

Imprint
© 2016 Smashing Magazine GmbH, Freiburg, Germany
ISBN (PDF): 978-3-945749-41-8
Cover Design: Veerle Pieters
eBook Strategy and Editing: Vitaly Friedman
Technical Editing: Cosima Mielke
Planning and Quality Control: Vitaly Friedman, Iris Lješnjanin
Tools: Elja Friedman
Syntax Highlighting: Prism by Lea Verou
Idea & Concept: Smashing Magazine GmbH

IMPRINT

2

About This Book
For a lot of people, WordPress is the entry into web devel-
opment. And a lot of them don’t stop there. They want
more control over their WordPress site, so customizing
design and functionality is the next logical step. If Word-
Press got you hooked, and you want to get more out of it
to tailor your site more to your needs and ideas, then this
eBook is for you.

To start out, you will learn to build custom page tem-
plates and extend WordPress’ flexibility with custom post
types. Later, our expert authors will provide insights into
customizing tree-like data structures to make them fit
your particular needs, as well as tips to replace the regular
custom field interface with something more powerful
and user-friendly. You’ll also learn to build an advanced
notification system to reach your users, and, last, but not
least, we’ll dive deep into building, maintaining, and de-
ploying WordPress plugins. WordPress’ flexible structure
is predestined for customization. So make use of this
grand potential to build your projects the way you imag-
ine them to be.

3

TABLE OF CONTENTSTABLE OF CONTENTS

A Detailed Guide To WordPress Custom Page Templates 5
Extending WordPress With Custom Content Types....... 48
Building A Custom Archive Page For WordPress 71
Customizing Tree-Like Data Structures In WordPress
With The Walker Class .. 94
Extending Advanced Custom Fields With Your Own
Controls .. 133
Building An Advanced Notification System For
WordPress ..151
How To Use Autoloading And A Plugin Container In
WordPress Plugins ..181
How To Deploy WordPress Plugins With GitHub Using
Transients .. 221
About The Authors ..241

IMPRINT

4

A Detailed Guide To
WordPress Custom Page
Templates

BY NICK SCHÄFERHOFFBY NICK SCHÄFERHOFF ❧❧

I like to think of WordPress as the gateway drug of web
development. Many people who get started using the
platform are initially merely looking for a comfortable
(and free) way to create a simple website. Some Googling
and consultation of the WordPress Codex1 later, it’s done
and that should be it. Kind of like “I’m just going to try it
once.”

However, a good chunk of users don’t stop there. In-
stead, they get hooked. Come up with more ideas. Experi-
ment. Try out new plugins. Discover Firebug2. Boom.
Soon there is no turning back. Does that sound like your
story? As a WordPress user it is only natural to want
more and more control over your website. To crave cus-
tom design, custom functionality, custom everything.

Luckily, WordPress is built for exactly that. Its flexible
structure and compartmentalized architecture allows
anyone to change practically anything on their site.

Among the most important tools in the quest for com-
plete website control are page templates. They allow
users to dramatically alter their website’s design and
functionality. Want a customized header for your front

1. http://codex.wordpress.org
2. https://addons.mozilla.org/en-us/firefox/addon/firebug/

5

http://codex.wordpress.org
http://codex.wordpress.org
http://codex.wordpress.org
https://addons.mozilla.org/en-us/firefox/addon/firebug/
https://addons.mozilla.org/en-us/firefox/addon/firebug/
https://addons.mozilla.org/en-us/firefox/addon/firebug/
http://codex.wordpress.org
http://codex.wordpress.org
https://addons.mozilla.org/en-us/firefox/addon/firebug/
https://addons.mozilla.org/en-us/firefox/addon/firebug/

page? Done. An additional sidebar only for your blog
page? No problem. A unique 404 error page? Be. My.
Guest.

If you want to know how WordPress page templates
can help you achieve that, read on. But first, a little back-
ground information.

Template Files In WordPress
What are we talking about when we speak of templates
in the context of WordPress? The short version is that
templates are files which tell WordPress how to display
different types of content.

The slightly longer version: every time someone sends
a request to view part of your website, the WordPress
platform will figure out what content they want to see
and how that specific part of your website should be ren-
dered.

For the latter, WordPress will attempt to use the most
appropriate template file found within your theme.
Which one is decided on the basis of a set order, the
WordPress template hierarchy3. You can see what this
looks like in the screenshot below or in this interactive
version4.

3. http://codex.wordpress.org/Template_Hierarchy#The_Template_Hierarchy_
In_Detail

4. http://wphierarchy.com/

A DETAILED GUIDE TO WORDPRESS CUSTOM PAGE TEMPLATES

6

http://codex.wordpress.org/Template_Hierarchy#The_Template_Hierarchy_In_Detail
http://codex.wordpress.org/Template_Hierarchy#The_Template_Hierarchy_In_Detail
http://codex.wordpress.org/Template_Hierarchy#The_Template_Hierarchy_In_Detail
http://wphierarchy.com/
http://wphierarchy.com/
http://wphierarchy.com/
http://wphierarchy.com/
http://codex.wordpress.org/Template_Hierarchy#The_Template_Hierarchy_In_Detail
http://codex.wordpress.org/Template_Hierarchy#The_Template_Hierarchy_In_Detail
http://wphierarchy.com/
http://wphierarchy.com/

The template hierarchy is a list of template files Word-
Press is familiar with that are ranked to determine which
file takes precedence over another.

You can think of it as a decision tree. When Word-
Press tries to decide how to display a given page, it works
its way down the template hierarchy until it finds the
first template file that fits the requested page. For exam-
ple, if somebody attempted to access the address
http://yoursite.com/category/news, WordPress would look
for the correct template file in this order:

1. category-{slug}.php: in this case category-news.php

The WordPress template hierarchy.
(Image credit: WordPress Codex5)(View large version6)

5. http://codex.wordpress.org/
6. https://media-mediatemple.netdna-ssl.com/wp-content/uploads/2015/05/01-wp-

template-hierarchy-opt.jpg

7

http://codex.wordpress.org/
http://codex.wordpress.org/
http://codex.wordpress.org/
/Users/smashing-ebooks/Production/PDF/images/https:/media-mediatemple.netdna-ssl.com/wp-content/uploads/2015/05/01-wp-template-hierarchy-opt.jpg
/Users/smashing-ebooks/Production/PDF/images/https:/media-mediatemple.netdna-ssl.com/wp-content/uploads/2015/05/01-wp-template-hierarchy-opt.jpg
/Users/smashing-ebooks/Production/PDF/images/https:/media-mediatemple.netdna-ssl.com/wp-content/uploads/2015/05/01-wp-template-hierarchy-opt.jpg
http://codex.wordpress.org/
http://codex.wordpress.org/
/Users/smashing-ebooks/Production/PDF/images/https:/media-mediatemple.netdna-ssl.com/wp-content/uploads/2015/05/01-wp-template-hierarchy-opt.jpg
/Users/smashing-ebooks/Production/PDF/images/https:/media-mediatemple.netdna-ssl.com/wp-content/uploads/2015/05/01-wp-template-hierarchy-opt.jpg

2. category-{id}.php: if the category ID were 5, WordPress
would try to find a file named category-5.php

3. category.php

4. archive.php

5. index.php

At the bottom of the hierarchy is index.php. It will be used
to display any content which does not have a more specif-
ic template file attached to its name. If a template file
ranks higher in the hierarchy, WordPress will automati-
cally use that file in order to display the content in ques-
tion.

PAGE TEMPLATES AND THEIR USEPAGE TEMPLATES AND THEIR USE

For pages, the standard template is usually the aptly
named page.php. Unless there is a more specific template
file available (such as archive.php for an archive page),
WordPress will use page.php to render the content of all
pages on your website.

However, in many cases it might be necessary to
change the design, look, feel or functionality of individual
parts of your website. This is where page templates come
into play. Customized page templates allow you to indi-
vidualize any part of your WordPress site without affect-
ing the rest of it.

You might have already seen this at work. For exam-
ple, many WordPress themes today come with an option
to change your page to full width, add a second sidebar or
switch the sidebar’s location. If that is the case for yours,

A DETAILED GUIDE TO WORDPRESS CUSTOM PAGE TEMPLATES

8

it was probably done through template files. There are
several ways to accomplish this and we’ll go over them
later.

First, however, a word of caution: since working with
templates involves editing and changing files in your ac-
tive theme, it’s always a good idea to go with a child
theme when making these kinds of customizations. That
way you don’t run the danger of having your changes
overwritten when your parent theme gets updated.

How To Customize Any Page In
WordPress
There are three basic ways to use custom page templates
in WordPress: adding conditional statements to an exist-
ing template; creating specific page templates which rank
higher in the hierarchy; and directly assigning templates
to specific pages. We will take a look at each of these in
turn.

USING CONDITIONAL TAGS IN DEFAULTUSING CONDITIONAL TAGS IN DEFAULT
TEMPLATESTEMPLATES

An easy way to make page-specific changes is to add
WordPress’s many conditional tags7 to a template already
in use. As the name suggests, these tags are used to create
functions which are only executed if a certain condition
is met. In the context of page templates, this would be

7. http://codex.wordpress.org/Conditional_Tags

9

http://codex.wordpress.org/Conditional_Tags
http://codex.wordpress.org/Conditional_Tags
http://codex.wordpress.org/Conditional_Tags
http://codex.wordpress.org/Conditional_Tags
http://codex.wordpress.org/Conditional_Tags

something along the line of “Only perform action X on page
Y.”

Typically, you would add conditional tags to your
theme’s page.php file (unless, of course, you want to cus-
tomize a different part of your website). They enable you
to make changes limited to the homepage, front page,
blog page or any other page of your site.

Here are some frequently used conditional tags:

1. is_page(): to target a specific page. Can be used with the
page’s ID, title, or URL/name.

2. is_home(): applies to the home page.

3. is_front_page(): targets the front page of your site as
set under Settings → Reading.

4. is _category(): condition for a category page. Can use
ID, title or URL/name like is_page() tag.

5. is_single(): for single posts or attachments.

6. is_archive(): conditions for archive pages.

7. is_404(): applies only to 404 error pages.

For example, when added to your page.php in place of the
standard get_header(); tag, the following code will load
a custom header file named header-shop.php when display-
ing the page http://yoursite.com/products.

if (is_page('products')) {

get_header('shop');

} else {

A DETAILED GUIDE TO WORDPRESS CUSTOM PAGE TEMPLATES

10

get_header();

}

A good use case for this would be if you have a shop on
your site and you need to display a different header im-
age or customized menu on the shop page. You could
then add these customization in header-shop.php and it
would show up in the appropriate place.

However, conditional tags are not limited to one page.
You can make several statements in a row like so:

if (is_page('products')) {

get_header('shop');

} elseif (is_page(42)) {

get_header('about');

} else {

get_header();

}

In this second example, two conditions will change the
behavior of different pages on your site. Besides loading
the aforementioned shop-specific header file, it would
now also load a header-about.php on a page with the ID of
42. For all other pages the standard header file applies.

To learn more about the use of conditional tags, the
following resources are highly recommended:

• WordPress Codex: Conditional Tags8

8. http://codex.wordpress.org/Conditional_Tags

11

http://codex.wordpress.org/Conditional_Tags
http://codex.wordpress.org/Conditional_Tags
http://codex.wordpress.org/Conditional_Tags
http://codex.wordpress.org/Conditional_Tags
http://codex.wordpress.org/Conditional_Tags

• ThemeLab: The Ultimate Guide to WordPress Condition-
al Tags9

CREATING PAGE-SPECIFIC FILES IN THECREATING PAGE-SPECIFIC FILES IN THE
WORDPRESS HIERARCHYWORDPRESS HIERARCHY

Conditional tags are a great way to introduce smaller
changes to your page templates. Of course, you can also
create larger customizations by using many conditional
statements one after the other. I find this a very cumber-
some solution, however, and would opt for designated
template files instead.

One way to do this is to exploit the WordPress tem-
plate hierarchy. As we have seen, the hierarchy will tra-
verse a list of possible template files and choose the first
one it can find that fits. For pages, the hierarchy looks like
this:

• Custom page template

• page-{slug}.php

• page-{id}.php

• page.php

• index.php

In first place are custom page templates which have been
directly assigned to a particular page. If one of those ex-
ists, WordPress will use it no matter which other tem-

9. http://www.themelab.com/ultimate-guide-wordpress-conditional-tags/

A DETAILED GUIDE TO WORDPRESS CUSTOM PAGE TEMPLATES

12

http://www.themelab.com/ultimate-guide-wordpress-conditional-tags/
http://www.themelab.com/ultimate-guide-wordpress-conditional-tags/
http://www.themelab.com/ultimate-guide-wordpress-conditional-tags/
http://www.themelab.com/ultimate-guide-wordpress-conditional-tags/
http://www.themelab.com/ultimate-guide-wordpress-conditional-tags/
http://www.themelab.com/ultimate-guide-wordpress-conditional-tags/

plate files are present. We will talk more about custom
page templates in a bit.

After that, WordPress will look for a page template
that includes the slug of the page in question. For exam-
ple, if you include a file named page-about.php in your
theme files, WordPress will use this file to display your
‘About’ page or whichever page can be found under
http://www.yoursite.com/about.

Alternatively, you can achieve the same by targeting
your page’s ID. So if that same page has an ID of 5, Word-
Press will use the template file page-5.php before page.php
if it exists; that is, only if there isn’t a higher-ranking page
template available.

(By the way, you can find out the ID for every page by
hovering over its title under ‘All Pages’ in your WordPress
back-end. The ID will show up in the link displayed by
your browser.)

ASSIGNING CUSTOM PAGE TEMPLATESASSIGNING CUSTOM PAGE TEMPLATES

Besides providing templates in a form that WordPress
will use automatically, it is also possible to manually as-
sign custom templates to specific pages. As you can see
from the template hierarchy, these will trump any other
template file present in the theme folder.

Just like creating page-specific templates for the
WordPress hierarchy, this requires you to provide a tem-
plate file and then link it to whichever page you want to
use it for. The latter can be done in two different ways
you might already be familiar with. Just in case you
aren’t, here is how to do it.

13

1. Assigning Custom Page Templates From The1. Assigning Custom Page Templates From The
WordPress EditorWordPress Editor

In the WordPress editor, you find an option field called
‘Page Attributes’ with a drop-down menu under ‘Tem-
plate’.

Clicking on it will give you a list of available page tem-
plates on your WordPress website. Choose the one you
desire, save or update your page and you are done.

2. Setting A Custom Template Via Quick Edit2. Setting A Custom Template Via Quick Edit

The same can also be achieved without entering the
WordPress editor. Go to ‘All Pages’ and hover over any
item in the list there. A menu will become visible that in-
cludes the ‘Quick Edit’ item.

Click on it to edit the page settings directly from the
list. You will see the same drop-down menu for choosing
a different page template. Pick one, update the page and
you are done.

Page Attributes in the WordPress editor.

A DETAILED GUIDE TO WORDPRESS CUSTOM PAGE TEMPLATES

14

Not so hard after all, is it? But what if you don’t have a
custom page template yet? How do you create it so that
your website looks exactly the way you want it? Don’t
worry, that’s what the next part is all about.

A Step-By-Step Guide To Creating Custom
Page Templates
Putting together customized template files for your pages
is not that hard but here are a few details you have to pay
attention to. Therefore, let’s go over the process bit-by-bit.

1. FIND THE DEFAULT TEMPLATE1. FIND THE DEFAULT TEMPLATE

A good way is to start by copying the template which is
currently used by the page you want to modify. It’s easier

Available templates under Page Attributes.

15

to modify existing code than to write an entire page from
scratch. In most cases this will be the page.php file.

(If you don’t know how to find out which template file
is being used on the page you want to edit, the plugin
What The File10 will prove useful.)

I will be using the Twenty Twelve theme for demon-
stration. Here is what its standard page template looks
like:

<?php

/**

* The template for displaying all pages

*

* This is the template that displays all pages

* by default.

* Please note that this is the WordPress construct of

* pages and that other ‘pages’ on your WordPress site

* will use a different template.

*

* @package WordPress

* @subpackage Twenty_Twelve

* @since Twenty Twelve 1.0

*/

get_header(); ?>

<div id="primary" class="site-content">

<div id="content" role="main">

10. https://wordpress.org/plugins/what-the-file/

A DETAILED GUIDE TO WORDPRESS CUSTOM PAGE TEMPLATES

16

https://wordpress.org/plugins/what-the-file/
https://wordpress.org/plugins/what-the-file/
https://wordpress.org/plugins/what-the-file/
https://wordpress.org/plugins/what-the-file/
https://wordpress.org/plugins/what-the-file/

<?php while (have_posts()) : the_post(); ?>

<?php get_template_part('content', 'page');

?>

<?php comments_template('', true); ?>

<?php endwhile; // end of the loop. ?>

</div><!-- #content -->

</div><!-- #primary -->

<?php get_sidebar(); ?>

<?php get_footer(); ?>

As you can see, nothing too fancy here: the usual calls for
the header and footer, and the loop in the middle. The
page in question looks like this:

The default page template in the Twenty Twelve theme.

17

2. COPY AND RENAME THE TEMPLATE FILE2. COPY AND RENAME THE TEMPLATE FILE

After identifying the default template file, it’s time to
make a copy. We will use the duplicated file in order to
make the desired changes to our page. For that we will al-
so have to rename it. Can’t have two files of the same
name, that’s just confusing for everyone.

You are free to give the file any name you like as long
as it doesn’t start with any of the reserved theme file-
names11. So don’t be naming it page-something.php or any-
thing else that would make WordPress think it is a dedi-
cated template file.

It makes sense to use a name which easily identifies
what this template file is used for, such as my-custom-tem-
plate.php. In my case I will go with custom-full-width.php.

3. CUSTOMIZE THE TEMPLATE FILE HEADER3. CUSTOMIZE THE TEMPLATE FILE HEADER

Next we have to tell WordPress that this new file is a cus-
tom page template. For that, we will have to adjust the file
header in the following way:

<?php

/*

* Template Name: Custom Full Width

* Description: Page template without sidebar

*/

// Additional code goes here...

11. http://codex.wordpress.org/Page_Templates#Filenames

A DETAILED GUIDE TO WORDPRESS CUSTOM PAGE TEMPLATES

18

http://codex.wordpress.org/Page_Templates#Filenames
http://codex.wordpress.org/Page_Templates#Filenames
http://codex.wordpress.org/Page_Templates#Filenames
http://codex.wordpress.org/Page_Templates#Filenames
http://codex.wordpress.org/Page_Templates#Filenames
http://codex.wordpress.org/Page_Templates#Filenames

The name under ‘Template Name’ is what will be dis-
played under ‘Page Attributes’ in the WordPress editor.
Make sure to adjust it to your template name.

4. CUSTOMIZE THE CODE4. CUSTOMIZE THE CODE

Now it’s time to get to the meat and potatoes of the page
template: the code. In my example, I merely want to re-
move the sidebar from my demo page.

This is relatively easy, as all I have to do is remove
<?php get_sidebar(); ?> from my page template since
that’s what is calling the sidebar. As a consequence, my
custom template ends up looking like this:

<?php

/*

* Template Name: Custom Full Width

* Description: Page template without sidebar

*/

get_header(); ?>

<div id="primary" class="site-content">

<div id="content" role="main">

<?php while (have_posts()) : the_post(); ?>

<?php get_template_part('content', 'page'); ?>

<?php comments_template('', true); ?>

<?php endwhile; // end of the loop. ?>

</div><!-- #content -->

19

</div><!-- #primary -->

<?php get_footer(); ?>

5. UPLOAD THE PAGE TEMPLATE5. UPLOAD THE PAGE TEMPLATE

After saving my customized file, it is now time to upload
it to my website. Custom page templates can be saved in
several places to be recognized by WordPress:

• Your active (child) theme’s folder

• The folder of your main parent theme

• A subfolder within either of these

I personally like to create a folder named page_templates in
my child theme and place any customized templates in
there. I find this easiest to retain an overview over my
files and customizations.

6. ACTIVATE THE TEMPLATE6. ACTIVATE THE TEMPLATE

As a last step, you need to activate the page template. As
mentioned earlier, this is done under Page Attributes →
Templates in the WordPress editor. Save, view the page
and voilà! Here is my customized page without a sidebar:

A DETAILED GUIDE TO WORDPRESS CUSTOM PAGE TEMPLATES

20

Not so hard, is it? Don’t worry, you will quickly get the
hang of it. To give you a better impression of what to use
these page templates for, I will demonstrate additional
use cases (including the code) for the remainder of the ar-
ticle.

Five Different Ways To Use Page
Templates
As already mentioned, page templates can be employed
for many different purposes. You can customize pretty
much anything on any page with their help. Only your
imagination (and coding abilities) stand in your way.

Customized page template without the sidebar.

21

1. FULL-WIDTH PAGE TEMPLATE1. FULL-WIDTH PAGE TEMPLATE

The first case we will look at is an advanced version of the
demo template we created above. Up there, we already re-
moved the sidebar by deleting <?php get_sidebar(); ?>
from the code. However, as you have seen from the
screenshot this does not actually result in a full-width
layout since the content section stays on the left.

To address this, we need to deal with the CSS, in par-
ticular this part:

.site-content {

float: left;

width: 65.1042%;

}

The width attribute limits the element which holds our
content to 65.1042% of the available space. We want to in-
crease this.

If we just change it to 100%, however, this will affect
all other pages on our site, which is far from what we
want. Therefore, the first order here is to change the pri-
mary div‘s class in our custom template to something
else, like class="site-content-fullwidth". The result:

<?php

/*

* Template Name: Custom Full Width

* Description: Page template without sidebar

*/

get_header(); ?>

A DETAILED GUIDE TO WORDPRESS CUSTOM PAGE TEMPLATES

22

<div id="primary" class="site-content-fullwidth">

<div id="content" role="main">

<?php while (have_posts()) : the_post(); ?>

<?php get_template_part('content', 'page'); ?>

<?php comments_template('', true); ?>

<?php endwhile; // end of the loop. ?>

</div><!-- #content -->

</div><!-- #primary -->

<?php get_footer(); ?>

Now we can adjust the CSS for our new custom class. As a
result, the content now stretches all the way across the
screen.

The custom page template at full width.

23

.site-content-fullwidth {

float: left;

width: 100%;

}

2. DYNAMIC 404 ERROR PAGE WITH WIDGET2. DYNAMIC 404 ERROR PAGE WITH WIDGET
AREASAREAS

The 404 error page is where every person lands who tries
to access a page on your website that doesn’t exist, be it
through a typo, a faulty link or because the page’s perma-
link has changed.

Despite the fact that getting a 404 is disliked by every-
one on the Internet, if you are running a website the 404
error page is of no little importance. Its content can be the
decisive factor on whether someone immediately aban-
dons your site or sticks around and checks out your other
content.

Coding a customized error page from scratch is cum-
bersome, especially if you are not confident in your abili-
ties. A better way is to build widget areas into your tem-
plate so you can flexibly change what is displayed there
by drag and drop.

For this we will grab and edit the 404.php file that
ships with Twenty Twelve (template hierarchy, remem-
ber?). However, before we change anything on there, we
will first create a new widget by inserting the following
code into our functions.php file:

register_sidebar(array(

'name' => '404 Page',

'id' => '404',

A DETAILED GUIDE TO WORDPRESS CUSTOM PAGE TEMPLATES

24

'description' => __('Content for your 404 error

page goes here.'),

'before_widget' => '<div id="error-box">',

'after_widget' => '</div>',

'before_title' => '<h3 class="widget-title">',

'after_title' => '</h3>'

));

This should display the newly created widget in your
WordPress back-end. To make sure that it actually pops
up on the site, you need to add the following line of code
to your 404 page in the appropriate place:

<?php dynamic_sidebar('404'); ?>

In my case, I want to replace the search form (<?php
get_search_form(); ?>) inside the template with my
new widget, making for the following code:

<?php

/**

* The template for displaying 404 pages (Not Found)

*

* @package WordPress

* @subpackage Twenty_Twelve

* @since Twenty Twelve 1.0

*/

get_header(); ?>

<div id="primary" class="site-content">

<div id="content" role="main">

25

<article id="post-0" class="post error404

no-results not-found">

<header class="entry-header">

<h1 class="entry-title"><?php _e('This is

somewhat embarrassing, isn&rsquo;t it?',

'twentytwelve'); ?></h1>

</header>

<div class="entry-content">

<?php dynamic_sidebar('404'); ?>

</div><!-- .entry-content -->

</article><!-- #post-0 -->

</div><!-- #content -->

</div><!-- #primary -->

<?php get_footer(); ?>

After uploading the template to my site, it’s time to popu-
late my new widget area (see image on the next page).

