-width: 48rem) {
.item_ _description {
opacity : 0;
position : absolute;
top : 0;
left : 0; }
}

Here’s how our finished grid interface should now look. Each of the description
divisions is invisible, hidden by opacity.

Flexbox align-items
I’d like you to cast your mind back to when we first came to terms
with flexible box layout. I mentioned then that when we make an el-
ement flex, we arrange its descendants along a main axis, or another
axis that crosses it — and sometimes both. This gives us the ability to
create layouts that are impossible to make when using floats. So far,
however, everything we’ve developed has made use of only the main
axis and that cross axis has gone untouched. It’s time to put that right
by learning about the align-items property.

.item {
align-items : stretch; }

We shouldn’t need to type that declaration very often, though, as
stretch is the initial value.

Stretching flex-items
along the cross axis
is one of the most
useful things about
flexbox.

align-items is similar in concept to justify-content, but whereas
justify-content aligns flex items along a main axis line, align-items
uses the cross axis. There are four useful values that enable us to cre-
ate interesting designs using flexbox. flex-start packs flex-items at
the start of the cross axis line. When flex-direction is set to row, the
start of the cross axis will be at the top. When it’s set to column, this
will be on the left.

270 Hardboiled Web Design

Achieving layouts like this, where flex-items are aligned to the end of a cross axis, is
something designers have wanted to do for years.

When we specify flex-items will align to the center, they’ll be packed
towards the centre of the cross axis. When we combine this with
justify-content:center we can achieve horizontally and vertically
centred layouts more easily than ever before.

271RGBa and opacity

Targeting with pseudo-class selectors
When we apply a unique id, we turn any element into a uniquely
addressable fragment of a page. We can even target these fragments
from links on the same page. The CSS :target pseudo-class selec-
tor allows us to change the styles applied to these elements when a
user follows a link pointing to them. In this hardboiled interface, the
:target pseudo-class selector changes the look of interface elements
without using JavaScript.

Next, we’ll change the styling properties of the description divisions
using the :target pseudo-class selector. We’ll give them dimensions,
padding, and background and border properties and — most impor-
tantly — reset their opacity back to fully opaque (1):

@media (min-width: 48rem) {
.item:target .item_ _description {
opacity : 1;
width : 100%;
height : 480px;
padding: 40px 40px 40px 280px;
background-color: rgb(223,225,226);
background-repeat : no-repeat;
background-position : 40px 40px;
border: 10px solid rgb(236,238,239);
box-shadow: 0 5px 5px 0 rgba(0, 0, 0, 0.25), 0 2px 2px 0 rgba(0,
0, 0, 0.5); }
}

Why so much padding on the left? We’ll place a background-image into
that space, reusing the same image we used to form the grid. To apply
these background images, use a selector that descends from the id we
applied to each item:

272 Hardboiled Web Design

@media (min-width: 48rem) {
#hb-target-01:target .description {
background-image : url(target-01.jpg); }
#hb-target-02:target .description {
background-image : url(target-02.jpg); }
#hb-target-03:target .description {
background-image : url(target-03.jpg); }
#hb-target-04:target .description {
background-image : url(target-04.jpg); }
[…]
}

To complete this design, we need to include a way to hide the descrip-
tion division to reveal the image grid. We can achieve this by provid-
ing a link that points back to the outer items container thereby reset-
ting the interface to its original state:

We’ll use an attribute selector to position that link outside at the top-
right of the design:

@media (min-width: 48rem) {
a[href="#hb-target"] {
position : absolute;
top : -20px;
right : -20px;
display : block;
width : 26px;
height : 26px; }

273Borders

Our JavaScript-free, opacity and :target pseudo-class interface is now complete.

Breaking it up
Our designs don’t have to appear flat and two-dimensional as we can
use RGBa and opacity to give our designs depth. This richness, part of
a design’s atmosphere, can transcend responsive breakpoints. Unlike
opacity in graphic design tools such as Sketch, we can use both RGBa
and opacity to bring our designs to life with little more than a few
simple lines of CSS. Now that’s hardboiled.

274 Hardboiled Web Design

Borders
Borders are an integral part of a design’s atmosphere, but
it’s always been hard to get overexcited about them. Yet
CSS borders can be exciting because they include proper-
ties that open up a wealth of creative opportunities. These
properties are border-radius to give (almost) any ele-
ment those rounded corners our clients love so much, and
border-image for using images inside those borders. Let’s
investigate.

Rounding corners with border-radius
You don’t have to go too far on the web before you’ll find rounded
corners. We use them to make irregular shapes, style links so they
look like buttons, and chamfer the sharp edges off boxes. In the past
we used images to create these rounded corners and that meant
first carving out images. Thankfully, we don’t need to abuse images
any more because border-radius makes it easy to add uniform or
non-uniform rounded or elliptical corners to almost any element.

Pushing the right buttons
Using border-radius we can round every corner of a box uniformly
using either pixels, ems or percentages based on the size of the box.
We’ll start by styling links on the ‘Get Hardboiled’ store to make them
look more like buttons. Here’s the HTML:

Add to cart

No. 14

275Borders

Now transform that link into a faux button. We’ll add padding spec-
ified in rems (to allow its proportions to scale up and down when a
user changes the text size in their browser), a background colour and a
darker border at the bottom:

.btn {
padding : 1rem 1.25rem .75rem;
background-color: rgb(188, 103, 108);
border: 5px solid rgb(140, 69, 73); }

Complete the look by rounding every corner with a uniform, rem-
based border-radius that will also scale along with the text:

.btn {
border-radius : 1rem; }

Rounding selected corners
If we round every corner of this description box, it will look out of
place next to the square-cornered book covers that appear below it.
Fortunately, we’re able to specify individual radii for each corner:

div {
border-top-left-radius : 1rem;
border-top-right-radius : 1rem;
border-bottom-left-radius : 0;
border-bottom-right-radius : 0; }

Even though
contemporary
browsers offer
page zooming,
it’s still impor-
tant to make
designs that are
flexible by using
rem units and
percentages
where possible,
so that our de-
signs are respon-
sive to any size or
type of screen.

276 Hardboiled Web Design

Making irregular shapes
Rounded corners don’t have to be circular and we can use twin radius
values to create ellipses, where the first value sets a horizontal radius
and the second a vertical radius. In this next declaration, the same two
radii are applied to all four corners.

.h-card {
border-radius : 30px 60px; }

We can also create more complex shapes by specifying twin values
individually for each corner.

.h-card {
border-top-left-radius : 5px 30px;
border-top-right-radius : 30px 60px;
border-bottom-left-radius : 80px 40px;
border-bottom-right-radius : 40px 100px; }

The tiniest details matter and there is
something not quite right about the round-
ed corners on the bottom of this box.

By selectively rounding only the top-left
and top-right corners, we visually link the
book covers to their descriptions.

277Borders

By selectively styling each corner with different border-radius proper-
ties, we can create even more complex shapes.

Shorthand properties
Writing longhand border-radius declarations is inconvenient, so it’s
lucky we can use shorthand values to crush that last example back to
just one line:

.h-card {
border-radius : 15px 30px 45px 60px; }

When we need to combine elliptical corners in a shorthand declara-
tion, we specify all horizontal values before a forward slash and all
vertical values after:

.h-card {
border-radius : 60px / 15px; }

278 Hardboiled Web Design

Translucent box-shadow with RGBa
When we want design to stand out we could add a subtle shadow
by combining box-shadow with RGBa. The box-shadow syntax is easy
to learn as the first and second values apply horizontal and vertical
offsets respectively, the third applies blur-radius and finally we set
the shadow colour inside parentheses:

.item__description {
box-shadow : 0 1px 3px rgba(0,0,0,.8); }

Unless it’s noon and you’re in the middle of a desert, everything
you see around you has more than one shadow. To create a more
natural three-dimensional effect, add a second, softer shadow. This
one should have a greater vertical offset, a wider blur-radius and be
more transparent. The values for each shadow should be separated
using a comma:

.item__description {
box-shadow :
0 1px 1px rgba(0,0,0,.8),
0 6px 9px rgba(0,0,0,.4); }

As in nature, we can cast light onto an element from any direction,
so to throw shadows either above or to the left, use negative values in
our shadows:

.item__description {
box-shadow :
0 -1px 1px rgba(0,0,0,.8),
0 -6px 9px rgba(0,0,0,.4); }

279Borders

For individual radii, the values are set clockwise starting from the
top-left, so: top-left; top-right; bottom-right; then bottom-left. When
we omit bottom-left, its radius will be the same as top-right. If we omit
bottom-right, it will be the same as top-left and so on. To set an ellipti-
cal value on each radius individually, you’d use something like this:

.h-card {
border-radius: 5px 30px 80px 40px / 30px 60px 40px 100px; }

Adding images to borders
When I wrote the first edition of Hardboiled Web Design, the only
choices designers had for their borders were: dotted, dashed, solid
and double; and groove, ridge, inset and outset. OK, put your hands
in the air those of you who have recently used any of the last four.
Ever. Me neither.

Back then, CSS border-image had only just enabled designers to add
images — either bitmaps, SVGs or even CSS gradients — within an
element’s border space and I was very excited about the possibilities
that this new property would bring. After all, we can add images to the
borders of any element, even table cells and rows (unless they’ve been
set to collapse their borders).

So how did that work? Did we see the web flooded with clever border
designs? No. Not at all. In fact, when I’ve asked attendees at my CSS
workshops these past five years whether they’ve used border-image,
only a small minority have ever raised their hands.

I wonder why could this be, because border-image opens up new ave-
nues for creativity. It’s also perfectly suited to the demands of respon-
sive web design, where we need to keep our downloads light and make
the most we can out of the smallest assets.

280 Hardboiled Web Design

It’s entirely possible that people steer clear of border-image because
its syntax can be a little tough to learn, so I’ll guide you through it as
painlessly as possible. Let’s start by using border-image to style a box
containing comments on a blog entry. Here’s our HTML:

<div class="media h-review">
 <div class="media_ _figure"></div>
 <div class="media_ _content"> […] </div>
</div>

Slicing border images
The concept of border-image is to take a tiny asset — one that’s as small
as we can make it — and then, using only CSS, slice and use its corners
and sides to style what could be much larger elements. Just as we can
slice up images using graphics software, border-image slices up any
image into nine parts of a 3×3 grid.

The CSS border-image property is a powerful
tool for making tiny images stretch and repeat
to create interface elements of any size. It can be
particularly effective in fluid layouts and on de-
signs for mobile devices where every byte counts.

border-image slices up an image into nine parts
using slice guides similar to those in our graphics
tools. Slice guides can be set any distance from
the top, right, bottom and left sides of an image.

281Borders

The image that we’re using is only 60×60 pixels and weighs in at only
a few bytes. We’re going to use its four corners as the corners of any
element that we apply them to. The top-left of our image will be used
in the top left corner of our element’s border. The bottom-right will be
used in the bottom right and so on.

The border-image-source property specifies the URL of the image we’re
slicing up to insert into the borders of our comments. In this case we’re
using a bitmap image:

.h-review {
border-image-source : url(h-review.png); }

And border-image-slice sets the positions of our CSS slice guides.

.h-review {
border-image-slice : 20 20 20 20; }

You’ll notice we don’t need to add units to the border-image-slice
values as we’re using a bitmap image and the browser automatically
assumes we’re using pixels. We’ll cover units for other types of border
images as we explore them.

Don’t forget to set the width of these borders as without it there will be
nowhere for our border images to display:

.h-review {
border-width : 20px 20px 20px 20px; }

What’s created between those slice guides become the parts of our
border: four corners, four sides and the central part of the tiny image,
if we choose to use it.

282 Hardboiled Web Design

For the blog entry comments we’re designing, we’ll set slice guides
twenty pixels from each side and the browser will apply those values
clockwise from the top (top, right, bottom, left).

Writing all those declarations was a little long-winded, so instead of
specifying border-image-source and border-image-slice separately, this
time we’ll combine them into one shorthand border-image property:

.h-review {
border-image : url(h-review.png) 20;
border-width : 20px 20px 20px 20px; }

We can also combine duplicated values into either pairs or even a sin-
gle value, just as we would when writing CSS margins and padding:

.h-review {
border-image : url(h-review.png) 20;
border-width : 20px; }

With our border-image slices decided and space made for them inside
the element’s border, the browser pushes the sliced corners of our im-
age into place in the corners of the element we’re styling.

The corners of our blog entry comments have been filled with slices from our tiny
border image.

283Borders

When we use only one value, that value will be used for all four
borders. If we omit a border-bottom value, a browser will use the same
value as border-top. Likewise when we omit a border-left value, a
browser will use the same value as border-right.

Neither the images we slice nor the position of the slice guides need
to be symmetrical. Slice guides don’t have to be set at equal distances
from the four sides of an image. To make borders asymmetrical, we
can specify separate values for each of the slice guides. For our next ex-
ample, slice guides will be set at: ten pixels (top); twenty pixels (right);
forty pixels (bottom); and eighty pixels (left) to create the irregular
shape of this border.

.h-review {
border-image : url(asymmetrical.png) 10 20 40 80;
border-width : 10px 20px 40px 80px; }

Asymmetrical border images can take on any shape or size our flexible
designs demand, while at the same time reducing the size of the imag-
es we need to download.

Styling between the borders
With the corners of our border images in place, let’s turn our attention
to the sides between those corners. As you might imagine, the border
at the top of our image will be placed in the top border of the element
that we’re styling. The same will be true of the other three borders.
Of course, in a responsive design, we never know just how wide or
how tall the elements we’re styling are going to appear, so we need to
take care to fine-tune how images will repeat or even stretch when
they fill a border:

284 Hardboiled Web Design

Stretch: When the image we’ve sliced is flat
or smooth, we might stretch it to fill the avail-
able width. Our twenty pixel wide original
slice might be stretched to hundreds or thou-
sands of pixels wide without degrading.

.h-review {
border-image-repeat : stretch; }

Repeat: If our border image has texture such
as noise, stretching it isn’t an option, so we
might repeat it to fill the available width.
With textured images like this we’d shouldn’t
need to worry about matching the edges of
that repeat.

.h-review {
border-image-repeat : repeat; }

The border image repeated to fill a
border.

The border image stretched to fill a
border.

285Borders

Round: If our border image has a pattern and
not only can’t be stretched, but we need to
match the edges of the repeat, we can specify
that repeat to be round. The browser will re-
size the border image as needed so that only
whole pieces will display inside the border.

.h-review {
border-image-repeat : round; }

Space: Similar to round, when using the space
property only whole pieces will display inside
the border. But instead of resizing the border
image, the browser will add space between
the repeat.

.h-review {
border-image-repeat : space; }

When we need to specify separate stretch,
repeat, round or space values for each border,
we can write multiple keywords on the
same line.

.h-review {
border-image-repeat : stretch round; }

Resizing slices to ensure that only
whole pieces fill the border space.

Repeating whole slices and adding
space between tiles so that an area
is evenly filled.

286 Hardboiled Web Design

Outsetting a border image
There can be times when we’d like a border’s image to extend beyond
the normal boundaries of the element’s border-box. Using the
border-image-outset property, we can do just that. The simplest syntax
extends the border evenly on all sides by 5px:

Comparing the non-extended border (top) with one extended by 5px (bottom).

.h-review {
border-image-outset : 10px; }

But of course, there being four possible borders on every element, we
can specify how much each one extends individually:

.h-review {
border-image-outset : 10px 0 10px 0; }

287Borders

We can also combine duplicated values into either pairs or even a sin-
gle value, just as we would when writing CSS margins and padding:

.h-review {
border-image-outset : 10px 0; }

The border-image-outset property accepts any CSS length value includ-
ing the most commonly used px, em, rem and even vh and vw, or you may
choose to use a simpler unitless number.

Filling in the centre
So far we’ve used all four corners and all four sides of our small border
image, but what about the centre? By default, the browser will ignore
the centre of an image after it’s been sliced. But we can put it to good
use on the bordered element by adding the fill keyword to our
border-image-slice declaration:

.h-review {
border-image-slice : 20 fill; }

Filling in the centre of our blog entry comments with subtle noise that repeats
across the background.

288 Hardboiled Web Design

Using alternatives to bitmaps
Border images are perfectly suited to the demands of responsive web
design as they allow us to take the tiniest bitmap images and use them
to style borders of elements of any size. But the images we use in our
borders need not be bitmaps at all, as we can also use scalable vector
graphics (SVGs) and even gradients made from pure CSS. The simplest
way to use vector images inside borders is to use border-image-source
in exactly the same way as we would when using a bitmap:

.h-review {
border-image-source : url(h-review.svg); }

This method is well supported and every browser that has imple-
mented border-image allows us to set SVG as a border-image-source.

Using CSS gradients for borders15 is perhaps the most interesting al-
ternative to bitmaps as it opens up a wealth of new creative opportuni-
ties. CSS gradients add a negligible amount of weight to our pages and
being included within a style sheet file add no extra requests, making
them perfect for responsive web design.

Don’t worry if you’ve not used CSS gradients before as we’ll be cover-
ing them in detail later. For now, let’s add a striped pattern made by
adding a repeating linear gradient to our border:

.h-review {
border-image-repeat : repeat;
border-image-source : repeating-linear-gradient(-45deg, white,
white 3px, #ebf4f6 3px, #9Bc7d0 6px);
border-image-slice : 10;
border-width : 10px; }

15 CSS Tricks created a collection of CSS gradients that we can use as inspiration for our own
gradient borders: css-tricks.com/examples/GradientBorder

http://css-tricks.com/examples/GradientBorder

289Borders

Repeating a gradient border is a perfect example of how two CSS properties —
border images and gradients — can be combined to help keep our responsive
designs fast and flexible. Sara Soueidan wrote a useful article16 about border-image
that explains its shorthand syntax in more detail than we’re able to do here.

Of course, we needn’t stop there, as we’re able to combine border im-
ages and gradients to create effects that are more difficult to achieve
using other CSS properties. For our next example we’ll use a simple
linear gradient that starts at the top with a darker blue and fades into
a lighter blue over the height of the element:

.h-review {
border-image-source : linear-gradient(to bottom, #9Bc7d0,
#ebf4f6 100%);
border-image-slice : 10;
border-width : 10px; }

Adding a linear gradient to a border can help us create designs that are difficult to
achieve using other CSS properties.

16 tympanus.net/codrops/css_reference/border-image

http://tympanus.net/codrops/css_reference/border-image

290 Hardboiled Web Design

Our gradient fades from top to bottom over the height of the element
and, of course, this height will vary depending on the volume of con-
tent it contains. To help keep the gradient borders consistent across all
of our blog entry comments, we’ll change that variable 100% value in
our gradient declaration to a consistent, but still flexible, 8rem:

.h-review {
border-image-source : linear-gradient(to bottom, #9Bc7d0,
#ebf4f6 8rem); }

Changing gradient values from percentages to flexible rem units helps us keep the
gradients consistent across different height elements.

Styling a hardboiled business card
We’ll round off this chapter by using border images to implement a
hardboiled business card. We don’t need any fancy HTML to make
this card because, as it contains contact information, we should use the
h-card microformat which looks like this:

<div class="h-card">
<h3 class="p-name">S.A.Fari</h3>
<p class="p-role">Web Inspector</p>
<h4>Checking all elements</h4>
<p>Dial 4.0.4 5531.21.10</p>
<p>Member of the WebKit team since 2006</p>
</div>

291Borders

This isn’t just any dog-eared
scrap of cardboard. It has a
decorative border that’s been
made from Apple keyboard
symbols.

Start with a small PNG image, only 160×160px and weighing in at
only 3Kb. We’ll use border images to style an element that could be an
infinite number of different sizes.

Starting with a tiny image containing the four
corners and a pattern that we’ll use to style the
sides of our business card.

We’ll first set slicing guides that are an even twenty pixels from each
side of the image we‘re using to style our border. Then we’ll set our bor-
ders’ width to the same twenty pixels:

.h-card {
border-image-source : url(safari.png);
border-image-slice 20;
border-width : 20px; }

So far, so good, as those declarations push the corners of the source im-
age to the four corners of our new business card — but what about the
sides? With this intricate design, we must take care when controlling
how those sides are displayed.

292 Hardboiled Web Design

stretch is out of the question for a design like this, as is a simple repeat
which could cause mismatches where patterns in the sides join the
corners. We won’t want space to insert space between our patterns as
they repeat, so we’ll choose round. This will slightly adjust the size of
the repeating pattern so that only whole pieces of it are displayed.
To complete our design and lift our hardboiled business card off the
page background, let‘s add two shadows: the first harder and darker,
the second lighter and softer.

.h-card {
box-shadow : 0 2px 5px
rgba(0,0,0,.5),
0 20px 30px rgba(0,0,0,.2); }

 By using the round keyword, we instruct
browsers to resize the parts of the decorative
image so that only whole pieces of it will fit
inside the border.

Changing a border image’s width
In every border-image example until now, we’ve made the width of a
border precisely match the size of an image slice, but what happens
when they are different?

When we change a border’s width we can control how large the images
they contain will appear. To see this effect in action, reduce the bor-
der’s width down to only ten pixels and watch as a browser scales the
image to match the new border width.

.h-card {
border-image : url(safari.png) 20 round;
border-width : 10px; }

293Borders

Making a border’s width larger than the size of a slice has the oppo-
site effect. Scale up a border’s width in several increments to see the
increase in size of the border’s image.

Breaking it up
Whether we make our corners rounded, elliptical or fill them with
images, with border-radius and border-image, CSS borders can be inter-
esting. These properties save us time, solve common implementation
problems and open up new creative possibilities, so start making your
borders hardboiled.

border-width : 30px; border-width : 40px;

border-width : 50px; border-width : 60px;

294 Hardboiled Web Design

Background images
Not too long ago, setting more than one background image on a
single element led to presentational junk in our markup. We treated
HTML like a goon just to satisfy our selfish need for a visual de-
sign, but we can quit abusing our markup because all contemporary
browsers allow us to apply more than one background image. We’re
also able to change the origin point and size of the backgrounds we
apply, which helps to open up new creative opportunities. Let’s get
started by making a design using multiple background images.

Multiple background images
For this design we’re going to use background images to give the
illusion that a heading wraps around the area containing an article.
In the past, we would have needed two nested elements to create this
illusion, applying a different background image to each one:

<div class="left">
 <div class="right"> […] </div>
</div>

Fortunately, our markup can stay hardboiled as we need use only a sin-
gle HTML section element and apply two background images to that.

<section> […] </section>

I’ve made two background images for our design, one to position to the
 left, one to the right. We can specify both in a single background-image
value, separating the source of each image with a comma:

section {
background-image :
url(section-left.png),
url(section-right.png); }

No. 15

295Background images

At this stage we should also specify the position and repeat for both
background images. We can do that in the same way, separating each
value with a comma:

section {
background-position : 0 0, 100% 0;
background-repeat : no-repeat, no-repeat; }

To save a few bytes, we can write those values in shorthand by
combining source, repeat and position for both images into a
single declaration:

section {
background :
url(section-left.png) no-repeat 0 0,
url(section-right.png) no-repeat 100% 0; }

Overlapping background images
When multiple background images overlap, you might think that their
order follows the CSS positioning stacking order, where the element
furthest down the source appears highest, or closer to the viewer (un-
less z-index determines otherwise.) Something like this:

section {
background :
url(background.png) no-repeat 0 0,
url(middle-ground.png) no-repeat 0 0,
url(foreground.png) no-repeat 0 0; }

You’d be wrong. The first image in a declaration will appear closest to
the viewer and for very good reason. If an older browser doesn’t sup-
port multiple background images it will display only the first image
before it chokes on the first comma.

296 Hardboiled Web Design

section {
background :
url(foreground.png) no-repeat 0 0,
url(middle-ground.png) no-repeat 0 0,
url(background.png) no-repeat 0 0; }

Everything old is new again
I bet that the box model was one of the first things you learned about
CSS. It may also have been one of the first things to trip you up be-
cause, in the traditional box model, padding and borders are added
to, and not subtracted from, the size of an element.

Add ten pixels padding and a five-pixel border to a one hundred pix-
els square box and the resulting width and height will be 130 pixels
(100px + 20px + 10px = 130px.) This is the default box model in all
modern browsers and CSS3 now calls this the content-box.

In fixed-width designs, this traditional box model rarely causes any
problems. But when we’re developing responsive designs, this box
model can cause headaches because CSS never made it easy to mix
percentages with fixed units like pixels and ems.

To illustrate this, imagine a box that fills one hundred per cent of the
browser window. If that box needs ten pixels padding, what width
should we give it? If the same box then needs a five-pixel border,
how wide will the box be now? Historically, to work around these
difficulties we resorted to nesting one element that used pixels
inside another that used percentages.

297Background images

To help solve the problem of mixing pixel and percentage units on
the same element, CSS introduced a second box model type — a
border-box — where padding and borders are subtracted from, not
added to, a box’s dimensions. This makes it easy to use a one hundred
percent width plus padding and borders set in pixels for this section.

section {
width : 100%
padding : 10px;
border : 5px solid rgb(235, 244, 246);
box-sizing : border-box; }

In this example,
padding and borders
are added to the
dimensions of a
content-box.

Whereas with
border-box, padding
and borders are sub-
tracted.

298 Hardboiled Web Design

Does the way border-box draws an element sound familiar? You must
be as old as I am, because that was the way Microsoft calculated box
sizes up until Internet Explorer 6.

Clipping backgrounds
When we combine a background image or colour with a border, by
default the background extends underneath the border and out to the
edges of a box. CSS3 calls this default behaviour a border-box and the
background-clip property gives us control over this behaviour:

.h-card {
background-image : url(h-card.png);
border : 10px dashed rgb(0,0,0);
background-clip : border-box; }

If we specify a box to be a padding-box,
any background colour or image
will be clipped to the outer edges of
the box’s padding and won’t extend
behind its border:

.h-card {
background-clip : padding-box; }

A browser’s
default behaviour
is to draw a box’s
border over the
top of its back-
ground colour
or image, but
this isn’t always
desirable. Luckily,
background-clip
gives us the
power to change
that behaviour.

299Background images

Defining a background image’s origin
You’ll no doubt already know about CSS’s background-position proper-
ty.17 Browsers position a background image relative to the outer edges
of an element’s padding, inside its border. CSS3 calls this origin a
padding-box and extends creative possibilities by providing properties
with several background-origin values:

One of these background-origin properties
positions a background image relative
to an element’s outer edges, beneath its
border. It’s called, unsurprisingly, a
border-box:

.h-card {
background-origin : border-box; }

With a content-box, a background image’s
origin will be relative to the outer edge of
any content, inside its padding:

.h-card {
background-origin : content-box; }

17 A refresher on background-position values: 0 0 is the same as left top; 50% 0 is fifty per
cent horizontally but still at the top; and 100% 100% is the same as right bottom. You can
specify a background image’s position using keywords (left, top, right, bottom), percent-
ages, pixels and any other CSS units.

300 Hardboiled Web Design

Sizing background images
Working with large background images can often be a headache and
I can’t count the number of times in the past that I resized images in
Photoshop while working on a design. CSS has a background-size prop-
erty that gives us far greater control over background image sizes. This
can save time and open up a world of creative opportunities.

The background-size property takes horizontal and vertical pixel or
percentage values, plus optional keyword values of cover and contain:

.item_ _img {
background-size : 100% 50% contain; }

Let’s start with a box. Its dimensions are 200×310 pixels and we’ll add a
background image that’s the same size as that box:

.item_ _img {
width : 200px;
height : 310px;
background-image : url(magazine.jpg); }

When both sets of dimensions are identical there’s no problem, but do
you hear that? It’s the sound of a client changing their mind about a
design. Don’t worry, background-size will take care of it for us and save
us a trip back into our graphics software.

Pixel units Size a background image using pixels (width and height).

Percentages
Specify a background image size as a percentage of the size of the
element it is attached to (width and height).

cover A background image’s aspect ratio covers an element’s background.

contain A background image’s aspect ratio is contained inside an element.

301Background images

Sizing background images using pixels
The background-size property allows us to specify the exact size of a
background image using pixels, like this:

.item_ _img {
background-size : 200px 310px; }

The first value defines the width, the second is height. When we don’t
specify a height, a browser will automatically choose auto and main-
tain the intrinsic aspect ratio of the background image. In the exam-
ple, these three values all produce identical results:

.item_ _img { background-size : 200px 310px; }

.item_ _img { background-size : 200px auto; }

.item_ _img { background-size : 200px; }

If an element changes size, perhaps to 240×350px, we can apply those
new sizes to a background image and it will scale or stretch to fit. We
could even specify a background size that is very different from an
element. Here are three examples:

background-size : 240px 350px; background-size : 120px 175px; background-size : 60px 87px;

302 Hardboiled Web Design

Sizing background images in percentages
CSS enables us to scale a background image using percentages. In the
following series of examples, the first value defines an image’s width,
the second its height. When we don’t specify a height, a browser will
automatically choose auto and maintain an image’s aspect ratio.

background-size : 50% auto; background-size : 25%;background-size : 100% 100%;

background-size : auto 50%; background-size : auto 25%;background-size : auto 100%;

303Background images

Cover and contain
Let’s make something a little more adventurous. It’s a promotional
panel for the ‘Get Hardboiled’ site that’s designed to promote a special
book. Start with hardboiled HTML: one article that contains a head-
ing and a paragraph:

<article class="item">
 <h1 class="item_ _header">The Phantom Detective</h1>
 <p class="item_ _description">The Phantom Detective was the
second pulp hero published after The Shadow. The first issue was
released in February 1933. The title continued until 1953, with
a total of 170 issues.</p>
</article>

This article will span one hundred per cent of the width of its con-
tainer, but we’ll also need to set padding in pixels, a combination that’s
difficult to pull off. Don’t worry, by declaring border-box we’ll make it
easy to mix those percentages with pixels:

.item {
width : 100%;
padding : 40px 80px 40px 280px;
box-sizing : border-box; }

If you’re wondering why the large amount of left padding is needed,
hold that thought — we’ll get to that in just a minute. Now apply a
large background image. It’s the key to this design and we’ll centre it
horizontally and fix it to the bottom of the section:

.item {
width : 100%;
padding : 40px 80px 40px 280px;
background: url(scene.jpg) no-repeat 50% 100%;
background-size : 200px 300px;
box-sizing : border-box; }

304 Hardboiled Web Design

The result’s looking good, but it’s not perfect because when a user
narrows their browser window, they’ll cut off both sides of the
background image.

On the right, the background image is cut off when someone reduces the size of
the browser window.

CSS has two more background-size keywords. They both scale an
image while maintaining its aspect ratio, which is perfect for just this
situation. Somewhat confusingly though, these keywords are called
cover and contain. First, the contain keyword, which scales an image
so that both its width and height are contained inside the element and
not clipped:

This background image is contained inside its element.

305Background images

With the cover keyword, both the background image’s width and
height scale to cover the background.

This background image will always cover the element, even when that element
changes size — perfect for responsive web designs.

To finish our promotional panel design, we’ll add a second background
image of a book cover. Any ideas where we’ll position it? You guessed
it: in the space left by the large amount of left padding, forty pixels
from the top and forty pixels from the left.

Separate the position, repeat and size values of each image using com-
mas — and remember, the image we specify first will be the one that
appears closest to the viewer.

.item {
background-image :
url(cover.jpg) 40px 40px no-repeat,
url(scene.jpg) 50% 100% no-repeat;
background-size : 200px 300px, cover; }

306 Hardboiled Web Design

Our final result: a responsive web design accomplished using two background
images. The second scales to fit any size container while at the same time
maintaining its aspect ratio; the first appears at its native size.
Now that’s hardboiled.

Breaking it up
When we need to apply more than one background image to an
element, we can keep our HTML hardboiled using CSS backgrounds.
Background properties give us precise control over the size of our
background images and how they’re rendered behind our elements.
Are you using them yet? What are you waiting for? Christmas?

307Gradients

Gradients
As you look at the state of website design in 2015,
you could be forgiven for thinking that web browsers are
only capable of displaying flat colours. A flat design aesthetic
– possibly inspired (but certainly fuelled) by the design of
recent operating systems such as iOS and Windows — has
become the norm. Almost every site I see includes large,
flat areas of colour, often laid out across horizontal bands,
almost always the full width of our screens, with flat or
outlined buttons, and icon graphics that are also flat. I hope
designers will soon move on from the mediocrity this flat
aesthetic epitomises and that we’ll see web design that’s
rich and full of life.

Gradients help bring a flat, two-dimensional design to life. Making
them in Photoshop or Sketch isn’t difficult, but in the era of re-
sponsive web design where we’re more concerned than ever about
flexibility and performance, making gradients using CSS simply
makes sense.

It’s been possible to make gradients using SVG for some time, but
SVG isn’t the simplest of technologies to use for making gradients.
Thankfully, creating gradients of all kinds — linear, radial and
repeating — using CSS is much more convenient and in this chapter
we’ll do just that.

No. 16

308 Hardboiled Web Design

Gradients are background images
I have to admit that I was very surprised when I first learned that
CSS gradients were a type of background image — just like bitmap
images or SVG — and not distinct like a background gradient property
would’ve been. It took me a while to realise that one of the benefits of
gradients being background images is our ability to mix them with
other image formats in a multiple background-image declaration.

Linear gradients
A linear gradient is possibly the most common and useful type of gra-
dient and in CSS it consists of a gradient axis and two or more colours.
That axis can be horizontal, vertical or at any angle we choose across
an element’s background. The concept and syntax of CSS gradients
shouldn’t be difficult to grasp, particularly if you’re experienced using
Photoshop or Sketch.

We’ll start writing a vertical linear gradient to style a button, a gradi-
ent made up of two colours from the ‘Get Hardboiled’ brand colours:

div {
background-image : linear-gradient(
#fed46e,
#ba5c61); }

We can define a gradient’s colour values using either keywords, hexa-
decimal values, RGB and RGBa, or HSL and HSLa, and separate each of
the colours in our gradient using a comma.

309Gradients

Next, we’ll specify a gradient’s direction, simply by stating where we
want the gradient ‘to’ end. This could be on the left or on the right,
at the bottom or at the top. We don’t need to specify where the linear
gradient starts as this is implied from where it ends.

Our first example ends at the top:

div {
background-image : linear-gradient(
to top,
#fed46e,
#ba5c61); }

This one ends on the right:

div {
background-image : linear-gradient(
to right,
#fed46e,
#ba5c61); }

This next gradient ends on the left:

div {
background-image : linear-gradient(
to left,
#fed46e,
#ba5c61); }

The to syntax doesn’t only work for the top, right, bottom or left sides
of an element; it works from the four corners of an element too, ena-
bling us to create diagonal gradients.