If I now take a look at the 404 error page, my newly
created widgets show up there (see image on page 28).

A DETAILED GUIDE TO WORDPRESS CUSTOM PAGE TEMPLATES

26

404 page template widget.

27

3. PAGE TEMPLATE FOR DISPLAYING CUSTOM3. PAGE TEMPLATE FOR DISPLAYING CUSTOM
POST TYPESPOST TYPES

Custom post types are a great way to introduce content
that has its own set of data points, design and other cus-
tomizations. A favorite use case for these post types are
review items such as books and movies. In our case we
want to build a page template that shows portfolio items.

We first need to create our custom post type (CPT).
This can be done manually or via plugin. One plugin op-
tion I can wholeheartedly recommend is Types12. It lets
you easily create custom post types and custom fields.

Install and activate Types, add a custom post, make
sure its slug is ‘portfolio’, customize any fields you need

Customized 404 page.

12. https://wordpress.org/plugins/types/

A DETAILED GUIDE TO WORDPRESS CUSTOM PAGE TEMPLATES

28

https://wordpress.org/plugins/types/
https://wordpress.org/plugins/types/
https://wordpress.org/plugins/types/
https://wordpress.org/plugins/types/
https://wordpress.org/plugins/types/

(such as adding a featured image), adjust any other op-
tions, and save.

Now, that we have our portfolio post type, we want it
to show up on our site. The first thing we’ll do is create
the page in question. Be aware that if you chose ‘portfolio’
as the slug of your CPT, the page can not have the same
slug. I went with my clients-portfolio and also added
some example text.

After adding a few items in the ‘portfolio’ post type sec-
tion, we want them to show up on our page right under-
neath the page content.

To achieve this we will again use a derivative of the
page.php file. Copy it, call it portfolio-template.php and
change the header to this:

<?php

/*

* Template Name: Portfolio Template

Portfolio page without a custom page template.

29

* Description: Page template to display portfolio

custom post types

* underneath the page content

*/

However, in this case we will have to make a few changes
to the original template. When you take a look at the code
of page.php, you will see that it calls another template file
in the middle, named content-page.php (where it says
<?php get_template_part('content', 'page'); ?>). In
that file we find the following code:

<article id="post-<?php the_ID(); ?>" <?php

post_class(); ?>>

<header class="entry-header">

<?php if (! is_page_template('page-templates/

front-page.php')) : ?>

<?php the_post_thumbnail(); ?>

<?php endif; ?>

<h1 class="entry-title"><?php the_title(); ?></h1>

</header>

<div class="entry-content">

<?php the_content(); ?>

<?php wp_link_pages(array('before' => '<div

class="page-links">' . __('Pages:',

'twentytwelve'), 'after' => '</div>')); ?>

</div><!-- .entry-content -->

<footer class="entry-meta">

<?php edit_post_link(__('Edit', 'twentytwelve'

), '', ''); ?>

A DETAILED GUIDE TO WORDPRESS CUSTOM PAGE TEMPLATES

30

</footer><!-- .entry-meta -->

</article><!-- #post -->

As you can see, it is here that the page title and content
are called. Since we definitely want those on our portfolio
site, we will need to copy the necessary parts of this tem-
plate to our page.php file. The result looks like this:

get_header(); ?>

<div id="primary" class="site-content">

<div id="content" role="main">

<?php while (have_posts()) : the_post(); ?>

<header class="entry-header">

<?php the_post_thumbnail(); ?>

<h1 class="entry-title"><?php the_title();

?></h1>

</header>

<div class="entry-content">

<?php the_content(); ?>

</div><!-- .entry-content -->

<?php comments_template('', true); ?>

<?php endwhile; // end of the loop. ?>

</div><!-- #content -->

</div><!-- #primary -->

31

<?php get_sidebar(); ?>

<?php get_footer(); ?>

To get the portfolio items onto our page, we will add the
following code right beneath the the_content() call.

<?php

$args = array(

'post_type' => 'portfolio', // enter custom post

// type

'orderby' => 'date',

'order' => 'DESC',

);

$loop = new WP_Query($args);

if($loop->have_posts()):

while($loop->have_posts()): $loop->the_post();

global $post;

echo '<div class="portfolio">';

echo '<h3>' . get_the_title() . '</h3>';

echo '<div class="portfolio-image">'.

get_the_post_thumbnail($id).'</div>';

echo '<div class="portfolio-work">

'. get_the_content().'</div>';

echo '</div>';

endwhile;

endif;

?>

This will make the CPT show up on the page:

A DETAILED GUIDE TO WORDPRESS CUSTOM PAGE TEMPLATES

32

The custom portfolio template.

33

I’m sure we all agree that it looks less than stellar, so
some styling is in order.

/* Portfolio posts */

.portfolio {

-webkit-box-shadow: 0px 2px 2px 0px rgba(50, 50,

50, 0.75);

-moz-box-shadow: 0px 2px 2px 0px rgba(50, 50, 50,

0.75);

box-shadow: 0px 2px 2px 0px rgba(50, 50, 50, 0.75);

margin: 0 0 20px;

padding: 30px;

}

.portfolio-image {

display: block;

float: left;

margin: 0 10px 0 0;

max-width: 20%;

}

.portfolio-image img {

border-radius: 0;

}

.portfolio-work {

display: inline-block;

max-width: 80%;

}

.portfolio h3 {

border-bottom: 1px solid #999;

font-size: 1.57143rem;

font-weight: normal;

A DETAILED GUIDE TO WORDPRESS CUSTOM PAGE TEMPLATES

34

margin: 0 0 15px;

padding-bottom: 15px;

}

Much better, don’t you think?

The custom portfolio template with styling.

35

And here is the entire code for the portfolio page tem-
plate:

<?php

/*

* Template Name: Portfolio Template

* Description: Page template to display portfolio

* custom post types underneath the page content

*/

get_header(); ?>

<div id="primary" class="site-content">

<div id="content" role="main">

<?php while (have_posts()) : the_post(); ?>

<header class="entry-header">

<?php the_post_thumbnail(); ?>

<h1 class="entry-title"><?php the_title();

?></h1>

</header>

<div class="entry-content">

<?php the_content(); ?>

<?php

$args = array(

'post_type' => 'portfolio', // enter

// custom post type

'orderby' => 'date',

'order' => 'DESC',

A DETAILED GUIDE TO WORDPRESS CUSTOM PAGE TEMPLATES

36

);

$loop = new WP_Query($args);

if($loop->have_posts()):

while($loop->have_posts()):

$loop->the_post(); global $post;

echo '<div class="portfolio">';

echo '<h3>' . get_the_title() . '</h3>';

echo '<div class="portfolio-image">'.

get_the_post_thumbnail($id).'</div>';

echo '<div class="portfolio-work">'.

get_the_content().'</div>';

echo '</div>';

endwhile;

endif;

?>

</div><!-- #entry-content -->

<?php comments_template('', true);

?>

<?php endwhile; // end of the loop.

?>

</div><!-- #content -->

</div><!-- #primary -->

<?php get_sidebar(); ?>

<?php get_footer(); ?>

4. CONTRIBUTOR PAGE WITH AVATAR IMAGES4. CONTRIBUTOR PAGE WITH AVATAR IMAGES

Next up in our page template use cases is a contributor
page. We want to set up a list of authors on our website,

37

including their images and the number of posts they have
published under their name. The end result will look like
this:

We will again start out with our hybrid file from before
and add the code for the contributor list to it. But what if
you don’t know how to create such a thing? No worries,
you can get by with intelligent stealing.

You see, the Twenty Fourteen default theme comes
with a contributor page by default. You can find its tem-
plate in the page-templates folder with the name contribu-
tors.php.

When looking into the file, however, you will only
find the following call in there:

The completed custom contributors page.

A DETAILED GUIDE TO WORDPRESS CUSTOM PAGE TEMPLATES

38

twentyfourteen_list_authors();. Luckily, as an avid
WordPress user you now conclude that this probably
refers to a function in Twenty Fourteen’s function.php file
and you would be right.

From what we find in there, the part that interests us
is this:

<?php

// Output the authors list.

$contributor_ids = get_users(array(

'fields' => 'ID',

'orderby' => 'post_count',

'order' => 'DESC',

'who' => 'authors',

));

foreach ($contributor_ids as $contributor_id) :

$post_count = count_user_posts($contributor_id);

// Move on if user has not published a post (yet).

if (! $post_count) {

continue;

}

?>

<div class="contributor">

<div class="contributor-info">

<div class="contributor-avatar"><?php echo

get_avatar($contributor_id, 132); ?></div>

<div class="contributor-summary">

<h2 class="contributor-name"><?php echo

39

get_the_author_meta('display_name',

$contributor_id); ?></h2>

<p class="contributor-bio">

<?php echo get_the_author_meta(

'description', $contributor_id); ?>

</p>

<a class="button contributor-posts-link"

href="<?php echo esc_url(get_author_posts_url(

$contributor_id)); ?>">

<?php printf(_n('%d Article', '%d Articles',

$post_count, 'twentyfourteen'), $post_count

); ?>

</div><!-- .contributor-summary -->

</div><!-- .contributor-info -->

</div><!-- .contributor -->

<?php

endforeach;

?>

We will again add it below the call for the_content()
with the following result:

A DETAILED GUIDE TO WORDPRESS CUSTOM PAGE TEMPLATES

40

Now for a little bit of styling:

/* Contributor page */

.contributor {

border-bottom: 1px solid rgba(0, 0, 0, 0.1);

-webkit-box-sizing: border-box;

-moz-box-sizing: border-box;

box-sizing: border-box;

display: inline-block;

padding: 48px 10px;

}

.contributor p {

The unstyled custom contributors page.

41

margin-bottom: 1rem;

}

.contributor-info {

margin: 0 auto 0 168px;

}

.contributor-avatar {

border: 1px solid rgba(0, 0, 0, 0.1);

float: left;

line-height: 0;

margin: 0 30px 0 -168px;

padding: 2px;

}

.contributor-avatar img {

border-radius: 0;

}

.contributor-summary {

float: left;

}

.contributor-name {

font-weight: normal;

margin: 0 !important!important;

}

.contributor-posts-link {

background-color: #24890d;

border: 0 none;

border-radius: 0;

color: #fff;

display: inline-block;

font-size: 12px;

font-weight: 700;

A DETAILED GUIDE TO WORDPRESS CUSTOM PAGE TEMPLATES

42

line-height: normal;

padding: 10px 30px 11px;

text-transform: uppercase;

vertical-align: bottom;

}

.contributor-posts-link:hover {

color: #000;

text-decoration: none;

}

And that should be it. Thanks Twenty Fourteen!

5. CUSTOMIZED ARCHIVE PAGE5. CUSTOMIZED ARCHIVE PAGE

Twenty Twelve comes with its own template for archive
pages. It will jump into action, for example, when you at-
tempt to view all past posts from a certain category.

However, I want something a little more like what
Problogger13 has done: a page that lets people discover ad-
ditional content on my site in several different ways.
That, again, is done with a page template.

Staying with our mixed template from before, we will
add the following below the the_content() call:

<div class="archive-search-form"><?php

get_search_form(); ?></div>

<h2>Archives by Year:</h2>

<?php wp_get_archives('type=yearly'); ?>

13. http://www.problogger.net/archives/

43

http://www.problogger.net/archives/
http://www.problogger.net/archives/
http://www.problogger.net/archives/
http://www.problogger.net/archives/
http://www.problogger.net/archives/

<h2>Archives by Month:</h2>

<?php wp_get_archives('type=monthly'); ?>

<h2>Archives by Subject:</h2>

 <?php wp_list_categories('title_li='); ?>

Plus, a little bit of styling for the search bar:

.archive-search-form {

padding: 10px 0;

text-align: center;

}

And the result should look a little bit like this:

The custom archive page.

A DETAILED GUIDE TO WORDPRESS CUSTOM PAGE TEMPLATES

44

For completion’s sake, here is the entire file:

<?php

/**

* Template Name: Custom archive template

*

*/

get_header(); ?>

<div id="primary" class="site-content">

<div id="content" role="main">

<?php while (have_posts()) : the_post();

?>

<header class="entry-header">

<?php the_post_thumbnail(); ?>

<h1 class="entry-title"><?php the_title();

?></h1>

</header>

<div class="entry-content">

<?php the_content(); ?>

<div class="archive-search-form"><?php

get_search_form(); ?></div>

<h2>Archives by Year:</h2>

<?php wp_get_archives('type=yearly');

?>

45

<h2>Archives by Month:</h2>

<?php wp_get_archives('type=monthly');

?>

<h2>Archives by Subject:</h2>

<?php wp_list_categories('title_li=');

?>

</div><!-- #entry-content -->

<?php comments_template('', true);

?>

<?php endwhile; // end of the loop.

?>

</div><!-- #content -->

</div><!-- #primary -->

<?php get_sidebar(); ?>

<?php get_footer(); ?>

Don’t forget to assign it to a page!

WordPress Page Templates In A Nutshell
On your way to mastering WordPress, learning to use
page templates is an important step. They can make cus-
tomizing your website very, very easy and allow you to
assign unique functionality and design to as many or few
pages as you wish. From adding widget areas to showing
custom post types to displaying a list of your website’s
contributors — the possibilities are practically endless.

A DETAILED GUIDE TO WORDPRESS CUSTOM PAGE TEMPLATES

46

Whether you use conditional tags, exploit the Word-
Press template hierarchy, or create page-specific template
files is entirely up to you and what you are trying to
achieve. Start off small and work your way up to more
complicated things. It won’t be long before every part of
your WordPress website will answer to your every call.❧

47

Extending WordPress With
Custom Content Types

BY BRIAN ONORIOBY BRIAN ONORIO ❧❧

WordPress does some pretty amazing things out of the
box. It handles content management as well as any other
open-source solution out there — and better than many
commercial solutions. One of the best attributes of Word-
Press is its ease of use. It’s easy because there’s not a sig-
nificant amount of bloat with endless bells and whistles
that steepen the learning curve.

On the flip side, some might find WordPress a little…
well, light. It does a lot, but not quite enough. If you find
yourself hacking WordPress to do the things you wish it
would do, then the chances are high that this article is for
you.

WordPress can be easily extended to fit the require-
ments of a custom data architecture. We’re going to ex-
plore the process of registering new data types in a fully
compliant manner.

If you want to follow along at home, we’ve provided
the full source code14 (TXT, 5.0 KB).

Custom Post Types
WordPress gives you a very simple and straightforward
way to extend the standard two data types (Posts and

14. http://provide.smashingmagazine.com/full-source-code.txt

EXTENDING WORDPRESS WITH CUSTOM CONTENT TYPES

48

http://provide.smashingmagazine.com/full-source-code.txt
http://provide.smashingmagazine.com/full-source-code.txt
http://provide.smashingmagazine.com/full-source-code.txt
http://provide.smashingmagazine.com/full-source-code.txt
http://provide.smashingmagazine.com/full-source-code.txt

Pages) into an endless array for your custom needs. A dig-
ital agency or freelancer would need a “Project” post type.
A mall would need a “Location” post type.

Quick point. Spinning off custom post types is a great
idea for content that is intrinsically different than either
Posts or Pages. There could be a case where you would
want press releases to live in their own type. But more of-
ten than not, the press releases would be a Post and cate-
gorized as a press release. Or you may want to create a
post type for landing pages. It may very well belong as a
custom type, but it likely could also exist as a Page.

For the sake of this article, we’re going to follow a real-
world scenario of creating a Project post type to store
samples of work. We’ll register the post type, add some
meta data to it, include additional information in Word-
Press’ administration screens, and create custom tax-
onomies to supplement.

Registering The Post Type
To get started, we’ll need some code to register the post
type. We’re going to go with an object-oriented approach
because we’ll be spinning off this post type later with
some added functionality that would be done much more
efficiently with an object model. To start, let’s create the
function that registers the post type.

function create_post_type() {

$labels = array(

'name' => 'Projects',

'singular_name' => 'Project',

49

'menu_name' => 'Projects',

'name_admin_bar' => 'Project',

'add_new' => 'Add New',

'add_new_item' => 'Add New Project',

'new_item' => 'New Project',

'edit_item' => 'Edit Project',

'view_item' => 'View Project',

'all_items' => 'All Projects',

'search_items' => 'Search Projects',

'parent_item_colon' => 'Parent Project',

'not_found' => 'No Projects Found',

'not_found_in_trash' => 'No Projects Found in

Trash'

);

$args = array(

'labels' => $labels,

'public' => true,

'exclude_from_search' => false,

'publicly_queryable' => true,

'show_ui' => true,

'show_in_nav_menus' => true,

'show_in_menu' => true,

'show_in_admin_bar' => true,

'menu_position' => 5,

'menu_icon' => 'dashicons-admin-

appearance',

'capability_type' => 'post',

'hierarchical' => false,

'supports' => array('title',

EXTENDING WORDPRESS WITH CUSTOM CONTENT TYPES

50

'editor', 'author', 'thumbnail', 'excerpt',

'comments'),

'has_archive' => true,

'rewrite' => array('slug' =>

'projects'),

'query_var' => true

);

register_post_type('sm_project', $args);

}

Not much mysterious here. We’re calling the cre-
ate_post_type function, which registers our post type.
We’re giving the type some labels for back-end identifica-
tion and giving it a list of specifications in what it can do.
For a full list of reference for each of these variables, take
a look at the WordPress Codex15, but we’ll hit on a few key
items.

LABELSLABELS

For brevity, we’ve created a labels array and simply
passed it to the arguments array. WordPress enables us to
identify a slew of labels for singular, plural and other pur-
poses.

PUBLICPUBLIC

This setting is a parent of sorts for a few of the other set-
tings that appear later in the list. The default value for the

15. http://codex.wordpress.org/Function_Reference/register_post_type

51

http://codex.wordpress.org/Function_Reference/register_post_type
http://codex.wordpress.org/Function_Reference/register_post_type
http://codex.wordpress.org/Function_Reference/register_post_type
http://codex.wordpress.org/Function_Reference/register_post_type
http://codex.wordpress.org/Function_Reference/register_post_type

public attribute is false. The value of public is passed to
the following other attributes when they are not explicit-
ly defined: exclude_from_search, publicly_queryable,
show_in_nav_menus and show_ui.

EXCLUDE_FROM_SEARCHEXCLUDE_FROM_SEARCH

The default setting here is the opposite of the public at-
tribute. If your post type is public, then it will be includ-
ed in the website’s search results. Note that this has no
implication for SEO and only restricts or allows searches
based on WordPress’ native search protocol. There’s a
chance you would want the post type to be public but not
appear in these search results. If that’s the case, set this
attribute to true.

PUBLICLY_QUERYABLEPUBLICLY_QUERYABLE

This attribute is exclusively for front-end queries and has
no real back-end implications. The default value is the
same as the public attribute. Note that when it’s set to
false, you will not be able to view or preview the post
type in the front end. For example, if you wanted to cre-
ate a post type that populates a personnel page with a list
of everyone’s name, title and bio but didn’t want them to
have their own URL on the website, then you would set
publicly_queryable to false.

SHOW_UISHOW_UI

Most of the time, you’ll want to set show_ui to true. The
default value pulls from the public attribute but can be
overridden. When it’s set to false, then a UI element on

EXTENDING WORDPRESS WITH CUSTOM CONTENT TYPES

52

WordPress’ administration screen won’t be available to
you. A practical reason why you would want this set to
false is if you had a post type that merely managed data.
For example, you may want an Events post type that has a
recurring attribute. When you save an event, new posts
of a different type would be created to handle each event
occurrence. You would want the UI to show only the pri-
mary Events post type and not the event occurrence’s
meta data.

SHOW_IN_NAV_MENUSSHOW_IN_NAV_MENUS

Pretty simple and straightforward. If you don’t want this
post type to appear in WordPress’ default menu function-
ality, set this to false. It takes the value of public as de-
fault.

SHOW_IN_MENUSHOW_IN_MENU

You can modify the position of the post type in the back
end. When set to true, the post type defaults as a top-lev-
el menu (on the same hierarchical level as Posts and
Pages). If false, it won’t show at all. You can use a string
value here to explicitly nest the post type into a top level’s
submenu. The type of string you would provide is
tools.php, which would place the post type as a nested
element under “Tools.” It derives its default value from
show_ui. Note that show_ui must be set to true in order
for you to be able to control this attribute.

53

SHOW_IN_ADMIN_BARSHOW_IN_ADMIN_BAR

Pretty self-explanatory. If you want UI elements added to
WordPress’ administration bar, set this to true.

MENU_POSITIONMENU_POSITION

The default value of null will place the menu (at the top
level and if not overridden using show_in_menu) below
“Comments” in the back end. You can control this further
by specifying an integer value corresponding to Word-
Press’ default menu placements. A value of 5 will place
the post type under “Posts,” 10 under “Media,” 15 under
“Links,” and 20 under “Pages.” For a full list of values,
check out the WordPress Codex16.

MENU_ICONMENU_ICON

You can pass a URL to this attribute, but you could also
simply use the name of an icon from Dashicons for a
quick solution. Supplying the attribute dashicons-
admin-appearance would give you a paint brush17. A full
list of Dashicons is available18 as a handy resource. The
default is the thumbtack icon used for Posts.

CAPABILITY_TYPECAPABILITY_TYPE

This attribute quickly gets into some advanced user-role
segmenting concepts. Essentially, assigning post to this
attribute generates a capability structure that exactly

16. http://codex.wordpress.org/Function_Reference/register_post_type
17. https://developer.wordpress.org/resource/dashicons/#admin-appearance
18. https://developer.wordpress.org/resource/dashicons/

EXTENDING WORDPRESS WITH CUSTOM CONTENT TYPES

54

http://codex.wordpress.org/Function_Reference/register_post_type
http://codex.wordpress.org/Function_Reference/register_post_type
http://codex.wordpress.org/Function_Reference/register_post_type
https://developer.wordpress.org/resource/dashicons/#admin-appearance
https://developer.wordpress.org/resource/dashicons/#admin-appearance
https://developer.wordpress.org/resource/dashicons/#admin-appearance
https://developer.wordpress.org/resource/dashicons/
https://developer.wordpress.org/resource/dashicons/
https://developer.wordpress.org/resource/dashicons/
https://developer.wordpress.org/resource/dashicons/
http://codex.wordpress.org/Function_Reference/register_post_type
http://codex.wordpress.org/Function_Reference/register_post_type
https://developer.wordpress.org/resource/dashicons/#admin-appearance
https://developer.wordpress.org/resource/dashicons/#admin-appearance
https://developer.wordpress.org/resource/dashicons/
https://developer.wordpress.org/resource/dashicons/

mimics how access to Posts works. Using this value, sub-
scribers would not be able to access this post type, where-
as Authors, Editors and Administrators would. Using
page here would limit access to just Editors and Adminis-
trators. You can define a more granular structure using
capability_type and capabilities attributes in the ar-
guments list. Note that we did not use the capabilities
attribute in this example because we’re not explicitly
defining a custom capability structure to be used with
this post type. This is an advanced concept and one for a
completely different article.

HIERARCHICALHIERARCHICAL

This is basically the difference between a Post and a Page.
When set to true, a parent post can be identified on a
per-post basis (basically, Pages). When false, it behaves
as a Post.

SUPPORTSSUPPORTS

A whole bunch of default functionality is attached to each
new post type. This array tells WordPress which one of
those to include by default. There may be an instance
when you don’t want the editor on your post type. Re-
moving that from the array will remove the editor box on
the post’s editing screen. Eligible items for the array in-
clude the following:

• title

• editor

55

• author

• thumbnail

• excerpt

• trackbacks

• custom-fields

• comments

• revisions

• page-attributes

• post-formats

HAS_ARCHIVEHAS_ARCHIVE

When this is set to true, WordPress creates a hierarchi-
cal structure for the post type. So, accessing /projects/
would give us the standard archive.php view of the data.
You can template out a variant of archive.php for this
particular archive by creating a new file in your theme
system named archive-sm_project.php. You can con-
trol the default behavior at a more granular level by spin-
ning it off from your primary archive.php.

REWRITEREWRITE

The rewrite option allows you to form a URL structure
for the post type. In this instance, our URL would be
http://www.example.com/projects/{slug}/, where the
slug is the portion assigned by each post when it’s created
(normally, based on the title of the post). A second vari-

EXTENDING WORDPRESS WITH CUSTOM CONTENT TYPES

56

able can be assigned inside the rewrite array. If you add
with_front => false (it defaults to true), it will not use
the identified front half of the URL, which is set in “Set-
tings” → “Permalinks.” For example, if your default
WordPress permalink structure is /blog/%postname%/,
then your custom post type would automatically be
/blog/projects/%postname%/. That’s not a good out-
come, so set with_front to false.

QUERY_VARQUERY_VAR

This attribute controls where you can use a PHP query
variable to retrieve the post type. The default is true and
renders with the permalink structure (when set). You can
use a string instead of a variable and control the key por-
tion of the query variable with the string’s value.

Extending The Post Type With A
Taxonomy (Or Two)
Out of the box, WordPress Posts have categories and tags
attached to them that enable you to appropriately place
content in these buckets. By default, new post types don’t
have any taxonomies attached to them. You may not
want to categorize or tag your post type, but if you do,
you’d need to register some new ones. There are two vari-
ants of taxonomies, one that behaves like categories (the
checklist to the right of the posts) and one like tags,
which have no hierarchical structure. They behave in the
back end pretty much in the same way (the only discern-
able difference being that categories can have children,

57

whereas tags cannot), but how they’re presented on the
administration screen varies quite wildly. We’ll register
two taxonomies to give us one of each type.

function create_taxonomies() {

// Add a taxonomy like categories

$labels = array(

'name' => 'Types',

'singular_name' => 'Type',

'search_items' => 'Search Types',

'all_items' => 'All Types',

'parent_item' => 'Parent Type',

'parent_item_colon' => 'Parent Type:',

'edit_item' => 'Edit Type',

'update_item' => 'Update Type',

'add_new_item' => 'Add New Type',

'new_item_name' => 'New Type Name',

'menu_name' => 'Types',

);

$args = array(

'hierarchical' => true,

'labels' => $labels,

'show_ui' => true,

'show_admin_column' => true,

'query_var' => true,

'rewrite' => array('slug' => 'type'),

);

EXTENDING WORDPRESS WITH CUSTOM CONTENT TYPES

58

register_taxonomy('sm_project_type',array('sm_project'),$args);

// Add a taxonomy like tags

$labels = array(

'name' => 'Attributes',

'singular_name' => 'Attribute',

'search_items' => 'Attributes',

'popular_items' => 'Popular

Attributes',

'all_items' => 'All Attributes',

'parent_item' => null,

'parent_item_colon' => null,

'edit_item' => 'Edit Attribute',

'update_item' => 'Update

Attribute',

'add_new_item' => 'Add New

Attribute',

'new_item_name' => 'New Attribute

Name',

'separate_items_with_commas' => 'Separate

Attributes with commas',

'add_or_remove_items' => 'Add or remove

Attributes',

'choose_from_most_used' => 'Choose from most

used Attributes',

'not_found' => 'No Attributes

found',

'menu_name' => 'Attributes',

);

59

$args = array(

'hierarchical' => false,

'labels' => $labels,

'show_ui' => true,

'show_admin_column' => true,

'update_count_callback' =>

'_update_post_term_count',

'query_var' => true,

'rewrite' => array('slug' =>

'attribute'),

);

register_taxonomy('sm_project_attribute','sm_project',$args);

}

After you register the new post type and taxonomies, you’ll be greeted with
a handy menu in the back end.

EXTENDING WORDPRESS WITH CUSTOM CONTENT TYPES

60

All right, now we have two new taxonomies attached to
the new post type. The register_taxonomy function
takes three arguments. The first is the taxonomy’s name,
the second is an array or string of post types, and the
third is the arguments defined above.

A quick note on our prefixing. Our post type and tax-
onomies are all prefixed with sm_. This is by design. We
don’t want future plugins to interrupt our infrastructure,
so we simply prefix. The name of the prefix is completely
up to you.

So, we’ve got a new post type and two new taxonomies
attached to it. This essentially replicates the default Posts
behavior of WordPress. This is all good stuff, but let’s dig
a little deeper to make it more integrated.

Enhancing The Experience With Meta
Data
Creating additional fields available to the author in Word-
Press’ administration screen can be a bit tricky — but
abundantly useful. Where WordPress underperforms its
competitors is precisely in this area. There’s no user inter-
face where you can define additional pieces of informa-
tion on a per-post basis. Make no mistake, WordPress ful-
ly supports this behavior, but it’s more of a developer tool
than an out-of-the-box tool, which makes sense. One
might need an endless number of combinations of addi-
tional fields. Even if WordPress provided a slick back-end
interface to allow a non-technical user to define these
fields, there’s no real seamless way to display that infor-

61

mation in the front end without a developer putting their
hands on it and making it so.

This is where Advanced Custom Fields19 comes in. ACF
is a wonderful plugin that gives developers this interface
and a full array of templating functions to pull the data in
the front end. This article doesn’t detail how to do that,
but ACF gives ample documentation20 to get you started
and working in the ACF environment.

Using ACF, you can define new fields and conditionally
attach them to content throughout the website. For exam-
ple, we could create a timeframe meta field that collects
how long a particular project has taken. We could add ad-
ditional fields for awards won or create fields to represent
a list of references for any given project.

ACF makes creating meta data and conditionally attaching to custom
post types a snap.

19. http://www.advancedcustomfields.com/
20. http://www.advancedcustomfields.com/resources/

EXTENDING WORDPRESS WITH CUSTOM CONTENT TYPES

62

http://www.advancedcustomfields.com/
http://www.advancedcustomfields.com/
http://www.advancedcustomfields.com/
http://www.advancedcustomfields.com/resources/
http://www.advancedcustomfields.com/resources/
http://www.advancedcustomfields.com/resources/
http://www.advancedcustomfields.com/
http://www.advancedcustomfields.com/
http://www.advancedcustomfields.com/resources/
http://www.advancedcustomfields.com/resources/

Using ACF really opens up the hood for what’s possi-
ble in WordPress.

Adding Columns To The Administration
Screen
Viewing a list of your posts on the administration screen
will give you the checkbox, the title and the date pub-
lished. When registering taxonomies to the post type,
you’ll get an additional column for each additional taxon-
omy. For the majority of cases, this is sufficient. But there
may be an additional case or two where you need to pro-
vide a little more information. For example, referencing
pieces of meta data in the administration grid might be
useful. Maybe you want a quick reference for the time-
frame or the awards field we defined above. We’ll need
two functions attached to some WordPress hooks.

Let’s look at the code:

function columns($columns) {

unset($columns['date']);

WordPress gives you a standard administration screen out of the box that
closely mirrors the built-in Post post type.

63

unset($columns['taxonomy-sm_project_attribute']);

unset($columns['comments']);

unset($columns['author']);

return array_merge(

$columns,

array(

'sm_awards' => 'Awards',

'sm_timeframe' => 'Timeframe'

));

}

The first line unsets the date column. You can unset any
of the default columns that you wish. The second line un-
sets the custom taxonomy we registered (the tag-like one,
not category). This could be useful for keeping the admin
screen neat and tidy. As you may have noticed, we also
unset the comments and author — information we didn’t
think was necessary on the screen.

Then, we’re simply defining the new columns and
merging them with the array that was passed in the func-
tion. We created two new columns, one for awards and
one for timeline. The array keys are completely arbi-
trary. They could be anything, but we’ll need to reference
them again when it comes time to pull data into those
columns… which is what we’re going to do next.

function column_data($column,$post_id) {

switch($column) {

case 'sm_awards' :

echo get_post_meta($post_id,'awards',1);

break;

EXTENDING WORDPRESS WITH CUSTOM CONTENT TYPES

64

case 'sm_timeframe' :

echo get_post_meta($post_id,'timeframe',1);

break;

}

All right, we’ve fetched the meta data and conditionally
outputted it based on what column we’re on. This is
where we’re referencing the array key from above. So, as
long as they’re both the same, we could use any arbitrary
string we want. Note that we’re pulling the meta fields
over using WordPress’ native get_post_meta function.

Sorting
Ah, sorting. As you probably know, WordPress sorts
Pages by menu order and then alphabetically by title and
Posts by date published. Let’s get fancy and sort our new
post type by the number of awards won. The use case
here is easy to see. You want your most award-winning
work at the top of the list at all times. If we use standard
WordPress queries, the order we’re about to establish will
be honored — universally across the website. We will

Removing some built-in columns and adding a few of our own enhances
the UI and streamlines the information displayed.

65

need a function to join the wp_posts and wp_postmeta ta-
bles and another to revise how the data is sorted.

function join($wp_join) {

global $wpdb;

if(get_query_var('post_type') == 'sm_project') {

$wp_join .= " LEFT JOIN (

SELECT post_id, meta_value as awards

FROM $wpdb->postmeta

WHERE meta_key = 'awards') AS meta

ON $wpdb->posts.ID = meta.post_id ";

}

return ($wp_join);

}

This function does the joining for us. We won’t get into
why that select statement works (that’s for another arti-
cle altogether). Pay attention to the if statement here.
We’re determining the post type and then conditionally
running the join if it meets the sm_project condition.
Absent this if statement, you would be doing this join
regardless of type, which is not likely something you
want.

There could also be a case where you just want to sort
the administration screens and not the front end. Fortu-
nately, we can use WordPress’ built-in conditional state-
ments to do that job. Just wrap your statement with an-
other conditional and check against is_admin.

function set_default_sort($orderby,&$query) {

global $wpdb;

if(get_query_var('post_type') == 'sm_project') {

EXTENDING WORDPRESS WITH CUSTOM CONTENT TYPES

66

return "meta.awards DESC";

}

return $orderby;

}

Once again, we’re verifying our post type and then re-
turning an amended order statement. Now we’re telling
WordPress to order by the value from the wp_postmeta
table descending. So, we’ll get a list of our awards from
the most won per project to the least won per project.

Putting It All Together
None of these functions will do anything until they’re
called and attached to WordPress hooks. We’ll do this and
keep it neat by creating an object around the post type
and using the constructor to attach each function to the
appropriate hook. For brevity, we’re not going to repeat
the code already referenced above.

class sm_project {

function __construct() {

add_action('init',array($this,

'create_post_type'));

add_action('init',array($this,

'create_taxonomies'));

add_action('manage_sm_project_posts_columns',

array($this,'columns'),10,2);

add_action(

'manage_sm_project_posts_custom_column',

67

array($this,'column_data'),11,2);

add_filter('posts_join',array($this,'join'),

10,1);

add_filter('posts_orderby',array($this,

'set_default_sort'),20,2);

}

function create_post_type() {

…

}

function create_taxonomies() {

…

}

function columns($columns) {

…

}

function column_data($column,$post_id) {

…

}

function join($wp_join) {

…

}

function set_default_sort($orderby,&$query) {

…

}

EXTENDING WORDPRESS WITH CUSTOM CONTENT TYPES

68

}

new sm_project();

Voilà! Everything has come together quite nicely. In our
constructor, we referenced the appropriate actions and
filters. We’re performing these functions in a particular
order — and this must be followed. The post type has to
be created first, the taxonomies attached second, then any
sort of custom sorting. Keep that in mind as you’re creat-
ing your data type.

Summing Up
Once you get the hang of it and you create a few of these,
it’ll start to come naturally. I’ve got a bunch of these clips
saved up in my toolbelt. I rarely create these from scratch
anymore. Although this article is long and in-depth, it re-
ally is about a 10-minute process from concept to conclu-
sion once you fully understand what’s going on.

REFERENCESREFERENCES

• “register_post_type21,” WordPress Codex

• “register_taxonomy22,” WordPress Codex

• “Metadata API23,” WordPress Codex

21. http://codex.wordpress.org/Function_Reference/register_post_type
22. http://codex.wordpress.org/Function_Reference/register_taxonomy
23. https://codex.wordpress.org/Metadata_API

69

http://codex.wordpress.org/Function_Reference/register_post_type
http://codex.wordpress.org/Function_Reference/register_post_type
http://codex.wordpress.org/Function_Reference/register_post_type
http://codex.wordpress.org/Function_Reference/register_taxonomy
http://codex.wordpress.org/Function_Reference/register_taxonomy
http://codex.wordpress.org/Function_Reference/register_taxonomy
https://codex.wordpress.org/Metadata_API
https://codex.wordpress.org/Metadata_API
https://codex.wordpress.org/Metadata_API
http://codex.wordpress.org/Function_Reference/register_post_type
http://codex.wordpress.org/Function_Reference/register_post_type
http://codex.wordpress.org/Function_Reference/register_taxonomy
http://codex.wordpress.org/Function_Reference/register_taxonomy
https://codex.wordpress.org/Metadata_API
https://codex.wordpress.org/Metadata_API

• “get_post_meta24,” WordPress Codex

• “get_fields25,” ACF Documentation

• “Template Hierarchy26,” WordPress Codex

• “Action Reference27,” WordPress Codex

• “Filter Reference28,” WordPress Codex❧

24. http://codex.wordpress.org/Function_Reference/get_post_meta
25. http://www.advancedcustomfields.com/resources/get_fields/
26. http://codex.wordpress.org/Template_Hierarchy
27. http://codex.wordpress.org/Plugin_API/Action_Reference
28. http://codex.wordpress.org/Plugin_API/Filter_Reference

EXTENDING WORDPRESS WITH CUSTOM CONTENT TYPES

70

http://codex.wordpress.org/Function_Reference/get_post_meta
http://codex.wordpress.org/Function_Reference/get_post_meta
http://codex.wordpress.org/Function_Reference/get_post_meta
http://www.advancedcustomfields.com/resources/get_fields/
http://www.advancedcustomfields.com/resources/get_fields/
http://www.advancedcustomfields.com/resources/get_fields/
http://codex.wordpress.org/Template_Hierarchy
http://codex.wordpress.org/Template_Hierarchy
http://codex.wordpress.org/Template_Hierarchy
http://codex.wordpress.org/Plugin_API/Action_Reference
http://codex.wordpress.org/Plugin_API/Action_Reference
http://codex.wordpress.org/Plugin_API/Action_Reference
http://codex.wordpress.org/Plugin_API/Filter_Reference
http://codex.wordpress.org/Plugin_API/Filter_Reference
http://codex.wordpress.org/Plugin_API/Filter_Reference
http://codex.wordpress.org/Function_Reference/get_post_meta
http://codex.wordpress.org/Function_Reference/get_post_meta
http://www.advancedcustomfields.com/resources/get_fields/
http://www.advancedcustomfields.com/resources/get_fields/
http://codex.wordpress.org/Template_Hierarchy
http://codex.wordpress.org/Template_Hierarchy
http://codex.wordpress.org/Plugin_API/Action_Reference
http://codex.wordpress.org/Plugin_API/Action_Reference
http://codex.wordpress.org/Plugin_API/Filter_Reference
http://codex.wordpress.org/Plugin_API/Filter_Reference

Building A Custom Archive
Page For WordPress

BY KAROL KBY KAROL K ❧❧

If I were to ask you what the least used default page type
in WordPress is, chances are you’d say the archive tem-
plate. Or, more likely, you’d probably not even think of
the archive template at all — that’s how unpopular it is.
The reason is simple. As great as WordPress is, the stan-
dard way in which it approaches the archive is far from
user-friendly.

Let’s fix that today! Let’s build an archive page for
WordPress that’s actually useful. The best part is that you
will be able to use it with any modern WordPress theme
installed on your website at the moment.

But first, what do we mean by “archive page” exactly?

The Story Of WordPress Archives
In WordPress, you get to work with a range of different
page templates and structures in the standard configura-
tion. Looking at the directory listing of the default theme
at the time of writing, Twenty Fifteen, we find the follow-
ing:

• 404 error page,

• archive page (our hero today),

• image attachments page,

71

• index page (the main page),

• default page template (for pages),

• search results page,

• single post and attachment pages.

Despite their different purposes, all of these pages are re-
ally similar in structure, and they usually only differ in a
couple of places and several lines of code. In fact, the only
visible difference between the index page and the archive
page is the additional header at the top, which changes
according to the particular page being viewed.

The idea behind such an archive structure is to provide
the blog administrator with a way to showcase the
archive based on various criteria, but to do so in a simpli-
fied form. At the end of the day, these various archive
pages are just versions of the index page that filter con-
tent published during a specific time period or by a par-
ticular author or with particular categories or tags.

While this sounds like a good idea from a program-
mer’s perspective, it doesn’t make much sense from the
user’s point of view. Or, more accurately, one layer is
missing here — a layer that would come between the

Standard archive page in Twenty Fifteen.

BUILDING A CUSTOM ARCHIVE PAGE FOR WORDPRESS

72

user’s intent to find content and the individual items in
the archive themselves.

Here’s what I mean. Right now, the only built-in way
to showcase the archive links on a WordPress website is
with a widget. So, if you want to allow visitors to dig into
the archive in any clear way, you’d probably have to de-
vote a whole sidebar just to the archive (just to be able to
capture different types of organization, such as a date-
based archive, a category archive, a tag archive, an author
archive and so on).

So, what we really need here is a middleman, a page
that welcomes the visitor, explains that they’re in the
archive and then points them to the exact piece of con-
tent they are interested in or suggests some popular con-
tent.

That is why we’re going to create a custom archive
page.

How To Build A Custom Archives Page In
WordPress
Here’s what we’re going to do in a nutshell. Our custom
archive page will be based on a custom page template29.
This template will allow us to do the following:

• include a custom welcome message (may contain text,
images, an opt-in form, etc. — standard WordPress stuff);

• list the 15 latest posts (configurable);

29. http://codex.wordpress.org/Page_Templates

73

http://codex.wordpress.org/Page_Templates
http://codex.wordpress.org/Page_Templates
http://codex.wordpress.org/Page_Templates
http://codex.wordpress.org/Page_Templates
http://codex.wordpress.org/Page_Templates

• display links to the author archive;

• display links to the monthly archive;

• add additional widget areas (to display things like the
most popular content, categories, tags).

Lastly, the page will be responsive and will not depend on
the current theme of the website it’s being used on.

That being said, we do have to start by using some
theme as the base of our work here. I’ll use Zerif Lite30. I
admit, I may be a bit biased here because it is one of our
own themes (at ThemeIsle). Nonetheless, it was one of
the 10 most popular themes released last year in Word-
Press’ theme directory, so I hope you’ll let this one slide.

And, hey, if you don’t like the theme, no hard feelings.
You can use the approach presented here with any other
theme.

Getting Started With The Main File
The best model on which to build your archive page is the
page.php file of your current theme, for a couple of rea-
sons:

• Its structure is already optimized to display custom con-
tent within the main content block.

• It’s probably one of the simplest page templates in your
theme’s structure.

30. https://wordpress.org/themes/zerif-lite

BUILDING A CUSTOM ARCHIVE PAGE FOR WORDPRESS

74

https://wordpress.org/themes/zerif-lite
https://wordpress.org/themes/zerif-lite
https://wordpress.org/themes/zerif-lite
https://wordpress.org/themes/zerif-lite
https://wordpress.org/themes/zerif-lite

Therefore, starting with the page.php file of the Zerif Lite
theme, I’m going to make a copy and call it tmpl_ar-
chives.php.

(Make sure not to call your page something like page-
archives.php. All file names starting with page- will be
treated as new page templates within the main file hierar-
chy of WordPress themes31. That’s why we’re using the
prefix tmpl_ here.)

Next, all I’m going to do is change one single line in
that file:

<?php get_template_part('content', 'page'); ?>

We’ll change that to this:

<?php get_template_part('content', 'tmpl_archives'

); ?>

All this does is fetch the right content file for our archive
page.

If you want, you could remove other elements that
seem inessential to your archive page (like comments),
but make sure to leave in all of the elements that make up
the HTML structure. And in general, don’t be afraid to ex-
periment. After all, if something stops working, you can
easily bring back the previous code and debug from there.

Also, don’t forget about the standard custom template
declaration comment, which you need to place at the very
beginning of your new file (in this case, tmpl_ar-
chives.php):

31. http://www.codeinwp.com/blog/wordpress-theme-heirarchy/

75

http://www.codeinwp.com/blog/wordpress-theme-heirarchy/
http://www.codeinwp.com/blog/wordpress-theme-heirarchy/
http://www.codeinwp.com/blog/wordpress-theme-heirarchy/
http://www.codeinwp.com/blog/wordpress-theme-heirarchy/
http://www.codeinwp.com/blog/wordpress-theme-heirarchy/
http://www.codeinwp.com/blog/wordpress-theme-heirarchy/

<?php

/* Template Name: Archive Page Custom */

?>

After that, what we’re left with is the following file struc-
ture (with some elements removed for readability):

<?php

/* Template Name: Archive Page Custom */

get_header(); ?>

<div class="clear"></div>

</header> <!-- / END HOME SECTION -->

<div id="content" class="site-content">

<div class="container">

<div class="content-left-wrap col-md-9">

<div id="primary" class="content-area">

<main id="main" class="site-main" role="main">

<?php while (have_posts()) : the_post(); //

standard WordPress loop. ?>

<?php get_template_part('content',

'tmpl_archives'); // loading our

custom file. ?>

<?php endwhile; // end of the loop. ?>

BUILDING A CUSTOM ARCHIVE PAGE FOR WORDPRESS

76

</main><!-- #main -->

</div><!-- #primary -->

</div>

<div class="sidebar-wrap col-md-3

content-left-wrap">

<?php get_sidebar(); ?>

</div>

</div><!-- .container -->

<?php get_footer(); ?>

Next, let’s create the other piece of the puzzle — a custom
content file. We’ll start with the content-page.php file
by making a copy and renaming it to content-tmpl_ar-
chives.php.

In this file, we’re going to remove anything that’s not
essential, keeping only the structural elements, plus the
basic WordPress function calls:

<?php

/**

* The template used to display archive content

*/

?>

<article id="post-<?php the_ID(); ?>" <?php

post_class(); ?>>

<header class="entry-header">

<h1 class="entry-title"><?php the_title(); ?></h1>

77

</header><!-- .entry-header -->

<div class="entry-content">

<?php the_content(); ?>

<!-- THIS IS WHERE THE FUN PART GOES -->

</div><!-- .entry-content -->

</article><!-- #post-## -->

The placeholder comment visible in the middle is where
we’re going to start including our custom elements.

ADDING A CUSTOM WELCOME MESSAGEADDING A CUSTOM WELCOME MESSAGE

This one’s actually already taken care of by WordPress.
The following line does the magic:

<?php the_content(); ?>

ADDING NEW WIDGET AREASADDING NEW WIDGET AREAS

Let’s start this part by setting up new widget areas in
WordPress using the standard process. However, let’s do
it through an additional functions file, just to keep things
reusable from theme to theme.

So, we begin by creating a new file, archives-page-
functions.php, placing it in the theme’s main directory,
and registering the two new widget areas in it:

if(!function_exists('archives_page_widgets_init')) :

function archives_page_widgets_init() {

BUILDING A CUSTOM ARCHIVE PAGE FOR WORDPRESS

78

/* First archive page widget, displayed to the

LEFT. */

register_sidebar(array(

'name' => __('Archives page widget LEFT',

'zerif-lite'),

'description' => __('This widget will be shown on

the left side of your archive page.',

'zerif-lite'),

'id' => 'archives-left',

'before_widget' => '<div class="archives-widget-

left">',

'after_widget' => '</div>',

'before_title' => '<h1 class="widget-title">',

'after_title' => '</h1>',

));

/* Second archive page widget, displayed to the

RIGHT. */

register_sidebar(array(

'name' => __('Archives page widget RIGHT',

'zerif-lite'),

'description' => __('This widget will be shown on

the right side of your archive page.',

'zerif-lite'),

'id' => 'archives-right',

'before_widget' => '<div class="archives-widget-

right">',

'after_widget' => '</div>',

'before_title' => '<h1 class="widget-title">',

'after_title' => '</h1>',

79

));

}

endif;

add_action('widgets_init',

'archives_page_widgets_init');

Next, we’ll need some custom styling for the archive
page, so let’s also “enqueue” a new CSS file:

if(!function_exists('archives_page_styles')) :

function archives_page_styles() {

if(is_page_template('tmpl_archives.php')) {

wp_enqueue_style('archives-page-style',

get_template_directory_uri() . '/archives-page-

style.css'); // standard way of adding

style sheets in WP.

}

}

endif;

add_action('wp_enqueue_scripts',

'archives_page_styles');

This is a conditional enqueue operation. It will run only if
the visitor is browsing the archive page.

Also, let’s not forget to enable this new archives-
page-functions.php file by adding this line at the very
end of the current theme’s functions.php file:

require get_template_directory() .