310 Hardboiled Web Design

This gradient ends at the bottom-right:

div {
background-image : linear-gradient(
to bottom right,
#fed46e,
#ba5c61); }

The next gradient ends bottom-left:

div {
background-image : linear-gradient(
to bottom left,
#fed46e,
#ba5c61); }

This gradient ends top-left:

div {
background-image : linear-gradient(
to top left,
#fed46e,
#ba5c61); }

Our fi nal gradient ends top-right:

div {
background-image : linear-gradient(
to top right,
#fed46e,
#ba5c61); }

When we need to specify the precise angle of a gradient in degrees, we
can follow the same pattern, replacing to with a number of degrees.

311Gradients

This next example includes a thirty degree gradient:

div {
background-image : linear-gradient(
30deg,
#fed46e,
#ba5c61); }

When needed, we can reverse the angle of a gradient using a negative
number of degrees:

div {
background-image : linear-gradient(
-30deg,
#fed46e,
#ba5c61); }

Adding colour stops
Simple gradients are created from two colours,
but our designs will often require more com-
plex gradients that include one or more colour
stops. To help us visualise what a colour stop is,
let’s head back into familiar territory, graphics
software, in this case Sketch. Here, we can add
colours to a gradient by double-clicking on the
gradient fill bar.

Adding a colour stop to a CSS gradient works
exactly the same way and when we specify
one or more colour stops, a browser will blend
smoothly between them.

Adding colour stops to a
gradient in Sketch.

312 Hardboiled Web Design

In our next example, the linear gradient flows from the top to the bot-
tom and blends from red through yellow and ends with blue:

div {
background-image : linear-gradient(
#b1585d,
#fed46e,
#388fa2); }

As we haven’t yet specified the positions where we’d like these colours
to blend, they’ll blend evenly across the gradient’s axis. When we’d
like precise control over where our colours blend, we can introduce a
colour stop at the position where we’d like a colour to start blending. In
this example, we’ll specify that the second, yellow colour starts twenty
percent from the start of the gradient axis.

Look closely and you’ll see a 20% next to our yellow colour value:

div {
background-image : linear-gradient(
#b1585d,
#fed46e 20%,
#388fa2); }

We’re able to add colour stops to every colour in our gradients, so we
might also specify that our final blue colour starts blending sixty per-
cent from the start of the gradient axis.

div {
background-image : linear-gradient(
#b1585d,
#fed46e 20%,
#388fa2 60%); }

313Gradients

In every example so far, we’ve blended our colours gradually along
a gradient’s axis, but sometimes our designs mean that we need to
change abruptly from one colour to another. CSS gradients make this
trivial.1 To add a sudden change in colour, simply give two colours the
same colour stop value; in the next example, forty percent:

div {
background-image : linear-gradient(
#b1585d,
#fed46e 40%,
#388fa2 40%); }

Linear gradients see some action
It‘s time for gradients to see some action and we’ll make this happen
by creating the kind of “We’ll be right back” sticky note that you might
see on a hardboiled detective’s door. Of course, you could use a note
like this on a website’s holding page. Our markup is hardboiled, just a
lonesome article element containing a semantic heading and a list:

<article>
 <h1>Back soon!</h1>

Gone for smokes
Getting booze
On a job (yeah, really)

</article>

We’ll start by giving our article some dimensions, a little padding
and a solid background colour that people using browsers incapable of
rendering gradients will see:

1 colinkeany.com/blend

Colin Keany’s
Blend is a beauti-
fully designed and
very useful online
tool1 for creating
gradients. Choose
two colours
from a selection
of palettes and
grab code that’s
ready to use.

http://colinkeany.com/blend

314 Hardboiled Web Design

article {
width : 280px;
height : 280px;
padding : 22px;
background-color : #fed46e;
box-sizing : border-box;
text-align : center; }

Now to make our sticky note more realistic by adding a diagonal gradi-
ent with two colours that will blend towards to the top-right corner of
the note, with a colour stop at 60%:

article {
background-image : linear-gradient(
to top right,
#fed46e 60%,
#bf9f53); }

Browsers that have implemented CSS gradients, with or without a
vendor-specific prefix, will render them. Those that aren’t capable will
render the solid background colour we specified earlier.

Finally, to give a greater feeling of
depth, we’ll add a subtle shadow to our
note:

article {
box-shadow : 0 2px 5px
rgba(0,0,0,.5); }

315Gradients

Radial gradients
In the first edition of Hardboiled Web Design, I kept this section about
radial gradients “intentionally brief” as at that point browser vendors
still disagreed about the syntax for writing them. I wrote:

To watch every punch and counter-punch as these standards develop, follow
the CSS Working Group on Twitter or keep up with the minutes of their
meetings on their blog. Pretty, it ain’t.”

Fortunately, those battles are now far behind us and all contempo-
rary browsers now fully support the W3C standard for all types
of gradients.

Defining a gradient type
Just like linear gradients, radial gradients are values we can use on the
background-image property. We’ll keep the same two colours from our
linear examples, but specify the gradient type as radial this time:

div {
background-image : radial-gradient(
#fed46e,
#ba5c61); }

With this simplest of radial gradients, the first colour will blend into
the second from the centre of the element to its furthest edge. This
means that unless an element’s height and width are the same, the
gradient will be an ellipse, the default shape for a radial gradient.

“

316 Hardboiled Web Design

When we need our radial gradients to be circles, we can override the
default elliptical shape by adding the circle keyword to our declara-
tion, separated from our colours by a comma:

div {
background-image : radial-gradient(
circle,
#fed46e,
#ba5c61); }

Look closely at that last example and you should notice that the gra-
dient circle extends to the farthest edge of the element, meaning that
we see an incomplete circle. When our designs mean that we need
the gradient circle to be fully enclosed with the element — in effect
stopping at its closest side — we can make that happen by adding the
closest-side keyword along with circle:

div {
background-image : radial-gradient(
circle closest-side,
#fed46e,
#ba5c61); }

Of course, there are other keywords we can use to vary which side or
even corner we’d like our gradient to end.

This circle ends at the closest corner from the centre:

div {
background-image : radial-gradient(
circle closest-corner,
#fed46e,
#ba5c61); }

317Gradients

This one at the farthest corner:

div {
background-image : radial-gradient(
circle farthest-corner,
#fed46e,
#ba5c61); }

And this the farthest side:

div {
background-image : radial-gradient(
circle farthest-side,
#fed46e,
#ba5c61); }

Changing the gradient origin
By default, radial gradients start at the centre of an element’s back-
ground and blend their colours outward. I can think of many occa-
sions where we might need to change that default and we’re able to
do exactly that using the at keyword, followed by either a position or
some other value.

This gradient starts in the top-left of an element’s background:

div {
background-image : radial-gradient(
circle at top left,
#fed46e,
#ba5c61); }

318 Hardboiled Web Design

While this one starts at the bottom-left:

div {
background-image : radial-gradient(
circle at bottom left,
#fed46e,
#ba5c61); }

We can start gradients in the top-right, too:

div {
background-image : radial-gradient(
circle at top right,
#fed46e,
#ba5c61); }

And, of course, in the bottom-right:

div {
background-image : radial-gradient(
circle at top right,
#fed46e,
#ba5c61); }

If you crave even more creative control over your gradients, you’re real-
ly in luck because in addition to those at keywords, we can precisely
control a gradient’s origin position using CSS units, including pixels
and percentages — ideal when making responsive web designs.

Let’s start by positioning the centre of our next gradient eighty pixels
from the left and thirty pixels from the top of our element:

319Gradients

div {
background-image : radial-gradient(
circle at 80px 30px,
#fed46e,
#ba5c61); }

If you’d like the centre of your gradient outside of the element itself,
you can even use negative numbers. In this example, the centre is
thirty pixels outside the top of the element:

div {
background-image : radial-gradient(
circle at 80px -30px,
#fed46e,
#ba5c61); }

Adding colour stops
As with linear gradients, simple radial gradients are created from two
colours, but our designs will often require more complex gradients
that include one or more colour stops. Next, we’ll add a third colour to
that last gradient:

div {
background-image : radial-gradient(
circle at 80px -30px,
#b1585d,
#fed46e,
#388fa2); }

As we haven’t yet specified the positions where we’d like these colours
to blend, they’ll blend evenly across the gradient. When we’d like pre-
cise control, we can introduce colour stops at the positions where we’d
like colours to start blending.

320 Hardboiled Web Design

div {
background-image : radial-gradient(
circle at 80px -30px,
#b1585d 30%,
#fed46e 30%,
#fed46e 40%,
#388fa2 40%); }

Radial gradients in the limelight
It‘s time to put radial gradients in the limelight by combining them
with RGBa to shine a spotlight on the door of the ‘Get Hardboiled’
office. First, let’s style the door. We’ll apply a dark background colour
and a wood panel background image:

.hb-about {
background-color : #332115;
background-image : url(about-wood.jpg);
background-position : 50% 50%;
min-height : 100vh; }

This smart wooden panelling will give a good impression to all visitors to the ‘Get
Hardboiled’ office. We’ll welcome even those who are using a less capable browser
and forget to wipe their feet.

321Gradients

Because CSS gradients use the background-image property, we can
use them in multiple backgrounds, including bitmap background
images or other CSS gradients. First, we’ll add a radial gradient to our
background-image, and because this comes first in the declaration, it
will appear over the door’s wooden pattern:

.hb-about {
background-image : url(about-wood.jpg);
background-position : 50% 50%; }

Now add background-position and background-repeat values for the
gradient, separating them with a comma from those styling the
wooden pattern image:

.hb-about {
background-image :
radial-gradient(
circle at bottom left,
transparent,
rgba(0,0,0,.8)),
url(about-wood.jpg);
background-position : 0 100%, 50% 50%;
background-repeat : no-repeat, repeat; }

322 Hardboiled Web Design

Now our door looks ready to kick down, but before we put the boot in
we need to ask ourselves whether our design is hardboiled enough.
Although the bitmap wood grain image we’ve used optimises down
to only 50Kb, that still means an extra download and HTTP request
when someone downloads that image.

Hardboiled CSS is all about making the most from very little, so let’s
first replace that bitmap using a partly transparent linear-gradient
combined with the background-size property.

.hb-about {
background-image :
linear-gradient(
90deg,
#472615 50%,
transparent 50%);
background-size : 6px; }

Our gradient runs top to bottom from a wooden brown colour to transparent.
Because both colours have the same fifty percent colour stop, they meet in a sharp
line no matter what the background’s size:

323Gradients

This gradient creates vertical stripes that look like the edges of stained
plywood, but the background doesn’t resemble our wood grain image
just yet, so let’s use a different type of gradient, a repeating one.

Repeating gradients
So far we’ve learned about linear and radial gradients that both blend
across the entire size of an element. But what if we want a gradient
to repeat across an element’s background, to create a pattern made of
nothing more than a few simple lines of CSS? Well, we can do just that
with a repeating gradient.2

There are two types of repeating gradient, repeating-linear-gradient
and repeating-radial-gradient. Here’s how to specify a repeating gra-
dient that will be linear:

div {background-image : repeating-linear-gradient(); }

Whereas a radial gradient that repeats looks like this:

div {background-image : repeating-radial-gradient(); }

We’ll start writing a repeating linear gradient made up of two colours
from the ‘Get Hardboiled’ colour palette. As we want our gradient to
run vertically, we’ll set the angle of the gradient to ninety degrees.

div {background-image : repeating-linear-gradient(90deg); }

2 On CSS Tricks, Ana Tudor answers the question, “Why Do We Have repeating-linear-gradient
Anyway?” Her explanation includes some devilishly clever examples of how to use gradi-
ents to create effects that you wouldn’t think possible using CSS:

 css-tricks.com/why-do-we-have-repeating-linear-gradient-anyway

http://css-tricks.com/why-do-we-have-repeating-linear-gradient-anyway

324 Hardboiled Web Design

Now add our two ‘Get Hardboiled’ brand colours along with colour
stops that create hard edges between the colour blends:

div {
background-image : repeating-linear-gradient(
90deg,
#fed46e,
#fed46e 3px,
#ba5c61 3px,
#ba5c61 6px); }

That last colour stop value performs a very important role as it
effectively controls the size of the gradient background we’re going
to repeat. Change that in proportion to our colour stop values and we
can alter the look of our background dramatically. This next repeating
gradient has a tight pattern set at forty-five degrees:

div {
background-image : repeating-linear-gradient(
45deg,
#fed46e,
#fed46e 5px,
#ba5c61 5px,
#ba5c61 10px); }

Now let’s switch that gradient to -45deg and open out the
repeating pattern:

div {
background-image : repeating-linear-gradient(
-45deg,
#fed46e,
#fed46e 10px,
#ba5c61 10px,
#ba5c61 20px); }

325Gradients

So far we’ve looked at repeating linear gradients, but repeating gra-
dients can include circles or ellipses too. Our next gradient is a circle
whose origin is at the centre-bottom of the element:

div {
background-image : repeating-radial-gradient(
circle at 50% 100%,
#fed46e,
#ba5c61 20px); }

That final colour stop again controls the size of the repeating back-
ground, so let’s increase it and change the position of the gradient’s
origin to centre-top:

div {
background-image : repeating-radial-gradient(
circle at 50% 0,
#fed46e,
#ba5c61 40px); }

Finally, we’ll change the circle to an ellipse and position the gradient’s
origin to right-centre:

div {
background-image : repeating-radial-gradient(
ellipse at 100% 50%,
#fed46e,
#ba5c61 40px); }

Repeating gradients see some action

Lea Verou
collects some in-
spiring examples
of patterns made
from CSS gradi-
ents, with code
to copy, paste
and adapt. You
can even submit
your own gra-
dient patterns
to the gallery.3

326 Hardboiled Web Design

Let’s take our knowledge of repeating gradients back to the ‘Get
Hardboiled’ office door. Our last attempt using a straight linear
gradient was close, but no pack of Luckies. This time we’ll use a
repeating gradient to replace the bitmap wood grain image. We’ll
mix up six colours with several different colour stops to create a
more natural-looking result:

.hb-about {
background-image :
repeating-linear-gradient(
90deg,
#24170b,
#24170b 6px,
#291A0b 8px,
#3e2010 10px,
#281A11 11px,
#281A11 12px,
#25170a 18px,
#180f06 24px,
#180f05 24px,
#180f05 28px);
}

Now our office door just got more hardboiled. Although on close

327Gradients

inspection it doesn’t look exactly like it’s made of hardwood, when
someone views our design on a smaller screen they may not notice the
difference, but they will appreciate the smaller size of their download.
This leaves us free to reintroduce the background image at a larger
breakpoint when we absolutely will need that extra level of detail:

@media (min-width: 48rem) {
.hb-about {
background-image :
radial-gradient(
circle at bottom left,
transparent,
rgba(0,0,0,.8)),
url(about-wood.jpg);
background-position : 0 100%, 50% 50%;
background-repeat : no-repeat, repeat; }
}

Breaking it up
The flat design aesthetic may be all the rage today, but I’m old and
ugly enough to know that fashions in web design change as fast as
hipsters change coffee shops. Mark my words, gradients will be back
and — whether you like yours linear, radial, repeating or with multiple
background images — you’ll need to know how to handle them.

You now know that hardboiled CSS helps us
to leave behind some of the ways of working
we’ve become accustomed to, making our
websites lighter, faster and more responsive as
a result. Now it’s time to turn up the heat again.

In More Hardboiled CSS, you’ll learn about
the latest background blends and CSS fil-
ters, how to translate, scale, rotate and skew
elements using CSS transforms in two and
three dimensions. You’ll find out how to make
state changes smoother with a host of CSS
transitions, and finish off by discovering how
to add columns to your layout without a extra
division in sight. Now that will be hardboiled.

MORE HARDBOILED CSS

330 Hardboiled Web Design

Background blends and filters
The rapidly increasing pace of change in what we make is
reflected not only in the tools we use but also the speed in
which new tools and technologies are being developed. No-
where is this truer than in the time it takes for emerging CSS
properties to be implemented across a range of contempo-
rary browsers. In the past, designers and developers waited
year after year for the simplest CSS technologies, such as
border-radius, to be implemented reliably across browsers;
today, new properties go from idea to design to implementa-
tion – and even to specification – in a fraction of the time.

In almost every way, this change in the pace of development is a good
thing for designers and developers, businesses and brands, and the in-
ternet in general. It means there’s a likelihood that even recent brows-
er versions may not be in step with developments, but we can’t slow
down the pace of progress. Instead, we should push the web forward
by using emerging technologies, not just on experimental projects, but
in the work we’re paid to do every day.

1 quirksmode.org/blog/archives/2015/07/stop_pushing_th.html
2 jakearchibald.com/2015/if-we-stand-still-we-go-backwards
3 dev.opera.com/articles/on-a-moratorium-on-new-browser-features

No. 17

Peter-Paul Koch
(PPK) wrote an ar-
ticle about wanting
a year-long mor-
atorium on new
browser features
to “free us from
the churn of ever
more features and
ever more tools.”
That article stirred
considerable
controversy and
some intelligent
and respectful
replies from Jake
Archibald2 and
Bruce Lawson.3

331Background blends and filters

CSS shaders
Much of the innovation in CSS over the last decade has been insti-
gated by browser makers, but in the past few years Adobe — maker
of Illustrator and Photoshop and owner of Typekit — has inspired
some of the most interesting graphical effects in CSS. In 2011, Adobe
announced what it called CSS shaders,4 advanced visual effects for the
web. Reaction to the proposal to bring to browsers the type of filters
we use in Photoshop was universally well received, and in late 2014
Adobe’s filters were included in the working draft of the W3C’s Filter
Effects module.5

The rate of adoption for blending modes and filters has been aston-
ishing, with every major browser now supporting CSS filters in one
form or another. Chrome, Opera and Safari all require the -webkit
vendor-specific prefix, and Microsoft Edge has supported filters under
the “Enable CSS filter property” flag.