'/archives-page-functions.php';

BUILDING A CUSTOM ARCHIVE PAGE FOR WORDPRESS

80

Finally, the new block that we’ll use in our main content-
tmpl_archives.php file is quite simple. Just place the fol-
lowing right below the call to the_content();:

<?php /* Enabling the widget areas for the archive

page. */ ?>

<?php if(is_active_sidebar('archives-left'))

dynamic_sidebar('archives-left'); ?>

<?php if(is_active_sidebar('archives-right'))

dynamic_sidebar('archives-right'); ?>

<div style="clear: both; margin-bottom:

30px;"></div><!-- clears the floating -->

All that’s left now is to take care of the only missing file,
archives-page-style.css. But let’s leave it for later be-
cause we’ll be using it as a place to store all of the styles of
our custom archive page, not just those for widgets.

LISTING THE 15 LATEST POSTSLISTING THE 15 LATEST POSTS

For this, we’ll do some manual PHP coding. Even though
displaying this could be achieved through various wid-
gets, let’s keep things diverse and get our hands a bit dirty
just to show more possibilities.

You’re probably asking why the arbitrary number of 15
posts? Well, I don’t have a good reason, so let’s actually
make this configurable through custom fields.

Here’s how we’re going to do it:

• Setting the number of posts will be possible through the
custom field archived-posts-no.

81

• If the number given is not correct, the template will de-
fault to displaying the 15 latest posts.

Below is the code that does this. Place it right below the
previous section in the content-tmpl_archives.php file,
the one that handles the new widget areas.

<?php

$how_many_last_posts =

intval(get_post_meta($post->ID, 'archived-posts-no',

true));

/* Here, we're making sure that the number fetched is

reasonable. In case it's higher than 200 or lower

than 2, we're just resetting it to the default value

of 15. */

if($how_many_last_posts > 200 || $how_many_last_posts

< 2) $how_many_last_posts = 15;

$my_query = new WP_Query('post_type=post&nopaging=1');

if($my_query->have_posts()) {

echo '<h1 class="widget-title">Last

'.$how_many_last_posts.' Posts <i class="fa

fa-bullhorn" style="vertical-align:

baseline;"></i></h1> ';

echo '<div class="archives-latest-section">';

$counter = 1;

while($my_query->have_posts() && $counter <=

$how_many_last_posts) {

$my_query->the_post();

?>

BUILDING A CUSTOM ARCHIVE PAGE FOR WORDPRESS

82

<a href="<?php the_permalink() ?>

" rel="bookmark" title="Permanent Link to <?php

the_title_attribute(); ?>"><?php the_title();

?>

<?php

$counter++;

}

echo '</div>';

wp_reset_postdata();

}

?>

Basically, all this does is look at the custom field’s value,
set the number of posts to display and then fetch those
posts from the database using WP_Query();. I’m also us-
ing some Font Awesome icons to add some flare to this
block.

DISPLAYING LINKS TO THE AUTHOR ARCHIVESDISPLAYING LINKS TO THE AUTHOR ARCHIVES

(This section is only useful if you’re dealing with a multi-
author blog. Skip it if you are the sole author.)

This functionality can be achieved with a really simple
block of code placed right in our main content-tmpl_ar-
chives.php file (below the previous block):

<h1 class="widget-title">Our Authors <i class="fa

fa-user" style="vertical-align: baseline;"></i></h1>

<div class="archives-authors-section">

<?php wp_list_authors(

'exclude_admin=0&optioncount=1'); ?>

83

</div>

We’ll discuss the styles in just a minute. Right now,
please note that everything is done through a
wp_list_authors() function call.

DISPLAYING LINKS TO THE MONTHLYDISPLAYING LINKS TO THE MONTHLY
ARCHIVESARCHIVES

I’m including this element at the end because it’s not the
most useful one from a reader’s perspective. Still, having
it on your archive page is nice just so that you don’t have
to use widgets for the monthly archive elsewhere.

Here’s what it looks like in the content-tmpl_ar-
chives.php file:

<h1 class="widget-title">By Month <i class="fa

fa-calendar" style="vertical-align:

baseline;"></i></h1>

<div class="archives-by-month-section">

<p><?php wp_get_archives(

'type=monthly&format=custom&after= |'); ?></p>

</div>

This time, we’re displaying this as a single paragraph,
with entries separated by a pipe (|).

BUILDING A CUSTOM ARCHIVE PAGE FOR WORDPRESS

84

(Smashing Magazine already has a really good tutorial
on how to customize individual archive pages32 for cate-
gories, tags and other taxonomies in WordPress.)

THE COMPLETE ARCHIVE PAGE TEMPLATETHE COMPLETE ARCHIVE PAGE TEMPLATE

OK, just for clarity, let’s look at our complete content-
tmpl_archives.php file, which is the main file that takes
care of displaying our custom archive:

<?php

/**

* The template used to display archive content

*/

?>

<article id="post-<?php the_ID(); ?>" <?php

post_class(); ?>>

<header class="entry-header">

<h1 class="entry-title"><?php the_title(); ?></h1>

</header><!-- .entry-header -->

<div class="entry-content">

<?php the_content(); ?>

<?php if(is_active_sidebar('archives-left'))

32. http://www.smashingmagazine.com/2014/08/27/customizing-wordpress-
archives-categories-terms-taxonomies/

85

http://www.smashingmagazine.com/2014/08/27/customizing-wordpress-archives-categories-terms-taxonomies/
http://www.smashingmagazine.com/2014/08/27/customizing-wordpress-archives-categories-terms-taxonomies/
http://www.smashingmagazine.com/2014/08/27/customizing-wordpress-archives-categories-terms-taxonomies/
http://www.smashingmagazine.com/2014/08/27/customizing-wordpress-archives-categories-terms-taxonomies/
http://www.smashingmagazine.com/2014/08/27/customizing-wordpress-archives-categories-terms-taxonomies/

dynamic_sidebar('archives-left'); ?>

<?php if(is_active_sidebar('archives-right'))

dynamic_sidebar('archives-right'); ?>

<div style="clear: both; margin-bottom: 30px;">

</div><!-- clears the floating -->

<?php

$how_many_last_posts = intval(get_post_meta($post->

ID,]'archived-posts-no', true));

if($how_many_last_posts > 200 ||

$how_many_last_posts < 2) $how_many_last_posts = 15;

$my_query = new WP_Query('post_type=post&nopaging=

1');

if($my_query->have_posts()) {

echo '<h1 class="widget-title">Last

'.$how_many_last_posts.' Posts <i class="fa

fa-bullhorn" style="vertical-align:

baseline;"></i></h1> ';

echo '<div class="archives-latest-section">';

$counter = 1;

while($my_query->have_posts() && $counter <=

$how_many_last_posts) {

$my_query->the_post();

?>

<a href="<?php the_permalink() ?>"

rel="bookmark" title="Permanent Link to <?php

the_title_attribute(); ?>"><?php the_title();

?>

<?php

BUILDING A CUSTOM ARCHIVE PAGE FOR WORDPRESS

86

$counter++;

}

echo '</div>';

wp_reset_postdata();

}

?>

<h1 class="widget-title">Our Authors <i class="fa

fa-user" style="vertical-align: baseline;"></i></h1>

<div class="archives-authors-section">

<?php

wp_list_authors('exclude_admin=0&optioncount=

1'); ?>

</div>

<h1 class="widget-title">By Month <i class="fa

fa-calendar" style="vertical-align: baseline;">

</i></h1>

<div class="archives-by-month-section">

<p><?php

wp_get_archives('type=monthly&format=custom&after=

|'); ?></p>

</div>

</div><!-- .entry-content -->

</article><!-- #post-## -->

87

THE STYLE SHEETTHE STYLE SHEET

Lastly, let’s look at the style sheet and, most importantly,
the effect it gives us.

Here’s the archives-page-style.css file:

.archives-widget-left {

float: left;

width: 50%;

}

.archives-widget-right {

float: left;

padding-left: 4%;

width: 46%;

}

.archives-latest-section { }

.archives-latest-section ol {

font-style: italic;

font-size: 20px;

padding: 10px 0;

}

.archives-latest-section ol li {

padding-left: 8px;

}

.archives-authors-section { }

.archives-authors-section ul {

list-style: none;

text-align: center;

border-top: 1px dotted #888;

BUILDING A CUSTOM ARCHIVE PAGE FOR WORDPRESS

88

border-bottom: 1px dotted #888;

padding: 10px 0;

font-size: 20px;

margin: 0 0 20px 0;

}

.archives-authors-section ul li {

display: inline;

padding: 0 10px;

}

.archives-authors-section ul li a {

text-decoration:none;

}

.archives-by-month-section {

text-align: center;

word-spacing: 5px;

}

.archives-by-month-section p {

border-top: 1px dotted #888;

border-bottom: 1px dotted #888;

padding: 15px 0;

}

.archives-by-month-section p a {

text-decoration:none;

}

@media only screen and (max-width: 600px) {

.archives-widget-left {

width: 100%;

89

}

.archives-widget-right {

width: 100%;

}

}

This is mostly typography and not a lot of structural ele-
ments, except for the couple of float alignments, plus
the responsive design block at the end.

OK, let’s see the result! The image on the following
page shows what it looks like on a website that already
has quite a bit of content in the archive.

How To Integrate This Template With
Any Theme
The custom archive page we are building here is for the
Zerif Lite theme, in the official WordPress directory.
However, like I said, it can be used with any theme.
Here’s how to do that:

1. Take the archives-page-style.css file and the
archives-page-functions.php file that we built here
and put them in your theme’s main directory.

2. Edit the functions.php file of your theme and add this
line at the very end: require get_template_directory()
. '/archives-page-functions.php';.

BUILDING A CUSTOM ARCHIVE PAGE FOR WORDPRESS

90

91

3. Take the page.php file of your theme, make a copy, re-
name it, change the get_template_part() function call
to get_template_part('content', 'tmpl_archives');,
and then add the main declaration comment at the very
beginning: /* Template Name: Archive Page Custom */.

4. Take the content-page.php file of your theme, make a
copy, rename it to content-tmpl_archives.php, and in-
clude all of the custom blocks that we created in this
guide right below the the_content(); function call.

5. Test and enjoy.

Our custom archive page in the Twenty Fifteen theme.

BUILDING A CUSTOM ARCHIVE PAGE FOR WORDPRESS

92

What’s Next?
We’ve covered a lot of ground in this guide, but a lot can
still be done with our archive page. We could widgetize
the whole thing and erase all of the custom code ele-
ments. We could add more visual blocks for things like
the latest content, and so on.❧

93

Customizing Tree-Like
Data Structures In
WordPress With The
Walker Class

BY CARLO DANIELEBY CARLO DANIELE ❧❧

In WordPress, a navigation menu, a list of categories or
pages, and a list of comments all share one common char-
acteristic: They are the visual representation of tree-like
data structures. This means that a relationship of super-
ordination and subordination exists among the elements
of each data tree.

There will be elements that are parents of other ele-
ments and, conversely, elements that are children of oth-
er elements. A reply to a comment depends logically on
its parent, in the same way that a submenu item depends
logically on the root element of the tree (or subtree).

Starting with version 2.1, WordPress provides the
Walker abstract class33, with the specific function of tra-
versing these tree-like data structures. But an abstract
class does not produce any output by itself. It has to be
extended with a concrete child class that builds the
HTML bricks for specific lists of items. With this precise
function, WordPress provides the Walker_Category class
to produce a nested list of categories, the Walker_Page

33. https://core.trac.wordpress.org/browser/trunk/src/wp-includes/class-wp-
walker.php

CUSTOMIZING TREE-LIKE DATA STRUCTURES IN WORDPRESS WITH THE
WALKER CLASS

94

https://core.trac.wordpress.org/browser/trunk/src/wp-includes/class-wp-walker.php
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/class-wp-walker.php
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/class-wp-walker.php
https://codex.wordpress.org/Class_Reference/Walker_Page
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/class-wp-walker.php
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/class-wp-walker.php

class34, which builds a list of pages, and several other
Walker concrete child classes.

But when we build a WordPress theme, we might
need to customize the HTML list’s default structure to fit
our particular needs. We may want to add a description
to a menu item, add custom class names or perhaps rede-
fine the HTML structure of a list of categories or com-
ments.

Before we begin, let’s look at the most important con-
cept in this article.

Tree-Like Data Structures
Wikipedia defines a tree35 as a hierarchical organization
of data:

“A tree data structure can be defined recursively (locally)
as a collection of nodes (starting at a root node), where
each node is a data structure consisting of a value, to-
gether with a list of references to nodes (the ‘children’),
with the constraints that no reference is duplicated, and
none points to the root.”

So, the structure is characterized by a root element (at the
first level), parent elements (which are directly referenced
to subordered elements, named children), siblings (which
are elements placed at the same hierarchical level) and de-
scendant and ancestor elements (which are connected by
more than one parent-child relation).

34. https://codex.wordpress.org/Class_Reference/Walker_Page
35. https://en.wikipedia.org/wiki/Tree_(data_structure)

95

https://codex.wordpress.org/Class_Reference/Walker_Page
https://codex.wordpress.org/Class_Reference/Walker_Page
https://codex.wordpress.org/Class_Reference/Walker_Page
https://en.wikipedia.org/wiki/Tree_(data_structure)
https://en.wikipedia.org/wiki/Tree_(data_structure)
https://en.wikipedia.org/wiki/Tree_(data_structure)
https://codex.wordpress.org/Class_Reference/Walker_Page
https://codex.wordpress.org/Class_Reference/Walker_Page
https://en.wikipedia.org/wiki/Tree_(data_structure)
https://en.wikipedia.org/wiki/Tree_(data_structure)

As an example of this kind of structure, let’s take the
wp_comments table from the WordPress database. The
comment_parent field stores the parent ID of each ele-
ment in the structure, making it possible to create the ref-
erence from the child node to its parent.

What We’ll Be Doing
Before moving forward, I’ll show you a simple example of
a concrete child class producing the HTML markup of a
category list.

The category list in WordPress is printed out by the
wp_list_categories template tag. When we call this
function, it executes the Walker_Category class, which
actually builds the HTML structure, producing some-
thing like the following code:

<li class="categories">Categories

<li class="cat-item cat-item-10">

Each element in the wp_comments is referenced to its parent by the val-
ue of the comment_parent field.

CUSTOMIZING TREE-LIKE DATA STRUCTURES IN WORDPRESS WITH THE
WALKER CLASS

96

<a href="http://example.com/wordpress/

category/coding/">Coding

<ul class="children">

<li class="cat-item cat-item-39">

<a href="http://example.com/wordpress/

category/coding/php/">PHP

<li class="cat-item cat-item-11">

<a href="http://example.com/wordpress/

category/design/">Design

wp_list_categories will print the output produced by
the Walker_Category concrete class. It will be a wrapper
list item holding a nested list of categories.

Now, suppose you don’t like this kind of list, and you
want to print custom HTML code. You can do this trick
by defining your own Walker extention. In your theme’s
functions.php file, add the following code:

class My_Custom_Walker extends Walker

{

public $tree_type = 'category';

public $db_fields = array ('parent' => 'parent',

'id' => 'term_id');

97

public function start_lvl(&$output, $depth = 0,

$args = array()) {

$output .= "<ul class='children'>\n";

}

public function end_lvl(&$output, $depth = 0,

$args = array()) {

$output .= "\n";

}

public function start_el(&$output, $category,

$depth = 0, $args = array(), $current_object_id =

0) {

$output .= "" . $category->name . "\n";

}

public function end_el(&$output, $category,

$depth = 0, $args = array()) {

$output .= "\n";

}

}

Even if you don’t know a lot about PHP classes36, the code
is quite descriptive. The start_lvl() method prints the
start tag for each level of the tree (usually a tag),
while end_lvl() prints the end of each level. In the same
way, the start_el and end_el methods open and close
each item in the list.

36. http://php.net/manual/en/language.oop5.basic.php

CUSTOMIZING TREE-LIKE DATA STRUCTURES IN WORDPRESS WITH THE
WALKER CLASS

98

http://php.net/manual/en/language.oop5.basic.php
http://php.net/manual/en/language.oop5.basic.php
http://php.net/manual/en/language.oop5.basic.php
http://php.net/manual/en/language.oop5.basic.php
http://php.net/manual/en/language.oop5.basic.php

This is just a basic example, and we won’t dive deep
into the Walker properties and methods for now. I’ll just
say that the concrete child class My_Custom_Walker ex-
tends the abstract class Walker, redefining some of its
properties and methods.

As I wrote above, the category list is printed out by the
wp_list_categories template tag, but the HTML struc-
ture is built by the Walker_Category class. WordPress al-
lows us to pass a custom walker class to the template
tag. The new walker will build a custom HTML structure
that will be printed on the screen by
wp_list_categories.

As a first example, let’s create a shortcode that will
print new markup for the lists of categories. In your
functions.php file, add the following code:

function my_init() {

add_shortcode('list', 'my_list');

}

add_action('init', 'my_init');

function my_list($atts){

$list = wp_list_categories(array('echo' => 0,

'walker' => new My_Custom_Walker()));

return $list;

}

We are passing the function an array of two arguments:
echo keeps the result in a variable, and walker sets a cus-
tom Walker (or Walker_Category) child class.

99

Finally, the shortcode [list] will print the resulting
HTML code:

<li class="categories">Categories

Coding

<ul class="children">

PHP

Design

As you can see, the example is very basic but should give
you an idea of our goals.

The Walker Class And Its Extensions
The Walker class37 is defined in wp-includes/class-wp-
walker.php38 as “a class for displaying various tree-like
structures.”

As I mentioned before, it’s an abstract class39 and does
not produce any output by itself; rather, it has to be ex-
tended by defining one or more concrete child classes.

37. https://codex.wordpress.org/Class_Reference/Walker
38. https://core.trac.wordpress.org/browser/trunk/src/wp-includes/class-wp-

walker.php
39. http://php.net/manual/en/language.oop5.abstract.php

CUSTOMIZING TREE-LIKE DATA STRUCTURES IN WORDPRESS WITH THE
WALKER CLASS

100

https://codex.wordpress.org/Class_Reference/Walker
https://codex.wordpress.org/Class_Reference/Walker
https://codex.wordpress.org/Class_Reference/Walker
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/class-wp-walker.php
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/class-wp-walker.php
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/class-wp-walker.php
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/class-wp-walker.php
http://php.net/manual/en/language.oop5.abstract.php
http://php.net/manual/en/language.oop5.abstract.php
http://php.net/manual/en/language.oop5.abstract.php
https://codex.wordpress.org/Class_Reference/Walker
https://codex.wordpress.org/Class_Reference/Walker
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/class-wp-walker.php
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/class-wp-walker.php
http://php.net/manual/en/language.oop5.abstract.php
http://php.net/manual/en/language.oop5.abstract.php

Only these concrete child classes will produce the HTML
markup. WordPress provides several extensions of the
Walker class, each one producing a hierarchical HTML
structure.

Look at the table below:

Class nameClass name Defined inDefined in ExtendsExtends

Walker_Page
post-tem-

plate.php40 Walker

Walker_PageDropdown
post-tem-

plate.php41 Walker

Walker_Category
category-tem-

plate.php42 Walker

Walker_CategoryDropdown
category-tem-

plate.php43 Walker

Walker_Category_Checklist template.php44 Walker

Walker_Comment
comment-tem-

plate.php45 Walker

40. https://core.trac.wordpress.org/browser/trunk/src/wp-includes/post-
template.php#L1325

41. https://core.trac.wordpress.org/browser/trunk/src/wp-includes/post-
template.php#L1471

42. https://core.trac.wordpress.org/browser/trunk/src/wp-includes/category-
template.php#L962

43. https://core.trac.wordpress.org/browser/trunk/src/wp-includes/category-
template.php#L1163

44. https://core.trac.wordpress.org/browser/tags/4.2.2/src/wp-admin/includes/
template.php#L24

45. http://core.trac.wordpress.org/browser/tags/4.2.2/src/wp-includes/comment-
template.php#L1662

101

https://core.trac.wordpress.org/browser/trunk/src/wp-includes/post-template.php#L1325
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/post-template.php#L1325
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/post-template.php#L1325
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/post-template.php#L1325
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/post-template.php#L1471
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/post-template.php#L1471
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/post-template.php#L1471
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/post-template.php#L1471
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/category-template.php#L962
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/category-template.php#L962
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/category-template.php#L962
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/category-template.php#L962
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/category-template.php#L1163
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/category-template.php#L1163
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/category-template.php#L1163
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/category-template.php#L1163
https://core.trac.wordpress.org/browser/tags/4.2.2/src/wp-admin/includes/template.php#L24
https://core.trac.wordpress.org/browser/tags/4.2.2/src/wp-admin/includes/template.php#L24
https://core.trac.wordpress.org/browser/tags/4.2.2/src/wp-admin/includes/template.php#L24
http://core.trac.wordpress.org/browser/tags/4.2.2/src/wp-includes/comment-template.php#L1662
http://core.trac.wordpress.org/browser/tags/4.2.2/src/wp-includes/comment-template.php#L1662
http://core.trac.wordpress.org/browser/tags/4.2.2/src/wp-includes/comment-template.php#L1662
http://core.trac.wordpress.org/browser/tags/4.2.2/src/wp-includes/comment-template.php#L1662
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/post-template.php#L1325
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/post-template.php#L1325
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/post-template.php#L1471
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/post-template.php#L1471
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/category-template.php#L962
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/category-template.php#L962
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/category-template.php#L1163
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/category-template.php#L1163
https://core.trac.wordpress.org/browser/tags/4.2.2/src/wp-admin/includes/template.php#L24
https://core.trac.wordpress.org/browser/tags/4.2.2/src/wp-admin/includes/template.php#L24
http://core.trac.wordpress.org/browser/tags/4.2.2/src/wp-includes/comment-template.php#L1662
http://core.trac.wordpress.org/browser/tags/4.2.2/src/wp-includes/comment-template.php#L1662

Walker_Nav_Menu
nav-menu-

template.php46 Walker

Walker_Nav_Menu_Checklist
nav-

menu.php47 Walker_Nav_Menu

Walker_Nav_Menu_Edit
nav-

menu.php48 Walker_Nav_Menu

This table shows the built-in Walker child classes, the
template files they are defined in, and the corresponding
parent class.

The goal of this article is to put the Walker class to
work, so we need to dive into its structure.

The Walker Class’ Structure
Walker is defined in wp-includes/class-wp-walk-
er.php49. It declares four properties and six main meth-
ods, most of which are left empty and should be rede-
fined by the concrete child classes.

The properties are:

• $tree_type

• $db_fields

46. https://core.trac.wordpress.org/browser/trunk/src/wp-includes/nav-menu-
template.php#L16

47. https://core.trac.wordpress.org/browser/tags/4.2.2/src/wp-admin/includes/nav-
menu.php#L237

48. https://core.trac.wordpress.org/browser/tags/4.2.2/src/wp-admin/includes/nav-
menu.php#L10

49. https://core.trac.wordpress.org/browser/trunk/src/wp-includes/class-wp-walk-
er.php

CUSTOMIZING TREE-LIKE DATA STRUCTURES IN WORDPRESS WITH THE
WALKER CLASS

102

https://core.trac.wordpress.org/browser/trunk/src/wp-includes/nav-menu-template.php#L16
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/nav-menu-template.php#L16
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/nav-menu-template.php#L16
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/nav-menu-template.php#L16
https://core.trac.wordpress.org/browser/tags/4.2.2/src/wp-admin/includes/nav-menu.php#L237
https://core.trac.wordpress.org/browser/tags/4.2.2/src/wp-admin/includes/nav-menu.php#L237
https://core.trac.wordpress.org/browser/tags/4.2.2/src/wp-admin/includes/nav-menu.php#L237
https://core.trac.wordpress.org/browser/tags/4.2.2/src/wp-admin/includes/nav-menu.php#L237
https://core.trac.wordpress.org/browser/tags/4.2.2/src/wp-admin/includes/nav-menu.php#L10
https://core.trac.wordpress.org/browser/tags/4.2.2/src/wp-admin/includes/nav-menu.php#L10
https://core.trac.wordpress.org/browser/tags/4.2.2/src/wp-admin/includes/nav-menu.php#L10
https://core.trac.wordpress.org/browser/tags/4.2.2/src/wp-admin/includes/nav-menu.php#L10
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/class-wp-walker.php
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/class-wp-walker.php
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/class-wp-walker.php
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/class-wp-walker.php
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/nav-menu-template.php#L16
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/nav-menu-template.php#L16
https://core.trac.wordpress.org/browser/tags/4.2.2/src/wp-admin/includes/nav-menu.php#L237
https://core.trac.wordpress.org/browser/tags/4.2.2/src/wp-admin/includes/nav-menu.php#L237
https://core.trac.wordpress.org/browser/tags/4.2.2/src/wp-admin/includes/nav-menu.php#L10
https://core.trac.wordpress.org/browser/tags/4.2.2/src/wp-admin/includes/nav-menu.php#L10
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/class-wp-walker.php
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/class-wp-walker.php

• $max_pages

• $has_children

$TREE_TYPE

This is a string or an array of the data handled by the
Walker class and its extentions.

public $tree_type;

The Walker class declares the property but does not set its
value. To be used, it has to be redeclared by the concrete
child class. For example, the Walker_Page class declares
the following $tree_type property:

public $tree_type = 'page';

Whereas Walker_Nav_menu declares the following
$tree_type:

public $tree_type = array('post_type', 'taxonomy',

'custom');

$DB_FIELDS

Just like $tree_type, $db_fields is declared with no val-
ue assigned. In the Walker class’ documentation, it just
says that its value is an array:

public $db_fields;

The elements of the array should set the database fields
providing the ID and the parent ID for each item of the
traversed data set.

103

The Walker_Nav_Menu class redeclares $db_fields as
follows:

public $db_fields = array('parent' =>

'menu_item_parent', 'id' => 'db_id');

$db_fields['parent'] and $db_fields['id'] will be
used by the display_element method.

$MAX_PAGES

This keeps in memory the maximum number of pages
traversed by the paged_walker method. Its initial value is
set to 1.

public $max_pages = 1;

$HAS_CHILDREN

This boolean is set to true if the current element has chil-
dren.

public $has_children;

After the properties, the methods are:

• start_lvl

• end_lvl

• start_el

• end_el

• display_element

CUSTOMIZING TREE-LIKE DATA STRUCTURES IN WORDPRESS WITH THE
WALKER CLASS

104

• walk

START_LVL

This method is executed when the Walker class reaches
the root level of a new subtree. Usually, it is the container
for subtree elements.

public function start_lvl(&$output, $depth = 0,

$args = array()) {}

start_lvl() takes three arguments:

ArgumentArgument TypeType DescriptionDescription

$output string
passed by reference; used to append addi-

tional content

$depth int depth of the item

$args array an array of additional arguments

Because it produces HTML output, start_lvl should be
redefined when extending the Walker class. For instance,
the start_lvl method of the Walker_Nav_Menu class will
output a ul element and is defined as follows:

public function start_lvl(&$output, $depth = 0,

$args = array()) {

$indent = str_repeat("\t", $depth);

$output .= "\n$indent<ul class=\"sub-menu\">\n";

}

105

END_LVL

The second method of the Walker class closes the tag pre-
viously opened by start_lvl.

public function end_lvl(&$output, $depth = 0, $args

= array()) {}

The end_lvl method of Walker_Nav_Menu closes the un-
ordered list:

public function end_lvl(&$output, $depth = 0, $args

= array()) {

$indent = str_repeat("\t", $depth);

$output .= "$indent\n";

}

START_EL

This method opens the tag corresponding to each ele-
ment of the tree. Obviously, if start_lvl opens a ul ele-
ment, then start_el must open an li element. The
Walker class defines start_el as follows:

public function start_el(&$output, $object, $depth =

0, $args = array(), $id = 0) {}

ArgumentArgument TypeType DescriptionDescription

$output string
passed by reference; used to append addi-

tional content

$object object the data object

$depth int depth of the item

$args array an array of additional arguments

CUSTOMIZING TREE-LIKE DATA STRUCTURES IN WORDPRESS WITH THE
WALKER CLASS

106

$id int current item ID

END_EL

It closes the tag opened by start_el.

public function end_el(&$output, $object, $depth =

0, $args = array()) {}

Finally, we’ve reached the core of the Walker class. The
following two methods are used to iterate over the ele-
ments of the arrays of objects retrieved from the data-
base.

DISPLAY_ELEMENT

I won’t show the full code here, because you can find it in
the WordPress Trac50. I’ll just say that this method dis-
plays the elements of the tree.

public function display_element($element,

&$children_elements, $max_depth, $depth, $args,

&$output) {}

display_element takes the following arguments:

ArgumentArgument TypeType DescriptionDescription

$element object the data object

$children_elements array
list of elements to continue tra-

versing

50. https://core.trac.wordpress.org/browser/trunk/src/wp-includes/class-wp-
walker.php#L112

107

https://core.trac.wordpress.org/browser/trunk/src/wp-includes/class-wp-walker.php#L112
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/class-wp-walker.php#L112
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/class-wp-walker.php#L112
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/class-wp-walker.php#L112
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/class-wp-walker.php#L112

$max_depth int maximum depth to traverse

$depth int depth of current element

$args array an array of arguments

$output string
passed by reference; used to ap-

pend additional content

This method does not output HTML on its own. The
markup will be built by a call to each of the previously de-
scribed methods: start_lvl, end_lvl, start_el and
end_el.

WALK

walk is the core of the Walker class. It iterates over the el-
ements of the tree depending on the value of $max_depth
argument (see the Trac for the full code51).

public function walk($elements, $max_depth) {}

walk takes two arguments.

ArgumentArgument TypeType DescriptionDescription

$elements array an array of elements

$max_depth int maximum depth to traverse

Other methods are used for more specific pourposes.

51. https://core.trac.wordpress.org/browser/trunk/src/wp-includes/class-wp-
walker.php#L175

CUSTOMIZING TREE-LIKE DATA STRUCTURES IN WORDPRESS WITH THE
WALKER CLASS

108

https://core.trac.wordpress.org/browser/trunk/src/wp-includes/class-wp-walker.php#L175
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/class-wp-walker.php#L175
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/class-wp-walker.php#L175
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/class-wp-walker.php#L175
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/class-wp-walker.php#L175

PAGED_WALK

This builds a page of nested elements. The method estab-
lishes which elements of the data tree should belong to a
page, and then it builds the markup by calling display_
element and outputs the result.

public function paged_walk($elements, $max_depth,

$page_num, $per_page) {}

GET_NUMBER_OF_ROOT_ELEMENTS

This gets the number of first-level elements.

public function get_number_of_root_elements(

$elements){}

UNSET_CHILDREN

This last method unsets the array of child elements for a
given root element.

public function unset_children($e,

&$children_elements){}

Now that we’ve introduced the Walker properties and
methods, we can explore one of its possible applications:
changing the HTML structure of the navigation menu.
The default markup for navigation menus is produced by
the Walker_Nav_Menu concrete class. For this reason, we’ll
create a new concrete Walker child class based on
Walker_Nav_Menu, and we’ll pass it to wp_nav_menu to re-
place the output.

109

But is extending the Walker_Nav_Menu class always
necessary when rebuilding a menu? Of course not!

Most of the time, a call to the wp_nav_menu template
tag will suffice.

Basic Customization Of The Navigation
Menu: The wp_nav_menu Template Tag
The navigation menu can be included in the theme’s tem-
plate files with a call to the wp_nav_menu() template tag.

In the “Menus” editing page, setting theme locations for each custom
menu is possible.

CUSTOMIZING TREE-LIKE DATA STRUCTURES IN WORDPRESS WITH THE
WALKER CLASS

110

This function takes just one argument, an array of para-
meters that is well described in the Codex52.

wp_nav_menu() can be included in your templates as
follows:

$defaults = array(

'theme_location' => '',

'menu' => '',

'container' => 'div',

'container_class' => '',

'container_id' => '',

'menu_class' => 'menu',

'menu_id' => '',

'echo' => true,

'fallback_cb' => 'wp_page_menu',

'before' => '',

'after' => '',

'link_before' => '',

'link_after' => '',

'items_wrap' => '<ul id="%1$s" class="%2$s">

%3$s',

'depth' => 0,

'walker' => ''

);

wp_nav_menu($defaults);

WordPress provides many parameters to configure the
navigation menu. We can change the menu’s container (it

52. https://codex.wordpress.org/Function_Reference/wp_nav_menu

111

https://codex.wordpress.org/Function_Reference/wp_nav_menu
https://codex.wordpress.org/Function_Reference/wp_nav_menu
https://codex.wordpress.org/Function_Reference/wp_nav_menu
https://codex.wordpress.org/Function_Reference/wp_nav_menu
https://codex.wordpress.org/Function_Reference/wp_nav_menu

defaults to a div), the container’s CSS class and ID, as
well as the text strings and markup to be included before
and after the anchor element and before and after the
item’s title. Furthermore, we can change the root ele-
ment’s structure (items_wrap) and the depht of the tree.

So, we don’t need to extend the Walker (or the Walk-
er_Nav_Menu) class each time we want to make changes
to the menu’s structure — only when we have to produce
more advanced structural customizations. This happens
when we have to assign CSS classes to the menu ele-
ments when a specific condition occurs, or when we have
to add data or HTML code to the menu items.

This can be done by setting a value for the walker pa-
rameter, which will be nothing but an instance of a cus-
tom concrete class. So, from now on, we’ll dive more and
more deeply into WordPress menus, from changing the
menu structure to adding custom fields to the menu
items’ editing boxes. As I said, we’ll do this job by extend-
ing the Walker_Nav_Menu, so it’s time to get acquainted
with it.

The Walker_Nav_Menu Class
The Walker_Nav_Menu class is defined in wp-includes/
nav-menu-template.php53. This is the class used by
WordPress to build the navigation menu’s structure. Each
time you want to make relevant changes to the menu’s
default structure, you can extend Walker_Nav_Menu.

53. https://core.trac.wordpress.org/browser/trunk/src/wp-includes/nav-menu-tem-
plate.php

CUSTOMIZING TREE-LIKE DATA STRUCTURES IN WORDPRESS WITH THE
WALKER CLASS

112

https://core.trac.wordpress.org/browser/trunk/src/wp-includes/nav-menu-template.php
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/nav-menu-template.php
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/nav-menu-template.php
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/nav-menu-template.php
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/nav-menu-template.php
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/nav-menu-template.php

The concrete class redeclares the $tree_type and
$db_fields properties and the start_lvl, end_lvl,
start_el and end_el methods.

class Walker_Nav_Menu extends Walker {

public $tree_type = array('post_type',

'taxonomy', 'custom');

public $db_fields = array('parent' =>

'menu_item_parent', 'id' => 'db_id');

public function start_lvl(&$output, $depth = 0,

$args = array()) {

$indent = str_repeat("\t", $depth);

$output .= "\n$indent<ul class=\"sub-menu\">\n";

}

public function end_lvl(&$output, $depth = 0,

$args = array()) {

$indent = str_repeat("\t", $depth);

$output .= "$indent\n";

}

public function start_el(&$output, $item, $depth

= 0, $args = array(), $id = 0) {

// code below

}

public function end_el(&$output, $item, $depth

= 0, $args = array()) {

113

$output .= "\n";

}

} // Walker_Nav_Menu

The start_el public method builds the HTML markup of
the opening li tag for each menu item. It is defined as
follows:

public function start_el(&$output, $item, $depth =

0, $args = array(), $id = 0) {

$indent = ($depth) ? str_repeat("\t", $depth)

: '';

$classes = empty($item->classes) ? array() :

(array) $item->classes;

$classes[] = 'menu-item-' . $item->ID;

$class_names = join(' ', apply_filters(

'nav_menu_css_class', array_filter($classes),

$item, $args, $depth));

$class_names = $class_names ? ' class="' .

esc_attr($class_names) . '"' : '';

$id = apply_filters('nav_menu_item_id',

'menu-item-'. $item->ID, $item, $args, $depth);

$id = $id ? ' id="' . esc_attr($id) . '"' : '';

$output .= $indent . '<li' . $id . $class_names

.'>';

CUSTOMIZING TREE-LIKE DATA STRUCTURES IN WORDPRESS WITH THE
WALKER CLASS

114

$atts = array();

$atts['title'] = ! empty($item->attr_title) ?

$item->attr_title : '';

$atts['target'] = ! empty(

$item->target) ? $item->target : '';

$atts['rel'] = ! empty(

$item->xfn) ? $item->xfn : '';

$atts['href'] = ! empty($item->url) ?

$item->url : '';

$atts = apply_filters('nav_menu_link_attributes',

$atts, $item, $args, $depth);

$attributes = '';

foreach ($atts as $attr => $value) {

if (! empty($value)) {

$value = ('href' === $attr) ? esc_url(

$value) : esc_attr($value);

$attributes .= ' ' . $attr . '="' . $value .

'"';

}

}

$item_output = $args->before;

$item_output .= '<a'. $attributes .'>';

$item_output .= $args->link_before .

apply_filters('the_title', $item->title,

apply_filters$item->ID) . $args->link_after;

$item_output .= '';

115

$item_output .= $args->after;

$output .= apply_filters(

apply_filters'walker_nav_menu_start_el',

apply_filters$item_output, $item, $depth, $args);

}

The code is quite self-explanatory:

• $indent stores a number of '/t' strings corresponding
to $depth’s value;

• $classes is an array of the CSS classes assigned to the
list item;

• $id records the element’s ID, composed by the prefix
'menu-item-' and the item’s ID retrieved from the data-
base;

• $atts is an array of the element’s attributes;

• $item_output keeps track of the HTML code before it is
assigned to $output;

• $output stores the HTML markup.

Extending The Walker_Nav_Menu Class
When building your custom navigation menu markup,
you might decide to extend the Walker class itself or its
concrete child class Walker_Nav_Menu. If you opt to ex-
tend the Walker class, you’ll need to define all necessary
properties and methods. Otherwise, if you choose to ex-

CUSTOMIZING TREE-LIKE DATA STRUCTURES IN WORDPRESS WITH THE
WALKER CLASS

116

tend the concrete child class, you’ll just need to define
those methods whose output has to be changed.

The following example describes a real-life situation
in which the default menu’s structure has to be changed
in order to integrate a WordPress theme with the Foun-
dation 5 framework.

A Working Example: The Foundation Top
Bar As WordPress Navigation Menu
Foundation 554 comes with a flexible grid system and
with plugins and components that make it easy to devel-
op solid and responsive websites. So, chances are that
you’ll decide to enrich your theme with all of this great
stuff.

First, you need to include all necessary scripts and
style sheets in your theme. This isn’t our topic, so we

Foundation 5’s home page.

54. http://foundation.zurb.com/

117

http://foundation.zurb.com/
http://foundation.zurb.com/
http://foundation.zurb.com/
http://foundation.zurb.com/
http://foundation.zurb.com/

won’t dive deep into the configuration, but you can pull
out all necessary information directly from Foundation’s
documentation55 and the WordPress Codex56.

Here, we’ll see how to force WordPress to display
Foundation Top Bar57 as a navigation menu.

WordPress should print something like the following
HTML:

<nav class="top-bar" data-topbar role="navigation">

<ul class="title-area">

<li class="name">

<h1>My Site</h1>

<!-- Remove the class "menu-icon" to get rid of

menu icon. Take out "Menu" to just have icon alone

-->

<li class="toggle-topbar menu-icon">Menu

<div class="top-bar-section">

<!-- Left Nav Section -->

<ul class="left">

<li class="active">Right Button

Active

<li class="has-dropdown">

Left Button Dropdown

55. http://foundation.zurb.com/docs/javascript.html
56. https://codex.wordpress.org/Function_Reference/wp_enqueue_script
57. http://foundation.zurb.com/docs/components/topbar.html

CUSTOMIZING TREE-LIKE DATA STRUCTURES IN WORDPRESS WITH THE
WALKER CLASS

118

http://foundation.zurb.com/docs/javascript.html
http://foundation.zurb.com/docs/javascript.html
http://foundation.zurb.com/docs/javascript.html
http://foundation.zurb.com/docs/javascript.html
https://codex.wordpress.org/Function_Reference/wp_enqueue_script
https://codex.wordpress.org/Function_Reference/wp_enqueue_script
https://codex.wordpress.org/Function_Reference/wp_enqueue_script
http://foundation.zurb.com/docs/components/topbar.html
http://foundation.zurb.com/docs/components/topbar.html
http://foundation.zurb.com/docs/components/topbar.html
http://foundation.zurb.com/docs/javascript.html
http://foundation.zurb.com/docs/javascript.html
https://codex.wordpress.org/Function_Reference/wp_enqueue_script
https://codex.wordpress.org/Function_Reference/wp_enqueue_script
http://foundation.zurb.com/docs/components/topbar.html
http://foundation.zurb.com/docs/components/topbar.html

<ul class="dropdown">

First link in

dropdown

<li class="active">Active

link in dropdown

</div>

</nav>

To achieve our goal, add the following code to your
header.php file or to whichever template file contains
the navigation menu:

<nav class="top-bar" data-topbar role="navigation">

<ul class="title-area">

<li class="name">

<h1><?php echo get_bloginfo();

?></h1>

<li class="toggle-topbar menu-icon"><!--<?php echo get_bloginfo();

?>-->

<?php wp_nav_menu(array(

'theme_location' => 'primary',

'container_class' => 'top-bar-section',

'menu_class' => 'left',

'walker' => new

119

Custom_Foundation_Nav_Menu())); ?>

</nav>

We have set the Foundation CSS class top-bar-section,
along with a custom Walker class, on the navigation
menu’s container, location and alignment. Now, we can
define Custom_Foundation_Nav_Menu:

class Custom_Foundation_Nav_Menu extends

Walker_Nav_Menu {

public function start_lvl(&$output, $depth = 0,

$args = array()) {

$indent = str_repeat("\t", $depth);

// add the dropdown CSS class

$output .= "\n$indent<ul class=\"sub-menu

dropdown\">\n";

}

public function display_element($element,

&$children_elements, $max_depth, $depth = 0,

$args, &$output) {

// add 'not-click' class to the list item

$element->classes[] = 'not-click';

// if element is current or is an ancestor of

// the current element, add 'active' class to

// the list item

$element->classes[] = ($element->current ||

$element->current_item_ancestor) ? 'active' :

'';

CUSTOMIZING TREE-LIKE DATA STRUCTURES IN WORDPRESS WITH THE
WALKER CLASS

120

// if it is a root element and the menu is not

// flat, add 'has-dropdown' class from

// https://core.trac.wordpress.org/browser

// /trunk/src/wp-includes/

// class-wp-walker.php#L140

$element->has_children = ! empty(

$children_elements[$element->ID]);

$element->classes[] = ($element->has_children

&& 1 !== $max_depth) ? 'has-dropdown' : '';

// call parent method

parent::display_element($element,

$children_elements, $max_depth, $depth, $args,

$output);

}

}

As you can see, we’ve redefined the start_lvl and
display_element methods. The first one generates the
markup of the opening ul tag and assigns the dropdown
CSS class.

The second method, display_element, is described in
the Trac58: It’s a method to “traverse elements to create a
list from elements,” so it is a good place to make changes
to the menu items.

Here we’ve accessed the has_children, classes,
current and current_item_ancestor properties and

58. https://core.trac.wordpress.org/browser/trunk/src/wp-includes/class-wp-
walker.php#L112

121

https://core.trac.wordpress.org/browser/trunk/src/wp-includes/class-wp-walker.php#L112
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/class-wp-walker.php#L112
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/class-wp-walker.php#L112
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/class-wp-walker.php#L112
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/class-wp-walker.php#L112
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/class-wp-walker.php#L112

passed the updated $element object to the parent
display_element method. That’s enough to achieve our
goal, but we could do much more on the menu items. If
you call var_dump on the $element object, you’ll see all of
the available properties at your disposal to build more ad-
vanced navigation menus.

And, as we’ll see in a moment, we can add new proper-
ties to the object.

The menu is up and running, but we may want deeper
customization. In the next example, we’ll get more from
our navigation menu, allowing the website administrator
to prepend icons to the items’s titles the easy way: direct-
ly from the administration panel. In our example, we’ll
use Foundation Icon Fonts 359.

The Foundation Top Bar on a WordPress website.

CUSTOMIZING TREE-LIKE DATA STRUCTURES IN WORDPRESS WITH THE
WALKER CLASS

122

http://zurb.com/playground/foundation-icon-fonts-3
http://zurb.com/playground/foundation-icon-fonts-3
http://zurb.com/playground/foundation-icon-fonts-3

Adding Fields To The WordPress Menu
Items’ Editing Box
Before we start coding, let’s open the menu editing page
and make sure that all of the advanced menu properties
in the “Screen Options” tab are checked.

Each checkbox enables or disables certain fields in the
menu item’s editing box. (See image on the next page.)

But we can do more than add or change field values.
The menu items are considered specific post types, and
the values of the menu items’ fields are stored in the data-
base as hidden custom fields. So we can add a new menu
item’s field exactly as we do with regular posts’ custom
fields.

Any kind of form field is allowed: inputs, checkboxes,
textboxes and so on.

WordPress’ “Screen Options” tab on the administration page for menus.

59. http://zurb.com/playground/foundation-icon-fonts-3

123

http://zurb.com/playground/foundation-icon-fonts-3
http://zurb.com/playground/foundation-icon-fonts-3

In the following example, I will show you how to add a
simple text field that enables the website administrator to
add a new property to the $item object. It will be stored
as a custom field and will be used to show data in the
website’s front end.

To do that, we will:

1. register a custom field for the navigation menu item,

2. save the new custom field’s value,

3. set up a new Walker class for the edit menu tree.

The menu items’ editing box.

CUSTOMIZING TREE-LIKE DATA STRUCTURES IN WORDPRESS WITH THE
WALKER CLASS

124

STEP 1: REGISTER A CUSTOM FIELD FOR THESTEP 1: REGISTER A CUSTOM FIELD FOR THE
NAV MENU ITEMNAV MENU ITEM

First, we’ll have to register a new custom field for the nav-
igation menu item in the functions.php file:

/**

* Add a property to a menu item

*

* @param object $item The menu item object.

*/

function custom_nav_menu_item($item) {

$item->icon = get_post_meta($item->ID,

'_menu_item_icon', true);

return $item;

}

add_filter('wp_setup_nav_menu_item',

'custom_nav_menu_item');

wp_setup_nav_menu_item filters the navigation menu’s
$item object, allowing us to add the icon property.

STEP 2: SAVE THE USER’S INPUTSTEP 2: SAVE THE USER’S INPUT

When the user submits the form from the menu’s admin-
istration page, the following callback will store the fields’
values in the database:

/**

* Save menu item custom fields' values

*

* @link https://codex.wordpress.org/

* Function_Reference/sanitize_html_class

125

*/

function custom_update_nav_menu_item($menu_id,

$menu_item_db_id, $menu_item_args){

if (is_array($_POST['menu-item-icon'])) {

$menu_item_args['menu-item-icon'] =

$_POST['menu-item-icon'][$menu_item_db_id];

update_post_meta($menu_item_db_id,

'_menu_item_icon', sanitize_html_class(

$menu_item_args['menu-item-icon']));

}

}

add_action('wp_update_nav_menu_item',

'custom_update_nav_menu_item', 10, 3);

When updating the menu items, this action calls
custom_update_nav_menu_item(), which will sanitize
and update the value of the _menu_item_icon meta field.

Now we have to print the custom field’s markup.

STEP 3: SET UP A NEW WALKER FOR THE EDITSTEP 3: SET UP A NEW WALKER FOR THE EDIT
MENU TREEMENU TREE

The structure of the menu’s administration page is built
by the Walker_Nav_Menu_Edit class, which is an exten-
sion of Walker_Nav_Menu. To customize the menu items’
editing boxes, we’ll need a new custom Walker_Nav_Menu
child class based on the Walker_Nav_Menu_Edit class.

To set a custom Walker, this time we’ll need the fol-
lowing filter:

add_filter('wp_edit_nav_menu_walker', function(

$class){ return 'Custom_Walker_Nav_Menu_Edit'; });

CUSTOMIZING TREE-LIKE DATA STRUCTURES IN WORDPRESS WITH THE
WALKER CLASS

126

When fired, this filter executes an anonymous function60

that sets a custom class that will build the list of menu
items.

Finally, the new Walker can be declared. We won’t re-
produce the full code here. Just copy and paste the full
Walker_Nav_Menu_Edit code from the Trac61 into your
custom class and add the custom field markup as shown
below:

class Custom_Walker_Nav_Menu_Edit extends

Walker_Nav_Menu {

public function start_lvl(&$output, $depth = 0,

$args = array()) {}

public function end_lvl(&$output, $depth = 0,

$args = array()) {}

public function start_el(&$output, $item, $depth

= 0, $args = array(), $id = 0) {

...