CSS filters
Not to be confused with Microsoft’s proprietary filters from the dark
days of the browser wars, CSS filters are powerful new tools that make
available within a web browser some of what’s been possible in graph-
ics and photography software for some time. The filter property puts
effects such as blurring, image adjustment and even full drop-shad-
ows into our browsers.

blur brightness contrast
drop-shadow grayscale hue-rotate
invert opacity saturate
sepia

4 adobe.com/devnet/archive/html5/articles/css-shaders.html
5 w3.org/TR/filter-effects/

Microsoft’s
proprietary filters
were implement-
ed from Internet
Explorer version 4,
all the way to ver-
sion 8. Microsoft is
now adopting the
standard filter
property in the
Edge browser.

http://www.adobe.com/devnet/archive/html5/articles/css-shaders.html

332 Hardboiled Web Design

As you might expect from technology that has its roots in photo-
graphic retouching software, these properties are mostly used to
manipulate images, although it’s possible to use them on any ele-
ment and even apply them to an entire page if you feel so inclined.
I hope that in the near future we’ll be able to apply filters to back-
grounds and borders too.

The syntax for filters is simple: the filter property followed by a filter
type, such as blur, then its various values inside parentheses:

.filter {
filter : blur(5px); }

Filters are easy to use and because of their relative novelty as proper-
ties in CSS, still fun to experiment and play with. We’ll work through a
range of filter types, learn about the values they accept and look at the
effects they create. Let’s start with blurring an element.

Blur
To apply a Gaussian blur to an element using a filter, we need only
specify blur as the filter type, then a value that represents the radius of
the blur. To demonstrate this we’ll apply blur to the illustrated banner
background on the Stuff & Nonsense website:

.filter {
filter : blur(5px); }

333Background blends and filters

Blurring a banner’s background division on the Stuff & Nonsense website.6

Blur filters accept any CSS unit as their radius, so we can used pixels,
em, rem and even cm if you’re feeling adventurous. The higher the
number, the larger the radius we apply and the stronger the filter ef-
fect. The unit we can’t use is a percentage. If we enter an invalid value,
the browser will apply none as a value instead.

Blur is one of the first to come to mind when we think about filters,
and applying them using CSS is now very simple. What’s often still
difficult, though, is judging the correct amount of blur to achieve a
natural-looking result.

6 Illustration by Josh Cleland (joshcleland.com)

334 Hardboiled Web Design

Brightness and contrast
As you might expect, brightness increases or decreases the lightness
of any element that it’s applied to. While you might at first think that
brightness can only be applied to photographs or other images, you
can apply it to any element, everything from text elements to entire
sections of a page. In this next example, we’ll reduce the brightness
of another illustrated Stuff & Nonsense header by fifty percent, as if
we’re dimming the lights:

.filter {
filter : brightness(50%); }

The brightness filter accepts percentage values, with 100% leaving an
element with its original look. Values between 0% and 100% turn down
that brightness towards black, while values over 100% turn it up, and
up and up, until the element looks burned out.

brightness and
contrast accept
numbers as well
as percentages.
1 produces the
same visual
effect as 100%, 2
the same effect
as 200%, and so
on. This handy
shortcut value
works for any
filter that accepts
percentages.

The sepia filter
also replaces
colour with
shades of grey,
but also adds a
warm tone that’s
reminiscent of
old photographs.
Knowing this, I
predict the next
trend will be web-
sites that look like
Victorian photo
albums.

335Background blends and filters

Using identical values to brightness, the contrast filter can also be
applied to any element. To compare it to brightness, we’ll change the
contrast of that same illustrated banner.

.filter {
filter : contrast(50%); }

contrast accepts the same percentages. 0% brings highlight and
shadow contrast together to create a flat grey; between 0% and 100%,
contrast is increased; at 100% the element appears unchanged.
Increasing contrast over 100% creates some very interesting
results as the previous montage illustrates.

Grayscale and saturate
A grayscale filter progressively replaces colour with shades of grey.
Values start at 0% which leaves the element unchanged, all the
way to 100%.

When I’m writing
HTML and CSS
to develop the
layout for a new
design, I often ap-
ply a 100% gray-
scale filter so I
can concentrate
on layout, espe-
cially in relation
to typography,
without being dis-
tracted by colour.

336 Hardboiled Web Design

.filter {
filter : grayscale(100%); }

On the other hand, the saturate filter leaves the mix of colour values
intact and changes the amount of them all. The values for saturate are
different to the grayscale filter: before, 0% left an element unaltered; in
saturate, 0% makes an element appear completely devoid of colour.

.filter {
filter : saturate(25%); }

100% saturation produces the initial look for any element, whereas
values over 100% oversaturate it.

337Background blends and filters

Hue-rotate
Using the hue-rotate filter can create some of the strangest and
strongest looks. Hue is one of the properties of colour, along with satu-
ration and brightness or lightness.7 It’s common to see hue expressed
as a colour wheel and the hue-rotate filter rotates all the colours in an
element around that wheel by the number of degrees we specify. In
this next example we’ll try 90 degrees.

.filter {
filter : hue-rotate(90deg); }

hue-rotate changes the angle of an element’s colour clockwise around
the wheel and forty-five degrees is expressed as 45deg.

7 Colour theory is a complex subject and WebPlatform.org does a great job of explaining
properties including hue-rotate: docs.webplatform.org/wiki/css/functions/hue-rotate

338 Hardboiled Web Design

Invert
The invert filter inverts any colour present in an element by the
amount we specify. Use a value of 0% and the element will look un-
changed.

.filter {
filter : invert(100%); }

Progressively increasing that percentage will invert the colours by ever
greater amounts until the 100% maximum is reached, with completely
inverted colours.

Opacity
Now you may be wondering why we would use a relatively new
opacity filter when there’s been an opacity property available to us
for years. It’s true that this filter works in exactly the same way as the
original. 0% makes an element fully transparent; 100% makes it fully
opaque. With both we can use numbers instead of percentages with
.75 giving the same result as 75%.

.filter {
filter : opacity(.75); }

339Background blends and filters

So what are the benefits of this new filter over the previous property?
There are two that spring to mind. The first, as you’ll learn in a mo-
ment, is that the opacity filter can be combined with other filters for
interesting creative effects. Second, some later browsers use hardware
acceleration on CSS filters to improve the speed of page rendering.

Combining multiple filters
For even more interesting creative effects, we can combine two or
more filters. The syntax for these combinations always catches me
off guard. If, like me, you expect a list of filters to be separated by
commas, you’d be wrong. In the next example we’ll combine filters for
higher brightness and lower contrast with undersaturation to give an
aged photograph feel. The syntax for combining filters looks like this:

.filter {
filter : brightness(1.25) contrast(.75) saturate(40%); }

The order in which we write our filters matters and it might help you
to read a string of filters from left to right. In that previous example,
the element’s brightness is increased to 125% before having its contrast
reduced to 75%. Finally, the result of combining those two filters is
reduced to 40% saturation.

One word of caution when we use filter effects to add a little extra
visual interest to :active, :focus or :hover states, we must repeat
every property across each state. For example, we might want to ad-
just the saturation value of the previous example on hover, but leave
brightness and contrast looking the same.

340 Hardboiled Web Design

.filter {
filter : brightness(1.25) contrast(.75) saturate(40%); }

.filter:hover {
filter : saturate(10%); }

Watch out! The declaration we applied to :hover removed both bright-
ness and contrast from the element in that state. To maintain all filter
properties across states, we must repeat our values across all of them.

Drop-shadow vs box-shadow
Once again you may be wondering why we have a relatively new
drop-shadow filter and what the differences might be between it and
the older CSS box-shadow property. You may be even more confused
when you find out that both take the same arguments: a horizontal (x)
offset, a vertical (y) offset, a blur radius, a spread radius and a shadow
colour value. Here’s the syntax for the newer drop-shadow filter:

.filter {
filter : drop-shadow(5px 5px 5px rgba(0,0,0,.5)); }

It’s unlikely you’ll see the difference between drop-shadow and
box-shadow until you apply them to an image that contains alpha
transparency. When an image has an alpha value, the drop-shadow
filter detects it and applies its shadow inside the image space, just as it
would if we were adding a drop-shadow in Adobe Photoshop or Sketch.

341Background blends and filters

The effects of drop-shadow (above) and box-shadow (below).

In contrast, the box-shadow property only recognises the outer edges of
an image and applies its shadow to them.

Let’s see how those horizontal and vertical offsets affect the result of
our drop-shadow filter as we move left to right and increase the offsets.

342 Hardboiled Web Design

Increasing offsets.

Although a drop-shadow’s horizontal and vertical offsets are required,
other shadow values aren’t. Next, we’ll increase the optional blur
radius from small to large. When we don’t specify a blur radius, the
shadow will be hard and its edges sharp.

Adjusting blur radii.

Having observed the standards development process for many years
and been frustrated by the slow pace of change over those years, I’m
both amazed and excited that new technologies such as CSS filters are
now finding their way into web browsers so rapidly. This is great news
for designers and developers, especially as we continue to embrace
responsive web design.

343Background blends and filters

The rise of mobile and the associated necessary focus on performance
have made it clear that we need to reduce the number of requests to a
server and the weight of downloaded assets. The more visual aspects
of a design we can move from images into CSS, the better our sites will
perform. CSS filters and their related blending modes are a strong step
towards doing just that.

Background blends
You might not realise it looking at today’s generally flat website and
application designs, but CSS is capable of giving us depth and subtlety.
You could be forgiven for thinking that the elements we add to our
pages live on one plane, but in fact elements lie on top of one another,
overlapping to form a stacking order. There’s even a stacking order
within elements’ multiple background images too. Personally, I hope
the current flat trend and rather soulless period of website will pass
and we’ll go back to making designs that demonstrate such depth.

If you’re familiar with photo retouching or graphic design software
such as Adobe Photoshop, Affinity Photo or Pixelmator, you’ll be famil-
iar with blend modes.8 In those applications, blend modes give us the
ability to blend or merge separate parts of an image to create a wide
variety of different effects.9

8 Sara Soueidan wrote a fabulous explanation of compositing and blending that includes
a useful introduction to compositing operations that determine which portions of source
and destination elements will be affected by blends: smashed.by/blendcss

9 Speaking of Sara Soueidan, her CSS Blender demonstrates the background-blend-mode
property by uploading an image and seeing the results of different blend modes immedi-
ately in the browser: sarasoueidan.com/demos/css-blender/

While support
for CSS filters
in browsers has
come quickly
and for the most
part completely,
CSS blend modes
are taking a little
longer to achieve
solid support.
Microsoft’s Edge
browser hasn’t
yet implemented
blend modes, and
Apple’s Safari for
both iOS and Mac
OS X are missing
support for hue,
saturate, color,
and luminosity
blend modes.

http://smashed.by/blendcss

344 Hardboiled Web Design

The same is now possible natively in browsers, thanks to two types of
CSS blend mode: background-blend-mode and mix-blend-mode. We’ll
look at each one, starting with background-blend-mode, a property de-
signed to blend together the background properties of a single element.

Background-blend
In the CSS box model, an element’s background-color lies behind any
background-image, and borders lie on top of both of them. As you might
have guessed from its name, the first of our two blend modes controls
how a single element’s background-color and images blend together.
When an element has just a single background-image, background-
blend-mode controls how that image blends with the background-color
behind it.

To apply a background blend, use the background-blend-mode property
followed by the blend type value, in this instance lighten:

.blend {
background-color : #8c4549;
background-image : url(blend-01.jpg);
background-blend-mode : lighten; }

Left: normal. Right: lighten.

345Background blends and filters

Blend modes
CSS has sixteen blend types: normal (no blending applied);
color, color-dodge and color-burn; difference, exclusion, hue,
luminosity, multiply, overlay, saturate and screen; lighten and
darken; hard-light and soft-light.

Each will give a different visual result, and the look of the source back-
ground-image will be changed by the blend type10 we choose and the
background-color of the element.

multiply: multiplies colours in the source background-
image with colours in the destination background-
color. The effect is almost always a darker source
background-image.

exclusion: Measures the brightness in both source
and destination, and subtracts the colour with
the greater brightness from the other. Exclusion
is similar to difference, but results in a lower
contrast effect.

lighten: Lightens the source by measuring both
source and destination and choosing the lighter of
the two. darken is the mathematical opposite and
has, unsurprisingly, the opposite effect.

10 It may or may not be the “ultimate” but Pye’s guide to Photoshop blend modes is certainly
comprehensive and includes very useful visual examples:
slrlounge.com/school/photoshop-blend-modes/

346 Hardboiled Web Design

overlay: A complex blend mode, overlay either
multiplies or screens colours depending on the
destination colour. Lighter colours get lighter, darker
colours become darker.

saturate: Produces a result with the saturation
of the source colour and the hue and luminosity
destination colour. saturate is similar to hue, but
uses alternate properties.

color-dodge: brightens the destination colour to
reflect the source colour.

Blending multiple background images
When we give an element multiple background images, we can apply
different blend modes to each individual image. Each image blends
with the images below it in the list and finally with the element’s
background-color.

.blend {
background-color : #8c4549;
background-image : url(blend-01.jpg), url(blend-02.jpg);
background-blend-mode : lighten, multiply; }

347Transforms

In this example, the second blend-02.jpg image blends with the
background-color, using the multiply mode; then the first blend-01.jpg
image blends with the second image and then the background-color
using the lighten mode.

There’s certainly a lot more to using background-blend-mode than
blending between a single background image and a colour. I hope we’ll
soon see designers blending multiple background images to create
designs that are rich and full of depth, so I’m excited about the creative
possibilities that this new property makes possible.

Mixing image types
In our next example we’ll blend a page background colour with both a
radial and then a repeating linear gradient to create a different lighting
effect on our ‘Get Hardboiled’ detective’s desktop.

The properties we blend need not even be images in the traditional sense; they can
be any type of gradient that we’ve generated using CSS.

348 Hardboiled Web Design

Let’s first apply a radial gradient to the body element of our page. This
gradient starts transparent, then transitions to a red colour to simulate
neon light falling across the desk:

.hb-bg-light {
background-color : #332115;
radial-gradient(circle at bottom left, transparent, #f00); }

To ensure that the body extends to the full height of the viewport, no
matter how much or how little content it contains, we’ll set the
min-height to 100% of the viewport:

.hb-bg-light {
min-height : 100vh; }

Next we’ll add a repeating linear gradient to create texture in the design:

.hb-bg-light {
background-image :
radial-gradient(circle at bottom left, transparent, #f00),

repeating-linear-gradient(
90deg,
#24170b,
#24170b 6px,
#291A0b 8px,
#3e2010 10px,
#281A11 11px,
#281A11 12px,
#25170a 18px,
#180f06 24px,
#180f05 24px,
#180f05 28px); }

349Transforms

A repeating linear gradient helps to add texture and visual interest to the design.

Now it’s time to blend those gradient background images with each
other and with the background of the page itself. We’ll choose two
blend modes. The first, color, will blend the radial gradient spotlight
effect; the second, screen, will blend the repeating gradient texture of
the desktop with the background-color behind:

.hb-bg-light {
background-blend-mode : color, screen; }

Because the result of blend modes depends so heavily on the colours
we’re blending, finding the mode that gives us the precise effect we’re
looking for can sometimes be tricky and other times require a little
good old-fashioned trial and error. Experiment by switching blend
modes and by changing the background colour to see what these prop-
erties can create. Not always knowing the outcome can often give us
an unexpected, but pleasant, result.

350 Hardboiled Web Design

Not one, but two background modes that together blend the gradient texture of
the desktop.

Testing support for background-blend-mode
Not all browsers support background-blend-mode, and while this
shouldn’t necessarily deter a hardboiled designer, there may be some
cases where we need to consider using alternatives for browsers with
no or only partial support.

Modernizr’s tests and resulting class attribute values — so that we
can write specific selectors with alternative styles — are the obvious
choice for dealing with Microsoft Internet Explorer and Edge. When a
browser supports background-blend-mode, Modernizr appends a
backgroundblendmode class to the html element:

.backgroundblendmode .blend {
background-color : #8c4549;
background-image : url(blend-01.jpg), url(blend-02.jpg);
background-blend-mode : lighten, multiply; }

351Transforms

When there’s no support, Modernizr appends a
no-backgroundblendmode class so that we might serve a different im-
age to compensate:

.no-backgroundblendmode .blend {
background-image : url(blend-alt.jpg); }

Useful though Modernizr is, it can also be a blunt instrument as it
tests only that a browser supports a CSS property and not individual
values of that property. For example, Apple’s Safari has partial support
for background-blend-mode as it’s missing the color, hue, luminosity
and saturate blend modes. Apple’s browser has implemented the
@supports feature query that we learned about earlier and this at-rule
is an ideal solution to the problem of partial support.

We’ll chain several feature queries together, first testing for color,
then hue, then luminosity and finally saturate. We’ll use both the not
operator to target browsers that lack support for these specific pairs
of properties and values, and the or operator to make sure we cover
several possible missing blend types:

@supports not (background-blend-mode:color)
or not (background-blend-mode:hue)
or not (background-blend-mode:luminosity)
or not (background-blend-mode:saturate) {

.blend {
background-image : url(blend-alt.jpg); }
}

352 Hardboiled Web Design

Mix-blend
While background-blend-mode enables us to affect the way that one or
more background images visually interact with a background colour
inside a single element, with another blend mode property we can
affect the ways that elements visually interact with one another — and
even with the page itself. This new property is called mix-blend-mode
and it opens up new opportunities to be creative in website and appli-
cation design.11

The syntax for mix-blend-mode is no more complicated than it was for
background-blend-mode:

.blend {
background-colour : #a20b30;
mix-blend-mode : multiply; }

In this example, our element won’t blend within itself, but with other
elements below it in the stacking order and the page itself.