<p class="field-xfn description

description-thin">

<label for="edit-menu-item-xfn-<?php echo

$item_id; ?>">

<?php _e('Link Relationship (XFN)');

?>

<input type="text" id="edit-menu-item-xfn-

<?php echo $item_id; ?>" class="widefat

60. http://php.net/manual/en/functions.anonymous.php
61. https://core.trac.wordpress.org/browser/tags/4.2.4/src/wp-admin/includes/nav-

menu.php

127

http://php.net/manual/en/functions.anonymous.php
http://php.net/manual/en/functions.anonymous.php
http://php.net/manual/en/functions.anonymous.php
https://core.trac.wordpress.org/browser/tags/4.2.4/src/wp-admin/includes/nav-menu.php
https://core.trac.wordpress.org/browser/tags/4.2.4/src/wp-admin/includes/nav-menu.php
https://core.trac.wordpress.org/browser/tags/4.2.4/src/wp-admin/includes/nav-menu.php
http://php.net/manual/en/functions.anonymous.php
http://php.net/manual/en/functions.anonymous.php
https://core.trac.wordpress.org/browser/tags/4.2.4/src/wp-admin/includes/nav-menu.php
https://core.trac.wordpress.org/browser/tags/4.2.4/src/wp-admin/includes/nav-menu.php

code edit-menu-item-xfn"

name="menu-item-xfn[<?php echo $item_id;

?>]"

value="<?php echo esc_attr($item->xfn);

?>" />

</label>

</p>

<p class="field-custom description

description-thin">

<label for="edit-menu-item-icon-<?php echo

$item_id; ?>">

<?php _e('Foundation Icon'); ?>

<input type="text"

id="edit-menu-item-icon-<?php echo

$item_id; ?>" class="widefat code

edit-menu-item-icon"

name="menu-item-icon[<?php echo $item_id;

?>]" value="<?php echo esc_attr(

$item->icon); ?>" />

</label>

</p>

...

}

}

Now, with the new input field in place, the website ad-
ministrator will be able to add the new icon property to
the menu $item object.

CUSTOMIZING TREE-LIKE DATA STRUCTURES IN WORDPRESS WITH THE
WALKER CLASS

128

At this time, the Walker_Nav_Menu class won’t be able to
access the new property value; so, the value of $item->
icon would not be available to build the menu structure.
To make it accessible, in the Custom_Foundation_Nav_-
Menu class of our previous example, we will redefine the
start_el method. The easiest way to proceed is to copy

A customized version of the menu items’ editing box.

129

the code from the Walker_Nav_Menu class62 and paste it in
our custom class, editing it where necessary.

So, paste the code and jump to the bottom of the new
start_el method and make the following edits:

public function start_el(&$output, $item, $depth =

0, $args = array(), $id = 0) {

...

$item_output = $args->before;

$item_output .= '<a'. $attributes .'>';

if(!empty($item->icon))

$item_output .= '<i class="fi-' . $item->icon .

'" style="margin-right: .4em"></i>';

$item_output .= $args->link_before .

apply_filters('the_title', $item->title,

$item->ID) . $args->link_after;

$item_output .= '';

$item_output .= $args->after;

$output .= apply_filters(

'walker_nav_menu_start_el', $item_output, $item,

$depth, $args);

}

62. https://core.trac.wordpress.org/browser/trunk/src/wp-includes/nav-menu-
template.php

CUSTOMIZING TREE-LIKE DATA STRUCTURES IN WORDPRESS WITH THE
WALKER CLASS

130

https://core.trac.wordpress.org/browser/trunk/src/wp-includes/nav-menu-template.php
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/nav-menu-template.php
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/nav-menu-template.php
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/nav-menu-template.php
https://core.trac.wordpress.org/browser/trunk/src/wp-includes/nav-menu-template.php

No other changes are being done here except the condi-
tion that checks the value of the $item->icon property. If
a value has been set, a new i element is attached to
$item_output and assigned to the proper CSS class.

Finally, the following markup shows the new HTML
menu structure.

<div class="top-bar-section">

<ul id="menu-nav-menu" class="left">

<li id="menu-item-46" class="menu-item

menu-item-type-custom menu-item-object-custom

current-menu-item current_page_item

menu-item-home not-click active menu-item-46">

<i class="fi-social-smashing-mag"></i>

Home

</div>

The image on the next page shows the final result on the
desktop.

Final Notes
In this article, we’ve explored some of the most common
uses of the Walker class. Note, however, that our exam-
ples do not cover all possible applications and alternative
ways to take advantage of the class. But you’ll discover
more just by making use of your imagination and your
skills as a programmer.

131

And never lose sight of the official documentation:

• Class Reference/Walker63

• Function Reference/wp_nav_menu64❧

The custom Foundation 5 Top Bar integrated in a WordPress theme, en-
riched with icon fonts from Foundation Icon Font 3.

63. https://codex.wordpress.org/Class_Reference/Walker
64. https://codex.wordpress.org/Function_Reference/wp_nav_menu

CUSTOMIZING TREE-LIKE DATA STRUCTURES IN WORDPRESS WITH THE
WALKER CLASS

132

https://codex.wordpress.org/Class_Reference/Walker
https://codex.wordpress.org/Class_Reference/Walker
https://codex.wordpress.org/Class_Reference/Walker
https://codex.wordpress.org/Function_Reference/wp_nav_menu
https://codex.wordpress.org/Function_Reference/wp_nav_menu
https://codex.wordpress.org/Function_Reference/wp_nav_menu
https://codex.wordpress.org/Class_Reference/Walker
https://codex.wordpress.org/Class_Reference/Walker
https://codex.wordpress.org/Function_Reference/wp_nav_menu
https://codex.wordpress.org/Function_Reference/wp_nav_menu

Extending Advanced
Custom Fields With Your
Own Controls

BY DANIEL PATAKIBY DANIEL PATAKI ❧❧

Advanced Custom Fields65 (ACF) is a free WordPress plu-
gin that replaces the regular custom fields interface in
WordPress with something far more powerful, offering a
user-friendly interface for complex fields like location
maps, date pickers and more.

In this article I’ll show you how you can extend ACF
by adding your own controls to tailor the experience to
your needs.

How ACF Works
ACF is a collection of fields which can be added to a num-
ber of locations in WordPress, such as posts, taxonomies,
users and so on. They share a common interface and a
WordPress-compatible saving mechanism (using meta
fields and options).

65. http://www.advancedcustomfields.com/

133

http://www.advancedcustomfields.com/
http://www.advancedcustomfields.com/
http://www.advancedcustomfields.com/
http://www.advancedcustomfields.com/
http://www.advancedcustomfields.com/

Each ACF field has field settings which you can think of
as the back-end options for a field. Field settings allow
you to control how the field behaves when displayed to
the user. You may be able to control default values, how
data is saved, and so on.

There is a default set shared by all fields, like field la-
bel, field name, field type, field instructions, required set-
ting and conditional logic, but there are some field-specif-
ic settings as well.

A good example is the image field which allows users
to select an image and save it. The field settings allow you
to define the following:

A map and a radio field created with ACF.

EXTENDING ADVANCED CUSTOM FIELDS WITH YOUR OWN CONTROLS

134

• Return value (image object, image URL or image ID)

• Preview size (any defined image size)

• Library (all or uploaded to post)

Fields are created within field groups which can be placed
in a number of locations using powerful rule sets. Not on-
ly can you add your fields to edit profile pages, you can al-
so restrict the visibility of a field group based on role, al-
lowing access to admins only, for example.

Settings for the image field in ACF.

135

What’s Available Out Of The Box
Right now ACF has 22 fields available, which includes ba-
sic fields like number, email, multi-select and radio, but
more advanced ones as well, such as taxonomy selection
and the user selector. You also get a few fields that use
JavaScript to create a great interface, like the map field or
the date and color-picker fields.

There are also quite a few fields available in the plugin
repository. I’ve created six ACF plugins myself66, like the
Google Font Selector and Sidebar Selector, but a quick
search in the repository67 will come up with star rating
fields, recent posts, link pickers, widget area fields and so
on.

If you are a developer I can also heartily recommend
the pro version of ACF68. It costs $100 — which is quite a
bit — but you can use it in unlimited projects. It contains
a repeater field, a gallery field, a flexible content field and
the ability to add options to options pages very easily.

Location rules for an ACF field group.

66. https://profiles.wordpress.org/danielpataki#content-plugins
67. https://wordpress.org/plugins/

search.php?type=term&q=advanced+custom+fields
68. http://www.advancedcustomfields.com/pro/

EXTENDING ADVANCED CUSTOM FIELDS WITH YOUR OWN CONTROLS

136

https://profiles.wordpress.org/danielpataki#content-plugins
https://profiles.wordpress.org/danielpataki#content-plugins
https://profiles.wordpress.org/danielpataki#content-plugins
https://wordpress.org/plugins/search.php?type=term&q=advanced+custom+fields
https://wordpress.org/plugins/search.php?type=term&q=advanced+custom+fields
https://wordpress.org/plugins/search.php?type=term&q=advanced+custom+fields
http://www.advancedcustomfields.com/pro/
http://www.advancedcustomfields.com/pro/
http://www.advancedcustomfields.com/pro/
https://profiles.wordpress.org/danielpataki#content-plugins
https://profiles.wordpress.org/danielpataki#content-plugins
https://wordpress.org/plugins/search.php?type=term&q=advanced+custom+fields
https://wordpress.org/plugins/search.php?type=term&q=advanced+custom+fields
http://www.advancedcustomfields.com/pro/
http://www.advancedcustomfields.com/pro/

The great thing about ACF is that the pro version is
nice, but you don’t need it in order to build something
awesome. You can use the built-in fields or write your
own if you need something different. Let’s look at how
that can be done.

Extending Advanced Custom Fields
ACF can be extended by creating a separate plugin which
integrates with the main ACF plugin. The heavy lifting is
done by the ACF Field Type Template69 which you can
grab from GitHub.

This includes all the files you need and has great in-
line commenting that walks you through the process. It
also contains all the possible functions you can use. You
won’t use all of them for each field, but you can leave the
unwanted ones empty or delete them altogether.

In this tutorial I’ll show you the steps I follow when
creating an ACF plugin. I’ll be creating a country selector
which lets you select any country from a drop-down list.
By the end you should be able to reproduce it and create
your own, so let’s get cracking!

STEP 1: A LOCAL ENVIRONMENTSTEP 1: A LOCAL ENVIRONMENT

I like to do all my WordPress work locally. I won’t go into
too much detail here — you can take a look at Rachel An-
drew’s “A Simple Workflow From Development To De-
ployment70” if you need some help. In a nutshell, I use a

69. https://github.com/elliotcondon/acf-field-type-template

137

https://github.com/elliotcondon/acf-field-type-template
https://github.com/elliotcondon/acf-field-type-template
https://github.com/elliotcondon/acf-field-type-template
http://www.smashingmagazine.com/2015/07/development-to-deployment-workflow/
http://www.smashingmagazine.com/2015/07/development-to-deployment-workflow/
http://www.smashingmagazine.com/2015/07/development-to-deployment-workflow/
http://www.smashingmagazine.com/2015/07/development-to-deployment-workflow/
https://github.com/elliotcondon/acf-field-type-template
https://github.com/elliotcondon/acf-field-type-template

simple Vagrant box to create a local server and I use virtu-
al hosts to create multiple projects.

The one additional aspect of my workflow is using
symlinks to manage my plugins. I do this for three rea-
sons:

• I can keep my plugins separate from my WordPress in-
stalls.

• A plugin can be symlinked to multiple WordPress installs
which means I update the plugin in a central location and
all installations use that code.

• I can use any folder structure I like which comes in
handy when working with Git packages.

The process isn’t too difficult. Take a look at Tom McFar-
lin’s “Symbolic Links with WordPress71” article for more
information. Since the template is designed to be a plug-
in, this step is not strictly necessary but I think symlinks
are worth looking into for development purposes.

STEP 2: ADDING THE PLUGIN AND RENAMINGSTEP 2: ADDING THE PLUGIN AND RENAMING

Once you’ve grabbed the template from GitHub, copy and
paste the whole directory into your plugins folder and re-
name it to acf-country_selector. You’ll see that some of the
files have FIELD_NAME in them; this is a placeholder for
your actual field name which should be the same as the

70. http://www.smashingmagazine.com/2015/07/development-to-deployment-
workflow/

71. https://tommcfarlin.com/symbolic-links-with-wordpress/

EXTENDING ADVANCED CUSTOM FIELDS WITH YOUR OWN CONTROLS

138

https://tommcfarlin.com/symbolic-links-with-wordpress/
https://tommcfarlin.com/symbolic-links-with-wordpress/
https://tommcfarlin.com/symbolic-links-with-wordpress/
http://www.smashingmagazine.com/2015/07/development-to-deployment-workflow/
http://www.smashingmagazine.com/2015/07/development-to-deployment-workflow/
https://tommcfarlin.com/symbolic-links-with-wordpress/
https://tommcfarlin.com/symbolic-links-with-wordpress/

name of the folder (after “acf-”). In our case the field name
is country_selector.

Some of you may be wondering why I’ve used an un-
derscore instead of a dash: it’s common practice to use
dashes in file names. The use of an underscore relates to
consistency and a rule for translatable strings.

We’ll need to replace FIELD_NAME inside files as well.
In some cases the placeholder is part of a function name
where we can’t use dashes. I could decide to use dashes in
file names and underscores within files, but there would
then be a problem with the text domain.

The text domain is set to acf-FIELD_NAME, which actu-
ally needs to be the same as the folder name. This ex-
cludes the use of a dash outside and an underscore inside
files. Because of this I’ve decided to use underscores.
There are simply fewer downsides to it.

Back to creating our plugin! Replace FIELD_NAME in all
file names with country_selector. Once done, I recom-
mend dropping the whole folder in a good editor such as
Sublime72 or Atom73. Any editor that allows you to search
and replace within multiple files at once will do.

Within our files there should be another set of place-
holders: FIELD_NAME and FIELD_LABEL. There are a few
more, but the others are used only once or twice and only
in the readmes so you can replace those manually.

For this plugin I mass-replaced FIELD_LABEL with
Country Selector and FIELD_NAME with country_
selector.

72. http://www.sublimetext.com/
73. https://atom.io/

139

http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
https://atom.io/
https://atom.io/
https://atom.io/
http://www.sublimetext.com/
http://www.sublimetext.com/
https://atom.io/
https://atom.io/

Finally, open acf-country_selector.php and fill out the meta
information in the header. This will ensure that the plug-
in shows up in the admin with the data you provide. In
this plugin’s case I’ve filled it out like this:

/*

Plugin Name: Advanced Custom Fields: Country Selector

Plugin URI: http://danielpataki.com

Description: A plugin for ACF that allows you to

select any country from a list

Version: 1.0.0

Author: Daniel Pataki

Author URI: http://danielpataki.com

License: GPLv2 or later

License URI: http://www.gnu.org/licenses/gpl-2.0.html

*/

At this stage you can go to the plugins section and acti-
vate it. You won’t see any new fields just yet, but we can
start chipping away at the code.

Search and replace in a project in Atom.

Our country selector plugin displayed in the admin.

EXTENDING ADVANCED CUSTOM FIELDS WITH YOUR OWN CONTROLS

140

STEP 3: FIELD BASICSSTEP 3: FIELD BASICS

You may have noticed that there are two similar files: acf-
country_selector-v4.php and acf-country_selector-v5.php. One
is for version 4 of ACF, the other for version 5. Right now,
version 5 is actually the pro version, but soon the free ver-
sion will also be updated to 5.

This doesn’t mean that the free version will have the
premium fields, but it will run on a new and improved
system. Since the free version is currently version 4, I will
be looking at acf-country_selector-v4.php only. The methods
for version 5 are very nearly the same, so it shouldn’t be
too difficult to create both.

If you’re planning on releasing your plugin, I recom-
mend using both files. Aside from some minor changes
it’s really a matter of copying and pasting than anything
else.

Our first stop, then, is acf-country_selector-v4.php, and
the __construct() function within. Most of this is filled
out for us. We’ll need to modify the value of $this->
category. This determines which group our field type
will be listed under. Since there’s a “Choice” group and
we’ll be building a select field, let’s use Choice as the val-
ue here.

I also want to allow the person who creates the field to
set an initial value for the country field. This will be really
useful if the field is used on a website which predomi-
nantly uses a specific country for the field. Instead of
having to go down and select “Hungary”, users could
make that the initial value.

The $this->defaults array contains the defaults for
our fields, like the initial_value field. I’ll make the de-

141

fault “United States”, which may be the most popular
choice for the initial value. Here’s the full contents of the
__contruct() function at the end of all that:

// vars

$this->name = 'country_selector';

$this->label = __('Country Selector');

$this->category = __('Choice', 'acf'); // Basic,

Content, Choice, etc

$this->defaults = array(

'initial_value' => 'United States'

);

// do not delete!

parent::__construct();

// settings

$this->settings = array(

'path' => apply_filters('acf/helpers/

get_path', __FILE__),

'dir' => apply_filters('acf/helpers/get_dir',

__FILE__),

'version' => '1.0.0'

);

STEP 4: FIELD SETTINGSSTEP 4: FIELD SETTINGS

The next step is to configure the field settings we’ll have.
In our case this will be a single field for selecting the ini-
tial value of the front-end selector. This will be a selector
with all countries selectable.

EXTENDING ADVANCED CUSTOM FIELDS WITH YOUR OWN CONTROLS

142

Before we create the selector, we need a list of coun-
tries. I created a little Gist74 which lists all of them in an
array. I decided to create a method that returns all coun-
tries to make sure I can create country lists anywhere,
without needing to add the large array more than once.

function get_countries() {

$countries = array('Afghanistan' => 'Afghanistan',

'Albania' => 'Albania', '...');

return $countries;

}

I placed this function at the very end of the class, to sepa-
rate it from the built-in ones. I can now use $this->
get_countries within this class to return the array.

To add our initial value field we need to modify the
contents of the create_options() method. Here’s the
full code for that function:

function create_options($field)

{

$field = array_merge($this->defaults, $field);

$key = $field['name'];

// Create Field Options HTML

?>

<tr class="field_option field_option_<?php echo

$this->name; ?>">

<td class="label">

74. https://gist.github.com/danielpataki/2652bb42697b1a248761

143

https://gist.github.com/danielpataki/2652bb42697b1a248761
https://gist.github.com/danielpataki/2652bb42697b1a248761
https://gist.github.com/danielpataki/2652bb42697b1a248761
https://gist.github.com/danielpataki/2652bb42697b1a248761
https://gist.github.com/danielpataki/2652bb42697b1a248761

<label><?php _e("Initial Value",'acf');

?></label>

<p class="description"><?php _e("The initial

value of the country field",'acf'); ?></p>

</td>

<td>

<?php

do_action('acf/create_field', array(

'type' => 'select',

'name' => 'fields['.$key.'][

initial_value]',

'value' => $field['initial_value'],

'choices' => $this->get_countries()

));

?>

</td>

</tr>

<?php

}

The main thing to keep in mind is that the name of the
field must be fields[field_key][field_name]. My par-
ticular case translates to
fields[field_55e584fa90223][initial_value], but the
key is generated for you, so you’ll need a variable to refer-
ence it. Hence the use of
fields['.$key.'][initial_value].

EXTENDING ADVANCED CUSTOM FIELDS WITH YOUR OWN CONTROLS

144

If you need to add more field settings simply create
some more defaults and add more fields following the
pattern above. In version 5 the process is somewhat sim-
pler as you don’t have to wrap the whole thing in a bunch
of HTML — that is done for you.

STEP 5: FIELD FRONT-ENDSTEP 5: FIELD FRONT-END

All that’s left is to create the control the user will actually
see. This is done in the create_field() method. You’ll
need to create the HTML yourself here but it shouldn’t be
too difficult to create a standard <select> field, right?

Our custom setting for the country field.

145

function create_field($field)

{

$field = array_merge($this->defaults, $field);

?>

<div>

<select name='<?php echo

$field['name'] ?>'>

<?php

foreach($this->

get_countries() as

$country) :

?>

<option <?php

selected($field['value'], $country) ?> value='<?php

echo $country ?>'><?php echo $country ?></option>

<?php endforeach; ?>

</select>

</div>

<?php

}

At this stage, your field is ready to go. If you add your
field to a field group and view the field in action, you
should see the country selector with the initial value se-
lected. If you save the object you’ve added the field to, it
will retain its value.

The completed country selector in action.

EXTENDING ADVANCED CUSTOM FIELDS WITH YOUR OWN CONTROLS

146

STEP 6: ADDING SCRIPTS AND STYLESSTEP 6: ADDING SCRIPTS AND STYLES

This plugin doesn’t require any scripts and styles at the
moment, but if we were to create a drop-down with the
help of Chosen75, for example, we would need to leverage
the input_admin_enqueue_scripts() function.

In many cases you don’t actually need to modify the
code of this function. The enqueued script and style
points to the already created files in the js and css folders
— simply use those to add your code. If you enqueue
third-party scripts like Chosen you should drop that in
the js folder and enqueue it the same way.

Once downloaded, I placed the files required by Cho-
sen in the correct directories. I put chosen.min.css in the css
folder, chosen.jquery.min.js in the js directory, and the two
images in the images directory. To make sure images are
referenced correctly I replaced url(in the CSS file with
url(../img.

With all the files in place, I used the input_admin_
enqueue_scripts() to enqueue them, resulting in the fol-
lowing code.

function input_admin_enqueue_scripts() {

// register ACF scripts

wp_register_script(

'acf-input-country_selector',

$this->settings['dir'] . 'js/input.js',

array('acf-input'),

$this->settings['version']);

75. https://harvesthq.github.io/chosen/

147

https://harvesthq.github.io/chosen/
https://harvesthq.github.io/chosen/
https://harvesthq.github.io/chosen/
https://harvesthq.github.io/chosen/
https://harvesthq.github.io/chosen/

// Chosen

wp_register_script('chosen',

$this->settings['dir'] . 'js/

chosen.jquery.min.js', array('acf-input',

'jquery'), $this->settings['version']);

wp_register_style('chosen',

$this->settings['dir'] . 'css/

chosen.min.css', array('acf-input'),

$this->settings['version']);

// scripts

wp_enqueue_script(array(

'acf-input-country_selector',

'chosen',

));

// styles

wp_enqueue_style(array(

'chosen',

));

}

Note that I removed the original CSS file that was added
(input.css), but I kept the input.js file enqueued. We will
need a little bit of JavaScript to apply Chosen, but we
won’t need any additional CSS, apart from Chosen’s own.

The last step is to apply Chosen to our field, which is
where input.js comes in handy. Opening up the file, you
can see that it has a dedicated section for version 4 and

EXTENDING ADVANCED CUSTOM FIELDS WITH YOUR OWN CONTROLS

148

for version 5. We’ll be using the version 4 section, adding
the Chosen initiation code. It’s only one additional line
which you need to add below initialize_field(
$(this));

$(this).find('select').chosen()

Once in place, you should be able to search within the se-
lect field’s values, making the UI that much better.

STEP 7: MODIFYING VALUESSTEP 7: MODIFYING VALUES

There are a number of methods which serve to modify
values after or before they are sent/received. These can be
helpful for manipulating data between the user interface
and the back-end logic. Here are the four most important
methods, along with how they can be used:

• load_value() is used to modify the value of the field af-
ter it is loaded from the database. This could be useful if
you’re saving complex things like geolocation. The saved
value may be an array containing the latitude and longi-
tude, but you actually want to display a string.

Chosen applied to the select field.

149

• update_value() modifies the value before it is saved in
the database. If the user enters a comma-separated value
of IDs, you may want to save that as an array. Using the
update_value() function you can modify it easily.

• load_field() modifies the whole field after it is returned
from the database.

• update_field() modifies the whole field before it is
saved to the database.

Further Possibilities
I hope you can see that creating your own field is actually
a pretty simple matter. If you want to add elaborate
JavaScript to make things as user-friendly as possible,
that’s all up to you — ACF supports it nicely. You can use
a bunch of methods to play around with values and fields
and much more. Browse through the template file for
more information.

If that wasn’t enough, ACF also has powerful actions
and filters76. Check out the documentation for more info.

If you’d like to check out a more complex field which
contains JavaScript, styles and interaction with a third-
party API, I invite you to check out the GitHub repository
for my Google Font Selector Field77, which allows users to
select fonts available from Google.❧

76. http://www.advancedcustomfields.com/resources/
77. https://github.com/danielpataki/ACF-Google-Font-Selector

EXTENDING ADVANCED CUSTOM FIELDS WITH YOUR OWN CONTROLS

150

http://www.advancedcustomfields.com/resources/
http://www.advancedcustomfields.com/resources/
http://www.advancedcustomfields.com/resources/
http://www.advancedcustomfields.com/resources/
https://github.com/danielpataki/ACF-Google-Font-Selector
https://github.com/danielpataki/ACF-Google-Font-Selector
https://github.com/danielpataki/ACF-Google-Font-Selector
http://www.advancedcustomfields.com/resources/
http://www.advancedcustomfields.com/resources/
https://github.com/danielpataki/ACF-Google-Font-Selector
https://github.com/danielpataki/ACF-Google-Font-Selector

Building An Advanced
Notification System For
WordPress

BY CARLO DANIELEBY CARLO DANIELE ❧❧

A lot of tools enable us to distribute a website’s content,
but when we need to promptly reach a target group, an
email notification system might be the best option. If
your website is not frequently updated, you could notify
all subscribers each time a post is published. However, if
it’s updated frequently or it covers several topics, you
could filter subscribers before mailing them.

If you opt for the latter, you could set up a user meta
field that stores a bit of information to identify the sub-
scribers to be notified. The same bit of information would
label the posts you’re publishing. Depending on the web-
site’s architecture, you could store the meta data in a cate-
gory, a tag, a custom taxonomy or a custom field. In this
article we’ll show you how to let your website’s sub-
scribers decide when they want notifications, and linked
to a particular location.

Can I Use A Plugin?
If WordPress is your CMS, you can choose from a num-
ber of plugins, such as the comprehensive JetPack78 or the
more specialized Subscribe 279.

78. http://jetpack.me/support/subscriptions/

151

http://jetpack.me/support/subscriptions/
http://jetpack.me/support/subscriptions/
http://jetpack.me/support/subscriptions/
https://wordpress.org/plugins/subscribe2/
https://wordpress.org/plugins/subscribe2/
https://wordpress.org/plugins/subscribe2/
http://jetpack.me/support/subscriptions/
http://jetpack.me/support/subscriptions/

Jetpack is easy to use, whereas Subscribe 2 is specialized
and full-featured. Both plugins enable you to send email
notifications to subscribers whenever a post is published.
Unfortunately, neither allows you to notify specific users
about specific content. And we want to select posts based
on custom fields, mailing them to specific groups of
users. Unfortunately, no plugin seems able to help us
with this.

Things To Do
We are going to add several functionalities to WordPress’
core, and the CMS allows us to declare our own custom
functions in the main file of a plugin. We’re not going to

Subscribe 2’s settings page.

79. https://wordpress.org/plugins/subscribe2/

BUILDING AN ADVANCED NOTIFICATION SYSTEM FOR WORDPRESS

152

https://wordpress.org/plugins/subscribe2/
https://wordpress.org/plugins/subscribe2/

dive deep into plugin development, but you can get the
information you need directly from the Codex80.

We have to accomplish the following tasks:

1. add two meta fields to the user’s profile, the first of which
stores the name of a location and the second of which de-
termines whether the user will receive emails;

2. add a custom meta box to the post-editing page contain-
ing the location-related custom field;

3. select the users to be notified and send an email to them.

Add Meta Fields To User Profiles
WordPress stores user data in the wp_users and
wp_usermeta tables.

WordPress’ database description. (Image: Codex81)

80. http://codex.wordpress.org/Writing_a_Plugin
81. http://codex.wordpress.org/Database_Description

153

http://codex.wordpress.org/Writing_a_Plugin
http://codex.wordpress.org/Writing_a_Plugin
http://codex.wordpress.org/Writing_a_Plugin
http://codex.wordpress.org/Database_Description
http://codex.wordpress.org/Database_Description
http://codex.wordpress.org/Database_Description
http://codex.wordpress.org/Writing_a_Plugin
http://codex.wordpress.org/Writing_a_Plugin
http://codex.wordpress.org/Database_Description
http://codex.wordpress.org/Database_Description

Here, wp_users holds the list of all website users, while
wp_usermeta contains all meta data associated with each
user’s profile. Meta data is registered as key-value pairs in
the meta_key and meta_value fields.

WordPress generates a bunch of meta data, such as
nickname, first_name, last_name, description and
wp_capabilities. Much of this data is automatically as-
signed to each user’s profile, and a user is able to edit it
later from their profile page.

To perform our first task, we’ll add two meta fields to
the profile pages of users. These fields will store the name
of a geographic location and will allow the user to acti-
vate (or deactivate) the notification feature.

In the main file of the plugin, let’s define a global asso-
ciative array whose elements consist of the names of US
states:

$smashing_notification_states = array('AL' =>

'Alabama', 'AK' => 'Alaska', 'AZ' => 'Arizona', 'AR'

=> 'Arkansas', 'CA' => 'California', 'CO' =>

'Colorado', 'CT' => 'Connecticut', 'DE' =>

'Delaware', 'FL' => 'Florida', 'GA' => 'Georgia',

'HI' => 'Hawaii', 'ID' => 'Idaho', 'IL' =>

'Illinois', 'IN' => 'Indiana', 'IA' => 'Iowa', 'KS'

=> 'Kansas', 'KY' => 'Kentucky', 'LA' => 'Louisiana',

'ME' => 'Maine', 'MD' => 'Maryland', 'MA' =>

'Massachusetts', 'MI' => 'Michigan', 'MN' =>

'Minnesota', 'MS' => 'Mississippi', 'MO' =>

'Missouri', 'MT' => 'Montana', 'NE' => 'Nebraska',

'NV' => 'Nevada', 'NH' => 'New Hampshire', 'NJ' =>

'New Jersey', 'NM' => 'New Mexico', 'NY' => 'New

BUILDING AN ADVANCED NOTIFICATION SYSTEM FOR WORDPRESS

154

York', 'NC' => 'North Carolina', 'ND' => 'North

Dakota', 'OH' => 'Ohio', 'OK' => 'Oklahoma', 'OR' =>

'Oregon', 'PA' => 'Pennsylvania', 'RI' => 'Rhode

Island', 'SC' => 'South Carolina', 'SD' => 'South

Dakota', 'TN' => 'Tennessee', 'TX' => 'Texas', 'UT'

=> 'Utah', 'VT' => 'Vermont', 'VA' => 'Virginia',

'WA' => 'Washington', 'WV' => 'West Virginia', 'WI'

=> 'Wisconsin', 'WY' => 'Wyoming');

Thanks to this array, we will generate a select menu to
avoid input errors by users. Now, we need to add two
form fields to the user’s profile page. To do this, we will
use two action hooks:

add_action('show_user_profile',

'smashing_show_user_meta_fields');

add_action('edit_user_profile',

'smashing_show_user_meta_fields');

Here, show_user_profile82 is triggered when a user is
viewing their own profile, while edit_user_profile83 is
triggered when a user is viewing another user’s profile.

The callback function prints the markup.

/**

* Show custom user profile fields.

*

* @param obj $user The user object.

*/

82. http://codex.wordpress.org/Plugin_API/Action_Reference/show_user_profile
83. http://codex.wordpress.org/Plugin_API/Action_Reference/edit_user_profile

155

http://codex.wordpress.org/Plugin_API/Action_Reference/show_user_profile
http://codex.wordpress.org/Plugin_API/Action_Reference/show_user_profile
http://codex.wordpress.org/Plugin_API/Action_Reference/show_user_profile
http://codex.wordpress.org/Plugin_API/Action_Reference/edit_user_profile
http://codex.wordpress.org/Plugin_API/Action_Reference/edit_user_profile
http://codex.wordpress.org/Plugin_API/Action_Reference/edit_user_profile
http://codex.wordpress.org/Plugin_API/Action_Reference/show_user_profile
http://codex.wordpress.org/Plugin_API/Action_Reference/show_user_profile
http://codex.wordpress.org/Plugin_API/Action_Reference/edit_user_profile
http://codex.wordpress.org/Plugin_API/Action_Reference/edit_user_profile

function smashing_show_user_meta_fields($user) {

global $smashing_notification_states;

?>

<h3><?php _e('Smashing profile information',

'smashing'); ?></h3>

<table class="form-table">

<tr>

<th scope="row"><?php _e('State',

'smashing'); ?></th>

<td>

<label for="state">

<select name="state">

<option value="" <?php

selected(get_user_meta(

$user->ID, 'state', true),

""); ?>>Select</option>

<?php foreach

($smashing_notification_states

as $key => $value) { ?>

<option value="<?php echo

$key; ?>" <?php selected(

esc_attr(get_user_meta(

$user->ID, 'state', true)

), $key); ?>><?php echo

$value; ?></option>

<?php } ?>

</select>

<?php _e('Select state',

'smashing'); ?>

</label>

BUILDING AN ADVANCED NOTIFICATION SYSTEM FOR WORDPRESS

156

</td>

</tr>

<tr>

<th scope="row"><?php _e(

'Notifications', 'smashing'); ?></th>

<td>

<label for="notification">

<input id="notification"

type="checkbox" name=

"notification" value="true" <?php

checked(esc_attr(get_user_meta(

$user->ID, 'notification', true)

), 'true'); ?> />

<?php _e('Subscribe to email

notifications', 'smashing'); ?>

</label>

</td>

</tr>

</table>

<?php }

This table contains two custom meta fields. The first is a
select menu whose options are generated by a foreach
loop that iterates over the $smashing_notification_-
states global array. This way, the user doesn’t have to
type the name of their state, but instead chooses it from a
dropdown list.

As you can see, we’re calling the selected() func-
tion84 twice from inside two <option> tags; selected()
is a WordPress function for comparing two strings.
When the strings have the same value, the function

157

http://codex.wordpress.org/Function_Reference/selected
http://codex.wordpress.org/Function_Reference/selected
http://codex.wordpress.org/Function_Reference/selected
http://codex.wordpress.org/Function_Reference/selected

prints selected='selected'; otherwise, it echoes an
empty string.

The first time we call selected(), we’re comparing
the current option’s value ('state') with an empty string
(which means no state was selected). When iterating over
the $smashing_notification_states array, we’re com-
paring the value of each element to the current value of
the 'state' meta field. This way, we can automatically
select the option corresponding to the existing 'state'
value.

The second meta field to be added to users’ profiles is a
checkbox. Its value will be 'true' or 'false' depending
on whether the user chooses to receive notifications. Sim-
ilar to selected(), checked()85 prints out the string
checked='checked' when its two arguments have the
same value. Of course, checked() applies to checkboxes
and radio buttons.

Now that we’ve got the fields, we can save the user’s
input. We need two action hooks to store the user data:

add_action('personal_options_update',

'smashing_save_user_meta_fields');

add_action('edit_user_profile_update',

'smashing_save_user_meta_fields');

Here, personal_options_update is triggered when the
user is viewing their own profile page, while edit_user_-
profile_update is triggered when a user with sufficient

84. http://codex.wordpress.org/Function_Reference/selected
85. http://codex.wordpress.org/Function_Reference/checked

BUILDING AN ADVANCED NOTIFICATION SYSTEM FOR WORDPRESS

158

http://codex.wordpress.org/Function_Reference/checked
http://codex.wordpress.org/Function_Reference/checked
http://codex.wordpress.org/Function_Reference/checked
http://codex.wordpress.org/Function_Reference/selected
http://codex.wordpress.org/Function_Reference/selected
http://codex.wordpress.org/Function_Reference/checked
http://codex.wordpress.org/Function_Reference/checked

privileges is viewing another user’s profile page. We have
two hooks but just one callback:

/**

* Store data in wp_usermeta table.

*

* @param int $user_id the user unique ID.

*/

function smashing_save_user_meta_fields($user_id) {

if (!current_user_can('edit_user', $user_id))

return false;

if(isset($_POST['state']))

update_user_meta($user_id, 'state',

sanitize_text_field($_POST['state']));

if(!isset($_POST['notification']))

$_POST['notification'] = 'false';

update_user_meta($user_id, 'notification',

sanitize_text_field($_POST['notification']));

}

This function verifies whether the user is allowed to
edit_user, and if current_user_can is true, it checks the
data and saves it in the wp_usermeta table.

159

Custom Meta Box And Custom Fields
We have to decide what kind of content should be includ-
ed in the notification to subscribers. This decision will de-
pend on your website’s architecture. In this example,
we’ll go for regular posts, but you could choose a custom
post type instead. The choice depends on your needs.

That being said, we are going to build a custom meta
box containing a set of custom fields. These fields will be
used to store an address, city, state and some other data
related to location. Two other custom fields will enable
and disable notifications on a per-post basis, and they will
register the number of emails sent to users whenever a
new post has been published. Let’s put another action
hook to work:

add_action('add_meta_boxes', 'smashing_add_meta_box'

);

function smashing_add_meta_box(){

The custom meta fields added to the user’s profile page.

BUILDING AN ADVANCED NOTIFICATION SYSTEM FOR WORDPRESS

160

$screens = array('post'); // possible values:

// 'post', 'page', 'dashboard', 'link',

// 'attachment', 'custom_post_type'

foreach ($screens as $screen) {

add_meta_box(

'smashing_metabox', // $id - meta_box ID

__('Venue information', 'smashing'),

// $title - a title for the meta_box

// container

'smashing_meta_box_callback',

// $callback - the callback that outputs

// the html for the meta_box

$screen, // $post_type - where to show

// the meta_box. Possible values: 'post',

// 'page', 'dashboard', 'link',

// 'attachment', 'custom_post_type'

'normal', // $context - possible values:

// 'normal', 'advanced', 'side'

'high' // $priority - possible values:

// 'high', 'core', 'default', 'low'

);

}

}

Here, add_meta_box86 accepts seven arguments: a unique
ID for the meta box, a title, a callback function, a value for
screen, the context (i.e. the part of the page where to

86. http://codex.wordpress.org/Function_Reference/add_meta_box

161

http://codex.wordpress.org/Function_Reference/add_meta_box
http://codex.wordpress.org/Function_Reference/add_meta_box
http://codex.wordpress.org/Function_Reference/add_meta_box
http://codex.wordpress.org/Function_Reference/add_meta_box
http://codex.wordpress.org/Function_Reference/add_meta_box

show the meta box), and priority and callback arguments.
Because we are not setting a value for the callback argu-
ment parameter, the $post object will be the only argu-
ment passed to smashing_meta_box_callback. Finally,
let’s define the callback function to print out the meta
box:

/*

* Print the meta_box

*

* @param obj $post The object for the current post

*/

function smashing_meta_box_callback($post){

global $smashing_notification_states;

// Add a nonce field

wp_nonce_field('smashing_meta_box',

'smashing_meta_box_nonce');

$address = esc_attr(get_post_meta(get_the_ID(),

'address', true));

$city = esc_attr(get_post_meta(get_the_ID(),

'city', true));

$state = esc_attr(get_post_meta(get_the_ID(),

'state', true));

$zip = esc_attr(get_post_meta(get_the_ID(),

'zip', true));

$phone = esc_attr(get_post_meta(get_the_ID(),

'phone', true));

$website = esc_attr(get_post_meta(get_the_ID(),

'website', true));

BUILDING AN ADVANCED NOTIFICATION SYSTEM FOR WORDPRESS

162

$disable = esc_attr(get_post_meta(get_the_ID(),

'disable', true));

?>

<table id="venue">

<tbody>

<tr>

<td class="label"><?php _e('Address',

'smashing'); ?></td>

<td><input type="text" id="address"

name="venue[address]" value="<?php echo

$address; ?>" size="30" /></td>

</tr>

<tr>

<td><?php _e('City', 'smashing');

?></td>

<td><input type="text" id="city"

name="venue[city]" value="<?php echo

$city; ?>" size="30" /></td>

</tr>

<tr>

<td><?php _e('State', 'smashing');

?></td>

<td>

<select name="venue[state]">

<option value="" <?php selected(

$state, ""); ?>>Select</option>

<?php foreach

($smashing_notification_states as

$key => $value) { ?>

<option value="<?php echo

163

$key; ?>" <?php selected(

$state, $key); ?>><?php echo

$value; ?></option>

<?php } ?>

</select>

</td>

</tr>

<tr>

<td><?php _e('Disable notification',

'smashing'); ?></td>

<td><input id="disable" type="checkbox"

name="venue[disable]" value="true" <?php

checked($disable, 'true'); ?> /></td>

</tr>

</tbody>

</table>

<?php

}

First, we’re initializing the global array and registering a
nonce field87. We then add two simple text fields. The
name attribute is set in the form of an array element,
while the value is set to the corresponding custom field’s
value. Finally, the main custom fields are added.

Just like with the user’s meta data, we add a select
menu whose options are echoed, iterating over the ele-
ments in the $smashing_notification_states global ar-
ray. Once we have built the select menu, let’s continue

87. http://codex.wordpress.org/WordPress_Nonces

BUILDING AN ADVANCED NOTIFICATION SYSTEM FOR WORDPRESS

164

http://codex.wordpress.org/WordPress_Nonces
http://codex.wordpress.org/WordPress_Nonces
http://codex.wordpress.org/WordPress_Nonces
http://codex.wordpress.org/WordPress_Nonces
http://codex.wordpress.org/WordPress_Nonces

with a checkbox to enable and disable the single post no-
tification.

Now we have to save the data: Our action hook is
save_post. We’ll perform a number of tasks with the call-
back function. Take a look at the inline documentation
for more information.

add_action('save_post',

'smashing_save_custom_fields');

/*

* Save the custom field values

*

* @param int $post_id the current post ID

*/

function smashing_save_custom_fields($post_id){

// Check WP nonce

if (!isset($_POST['smashing_meta_box_nonce'])

|| ! wp_verify_nonce(

$_POST['smashing_meta_box_nonce'],

'smashing_meta_box'))

return;

// Return if this is an autosave

if (defined('DOING_AUTOSAVE') &&

DOING_AUTOSAVE)

return;

// check the post_type and set the corresponding

// capability value

165

$capability = (isset($_POST['post_type']) &&

'page' == $_POST['post_type']) ? 'edit_page' :

'edit_post';

// Return if the user lacks the required

// capability

if (!current_user_can($capability, $post_id))

return;

if(!isset($_POST['venue']['disable']))

$_POST['venue']['disable'] = 'false';

// validate custom field values

$fields = (isset($_POST['venue'])) ? (array)

$_POST['venue'] : array();

$fields = array_map('sanitize_text_field',

$fields);

foreach ($fields as $key => $value) {

// store data

update_post_meta($post_id, $key, $value);

}

}

Our custom meta box is up and running, and it looks like
this:

BUILDING AN ADVANCED NOTIFICATION SYSTEM FOR WORDPRESS

166

Building The Notification System
If you were working with custom post types, you would
need the publish_{$post_type} hook (i.e. publish_-
recipes, publish_>events, etc.). But since we are work-
ing with posts, publish_post is the hook for us:

add_action('publish_post',

'smashing_notify_new_post');

/*

* Notify users sending them an email

*

* @param int $post_ID the current post ID

*/

function smashing_notify_new_post($post_ID){

global $smashing_notification_states;

$url = get_permalink($post_ID);

$state = get_post_meta($post_ID, 'state', true);

if('true' == get_post_meta($post_ID, 'disable',

The custom meta box showing the location details.

167

true))

return;

// build the meta query to retrieve subscribers

$args = array(

'meta_query' => array(

array('key' => 'state', 'value'

=> $state, 'compare' => '='),

array('key' => 'notification',

'value' => 'true', 'compare' =>

'=')

),

'fields' => array('display_name',

'user_email')

);

// retrieve users to notify about the new post

$users = get_users($args);

$num = 0;

foreach ($users as $user) {

$to = $user->display_name . ' <' .

$user->user_email . '>';

$subject = sprintf(__('Hei! We have news

for you from %s', 'smashing'),

$smashing_notification_states[$state]);

$message = sprintf(__('Hi %s!', 'smashing'

), $user->display_name) . "\r\n" .

sprintf(__('We have a new post from %s',

BUILDING AN ADVANCED NOTIFICATION SYSTEM FOR WORDPRESS

168

'smashing'),

$smashing_notification_states[$state]) . "\r\

n" .

sprintf(__('Read more on %s', 'smashing'),

$url) . '.' . "\r\n";

$headers[] = 'From: Yourname

<you@yourdomain.com>';

$headers[] = 'Reply-To: you@yourdomain.com';

if(wp_mail($to, $subject, $message,

$headers))

$num++;

}

// a hidden custom field

update_post_meta($post_ID, '_notified_users',

$num);

return $post_ID;

}

Once again, we declare the global array $smashing_noti-
fication_states. The two variables $url and $state
will store the post’s permalink and state. The succeeding
condition checks the value of the disable custom field: If
it’s 'true', we exit the function. We have to retrieve
from the database all users whose state meta field has
the same value as the state custom field of the current
post, and we use the get_users() function to accomplish
this.

The wp_mail88 function accepts five arguments: recip-
ient(s), subject, message, headers, attachments. The recip-

169

http://codex.wordpress.org/Function_Reference/wp_mail
http://codex.wordpress.org/Function_Reference/wp_mail
http://codex.wordpress.org/Function_Reference/wp_mail

ients could be passed as an array or as a comma-separated
string of addresses. So, we could have passed to the func-
tion all of the addresses together, but doing so would
have made them publicly visible (this is the way
wp_mail() works).

So, we’ll iterate over the $users array and call wp_mail
repeatedly (which shouldn’t be done with a huge number
of emails, as we’ll see in a moment). In case of success,
wp_mail returns true. The counter is incremented by 1,
and the loop continues with the next user.

When the foreach cycle ends, the current value of
$num is registered in the hidden _notified_users cus-
tom field (notice the underscore preceding the name of
the custom field).

Unfortunately, a loop iterating over and over hun-
dreds of times could considerably slow down the script,
as pointed out in the reference on the PHP mail() func-
tion89:

“It is worth noting that the mail() function is not suit-
able for larger volumes of email in a loop. This function
opens and closes an SMTP socket for each email, which
is not very efficient.

For the sending of large amounts of email, see the
» PEAR::Mail90, and » PEAR::Mail_Queue91 packages.”

88. http://codex.wordpress.org/Function_Reference/wp_mail
89. http://php.net/manual/it/function.mail.php
90. http://pear.php.net/package/Mail
91. http://pear.php.net/package/Mail_Queue

BUILDING AN ADVANCED NOTIFICATION SYSTEM FOR WORDPRESS

170

http://php.net/manual/it/function.mail.php
http://php.net/manual/it/function.mail.php
http://php.net/manual/it/function.mail.php
http://php.net/manual/it/function.mail.php
http://pear.php.net/package/Mail
http://pear.php.net/package/Mail
http://pear.php.net/package/Mail
http://pear.php.net/package/Mail_Queue
http://pear.php.net/package/Mail_Queue
http://pear.php.net/package/Mail_Queue
http://codex.wordpress.org/Function_Reference/wp_mail
http://codex.wordpress.org/Function_Reference/wp_mail
http://php.net/manual/it/function.mail.php
http://php.net/manual/it/function.mail.php
http://pear.php.net/package/Mail
http://pear.php.net/package/Mail
http://pear.php.net/package/Mail_Queue
http://pear.php.net/package/Mail_Queue

We could work around this, passing to the function the
email addresses as BCCs, setting them in the headers92, as
shown here:

function smashing_notify_new_post($post_ID){

global $smashing_notification_states;

$url = get_permalink($post_ID);

$state = get_post_meta($post_ID, 'state', true);

if('true' == get_post_meta($post_ID, 'disable',

true))

return;

// build the meta query to retrieve subscribers

$args = array(

'meta_query' => array(

array('key' => 'state', 'value'

=> $state, 'compare' => '='),

array('key' => 'notification',

'value' => 'true', 'compare' =>

'=')

),

'fields' => array('display_name',

'user_email')

);

// retrieve users to notify about the new post

$users = get_users($args);

92. http://codex.wordpress.org/Function_Reference/wp_mail#Using_.24headers_
To_Set_.22From:.22.2C_.22Cc:.22_and_.22Bcc:.22_Parameters

171

http://codex.wordpress.org/Function_Reference/wp_mail#Using_.24headers_To_Set_.22From:.22.2C_.22Cc:.22_and_.22Bcc:.22_Parameters
http://codex.wordpress.org/Function_Reference/wp_mail#Using_.24headers_To_Set_.22From:.22.2C_.22Cc:.22_and_.22Bcc:.22_Parameters
http://codex.wordpress.org/Function_Reference/wp_mail#Using_.24headers_To_Set_.22From:.22.2C_.22Cc:.22_and_.22Bcc:.22_Parameters
http://codex.wordpress.org/Function_Reference/wp_mail#Using_.24headers_To_Set_.22From:.22.2C_.22Cc:.22_and_.22Bcc:.22_Parameters
http://codex.wordpress.org/Function_Reference/wp_mail#Using_.24headers_To_Set_.22From:.22.2C_.22Cc:.22_and_.22Bcc:.22_Parameters

$num = 0;

$to = 'Yourname <you@yourdomain.com>';

$subject = sprintf(__('Hei! We have news for

you from %s', 'smashing'),

$smashing_notification_states[$state]);

$message = __('Hi ', 'smashing') . "\r\n" .

sprintf(__('We have a new post from %s',

'smashing'),

$smashing_notification_states[$state]) . "\r\

n" .

sprintf(__('Read more on %s', 'smashing'),

$url) . '.' . "\r\n";

$headers[] = 'From: Yourname

<you@yourdomain.com>';

$headers[] = 'Reply-To: you@yourdomain.com';

foreach ($users as $user) {

$headers[] = 'Bcc: ' . $user->user_email;

$num++;

}

if(wp_mail($to, $subject, $message, $headers))

update_post_meta($post_ID, '_notified_users',

$num);

BUILDING AN ADVANCED NOTIFICATION SYSTEM FOR WORDPRESS

172

return $post_ID;

}

As you can see, in case of wp_mail()’s success, we update
the _notified_user custom field with $num’s value.
However, in the code above, $num stores the number of
retrieved users, not the number of times we call
wp_mail().