Mixing blend modes
If an element contains multiple background images, we can either
assign the same blend mode to all of them, like this:

.blend {
background-image : url(blend-01.jpg), url(blend-02.jpg), url(-
blend-03.jpg);
mix-blend-mode : multiply; }

11 una.im/CSSgram

CSSgram is a
tiny (and fun)
JavaScript
library that rec-
reates popular
Instagram photo
filters using CSS
filters and blend
modes. Person-
ally, I love how
it’s now possible
to be creative
with image fil-
ters in browsers
and not just in
Photoshop11

http://una.im/CSSgram

353Transforms

Or we can specify a different blend type for each individual
background-image:

.blend {
background-image : url(blend-01.jpg), url(blend-02.jpg),
url(blend-03.jpg);
mix-blend-mode : multiply, screen, luminosity; }

In that example, blend-01.jpg will use the blend mode multiply, blend-02.
jpg will use screen, and so on. We therefore need to pay attention to the
order we specify for both background images and their corresponding
blend modes.

The mix-blend-mode property uses the same blend types as back-
ground-blend-mode so we can achieve the same blending effects
between elements as we have within them.

Breaking it up
In almost every way, the rapidly increasing pace of change in what we
make and how we make it is a good thing for designers and develop-
ers, businesses and brands, and the internet in general. New technolo-
gies like CSS filters and background blends are not only being intro-
duced faster, but they’re being implemented in browsers and turned
into standards faster too. Now’s not a time to kick back — it’s a time
to use these exciting new tools to make creative work with depth and
subtlety, work that’s hardboiled.

354 Hardboiled Web Design

Transforms
Despite our very best efforts, CSS layouts can sometimes
be a little strait-laced. CSS even calls its basis for layout a
box model. While some CSS layout specifications are slow-
ly making their way through the standardisation process
inside the W3C, two-dimensional and three-dimensional
transforms can help our designs break out of the box.

Two-dimensional transforms
Two-dimensional CSS transforms are supported in all current brows-
ers, so using them is a real no-brainer. The basic syntax for trans-
forms is simple:

transform : transform type;

There are a number of ways that we can transform an element:

• translate: moves an element horizontally and vertically.
• skew: distorts an element horizontally and vertically.
• rotate: rotates an element.
• scale: increases or decreases the size of an element.

Transform: translate

We’ll start by moving elements with translate. In many respects, this
behaves in a similar way to relative positioning, where an element is
offset visually but keeps its position in the document’s normal flow.

No. 18

355Transforms

translate moves elements on the x- and y-axes. We can specify how
far they move by using pixels, ems or percentages that are relative to
the size of the element. For example, a 100 pixel box translated by 150%
moves 150 pixels. Percentages can be particularly useful in flexible
designs and on dynamic sites where the size of elements changes.

We’ll translate a ‘Get Hardboiled’ business h-card 100 pixels to the
right using translateX and a distance inside parentheses.

.h-card {
transform : translateX(100px); }

We might also translate that card down by 50% with translateY:

.h-card {
transform : translateY(50%); }

Finally, combine translateX and translateY into a single translate
value.

.h-card {
transform : translate(100px 50%); }

Like CSS posi-
tioning, trans-
formed elements
also create a
new instance of
normal flow and
become posi-
tioning contexts
for any absolute-
ly positioned
child elements

356 Hardboiled Web Design

Anthony Calzadilla uses translate and rotate to create his ‘Pure CSS3 AT-AT
Walker’12 from Star Wars. Be honest, admit it – Star Wars was the real reason you
wanted to learn CSS.

If another element already occupies the space, any translated element
will overlap it; it will appear in front of the element if it comes later
in the source order, otherwise it will appear behind. As with relative
positioning, when we use translate the document’s normal flow stays
unaltered and nothing can flow in to occupy any vacated space.

The best way to learn transforms is to see them in action, so we’ll
translate another business card in several different directions using
pixels and percentages. In each example, the dotted box shows the
card’s original position.

12 anthonycalzadilla.com/css3-ATAT/index.html

357Transforms

Transform: scale

When we use the scale value, we make elements appear larger or
smaller. By how much and on which axis is determined by a scaling
factor, which can range between 0.99 and 0.01 to make an element
smaller, or 1.01 and above to make it larger. A scaling factor of 1 main-
tains the intrinsic size of an element. Other elements remain blissfully
unaware of the new size and so don’t reflow around it.

You can scale elements along the horizontal or vertical axis, or a com-
bination of the two. Next, we’ll scale a card horizontally by 150% using
scaleX. The scaling factor is in parentheses:

.vcard { transform : translateX(50px); }

.vcard { transform : translateX(50%); }

.vcard { transform : translateY(50px); }

.vcard { transform : translateY(50%); }

358 Hardboiled Web Design

.h-card {
transform : scaleX(1.5); }

Now use scaleY to also increase its height by 50%:

.h-card {
transform : scale(1.5, .5); }

Look sharp! There’s something there that could trip us up if we don’t
keep our wits about us. Inside those parentheses, the two values must
be separated by a comma.

To see scale in action, we’ll change the size of another business card in
several ways. The dotted box is there to remind us of their original sizes:

.vcard { transform : scaleX(.5); }

.vcard { transform : scale(.25, .5); }

.vcard { transform : scaleY(.5); }

.vcard { transform : scale(.5, .25); }

359Transforms

Transform: rotate

We can rotate an element between 0 and 360 degrees (clockwise) and
even use negative values to rotate an element anticlockwise. The syn-
tax is quick to learn. First, declare the rotate value, then the angle — in
this case forty-five degrees (45deg) — inside parentheses:

.h-card {
transform : rotate(45deg); }

When an element is rotated, other elements on a page remain unaware
of any change in angle and don’t reflow around it. To see rotate in
action, we’ll change the angle of another card by different degrees. The
dotted box is there to remind us of the original position:

.vcard { transform : rotate(-30deg); } .vcard { transform : rotate(30deg); }

360 Hardboiled Web Design

Transform: skew – the twisted thing

skew distorts an element on the horizontal axis, vertical axis or both.
The syntax is simple, so to demonstrate, we’ll skew a card horizontally
by first declaring skewX, then the amount, thirty degrees (30deg),
inside parentheses:

.h-card {
transform : skewX(30deg); }

Now let’s combine two axes by also skewing the card vertically by
fifteen degrees (15deg) using skewY. Longhand values look like this:

.h-card {
transform : skewX(30deg);
transform : skewY(15deg); }

.vcard { transform : rotate(60deg); } .vcard { transform : rotate(90deg); }

361Transforms

We can also use the shorthand skew property:

.h-card {
transform : skew(30deg, 15deg); }

The best way to learn skews is to see them in action, so we’ll put
the skews on another business card by skewing it horizontally and
vertically, positively and negatively to demonstrate the effects. In each
example, the dotted box shows the card’s original shape.

.vcard { transform : skewY(30deg); } .vcard { skew(-15deg, -15deg); }

362 Hardboiled Web Design

Setting the origin of a transform

Translating (moving), scaling, rotating and skewing are powerful tools
for controlling the finer details in a design, but for even greater control
we can define the origin of a transform on any given element.

Define a transform-origin by using either keywords like top, right,
bottom, left and center, or by using pixels, ems or even percentages.
Origins normally consist of two values: the first is a point on the
horizontal axis; the second is on the vertical. In the next example, we’ll
transform a card around its right, uppermost corner:

.h-card {
transform-origin : right top; }

The declaration below will give us the same results using percentages:

.h-card {
transform-origin : 100% 0; }

When we use just one value, a browser will automatically assume that
the second is center.

One of the best ways to understand transform origins is to see their
effects in action, so in the next set of examples, the card is rotated
by minus thirty degrees (-30deg) anticlockwise around different
origin points. You sussed it: the dotted boxes shows us the card’s
original position:

363Transforms

.vcard {
transform : rotate(-30deg);
transform-origin : 100% 0;
}

.vcard {
transform : rotate(-30deg);
transform-origin : 0 100%;
}

.vcard {
transform : rotate(-30deg);
transform-origin : 50% 0;
}

.vcard {
transform : rotate(-30deg);
transform-origin : 0 0;
}

364 Hardboiled Web Design

Combining two or more transforms

Occasionally a design will require us to set two or more transforms on
one element. To set multiple transform values, string them together
and separate each with a space. In this next example, the card is both
rotated by two degrees (2deg) and scaled five percent (1.05) above its
original size:

.h-card {
transform: rotate(2deg) scale(1.05); }

A browser applies these transforms in order, reading from the left. In
that last example, it will first rotate the card by two degrees clockwise
(2deg) before increasing its size by five percent (1.05). Watch as we
apply a series of transforms, each one building on the last.

.vcard {
transform : translate(100px, 50%);
}

.vcard {
transform : translate(100px, 50%);
transform : rotate(30deg);
}

365Transforms

.vcard {
transform : translate(100px, 50%);
transform : rotate(30deg);
transform : scale(1.05);
}

.vcard {
transform : translate(100px, 50%);
transform : rotate(30deg);
transform : scale(1.05);
transform : skew(-15deg, -15deg);
}

366 Hardboiled Web Design

2D transforms see some action
It‘s time to put transforms to work by scattering some ‘Get Hardboiled’
business cards across the detective’s desk. To achieve the off-kilter
design, use rotate transforms and fine-tune their origins using the
transform-origin property.

The HTML we’ll use is strictly hardboiled and you won’t find a single
presentational element or attribute no matter how hard you look.
There are nine microformat h-cards, each with its own set of values to
describe every detective’s contact information. You won’t even find a
unique id on any of the cards. Now that’s hardboiled.

<div class="h-card">
<h3 class="p-org">The No. 1 Detective Agency</h3>
</div>

<div class="h-card">
<h3 class="p-name p-org">
Shades & Staches Detective Agency</h3>
</div>

<div class="h-card">
<h3 class="p-name p-org">Command F Detective Services</h3>
</div>

<div class="h-card">
<h3 class="p-name">The Fat Man</h3>
</div>

<div class="h-card">
<h3 class="p-name p-org">Hartless Dick</h3>
</div>

<div class="h-card">
<h3 class="p-name p-org">Nick Jefferies</h3>
</div>

367Transforms

<div class="h-card">
<h3 class="p-name p-org">Elementary, My Dear Watson</h3>
</div>

<div class="h-card">
<h3 class="p-name p-org">Shoes Clues</h3>
</div>

<div class="h-card">
<h3 class="p-name p-org">Smoke</h3>
</div>

Let’s start by writing styles that will be common to every h-card. We’ll
give all cards the same dimensions and apply the background-size
property to ensure that background images will always scale to fit, no
matter how large we make the cards:

.h-card {
width : 300px;
height : 195px;
background-position : 50% 50%;
background-repeat : no-repeat;
background-size : 100% 100%; }

To crack this design wide open, we’ll apply different background imag-
es to each — but how? Remember, there wasn’t a single presentational
id or class attribute value anywhere in our HTML. It’s time to get
hardboiled again and select each card with the rarely used
:nth-of-type pseudo-element selector.

368 Hardboiled Web Design

Uncovering :nth-of-type
You’ve probably used an :nth- pseudo-element selector before. Maybe
the last time was :last-child to remove a border from the final item
in list. Perhaps it was adding a border to a paragraph that comes at the
start of an article using :first-child, like this:

p:first-child {
padding-bottom : 1.5rem;
border-bottom : 1px solid #ebf4f6;
font-size : 1rem; }

So far, so good. Then some deadbeat goes and drops in another element
before the paragraph, maybe a list or a quotation. Those styles? Poof!

:nth-child selectors are fine in predictable situations (list items in
an unordered list, or rows in a table), but there’s a more flexible op-
tion when we need to style elements whose position we can’t predict.
Wouldn’t it be better to target an element based on its type and posi-
tion in the document? That’s exactly what an :nth-of-type pseudo-ele-
ment selector does, making it one of CSS’s best-kept secrets.

Want to target a first paragraph, no matter where it appears in the
document order? Not a problem. How about the thirteenth item in the
fourth instance of an unordered list? :nth-of-type will help you out
there, too. Target any element, wherever it appears, without needing
id or class attributes. Pretty damn powerful and very hardboiled,
don’t you think?

13 alistapart.com/article/quantity-queries-for-css

For an incredibly
clever explanation
of how to use these
selectors to create
quantity-aware
responsive layouts,
read Heydon Pick-
ering’s ‘Quantity
Queries’ for CSS.13

369Transforms

:nth-of-type arguments

:nth-of-type will accept one of several arguments: keywords like odd
and even, a number or an expression. Sound complicated? Not really.
I’ll walk you through a few examples.

Imagine you want to add a border under each odd-numbered item in a
list (first, third, fifth, seventh, etc.). :nth-of-type makes that easy. You
won’t need to add classes to your HTML or use a JavaScript hack, just
the odd keyword:

li:nth-of-type(odd) {
border-bottom : 1px solid #ebf4f6; }

In the next example, an :nth-of-type selector makes the first para-
graph in an article bold, no matter what comes before or after it in the
document flow:

article p:nth-of-type(1) {
font-weight : bold; }

Expressions are more complicated and we all scratch our heads the
first time we encounter them. My tip is read expressions in reverse,
from right to left; in the example below, 3n+1 will match the first
instance of a table row (1) followed by every third row (3n) after that:

tr:nth-of-type(3n+1) {
background-color : #fff; }

6n+3 will match the third element, then every sixth one after that.

tr:nth-of-type(6n+3) {
opacity : .8; }

14 reference.sitepoint.com/css/understandingnthchildexpressions

SitePoint published
a thorough explana-
tion of expressions.
Read it with a
whisky and maybe
some painkillers
(Legal disclaimer: I
advise readers not
to mix alcohol and
drugs with CSS).14

370 Hardboiled Web Design

Now’s a great time to use those :nth-of-type
pseudo-element selectors to add background
images to each card:

.h-card:nth-of-type(1) {
background-image : url(card-01.jpg); }

.h-card:nth-of-type(2) {
background-image : url(card-02.jpg); }

.h-card:nth-of-type(3) {
background-image : url(card-03.jpg); }

.h-card:nth-of-type(4) {
background-image : url(card-04.jpg); }

.h-card:nth-of-type(5) {
background-image : url(card-05.jpg); }

.h-card:nth-of-type(6) {
background-image : url(card-06.jpg); }

.h-card:nth-of-type(7) {
background-image : url(card-07.jpg); }

.h-card:nth-of-type(8) {
background-image : url(card-08.jpg); }

.h-card:nth-of-type(9) {
background-image : url(card-10.jpg)); }

As we only want the background images to show
and not the HTML text, indent every element
inside those cards to move them off-screen:

.h-card * {
text-indent : -9999px; }

On smaller screens, the
cards stack into a tidy pile.

371Transforms

Adding transforms

Those cards look sweet, albeit a little stiff. Let’s break that design out
of the box by applying some rotate transforms. We won’t apply these
transforms to specific cards, though; we’ll be reckless and use
:nth-of-type(n) selectors to give our design a more random look:15

Let’s loosen it up by rotating odd-numbered cards anticlockwise by
two degrees (-2deg):

.h-card:nth-child(odd) {
transform : rotate(-2deg);
transform-origin : 0 100%; }

Now let’s shake things up again, giving every third, fourth and sixth
card different rotate values and every sixth card translate values that
will nudge them off-centre:

.h-card:nth-child(3n) {
transform : rotate(2deg) translateY(-30px); }

.h-card:nth-child(4n) {
transform : rotate(2deg);
transform-origin : 0 100%; }

.h-card:nth-child(6n) {
transform : rotate(-5deg);
transform-origin : 0 0; }

15 css-tricks.com/examples/nth-child-tester

If you’re still
confused by
:nth-child, try
CSS Tricks’ :nth
Tester to input
expressions and
watch as they’re
applied instantly.15

372 Hardboiled Web Design

Our stack of cards is getting messed up, thanks to transform’s and pseudo-
element selectors.

On smaller screens, those hardboiled business cards fit well and the
vertical layout suits the format perfectly. On medium to large screens
however, a vertical stack isn’t the best use of the available space, so for
them we’ll use those same pseudo-element selectors, positioning and
more transforms to arrange the cards into a grid.

Let’s wind back a little and apply absolute positioning to every card.
We don’t need this positioning applied to smaller screens, so we’ll use
a media query to apply these styles to medium and larger screens only:

@media (min-width: 48rem) {
.h-card {
position : absolute; }
}

373Transforms

Let’s put that positioning to use by giving each card its own top and
left values to form them into a loose grid:

@media (min-width: 48rem) {
.h-card:nth-of-type(1) {
top : 100px;
left : 0; }

.h-card:nth-of-type(2) {
top : 80px;
left : 320px; }

.h-card:nth-of-type(3) {
top : 100px;
left : 640px; }

.h-card:nth-of-type(4) {
top : 320px;
left : 40px; }

.h-card:nth-of-type(5) {
top : 270px;
left : 570px; }

.h-card:nth-of-type(6) {
top : 320px;
left : 600px; }

.h-card:nth-of-type(7) {
top : 540px;
left : 0; }

.h-card:nth-of-type(8) {
top : 560px;
left : 320px; }

.h-card:nth-of-type(9) {
top : 540px;
left : 640px; }
}

374 Hardboiled Web Design

By applying rotate and translate values to a few of the cards, we make the design
appear more natural.

I bet you’ve spotted my deliberate mistake. The fifth card has a
portrait orientation whereas all the others are landscape. Fix this by
rotating that errant card ninety degrees clockwise (90deg). The
transform-origin rotates the card around its top-left corner:

@media (min-width: 48rem) {
.h-card:nth-of-type(5) {
transform : rotate(90deg);
transform-origin : 0 0; }
}

375Transforms

The lonesome portrait format card looks best when we rotate it by ninety degrees
clockwise (90deg) so it overlaps other cards.

Now it’s time for a few finishing
touches. Add not one, but two
RGBa shadows.

.h-card {
box-shadow :
0 2px 1px rgba(0,0,0,.8),
0 2px 10px rgba(0,0,0,.5); }

Zooming in on the
design. Over on
the left, soft RGBa
shadow adds depth.

376 Hardboiled Web Design

Designing alternatives
Let’s head back outside the ‘Get Hardboiled’ office. That note is still
stuck on the door, but someone’s been by and added another. Remem-
ber our HTML? An article element? We could make the new note
using an aside element as it’s related to the first note in some way:

<article>
 <h1>Back soon!</h1>

 Gone for smokes
 Getting booze
 On a job (yeah, really)

</article>
<aside>
 <p>Something on your mind or just want to say hello,
tweet @gethardboiled</p>
</aside>

Let’s stick that first note article back on
the door, this time skewed with a
transform:

article {
transform : skew(-5deg, -2deg); }

Now we’ll position the aside note and
skew that too, placing it on top of the
first note so that it stands out on the
office door:

aside {
position : absolute;
top : 100px;
left : 70%;
z-index : 10;
transform : skew(5deg, -5deg); }

Experiment with skew values as
the tiniest change in angles can
have a dramatic effect.

377Transforms

With just a few simple lines of CSS, we’ve transformed these two semantic
elements into a design that’s totally appropriate for our ‘Get Hardboiled’ theme.

Three-dimensional transforms
In 2009, Apple announced three-dimensional transforms in Safari
running on Mac OS X 10.6 Snow Leopard. These properties position
elements in a three-dimensional space to add even more depth to
our designs.

Apple’s proposals have been adopted by the W3C and, at the time of
writing (November 2015), three-dimensional transforms are supported
by all contemporary browsers.

378 Hardboiled Web Design

Putting it all into perspective
Perspective is key in making elements appear three-dimensional. It
takes transform properties and places them within a three-dimension-
al space. To enable perspective, we must apply it to a parent element and
not to transformed elements themselves. To demonstrate perspective
we’ll build a new example. We won’t need special 3D HTML,
just a division for each item and a parent hb-3d division:

<div class="hb-3d">
<div class="item"> […] </div>
<div class="item"> […] </div>
<div class="item"> […] </div>
<div class="item"> […] </div>
</div>

Inside each item, we’ll add two further divisions that contain a cover
image and its description:

<div class="item_ _img">

</div>
<div class="item_ _description">
 <h3 class="item_ _header">Finger Man</h3>
 <p>This Finger Man story originally featured an unnamed
narrator.</p>
</div>

We’ll start by adding styles that will be seen by people using small-
er screens — a simple two-dimensional layout that arranges items
horizontally. We’ll add display:flex; to the parent hb-3d division,
and then flex:1; to each item along with margins, padding and a
wide blue border:

379Transforms

.item {
flex : 1;
margin-right : 10px;
margin-bottom : 1.35rem;
padding : 10px;
border : 10px solid #ebf4f6; }

This interface looks neat and tidy, but it won’t set your head spinning.

When the browser window gets wide enough for the three-dimen-
sional layout to be appropriate, we’ll start setting up those styles.
Inside a media query, add a forty-five degree rotate transform to all
items. We won’t be needing those margins, padding and borders on
larger screens, so we’ll remove those too:

@media (min-width: 48rem) {
.item {
transform : rotateY(45deg);
margin : 0;
padding : 0;
border-width : 0; }
}

380 Hardboiled Web Design

When we rotate these items in two dimensions they appear compressed.

@media (min-width: 48rem) {
.hb-3d {
perspective : 500; }
}

Raising and lowering perspective has this effect on each item:

.item {
perspective : 300; }

.item {
perspective : 1200; }

381Transforms

Changing our viewpoint

When we look at an element that’s transformed in three dimensions,
our default perspective is in the centre, both horizontally and vertical-
ly. We can change this perspective-origin using either keywords,
pixel or em values, or percentages. In percentage terms, 0 50% places
the perspective viewpoint on the left, halfway down; while 50% 0
places it halfway horizontally and at the very top:

@media (min-width: 48rem) {
.hb-3d {
perspective-origin : 50% 50%; }
}

Watch how a different origin changes our perspective on these items:

.item {
perspective-origin : 0 0; }

382 Hardboiled Web Design

Hardboiled in 3D
First, CSS2 gave us the ability to position elements and a stacking
order so we can arrange them using z-index. Then CSS3 introduced
translate, which moves elements along x- and y-axes. Now, three-di-
mensional transforms give us translateZ, moving an element closer to
or away from the viewer.

To demonstrate translateZ we’ll carry on building that three-dimen-
sional ‘Get Hardboiled’ interface. First, we’ll style those magazine cover
images, giving them a wide border:

.item {
perspective-origin : 50% 100%; }

.item {
perspective-origin : 0 100%; }

383Transforms

@media (min-width: 48rem) {

.item_ _img img {
border-color : #9bc7d0; }

.item_ _img img:hover {
border-color : #eceeef; }

Next, style the descriptions by adding width and padding and position
them relatively to move them up by 150 pixels. We’ll also add a back-
ground colour and borders:

@media (min-width: 48rem) {

.item_ _description {
position : relative;
top : -150px;
padding : 11px;
width : 160px;
background-color : #dfe1e2;
border : 10px solid #ebf4f6; }
}

These simple styles will be
applied by browsers of all
capabilities

384 Hardboiled Web Design

Scaling in three dimensions

CSS3 includes other three-dimensional transform properties: rotateZ
and scaleZ. scaleZ allows us to scale the element in exactly the same
way as scaleX and scaleY, but along the z-axis. Or we can use the com-
bined scale3d property to specify scaling along all three axes at once:

.item {
transform : scale3d(scaleX, scaleY, scaleZ); }

With our foundations steady, we’ll work through the final components
that make the interface appear three-dimensional.

Preserving 3D

By default, when we apply perspective to an element, its children lie
flat against a two-dimensional plane. The transform-style property
gives us the option to either maintain this flattened behaviour, or raise
elements off that plane using a value of preserve-3d. 16

For this design, we’ll apply preserve-3d to every item, then lift their
descriptions into three-dimensional space using translateZ. This
will make the descriptions appear to be closer to the viewer by
eighty pixels:

.item {
transform-style : preserve-3d; }

.item_ _description {
transform : translateZ(80px); }

16 All elements lie flattened against a two-dimensional plane by default. Applying
 transform-style : flat; sets this value explicitly.

385Transforms

Enhancing depth with box-shadow

To enhance the feeling of depth in this design, add two RGBa
shadows to the descriptions and images:

.item_ _img img {
box-shadow: 0 5px 5px 0 rgba(0, 0, 0, 0.25),
0 2px 2px 0 rgba(0, 0, 0, 0.5); }

.item_ _description {
box-shadow: 0 5px 5px 0 rgba(0, 0, 0, 0.25),
0 2px 2px 0 rgba(0, 0, 0, 0.5); }

Adding interactivity

Our interface is almost complete, but the eagle-eyed among you will
have spotted that the items become difficult to read the more that
perspective increases. To fix this, swing the items back to face the
user when they mouse-over them. Do this by resetting the y-axis
rotation to zero on hover:

We can enhance the
appearance of depth
using box-shadow for
browsers that are capable
of rendering three-
dimensional transforms.

386 Hardboiled Web Design

.item:hover {
transform : rotateY(0); }

For good measure, we’ll also reduce the amount of translateZ from
eighty pixels to just five and move the descriptions to the right by
twenty pixels:

.item:hover .item_ _description {
transform : translateZ(5px) translateX(20px); }

When these descriptions move to their new positions, the shadows
they cast fall in the wrong places. Help these shadows appear more
natural by altering their blur radii and transparency values.

.item:hover.item_ _img img {
box-shadow : 0 5px 15px rgba(0,0,0,.25); }

.item:hover .item_ _description {
box-shadow : 0 10px 15px rgba(0,0,0,.5); }

Now open this ‘Get Hardboiled’ interface and watch as the items change their
rotations in three-dimensional space as your mouse passes over them.

387Transforms

Taking a hike
Finally, smooth the transitions between all of the state changes.

.item {
transition-property : transform;
transition-duration : .5s;
timing-function : ease-in-out; }

.item_ _description {
transition-property : transform, box-shadow;

transition-duration : .25s;
timing-function : ease-in-out; }

Wait… what’s that?

That is what we call a cliffhanger.

388 Hardboiled Web Design

Transitions
In web pages and applications, changes in state can have
a huge impact on how it feels to use an interface. Make a
change too fast and an interaction can feel unnatural. Make
it too slow, even by a few milliseconds, and an interface will
feel sluggish.

When we transform links into faux buttons, we often change their
appearance on hover simply by changing their backgrounds:

.btn {
background-color : #bc676c; }

.btn:hover {
background-color : #a7494f; }

By default, these style changes happen instantly, but using transitions,
we can make them change over a specified period of time and control
acceleration and delay:

.btn {
transition-property : background-color; }

We can trigger transitions using dynamic pseudo-class selectors like
:hover, :focus, :active and :target. Our first step is to specify which
property or properties we want to transition. On our faux buttons, we
need transition only the background colour, so use transition-property
to specify this:

.btn {
transition-property : background-color;
transition-duration : .25s; }

No. 19

389Transitions

Transition duration

Transitions change one or more styles over any number of seconds (s)
or milliseconds (ms). These time units have, until now, only been used
in aural style sheets. To smooth the transition over a quarter of one
second, add a duration of .25s.

.btn { transition-duration : .25s; }

If we set duration at zero (0) or omit the property altogether, there will
be no transition and any state changes will happen immediately.

Notice how we include transition declarations on the element to be
transitioned and not on a state change such as :hover. Now change the
background colour for the link’s :hover state:

.btn {
transition-property : #a7494f; }

With this declaration in place, the button’s background colour will
now transition smoothly over a quarter of a second between those two
shades of red.

We can apply transitions to any block-level or text-level element, as
well as to :before and :after pseudo-elements. Here are some ideas of
what you can do with them:

390 Hardboiled Web Design

Background
Transition a background-color, CSS gradient or the
background-position of a background-image on mouse-over.

Border
Emphasise a warning message by transitioning
border-color, border-width or border-radius. We can
also use outline for similar effects.

Colour
Smoothly transition text color when an element is
moused over, active or in focus.

Dimensions
Transition width, height, min-width, max-width, min-height
and max-height to make dynamic interfaces.

Font

Ease the transition between font-family, font-size or
font-weight. For more control over typography, transition
between letter-spacing, word-spacing and line-height
values.

Margin and padding
Draw attention to an element by transitioning to new
margin and padding values on :target.

Opacity
Add smooth fades and reveals by changing either the
opacity or visibility of an element.

Position
Move smoothly between top, right, bottom and left and
transition between z-index values to make simple anima-
tions from positioned elements.

Transform
Add transitions to transform property types like translate,
scale, rotate and skew to bring interfaces to life.

391Transitions

Combining transitions

When we need two or more properties to transition — for example,
both a background colour and a text colour — separate each property
with a comma.

.btn {
background-color : #bc676c;
color : #fff;
transition-property : background-color, color; }

We could otherwise group multiple properties into a single declaration
using the all keyword:

.btn {
transition-property : all; }

Delaying a transition

In the physical world, many objects we interact with don’t turn on
immediately when pressing a button or flipping a switch. By default,
CSS transitions start from the moment they’re activated — we’ll call
that the zero point. We can add a sense of physical reality by adding a
delay between the zero point and the start of a transition. Specify the
amount of delay in either milliseconds (ms) or seconds (s).

.btn {
transition-property : background-color;
transition-duration : .25s;
transition-delay : .1s; }

Here, we added a delay of only a tenth of one second (.1s), from the zero
point to the start of the background colour change. The same delay
will also be applied when a property returns to its original state.

392 Hardboiled Web Design

Accelerating a transition

Acceleration depends on the transition-timing-function we choose.
For example, a linear transition will maintain a constant speed across
its entire duration, whereas ease will gradually slow it down across the
style change. Three more keywords are available to vary acceleration
still further. They are:

ease-in Starts slowly and gradually increases speed.

ease-out Starts quickly and reduces speed over time.

ease-in-out Accelerates quickly, reaches a peak and then tails off.

On our button links we’ll specify a linear timing function:

.btn {
transition-property : background-color;
transition-duration : .25s;
transition-delay : .1s;
transition-timing-function : linear; }

Applying multiple transitions

When we need two or more properties to transition, we can group
them into a comma-separated list, then specify duration, delay and
timing function values for each. First, we’ll write these multiple transi-
tions in longhand:

The W3C’s CSS3
Transitions
Module also
includes the
ability to plot a
transition-

timing-func-

tion along a
custom bezier
curve. This
mathematical
approach to
timing is
fascinating,
but beyond the
scope of this
book.

393Transitions

.btn {
transition-property : background-color, color;
transition-duration : .25s, .25s;
transition-delay : .1s, .1s;
transition-timing-function : linear, linear; }

When the duration, delay or timing function values are the same, we
only need write their value once:

.btn {
transition-property : background-color, color;
transition-duration : .25s;
transition-delay : .1s;
transition-timing-function : linear; }

We can also combine all values into one comma-separated string.

.btn {
transition : background-color .25s .1s linear, color .25s .1s ¬
linear; }

Transitions see some action
In the previous chapter we built a 3D interface for the ‘Get Hard-
boiled’ website and I left you with a cliffhanger. Glance back over your
shoulder if you need a recap, because now it’s time to add transitions
and rotate items forty-five degrees (45deg) in three-dimensional space.
Then, to ensure that users can read our text, we’ll turn the items back
to face the viewer on hover:

When we need
our transitions
to happen one
after the other,
in sequence,
give each tran-
sition a different
delay value.

It‘s important
to remember
that when you
include delay in a
transition string,
it must come
after duration.

394 Hardboiled Web Design

.item {
transform : rotateY(45deg);
transform-style : preserve-3d; }

.item:hover {
transform : rotateY(0); }

Set up this way, the transition will happen instantly. To make our
interface feel more fluid, add transitions, first by defining transform as
the property to transition:

.item {
transition-property : transform; }

Next, specify that the transition will take three quarters of one second
(.75s) with an ease-in-out timing function:

.item {
transition-duration : .75s;
timing-function : ease-in-out; }

When we need to shave a few bytes off our style sheets, we can
combine these properties into a single shorthand declaration:

.item {
transition : transform .75s ease-in-out; }

To give this 3D interface added realism, use translateZ to make the
descriptions appear to be closer to the viewer by eighty pixels.
Then move it back and to the left, adjusting the strength of its
shadow on hover:

395Transitions

.item div {transform : translateZ(80px);
box-shadow : -20px 20px 30px rgba(0,0,0,.25); }

.item:hover .item_ _description {
transform : translateZ(5px) translateX(20px);
box-shadow : 0 10px 15px rgba(0,0,0,.5); }

We’ll transition all of our state changes over half of one second (.5s)
and delay them by a fifth of one second (.2s).

.item_ _description {
transition-property : transform, box-shadow;
transition-duration : 5s, 5s;
transition-delay : .2s, .2s;
timing-function : ease-in-out, ease-in-out; }

Both transitions share the same duration, delay and timing function
values, so we could simplify this declaration by combining two values
into one:

.item_ _description {
transition-property : transform, box-shadow;
transition-duration : .5s;
timing-function : ease-in-out; }

396 Hardboiled Web Design

Our design now feels more fluid and a user’s interaction with it is more akin to what
they might experience in the physical world.

Pulp fiction
If you or your clients aren’t ready for three-dimensional interfaces yet,
we can use transitions to create an entirely different ‘Get Hardboiled’
page. This new interface won’t require any changes to our HTML.
Here’s a reminder:

<div class="hb-opacity">
<div class="item">
<div class="item_ _img"> […] </div>
<div class="item_description"> […] </div>
</div>

We’ll start this design by styling the element for people who use small-
er screens. For them, we’ll implement a simpler layout where the items
are stacked vertically and the magazine cover images are placed on the
right. Here’s a preview of the final smaller screen design.

397Transitions

We’ll use flexbox to develop this
design. To start building its foun-
dations, apply display:flex to all
items. We’ll also add a little margin
and padding and give those items a
thick border:

.item {
display : flex;
margin-bottom : 1.35rem;
padding : 10px;
border : 10px solid #ebf4f6; }

This smaller screen design is
different from the others that we’ve
developed as we need to place the
magazine cover images on the
right, not on the left as they occur
in the source order. Luckily, this
is trivial using flexbox as we only
need specify row-reverse as our
flex-direction:

.item {
flex-direction : row-reverse; }

Now we’ll turn our attention to what’s inside those items by adding
styles for the images. We’ll give them width and a thick border to
match their parent items:

The interface we’re developing, as it will be seen by
people whose screens are smaller.

398 Hardboiled Web Design

.item_ _img {
margin-left : 20px;
width : 133px; }

.item_ _img img {
border : 10px solid #ebf4f6;
box-sizing: border-box; }

To make the descriptions take
up all the space that’s left over
by the image width and mar-
gin, use the flex-grow property
with a value of 1:

.item_description {
flex-grow : 1; }

Now that we’ve styled our
items for small screens,
it’s time to build on that by
adding styles for medium and
larger size screens. Any styles
added from this point will be
nested within media queries
to apply them only to devices
that need them. A simple stack of items is perfect for people who use

smaller screen devices.

399Transitions

To start laying the foundations for this design, set the outer container
to display:flex so that all its direct descendants will be arranged along a
horizontal axis:

@media (min-width: 48rem) {
.hb-opacity {
display : flex; }
}

Now remove the display:flex we perviously added to all items and
replace it with display:block. We’ll also overwrite the margin, padding
and border that we set previously. We’ll add position:relative to estab-
lish each item as a positioning context as we’ll need that in
just a moment:

@media (min-width: 48rem) {
.item {
display : block;
margin : 0 20px 0 0;
padding : 0;
border-width : 0;
position : relative; }
}

Forget everything you’ve read about absolute positioning being inflexi-
ble or unsuitable for dynamic content. With careful planning, absolute
positioning can give us precise control, even in the most demanding
situations. Now make the descriptions wider than their containers and
use negative absolute position values to move them to the left:

@media (min-width: 48rem) {
.item_description {
position : absolute;
width : 200px;
left : -40px; }
}

400 Hardboiled Web Design

Finish styling them by adding padding, borders and a semi-transpar-
ent background colour that allows the elements behind the description
to peek through:

@media (min-width: 48rem) {
.item_description {
padding: 20px;
background-color: rgba(223, 225, 226, 0.95);
border: 10px solid #ebf4f6;
box-sizing: border-box; }
}

Layering descriptions over images.

To create the bubbles, reposition the descriptions above the top of the
images. To ensure that active bubbles always appear closest to the
viewer, give them a higher z-index:

@media (min-width: 48rem) {
.item:hover .item_description {
top : -80px;
z-index : 3; }
}

401Transitions

Next, add depth with two RGBa shadows, separating the values of
each with a comma:

@media (min-width: 48rem) {
.item:hover .item_description {
box-shadow : 0 5px 5px 0 rgba(0,0,0,0.25),
0 2px 2px 0 rgba(0,0,0,0.5); }
}

Adding depth with box shadows.

With our description bubbles inflated, hide them from view simply by
making them fully transparent. We can reveal them again on hover:

@media (min-width: 48rem) {
.item .item_description {
opacity : 0; }

.item:hover .item_description {
opacity : 1; }
}

402 Hardboiled Web Design

By default, the changes in position and opacity will happen instantly,
but we can use transitions to make them feel more fluid. First, define
top and opacity as the two properties to transition, followed by a
half-second (.5s) duration and a timing function that slows the
transitions as they progress:

@media (min-width: 48rem) {
.item .item_description {
transition-property : top, opacity;
transition-duration : .25s;
transition-timing-function : ease-out; }
}

Now our bubbles slide and fade into view when a user mouses-over an item.

These bubbles now render correctly in all current browsers. But what
about less capable ones, those that don’t implement either transitions
or opacity? How do they handle this interface?

Browsers that don’t support transitions will safely ignore them and we
should remember — as Dan Cederholm reminded us — websites don’t
need to be experienced exactly the same in every browser.

403Transitions

Panel game
This next interface has an entirely different look and feel. Clicking on
a book reveals a panel that contains its description. We’ll build the pan-
els using CSS positioning, opacity and transitions. We can reuse our
HTML from the last example, but this time we’ll need a unique id for
each item so that we can address their fragments directly:

Here’s an early look at the ‘Get Hardboiled’ interface we’re building.

<div class="hb-transitions">
 <div id="hb-transitions-01" class="item">
 <div class="item_ _img"> […] </div>
 <div class="item_ _description"> […] </div>
 </div>
</div>

404 Hardboiled Web Design

We’ll also need an anchor that points back to its parent item:

<div id="hb-transitions-01" class="item">
<img src="transitions-01.jpg"
alt="The Big Sleep">
</div>

As we’re starting by designing for people who use smaller screens,
we’ll style those items into a simple, vertical list. Once again, we’ll use
flexbox to develop our layout. As we need to display the magazine cov-
er images on the right instead of their place in the source order, we’ll
also set row-reverse as our flex-direction:

.item {
display : flex;
flex-direction : row-reverse;
margin-bottom: 1.35rem;
padding: 10px;
border: 10px solid #ebf4f6; }

Inside each item we’ll give the images a little left margin to separate
them from the description, and a width:

.item_ _img {
margin-left : 20px;
width : 133px; }

To make the descriptions take up all the space that’s left over by the
image width and margin, use the flex-grow property with a value of 1:

.item_description {
flex-grow : 1; }

405Transitions

With our design now appropri-
ate for people who use smaller
screens, we’ll turn our attention
to those using larger screens.
Any styles added from this point
will be nested within media que-
ries to apply them only to devices
that need them.

Start by adding dimensions to the
hb-transitions division, then es-
tablish it as a positioning context
for any positioned child elements
by applying relative positioning
without any offsets.

@media (min-width: 48rem) {
.hb-transitions {
position : relative;
height : 500px;
width : 710px; }
}

Next, size those inline images
and position them so that they fit
neatly at the bottom of the panel.
Later we’ll use those same images
as backgrounds, so they need to be
larger than they appear initially:

This stack of items works well on smaller
screen sizes.

406 Hardboiled Web Design

@media (min-width: 48rem) {
.item_ _img {
position : absolute;
top : 330px;
width : 110px;
height : 160px; }

#hb-transitions-01 .item_ _img { left : 0; }
#hb-transitions-02 .item_ _img { left : 120px; }
#hb-transitions-03 .item_ _img { left : 240px; }
#hb-transitions-04 .item_ _img { left : 360px; }
#hb-transitions-05 .item_ _img { left : 480px; }
#hb-transitions-06 .item_ _img { left : 600px; }
}

With planning, absolute positioning gives us fine control, even in the most
demanding situations.

407Transitions

We don’t want our descriptions to show until a user clicks on a book
cover, so make every description small enough to position behind its
respective cover. Setting overflow to hidden will make sure that long
content won’t escape and ruin our design:

@media (min-width: 48rem) {
.item_ _description {
z-index : 1;
position : absolute;
top : 335px;
left : 5px;
width : 100px;
height : 150px;
overflow : hidden; }

#hb-transitions-01 .item_ _description { left : 0; }
#hb-transitions-02 .item_ _description { left : 120px; }
#hb-transitions-03 .item_ _description { left : 240px; }
#hb-transitions-04 .item_ _description { left : 360px; }
#hb-transitions-05 .item_ _description { left : 480px; }
#hb-transitions-06 .item_ _description { left : 600px; }
}

Now tuck the descriptions behind the images by giving them a lower
z-index and, to make sure they’re not seen until we want them, set
opacity to zero (0) so they’ll be fully transparent:

@media (min-width: 48rem) {
.item_ _img {
z-index : 2; }

.item_ _description {
z-index : 1;
opacity : 0; }
}

408 Hardboiled Web Design

Earlier, we twisted the knife by pointing an anchor to its parent item.
It’s this anchor and the :target pseudo-class selector that make it
possible to trigger the transformation of each description. Reset the
descriptions’ opacity and position, then resize them to fill the top of
the listing panel. Add padding including a wide space on the left that
will soon be filled with a background image.

@media (min-width: 48rem) {
.item:target .item_ _description {
opacity : 1;
top : 0;
left : 0;
width : 100%;
height : 320px;
padding : 20px 20px 0 190px; }
}

Now to set background and border properties, common to
every description:

@media (min-width: 48rem) {
.item:target .item_ _description {
background-color: #dfe1e2;
background-origin: padding-box;
background-position: 20px 20px;
background-repeat: no-repeat;
background-size: auto 220px;
border: 10px solid #eceeef;
box-sizing: border-box; }
}

Next, add a unique book cover background image to each description:

409Transitions

@media (min-width: 48rem) {
#hb-transitions-01:target .item_ _description {
background-image : url(transitions-01.jpg); }

#hb-transitions-02:target .item_ _description {
background-image : url(transitions-02.jpg); }

#hb-transitions-03:target .item_ _description {
background-image : url(transitions-03.jpg); }

#hb-transitions-04:target .item_ _description {
background-image : url(transitions-04.jpg); }

#hb-transitions-05:target .item_ _description {
background-image : url(transitions-05.jpg); }

#hb-transitions-06:target .item_ _description {
background-image : url(transitions-06.jpg); }
}

The panels are almost complete. When a user presses on a book cover, a panel that
contains its description will appear above.

Now we’ll use transitions to make the interaction seem smoother and
bring our interface to life. For each description, we’ll transition four
properties — top, width, height and opacity — separating them using
a comma:

410 Hardboiled Web Design

@media (min-width: 48rem) {
.item_ _description {
transition-property : top, width, height, opacity; }
}

Finally, set a duration for each property:

@media (min-width: 48rem) {
.item_ _description {
transition-duration : .5s, .5s, .75s, .5s; }
}

The changes to top, width and height will last half of one second (.5s) – the
opacity change will last three quarters of one second (.75s)

411Transitions

Designing for landscape and portrait orientations
When our HTML is hardboiled, we can more easily adapt our de-
signs to satisfy the demands of different browsing environments,
including devices such as tablets that can switch between portrait
and landscape orientations. While the wider screen layout we just
made works fine in portrait, it doesn’t fit so well into a tablet’s
landscape format.

We’ll start this alternative layout by changing the height of the
parent division:

@media (min-width: 48rem) {
.hb-landscape {
position : relative;
width : 760px;
height : 500px; }
}

Next, resize those inline images and position them to form a new grid
on the panel’s left side:

@media (min-width: 48rem) {
.item_ _img {
position : absolute;
width : 100px;
height : 150px; }

#hb-landscape-01 .item_ _img {
top : 0;
left : 0; }

#hb-landscape-02 .item_ _img {
top : 0;
left : 120px; }

412 Hardboiled Web Design

#hb-landscape-03 .item_ _img {
top : 0;
left : 240px; }

#hb-landscape-04 .item_ _img {
top : 170px;
left : 0; }

#hb-landscape-05 .item_ _img {
top : 170px;
left : 120px; }

#hb-landscape-06 .item_ _img {
top : 170px;
left : 240px; }
}

Laying out images into a grid.

413Transitions

Now we need to make the descriptions small enough to position be-
hind their respective images:

@media (min-width: 48rem) {
.item .description {
position : absolute;
width : 100px;
height : 10px;
overflow : hidden; }

#hb-landscape-01 .item_description {
top : 0;
left : 0; }

#hb-landscape-02 .item_description {
top : 0;
left : 120px; }

#hb-landscape-03 .item_description {
top : 0;
left : 240px; }

#hb-landscape-04 .item_description {
top : 170px;
left : 0; }

#hb-landscape-05 .item_description {
top : 170px;
left : 120px; }

#hb-landscape-06 .item_description {
top : 170px;
left : 240px; }
}

414 Hardboiled Web Design

Set up the basis for transitions by giving each description a lower
z-index than the corresponding images and set their opacity
to zero (0):

@media (min-width: 48rem) {
.item_ _img {
z-index : 2; }

.item_description {
z-index : 1;
opacity : 0; }
}

Use the :target pseudo-class selector to reset the opacity to zero (0),
and reposition and resize the descriptions to fill the right side of
the panel. Add padding, a background colour and a thick border to
complete the look:

@media (min-width: 48rem) {
.item:target .item_description {
top : 0;
left : 360px;
width : 390px;
height : 280px;
padding : 20px;
opacity : 1;
background-color: #dfe1e2;
border : 10px solid #ebf4f6; }
}

For this version, we’ll use just two transition properties — height
and opacity:

@media (min-width: 48rem) {
.item_description {
transition-property : height, opacity; }
}

415Multicolumn layout

Set a duration for each transition property: half a second (.5s) for the
change in height; and three quarters of one second (.75s) for opacity:

@media (min-width: 48rem) {
.item_description {
transition-duration : .5s, .75s; }
}

Providing an alternative layout for a landscape orientation.

Breaking it up
How a web page or application feels can have a huge impact on how
often people use it. You learned how to add subtle transitions that can
both delight a user and add the element of surprise to make using an
interface more enjoyable.

On three different interfaces for the ‘Get Hardboiled’ store, the same
HTML underpinned three very different interfaces using transitions
tailored to make them appropriate for people who use small screen
devices, without compromising the experience of people who use the
biggest screens. Now that’s hardboiled.

416 Hardboiled Web Design

Multicolumn layout
I know web designers are constantly reminded that web is
its own medium, that it isn’t print; but there’s so much about
print design – in the form of magazines and newspapers –
that can and should inspire our work on the web. The dif-
ferent ways that magazine designers use columns of text to
make their publications individual are an enormous inspi-
ration to me, which is why I’m constantly surprised by how
unimaginative most website layouts are, particularly in the
responsive web design era. That needs to change and CSS
multicolumn layout is one way to help influence it.

We’ve been able to use CSS multicolumn layouts to create columns of
text with no presentational markup for ten years. I wrote about them
in Transcending CSS and again, five years ago, in the first edition of this
book. I teach CSS columns at all my workshops and I’m dismayed that
every time I ask for a show of hands from people who’ve used them,
only a few are raised. I hope this third time’s a charm and
that I can inspire you to start using CSS multicolumn layouts.

You’ve probably guessed from its title that the CSS multicolumn layout
module17 provides a way to create multicolumn layouts with just CSS
and no additional markup, floats or other layout methods.

17 w3.org/TR/css3-multicol

No. 20

417Multicolumn layout

We’ll dive right in with a multicolumn layout example from the ‘Get
Hardboiled’ entry page. For this design we’ll use columns to reduce
the measure,18 making the content more readable. To achieve this,
we’d traditionally add a number of divisions to divide blocks of
content, then float them to create columns.

<div class="col">
<p>Raymond Thornton Chandler was an American novelist and
screenwriter. In 1932, at age forty-four, Chandler decided to
become a detective fiction writer after losing his job as an oil
company executive during the Great Depression.</p>
</div>
<div class="col">
<p>Chandler published seven novels during his lifetime (an
eighth in progress at his death was completed by Robert B.
Parker). All but Playback have been made into motion pictures,
some several times. In the year before he died, he was elected
president of the Mystery Writers of America.</p>
</div>

There’s nothing inherently wrong with this familiar technique. It’s
easy to implement and, for the most part, it’s reliable. That’s no doubt
why we see it being used on countless websites. Today though, in the
era of responsive web design where we must consider many different
sizes of screens, the advantages of this simple technique are far out-
weighed by the disadvantages.

18 In typography parlance, the measure is the measurement in characters of a line of
 text’s length.

418 Hardboiled Web Design

Columns in your hand
First, the iPad, in its various sizes and configurations, then other
devices like it, have changed what many people describe as a com-
puter. Tablets do many things very well, but something I use them
for most is demonstrating layout changes across both responsive
breakpoints, and landscape and portrait screen orientations. I use
iPads so often for this that I sometimes give them to our clients to
keep after a project. When we hold an iPad in portrait orientation (or
look at a low-resolution monitor) it makes sense to present content on
our ‘Get Hardboiled’ home page in a single column, as it makes good
use of space and our text is comfortable to read.

This measure works
well with a single
column in iPad’s
portrait orientation.

419Multicolumn layout

Two columns and a narrower measure make text more readable in the iPad’s
landscape orientation.

Turn an iPad to landscape orientation (or use a larger monitor) and
that one column doesn’t work as well because the lengths of the lines
now make reading less comfortable. To improve the reading expe-
rience in landscape orientation, we’ll use two columns and create a
narrower measure.

Wouldn’t it be incredible if our layouts could automatically change
the number of columns and therefore optimise a user’s reading
experience? Guess what? With CSS multicolumn layout they can.

420 Hardboiled Web Design

Column widths and counts
Changing the number and width of columns so our layouts adapt to
different screen widths and orientations is easy when we use CSS
columns. We can implement columns in two ways: the first by
defining the number of columns; and the second by specifying
the width of columns.

First things first, let’s rewrite the HTML of our ‘Get Hardboiled’ arti-
cle, removing those presentational divisions to leave only structured
content in an HTML section element:

<section>
 <p>Raymond Thornton Chandler was an American novelist and
screenwriter. In 1932, at age forty-four, Chandler decided to
become a detective fiction writer after losing his job as an oil
company executive during the Great Depression. His first short
story, ‘Blackmailers Don’t Shoot’, was published in 1933 in
Black Mask, a popular pulp magazine. His first novel, ‘The Big
Sleep’, was published in 1939. In addition to his short stories,
Chandler published seven novels during his lifetime (an eighth
in progress at his death was completed by Robert B. Parker). All
but Playback have been made into motion pictures, some several
times. In the year before he died, he was elected president of
the Mystery Writers of America.</p>
</section>

We didn’t need those divisions in our markup as we can now create
columns in our style sheet instead. First, we’ll specify our new col-
umns’ width using the column-width property. We can do this using
several units including pixels, but I prefer to size my columns using
rem units linked to the size of my text:

section {
column-width : 32rem; }

421Multicolumn layout

If a parent gets wider, a browser will add new columns. When it narrows, a browser
will remove them one at a time — all the while reflowing text to fit.

I’ve chosen 32rem because — at my chosen type size of 1.6rem — it
creates a comfortable reading line length of between 45 to 75 charac-
ters inside the columns. A browser will start with just one column on
a small screen. When a screen’s wide enough to display more than
one 32rem column, a browser will dynamically display first two, then
three, then more columns.

Writing vendor prefixes

Firefox and WebKit both implemented CSS columns using their own
vendor-specific prefixes, so we’ll need to add them, followed by the
W3C’s official syntax:

section {
-moz-column-width : 32rem;
-webkit-column-width : 32rem;
column-width : 32rem; }

At the time of writing, Microsoft Edge, Opera Mini and Safari on iOS
and Mac OS X have implemented CSS multicolumn layout prefix-free.

422 Hardboiled Web Design

Column count

I can think of several design situations where, instead of specifying a
column’s width, we need to define how many columns we need. We’ll
use the column-count property for this.

For small screen screens, our section needs only one column. We
don’t need to specify that, since a browser will display it natively. As it
makes more sense to use columns on medium and large screens, we’ll
place our column-count declaration inside a media query:

@media (min-width: 48rem) {
section {
column-count : 2; }
}

When a browser’s width is greater than 48em, our text will flow into
two columns. Likewise, when we need three columns we’ll place that
next declaration inside another, wider minimum width media query:

@media (min-width: 64rem) {
section {
column-count : 3; }
}

In a responsive layout, the width of these new columns will vary to fit the width of
their parent container, but the number of columns will stay the same.

423Multicolumn layout

Columns shortcut

As the column-width and column-count properties do not overlap, it
makes sense to combine both of them into a shorter columns property,
like this:

@media (min-width: 48rem) {
section {
columns: 32rem 2; }
}

Column gaps

White space is an incredibly important factor in improving readability,
and gaps between columns help to define reading areas. We’ll insert
gaps between our columns. We could specify gaps using pixels, but
it’s better practice in responsive web design to use a flexible unit like
rems. Our gaps will be 4rem wide:

@media (min-width: 48rem) {
section {
column-gap : 4rem; }
}

To help our design stay connected to the screen we’re viewing, we’ll
increase the width of our gaps on larger screens:

@media (min-width: 64rem) {
section {
column-gap : 6rem; }
}

424 Hardboiled Web Design

Great responsive web design is about more than adapting layout. It includes
making tiny changes to many elements across responsive breakpoints, to help a
design to stay connected to the screen it’s being viewed on.

Column rules

Horizontal rules are so important in web design that they warrant
their own element, hr, but vertical rules are equally as important. Al-
though they don’t have their own HTML element, they do have a CSS
multicolumn property. First, we’ll specify the width of a column-rule. I
usually define mine using pixels:

section {
column-rule-width : 2px; }

I’ve also often been known to increase the width of my column rules
across responsive breakpoints. The wider the screen, the wider my
rules:

@media (min-width: 64rem) {
section {
column-rule-width : 3px; }
}

Of course, we can specify the colour of rules, too.

section {
column-rule-color : #ebf4f6; }

425Multicolumn layout

Finally, we can define a style for rules. Dashed, dotted and solid are
staple rule styles, but you can also use any border-style value as a
column-rule-style. I know you’ll be pleased to know that groove, ridge,
inset and outset are available too. No? Just me then.

section {
column-rule-style : solid; }

CSS columns are fast and easy to implement and have excellent support in
contemporary browsers.

CSS columns see some action
I’ve often wondered, considering that CSS columns are easy to imple-
ment and have widespread browser support, why so few people use
them. I understand that support was patchy in the past and that may
have dissuaded people from working with them, but I honestly think
people don’t use columns because they lack the imagination as to
where to use them.

From conversations with fellow designers, I know that most people
first think about using CSS columns to divide blocks of body copy to
create layouts that are reminiscent of those in magazines and news-
papers. I don’t blame people for that, it’s an obvious choice; but while
columns of text work well in print media, they’re not always the best
choice for the web. Take this example of an article on ‘Get Hardboiled’
where we’ve divided the main content into columns.

426 Hardboiled Web Design

Dividing large blocks of content into columns isn’t always the best choice and
can create a less enjoyable reading experience.

427Multicolumn layout

There are two remarkable things to notice about this columnised
design. First — and possibly most important — by adding columns
we’ve provided a unconventional and possibly less convenient reading
experience. While in a magazine or newspaper we’re very familiar
with reading down a column to its bottom, then moving our eyes to
the top of the next, we’re not used to doing that on the web.

This reading experience is made less enjoyable on smaller and medi-
um-sized screens where the columns can extend outside the viewport
forcing people to scroll up and down the page to continue reading.

Spanning columns

Fortunately, there are CSS multicolumn properties that help to make
people’s reading experience better, and all that’s needed is some care-
ful thought when using them. Let’s rewind to that previous example.
Long passages of columnised content work well when we can define
the height of the overall layout, but that’s not possible in responsive
web design. Shorter passages of columnised content can be extremely
effective and can give a design a more distinctive look.

To achieve these shorter columnised sections, we don’t need additional
elements, just the column-span property applied to strategic elements;
for example, major headings or perhaps figure elements:

figure {
column-span : all; }

This makes an element span any number of columns. While
column-span accepts several values — including inherit, initial, none
and unset — only all is of any practical use. To demonstrate how effec-
tive using column-span can be, let’s add it to major headings and figure
elements using a BEM-based columns_ _span class attribute value:

428 Hardboiled Web Design

.columns__span {
column-span : all; }

Using column-span elements strategically to create shorter
columnised sections can improve the usability of a design.

429Multicolumn layout

From a higher-level view of the page, we can see how dividing the col-
umnised content into shorter sections gives the layout more structure.
It also reduces the distance that a reader’s eyes must travel between
columns, which dramatically improves their reading experience.

Breaking columns

When we divide our content across columns, it will automatically be
evenly balanced across them. In practice, this can lead to some unpre-
dictable results.

Fortunately, we can ensure that elements stay together by using the
break-inside property.19 We’ll apply it to a box using using a BEM-
based columns_ _break class attribute value, like this:

.columns_ _break {
break-inside : avoid; }

19 Using the break-inside property helps to keep related content together.

Balancing
columns can
sometimes
mean that
related areas of
content, like this
box, become
separated.

430 Hardboiled Web Design

Sadly, at the time of writing, we need to take a less convenient ap-
proach to ensure elements stay together in all browsers. This involves
using three different properties: the first for Blink and WebKit-based
browsers (including Google Chrome, Opera and Safari); the second for
Firefox; and the third for Internet Explorer versions 10 and 11:

.columns_ _break {
-webkit-column-break-inside : avoid;
page-break-inside : avoid;
break-inside : avoid; }

columns_ _span and break-inside are both useful properties that can
help solve readability issues when using CSS multicolumn layout on
passages of long body copy. But the best way to ensure that columns
improve a person’s reading experience and don’t spoil it is careful plan-
ning and a little imagination.

431Multicolumn layout

Breaking lists into columns

It shouldn’t take too much to imagine that we can also use CSS
columns to improve both the look and usability of content modules
as well as long body copy. In fact, columns are incredibly useful for
making the most of what would otherwise be empty space in a layout
at certain responsive breakpoints.

One example that immediately springs to mind is a list, and ours con-
tains the names of famous pulp detective magazines.

<ul class="list--columns">
Action Stories
Black Mask
Detective Book Magazine
Detective Story Magazine
Phantom Detective
Pulp Magazine
The Shadow
Spicy Detective
True Detective

We don’t need much styling to make
the design of this list appropriate for
smaller screens. Its default, vertical
layout is perfect.

Displaying our list of pulp detective
magazines on a smaller screen.

432 Hardboiled Web Design

That same vertical layout is also perfectly suited when our list is
displayed in a narrow column, such as a sidebar within a larger screen
layout. However, on medium-sized screens — including smartphones
in landscape orientation and tablets of various sizes — this vertical
layout creates a large amount of white space. This isn’t the best use of
what could be limited space, so let’s combine CSS multicolumn layout
with media queries to improve it.

We’ve already added a list--columns class attribute value to our list
and we don’t need any special styling for smaller screens. When
someone’s browser is of medium size, we’ll divide our list into three
columns. A column-rule might not be appropriate, but column-gap will
help separate list items, particularly those that contain longer text :

@media (min-width: 48rem) {
.list--columns {
column-count : 3;
column-gap : 4rem; }
}

Making better use of the available space on medium-sized screens.

433Multicolumn layout

Our list now extends across what would have otherwise been empty
space at this breakpoint. This layout isn’t going to work at larger
screen sizes, though, when its narrow column container shifts
position to become a sidebar. Adapting the layout for this breakpoint
is easy, however, and we‘ll simply reset the column-count to 1 using
another media query:

@media (min-width: 64rem) {
.list--columns {
column-count : 1; }
}

Now our simple list of pulp magazines shifts its layout across three
responsive breakpoints to make the most of available space. For me,
this type of attention to detail can make the difference between an
average design and a fabulous one, and it is exactly what responsive
web design should be all about.

Improving figures by adding caption columns

As someone who loves newspaper layouts, I’m often disappointed
when I see unimaginative designs of figures and their captions on the
web. Considering the current trend for full-width images, you might
imagine that designers would be creative with their caption designs.
Sadly, most designs stick to the conventional format of image first,
single column caption second.

We’ve already seen how using flexbox to change the position of
captions in relation to images can make an enormous impact on the
design of figures. Now we can go a step further and make them more
distinctive using columns.

434 Hardboiled Web Design

We won’t need to do anything different with our figure’s markup ex-
cept add a figcaption_ _columns class attribute value to our figcaption:

<figure>

 <figcaption class="figcaption_ _columns">Hardboiled heroes are
almost always down at heel, usually broke, often drunk and liv-
ing on a diet of black coffee and smokes – hey, that sounds like
most web designers I know. They have a good woman to help them
stay on the straight and narrow but don’t always treat her as
well as they should. When a glamorous redhead walks in the room,
a hardboiled hero can’t help but turn his head.</figcaption>
</figure>

The line length
in this figure’s
caption makes it
difficult to read
comfortably.

At first glance, that figure looks acceptable, but look a little closer and
you might notice that the smaller size of the figcaption means that
there are a lot of characters per line. More than I’d find comfortable to
read, even for a few lines. We could increase the size of the figcaption
text to adjust the measure, but that may make it visually indistinct
from normal body copy. Instead, we’ll use columns to improve the
measure while keeping the text size the same.

435Multicolumn layout

This time, we’ll specify that our columns should be 32rem wide and
the browser will create as many as it can fit within the available space.
Smaller screens won’t benefit from columns, so we’ll introduce them at
medium screen sizes using a media query:

@media (min-width: 48rem) {
.figure--classic figcaption {
column-width : 32rem;
column-gap : 4rem; }
}

Dividing the
caption text
into columns
makes it more
comfortable
to read and
more visually
interesting.

We’ve given our figcaption column gaps that are 4rem wide, and to
add an extra layer of visual interest at larger screen sizes, we’ll also add
that same 4rem as a margin to the left of the figcaption:

@media (min-width: 64rem) {
.figure--classic figcaption {
margin-left : 4rem; }
}

436 Hardboiled Web Design

Adding a
little margin
equal to the
gap gives this
figure a more
interesting look.

Developing for older browsers

Up until now, we’ve concentrated on developing for contemporary
browsers that all support CSS multicolumn layout, but what about
older browsers that don’t support them? What should we do? The
answer couldn’t be simpler. Nothing. You needn’t do anything because
browsers without column support will ignore their styles and instead
display a single column of text. That might seem a little too hardboiled,
but it’s fair because people using those less capable browsers won’t
know what they’re missing.

We could use the @supports CSS feature query to adjust a caption’s
text size between those browsers that do and those that don’t sup-
port columns:

.figure--classic figcaption {
font-size : 1.6rem; }

@supports (column-width : 32rem) {
.figure--classic figcaption {
font-size : 1.4rem; }
}

437Multicolumn layout

However, it’s unlikely that @supports will be understood by older
browsers with no support for CSS columns. Instead, when a design
dictates that we must differentiate between browsers, we can use
Modernizr to detect support and then serve alternative versions of
our design.

As we’re only interested in serving alternatives to browsers that don’t
support CSS multicolumn layout, we’ll use Modernizr’s detected class
attribute value (.no-csscolumns) to quarantine these styles from all
other browsers, like this:

.no-csscolumns {

.figure--classic figcaption {
font-size : 1.6rem; }
}

Breaking it up
For years I’ve been disappointed that so few web designers and de-
velopers use CSS columns, because for just as long they’ve had good
support across contemporary browsers. They’ve also always degraded
beautifully in browsers that don’t implement them. While I under-
stand that people cite usability issues as reasons not to adopt columns,
I think that all it takes is a little careful planning and imagination to
overcome these problems and make columnised designs that are dis-
tinctive and more interesting. I hope that I’ve inspired you to use CSS
columns and that your next design will make good use of them.

438 Hardboiled Web Design

That was a breeze
In More Hardboiled CSS, background blends and filters added
depth to our designs. Transforms translated, scaled, rotated and
skewed elements in not two but three dimensions, creating designs
that were previously not possible using CSS alone. CSS transitions
made state changes smoother and simple animations possible and
brought designs to life in the best browsers. Finally, CSS multicol-
umn layout made our typography responsive to many screen sizes
and type of devices.

439It’s time to get hardboiled

It’s time to get hardboiled
I have a confession to make. When I sat down to update
this book for the fifth anniversary edition I expected the process
to take only a few weeks. When I asked several of my friends
to reread the first edition and to tell me which aspects needed
updating, they all told me how well the book had stood the test
of time. I understood that I’d have to update the examples and
lessons. I expected to make dozens of new images. I also knew
there was content I wanted to replace, because I thought that
a chapter teaching flexbox was more important than one that
taught CSS animations. I expected all of this, but I wasn’t pre-
pared for the scale of the changes I have actually made for this
new book. Instead of the two new chapters I anticipated, there
are five. I haven’t replaced dozens of images, I’ve made over 350.
Every example and lesson needed updating to bring it up to date
with today’s responsive code and techniques.

I underestimated all of this because I hadn’t appreciated just how differ-
ent the work we do to make the web is today from what it was when I
wrote Hardboiled Web Design five years ago.

The websites and applications we design today must be responsive by
default and we should design them to adapt to any number of screen
sizes and types of device. Performance is more of an issue today than
it has been since the days of the 28k modem, and designers, developers
and the people we work for need to understand the importance that
speed plays in improving both user experience and results.

No. 21

440 Hardboiled Web Design

These changes aren’t easy to deal with; they require us to think dif-
ferently about the processes and tools we use to design. The closer
collaboration we need between designers and developers means
that many creative and technical companies need not only think
differently about how they structure their projects, but how they
structure their entire businesses. The processes we now commonly
use when designing — processes like designing atoms and elements
and building web design style guides — mean our bosses and clients
have had to change their expectations about the stages a project will
pass through. None of this change happened overnight; it changed
gradually and cumulatively, but the results have been the same.
The websites and applications we make and how we make them are
different and this has affected everyone involved in designing and
developing for the web.

To help us cope with the changes in our industry, many of us now
rely on familiar responsive design patterns. When we’re designing
for an unpredictable world, we crave predictability, so we’ve created
processes to help make our work more reliable. A process is a tried
and tested method we’ve used to do something we’ve done before.
But what’s the point of following a formula? A formula will lead to a
predictable, but ordinary result — and who wants to make something
ordinary? I hope you don’t.

For the hardboiled heroes in the detective stories that I love, rules
are there to be remade when that means going to work, catching the
killer, seeing that justice is done by any means necessary. As web
professionals, jamming a pistol into a guy’s temple or ramming a fist
into his guts isn’t all part of a day’s work, but we can learn a lot from
those hardboiled heroes.

441It’s time to get hardboiled

We don’t have to follow rules for making high performance, respon-
sive websites and applications. And even when we do, who makes
those rules? We do. Who lives by those rules? We do. Whose respon-
sibility is it to make damn sure that the work we do on the web is the
best that it can be, so that everyone — we, our bosses and clients and
their customers — will benefit? It’s ours. It’s what we’re paid to do. It
should be our passion.

Some people say that formative and summative research, qualitative
and quantitative data and analysis, psychology, anthropology and
human–computer interaction, wireframes, prototypes, functional
specifications and flowcharts, are more important than creativity.
To hell with that. This attitude makes many of us think that efficient
processes are more important than ideas. The processes we adopt
and the technologies we use are there to help us express our ideas,
not limit them.

These technologies are now even more powerful than they were five
years ago and we’re fortunate to have contemporary browsers that
support them faster and more consistently than ever before. We’re
lucky to have clients who now not only expect our designs to be
responsive, they understand that websites needn’t look the same in
every browser. All these factors are opportunities to be more creative,
opportunities for better business.

The time’s never been better to seize those opportunities, grab them
with both hands — and get hardboiled.

	Foreword by Jeffrey Zeldman
	Foreword by Trent Walton
	Contents
	Part I — Getting Hardboiled
	What the hell is hardboiled?
	(Give me that) ol’ time religion
	The way standards develop
	It doesn’t have to look the same
	Atoms and elements
	Designing atmosphere
	Part II — Hardboiled HTML
	Destination HTML
	Hardboiled microformats2
	WAI-ARIA roles
	Part III — HARDBOILED CSS
	Hardboiled foundations
	Flexible box layout
	Responsive typography
	RGBa and opacity
	Borders
	Background images
	Gradients
	Part IV — More Hardboiled CSS
	Background blends and filters
	Transforms
	Transitions
	Multicolumn layout
	It’s time to get hardboiled