Finally, if none of the solutions presented fit your
needs, you could consider a third-party email notification
system, such as MailChimp93 or FeedBurner94, which en-
able you to deliver notifications from a website’s feed.

A Note About Status Transitions
We hooked the smashing_notify_new_post callback to
the publish_post action. This hook is triggered each
time the status of an existing post is changed to publish.
Unfortunately, publish_post is not fired when a new
post is published. So, to send notifications, first save the
post as “draft” (or “pending”). If you prefer to email sub-
scribers each time a post is published, consider calling the
save_post action instead:

add_action('save_post', 'smashing_notify_new_post');

/*

* Save the custom field values

*

93. http://kb.mailchimp.com/campaigns/rss-in-campaigns/create-an-rss-driven-
campaign

94. https://support.google.com/feedburner/answer/78982?hl=en

173

http://kb.mailchimp.com/campaigns/rss-in-campaigns/create-an-rss-driven-campaign
http://kb.mailchimp.com/campaigns/rss-in-campaigns/create-an-rss-driven-campaign
http://kb.mailchimp.com/campaigns/rss-in-campaigns/create-an-rss-driven-campaign
https://support.google.com/feedburner/answer/78982?hl=en
https://support.google.com/feedburner/answer/78982?hl=en
https://support.google.com/feedburner/answer/78982?hl=en
http://kb.mailchimp.com/campaigns/rss-in-campaigns/create-an-rss-driven-campaign
http://kb.mailchimp.com/campaigns/rss-in-campaigns/create-an-rss-driven-campaign
https://support.google.com/feedburner/answer/78982?hl=en
https://support.google.com/feedburner/answer/78982?hl=en

* @param int $post_id the current post ID

*/

function smashing_notify_new_post($post_ID){

global $smashing_notification_states;

if('publish' != get_post_status($post_ID))

return;

...

}

Check the Codex for further information about status
transitions95 and the save_post action hook96.

A Confirmation Message
When you work with the publish_post action hook, you
will soon realize that testing your scripts can get a little
tricky. When a new post is published, WordPress loads a
script that saves data and, when it is done, redirects the
user to the post-editing page. This double redirection
does not allow variable values to be printed on the screen.

A confirmation message could be a good workaround.
This solution allows us to check a variable’s values and to
give the publisher useful information: specifically, the
number of times wp_mail has been called (or the number
of users to be notified).

Remember the $num variable? Its value was stored in a
hidden custom field, _notified_users. Now we have to

95. http://codex.wordpress.org/Post_Status_Transitions
96. https://codex.wordpress.org/Plugin_API/Action_Reference/save_post

BUILDING AN ADVANCED NOTIFICATION SYSTEM FOR WORDPRESS

174

http://codex.wordpress.org/Post_Status_Transitions
http://codex.wordpress.org/Post_Status_Transitions
http://codex.wordpress.org/Post_Status_Transitions
http://codex.wordpress.org/Post_Status_Transitions
https://codex.wordpress.org/Plugin_API/Action_Reference/save_post
https://codex.wordpress.org/Plugin_API/Action_Reference/save_post
https://codex.wordpress.org/Plugin_API/Action_Reference/save_post
http://codex.wordpress.org/Post_Status_Transitions
http://codex.wordpress.org/Post_Status_Transitions
https://codex.wordpress.org/Plugin_API/Action_Reference/save_post
https://codex.wordpress.org/Plugin_API/Action_Reference/save_post

retrieve that value and print it out in a message using a
filter hook.

Thanks to the post_updated_messages filter, we can
customize WordPress confirmation messages and output
them to the screen whenever a new post is saved or pub-
lished (the Codex does not provide a reference for this fil-
ter hook, only an example of usage97). Here is the callback
function we can use to customize the message when a
post is published:

add_filter('post_updated_messages',

'smashing_updated_messages');

/**

* Post update messages.

*

* See /wp-admin/edit-form-advanced.php

*

* @param array $messages Existing post update

messages.

*

* @return array Amended post update messages with

new update messages.

*/

function smashing_updated_messages($msgs){

$post = get_post();

$post_type = get_post_type($post);

$post_type_object = get_post_type_object(

97. http://codex.wordpress.org/Function_Reference/register_post_type#Example

175

http://codex.wordpress.org/Function_Reference/register_post_type#Example
http://codex.wordpress.org/Function_Reference/register_post_type#Example
http://codex.wordpress.org/Function_Reference/register_post_type#Example
http://codex.wordpress.org/Function_Reference/register_post_type#Example
http://codex.wordpress.org/Function_Reference/register_post_type#Example

$post_type);

$num = get_post_meta($post->ID,

'_notified_users', true);

if ($post_type_object->publicly_queryable) {

$msgs[$post_type][6] .= ' - ' . $num . __(

' notifications sent.', 'smashing');

}

return $msgs;

}

wp_mail Function And SMTP
WordPress’ wp_mail() function works the same way as
PHP’s mail() function. Whether an email has been suc-
cessfully sent will depend on php.ini’s settings, but most
hosts include SMTP in their services. If you aren’t able to
set that up, you could choose an external SMTP service

When a post is published, a custom message is printed informing the au-
thor about the number of emails sent to users.

BUILDING AN ADVANCED NOTIFICATION SYSTEM FOR WORDPRESS

176

and use it in tandem with the WP Mail SMTP98 plugin,
which routes your emails through an SMTP service.

Be careful when you save data: the “from” field should
have the same value as your account’s email address; oth-
erwise, the server might respond with an error message.

Be aware that a plugin is not necessary: WordPress al-
lows for the possibility of overwriting php.ini’s settings
from within a script, with the phpmailer_init action
hook. This hook allows us to pass our own parameters to
the PHPMailer99 object. See the Codex for more informa-
tion100 on this.

WP Mail SMTP’s settings page.

98. https://wordpress.org/plugins/wp-mail-smtp/
99. http://phpmailer.worxware.com/

100. https://codex.wordpress.org/Plugin_API/Action_Reference/phpmailer_init

177

https://wordpress.org/plugins/wp-mail-smtp/
https://wordpress.org/plugins/wp-mail-smtp/
https://wordpress.org/plugins/wp-mail-smtp/
http://phpmailer.worxware.com/
http://phpmailer.worxware.com/
http://phpmailer.worxware.com/
https://codex.wordpress.org/Plugin_API/Action_Reference/phpmailer_init
https://codex.wordpress.org/Plugin_API/Action_Reference/phpmailer_init
https://codex.wordpress.org/Plugin_API/Action_Reference/phpmailer_init
https://codex.wordpress.org/Plugin_API/Action_Reference/phpmailer_init
https://wordpress.org/plugins/wp-mail-smtp/
https://wordpress.org/plugins/wp-mail-smtp/
http://phpmailer.worxware.com/
http://phpmailer.worxware.com/
https://codex.wordpress.org/Plugin_API/Action_Reference/phpmailer_init
https://codex.wordpress.org/Plugin_API/Action_Reference/phpmailer_init

Designing Better Emails
Just like the PHP mail() function, wp_mail()’s default
Content Type is text/plain. And just like the mail()
function, wp_mail() allows us to set the Content Type to
text/html. You can specify a different Content Type us-
ing the wp_mail_content_type filter or by setting the fol-
lowing headers:

$headers[] = "MIME-Version: 1.0";

$headers[] = "Content-Type: text/html;

charset=ISO-8859-1";

Of course, a number of plugins allow you to manage your
email’s Content Type from the administration panel. WP
Better Emails101 is just one, but it’s one of the most appre-
ciated. This plugin forces WordPress to send HTML
emails, but it’s not its only feature. It also allows adminis-
trators to build their own email templates and to send ar-
bitrary emails for testing purposes.

Finally, the following image shows what will be deliv-
ered to a Gmail user’s inbox.

101. https://wordpress.org/plugins/wp-better-emails/

BUILDING AN ADVANCED NOTIFICATION SYSTEM FOR WORDPRESS

178

https://wordpress.org/plugins/wp-better-emails/
https://wordpress.org/plugins/wp-better-emails/
https://wordpress.org/plugins/wp-better-emails/
https://wordpress.org/plugins/wp-better-emails/
https://wordpress.org/plugins/wp-better-emails/
https://wordpress.org/plugins/wp-better-emails/

Conclusion
Our notification system is ready to be used. In building it,
we’ve toured many of WordPress’ core features: user
meta fields, custom meta boxes, custom queries, the mail-
ing from script and more. If you’re interested, download
the full code102 (ZIP file), and remember to switch each oc-
currence of the you@yourdomain.com string with your
own email address.

You can expand on this a lot more. You could integrate
this system with a third-party email management appli-
cation such as MailChimp103 or Mad Mimi104. You could

The result in Gmail: The content has been generated by our code; SMTP
parameters have been saved on WP Mail SMTP’s settings page; and the

template is provided by WP Better Emails.

102. http://provide.smashingmagazine.com/sm-email-notification.zip
103. http://mailchimp.com/
104. https://madmimi.com/

179

http://provide.smashingmagazine.com/sm-email-notification.zip
http://provide.smashingmagazine.com/sm-email-notification.zip
http://provide.smashingmagazine.com/sm-email-notification.zip
http://mailchimp.com/
http://mailchimp.com/
http://mailchimp.com/
https://madmimi.com/
https://madmimi.com/
https://madmimi.com/
http://provide.smashingmagazine.com/sm-email-notification.zip
http://provide.smashingmagazine.com/sm-email-notification.zip
http://mailchimp.com/
http://mailchimp.com/
https://madmimi.com/
https://madmimi.com/

design flashy email templates. Or you could create even
more personalized notifications.

FURTHER READINGFURTHER READING

• “Create Perfect Emails For Your WordPress Website105,”
Daniel Pataki, Smashing Magazine

• “Post Status Transitions106,” WordPress Codex

• “Plugin API/Action Reference107,” WordPress Codex

• “Plugin API/Filter Reference108,” WordPress Codex

• “Custom Fields109,” WordPress Codex

• “Creating Custom Meta Boxes110,” Plugin Handbook,
WordPress

• “Validating Sanitizing and Escaping User Data111,” Word-
Press Codex

• “Data Validation112,” WordPress Codex❧

105. http://www.smashingmagazine.com/2011/10/25/create-perfect-emails-
wordpress-website/

106. http://codex.wordpress.org/Post_Status_Transitions
107. http://codex.wordpress.org/Plugin_API/Action_Reference
108. http://codex.wordpress.org/Plugin_API/Filter_Reference
109. http://codex.wordpress.org/Custom_Fields
110. https://developer.wordpress.org/plugins/metadata/creating-custom-meta-

boxes/
111. http://codex.wordpress.org/Validating_Sanitizing_and_Escaping_User_Data
112. https://codex.wordpress.org/Data_Validation

BUILDING AN ADVANCED NOTIFICATION SYSTEM FOR WORDPRESS

180

http://www.smashingmagazine.com/2011/10/25/create-perfect-emails-wordpress-website/
http://www.smashingmagazine.com/2011/10/25/create-perfect-emails-wordpress-website/
http://www.smashingmagazine.com/2011/10/25/create-perfect-emails-wordpress-website/
http://codex.wordpress.org/Post_Status_Transitions
http://codex.wordpress.org/Post_Status_Transitions
http://codex.wordpress.org/Post_Status_Transitions
http://codex.wordpress.org/Plugin_API/Action_Reference
http://codex.wordpress.org/Plugin_API/Action_Reference
http://codex.wordpress.org/Plugin_API/Action_Reference
http://codex.wordpress.org/Plugin_API/Filter_Reference
http://codex.wordpress.org/Plugin_API/Filter_Reference
http://codex.wordpress.org/Plugin_API/Filter_Reference
http://codex.wordpress.org/Custom_Fields
http://codex.wordpress.org/Custom_Fields
http://codex.wordpress.org/Custom_Fields
https://developer.wordpress.org/plugins/metadata/creating-custom-meta-boxes/
https://developer.wordpress.org/plugins/metadata/creating-custom-meta-boxes/
https://developer.wordpress.org/plugins/metadata/creating-custom-meta-boxes/
http://codex.wordpress.org/Validating_Sanitizing_and_Escaping_User_Data
http://codex.wordpress.org/Validating_Sanitizing_and_Escaping_User_Data
http://codex.wordpress.org/Validating_Sanitizing_and_Escaping_User_Data
https://codex.wordpress.org/Data_Validation
https://codex.wordpress.org/Data_Validation
https://codex.wordpress.org/Data_Validation
http://www.smashingmagazine.com/2011/10/25/create-perfect-emails-wordpress-website/
http://www.smashingmagazine.com/2011/10/25/create-perfect-emails-wordpress-website/
http://codex.wordpress.org/Post_Status_Transitions
http://codex.wordpress.org/Post_Status_Transitions
http://codex.wordpress.org/Plugin_API/Action_Reference
http://codex.wordpress.org/Plugin_API/Action_Reference
http://codex.wordpress.org/Plugin_API/Filter_Reference
http://codex.wordpress.org/Plugin_API/Filter_Reference
http://codex.wordpress.org/Custom_Fields
http://codex.wordpress.org/Custom_Fields
https://developer.wordpress.org/plugins/metadata/creating-custom-meta-boxes/
https://developer.wordpress.org/plugins/metadata/creating-custom-meta-boxes/
http://codex.wordpress.org/Validating_Sanitizing_and_Escaping_User_Data
http://codex.wordpress.org/Validating_Sanitizing_and_Escaping_User_Data
https://codex.wordpress.org/Data_Validation
https://codex.wordpress.org/Data_Validation

How To Use Autoloading
And A Plugin Container In
WordPress Plugins

BY NICO AMARILLABY NICO AMARILLA ❧❧

Building and maintaining113 a WordPress plugin can be a
daunting task. The bigger the codebase, the harder it is to
keep track of all the working parts and their relationship
to one another. And you can add to that the limitations
imposed by working in an antiquated version of PHP, 5.2.

In this article we will explore an alternative way of de-
veloping WordPress plugins, using the lessons learned
from the greater PHP community, the world outside
WordPress. We will walk through the steps of creating a
plugin and investigate the use of autoloading and a plug-
in container.

Let’s Begin
The first thing you need to do when creating a plugin is
to give it a unique name. The name is important as it will
be the basis for all our unique identifiers (function prefix,
class prefix, textdomain, option prefix, etc.). The name
should also be unique across the wordpress.org space. It
won’t hurt if we make the name catchy. For our sample

113. https://shop.smashingmagazine.com/products/wordpress-maintenance-
keeping-your-website-safe-and-efficient

181

https://shop.smashingmagazine.com/products/wordpress-maintenance-keeping-your-website-safe-and-efficient
https://shop.smashingmagazine.com/products/wordpress-maintenance-keeping-your-website-safe-and-efficient
https://shop.smashingmagazine.com/products/wordpress-maintenance-keeping-your-website-safe-and-efficient
https://shop.smashingmagazine.com/products/wordpress-maintenance-keeping-your-website-safe-and-efficient
https://shop.smashingmagazine.com/products/wordpress-maintenance-keeping-your-website-safe-and-efficient

plugin I chose the name Simplarity, a play on the words
“simple” and “clarity”.

We’ll assume you have a working WordPress installa-
tion already.

FOLDER STRUCTUREFOLDER STRUCTURE

First, create a directory named simplarity inside wp-con-
tent/plugins. Inside it create the following structure:

• simplarity.php: our main plugin file

• css/: directory containing our styles

• js/: directory containing JavaScript files

• languages/: directory that will contain translation files

• src/: directory containing our classes

• views/: directory that will contain our plugin view files

THE MAIN PLUGIN FILETHE MAIN PLUGIN FILE

Open the main plugin file, simplarity.php, and add the plu-
gin information header:

<?php

/*

Plugin Name: Simplarity

Description: A plugin for smashingmagazine.com

Version: 1.0.0

License: GPL-2.0+

*/

HOW TO USE AUTOLOADING AND A PLUGIN CONTAINER IN WORDPRESS
PLUGINS

182

This information is enough for now. The plugin name,
description, and version will show up in the plugins area
of WordPress admin. The license details are important to
let your users know that this is an open source plugin. A
full list of header information can found in the Word-
Press codex114.

Autoloading
Autoloading allows you to automatically load classes us-
ing an autoloader so you don’t have to manually include
the files containing the class definitions. For example,
whenever you need to use a class, you need to do the fol-
lowing:

require_once '/path/to/classes/class-container.php';

require_once '/path/to/classes/class-view.php';

require_once '/path/to/classes/

class-settings-page.php';

$plugin = new Container();

$view = new View();

$settings_page = new SettingsPage();

With autoloading, you can use an autoloader instead of
multiple require_once115 statements. It also eliminates
the need to update these require statements whenever
you add, rename, or change the location of your classes.
That’s a big plus for maintainability.

114. http://codex.wordpress.org/Writing_a_Plugin
115. http://php.net/manual/en/function.require-once.php

183

http://codex.wordpress.org/Writing_a_Plugin
http://codex.wordpress.org/Writing_a_Plugin
http://codex.wordpress.org/Writing_a_Plugin
http://codex.wordpress.org/Writing_a_Plugin
http://php.net/manual/en/function.require-once.php
http://php.net/manual/en/function.require-once.php
http://php.net/manual/en/function.require-once.php
http://codex.wordpress.org/Writing_a_Plugin
http://codex.wordpress.org/Writing_a_Plugin
http://php.net/manual/en/function.require-once.php
http://php.net/manual/en/function.require-once.php

ADOPTING THE PEAR NAMING CONVENTIONADOPTING THE PEAR NAMING CONVENTION
FOR CLASS NAMESFOR CLASS NAMES

Before we create our autoloader we need to create a con-
vention for our class names and their location in the file
system. This will aid the autoloader in mapping out the
class to its source file.

For our class names we will adopt the PEAR naming
convention116. The gist is that class names are alphabetic
characters in StudlyCaps. Each level of the hierarchy is
separated with a single underscore. Class names will di-
rectly map to the directories in which they are stored.

It’s easier to illustrate it using examples:

• A class named Simplarity_Plugin would be defined in the
file src/Simplarity/Plugin.php.

• A class named Simplarity_SettingsPage would be defined
in src/Simplarity/SettingsPage.php.

As you can see with this convention, the autoloader will
just replace the underscores with directory separators to
locate the class definition.

WHAT ABOUT THE WORDPRESS CODING STAN-WHAT ABOUT THE WORDPRESS CODING STAN-
DARDS FOR CLASS NAMES?DARDS FOR CLASS NAMES?

As you might be aware, WordPress has its own naming
convention117 for class names. It states:

116. http://pear.php.net/manual/en/standards.naming.php
117. https://make.wordpress.org/core/handbook/coding-standards/php/#naming-

conventions

HOW TO USE AUTOLOADING AND A PLUGIN CONTAINER IN WORDPRESS
PLUGINS

184

http://pear.php.net/manual/en/standards.naming.php
http://pear.php.net/manual/en/standards.naming.php
http://pear.php.net/manual/en/standards.naming.php
http://pear.php.net/manual/en/standards.naming.php
https://make.wordpress.org/core/handbook/coding-standards/php/#naming-conventions
https://make.wordpress.org/core/handbook/coding-standards/php/#naming-conventions
https://make.wordpress.org/core/handbook/coding-standards/php/#naming-conventions
https://make.wordpress.org/core/handbook/coding-standards/php/#naming-conventions
http://pear.php.net/manual/en/standards.naming.php
http://pear.php.net/manual/en/standards.naming.php
https://make.wordpress.org/core/handbook/coding-standards/php/#naming-conventions
https://make.wordpress.org/core/handbook/coding-standards/php/#naming-conventions

“Class names should use capitalized words separated by
underscores. Any acronyms should be all upper case. […]
Class file names should be based on the class name with
class- prepended and the underscores in the class
name replaced with hyphens, for example WP_Error be-
comes class-wp-error.php”

I know that we should follow the standards of the plat-
form that we are developing on. However, we suggest us-
ing the PEAR naming convention because:

• WP coding standards do not cover autoloading.

• WP does not follow its own coding standards. Examples:
class.wp-scripts.php and SimplePie. This is understandable
since WordPress grew organically.

• Interoperability allows you to easily use third-party li-
braries that follow the PEAR naming convention, like
Twig. And conversely, you can easily port your code to
other libraries sharing the same convention.

• It’s important your autoloader is future-ready. When
WordPress decides to up the ante and finally move to
PHP 5.3 as its minimum requirement, you can easily up-
date the code to be PSR-0 or PSR-4-compatible and take
advantage of the built-in namespaces instead of using
prefixes. This is a big plus for interoperability.

Note that we are only using this naming convention for
classes. The rest of our code will still follow the Word-
Press coding standards. It’s important to follow and re-

185

spect the standards of the platform that we are develop-
ing on.

Now that we have fully covered the naming conven-
tion, we can finally build our autoloader.

Building Our Autoloader
Open our main plugin file and add the following code be-
low the plugin information header:

spl_autoload_register('simplarity_autoloader');

function simplarity_autoloader($class_name) {

if (false !== strpos($class_name, 'Simplarity')

) {

$classes_dir = realpath(plugin_dir_path(

__FILE__)) . DIRECTORY_SEPARATOR . 'src' .

DIRECTORY_SEPARATOR;

$class_file = str_replace('_',

DIRECTORY_SEPARATOR, $class_name) . '.php';

require_once $classes_dir . $class_file;

}

}

At the heart of our autoloading mechanism is PHP’s built
in spl_autoload_register118 function. All it does is regis-
ter a function to be called automatically when your code
references a class that hasn’t been loaded yet.

The first line tells spl_autoload_register to register
our function named simplarity_autoloader:

118. http://php.net/manual/en/function.spl-autoload-register.php

HOW TO USE AUTOLOADING AND A PLUGIN CONTAINER IN WORDPRESS
PLUGINS

186

http://php.net/manual/en/function.spl-autoload-register.php
http://php.net/manual/en/function.spl-autoload-register.php
http://php.net/manual/en/function.spl-autoload-register.php
http://php.net/manual/en/function.spl-autoload-register.php
http://php.net/manual/en/function.spl-autoload-register.php

spl_autoload_register('simplarity_autoloader');

Next we define the simplarity_autoloader function:

function simplarity_autoloader($class_name) {

…

}

Notice that it accepts a $class_name parameter. This pa-
rameter holds the class name. For example when you in-
stantiate a class using $plugin = new Simplarity_Plug-
in(), $class_name will contain the string “Simplari-
ty_Plugin”. Since we are adding this function in the glob-
al space, it’s important that we have it prefixed with
simplarity_.

The next line checks if $classname contains the string
“Simplarity” which is our top level namespace:

if (false !== strpos($class_name, 'Simplarity')) {

This will ensure that the autoloader will only run on our
classes. Without this check, our autoloader will run every
time an unloaded class is referenced, even if the class is
not ours, which is not ideal.

The next line constructs the path to the directory
where our classes reside:

$classes_dir = realpath(plugin_dir_path(__FILE__)

) . DIRECTORY_SEPARATOR . 'src' . DIRECTORY_SEPARATOR;

187

It uses WP’s plugin_dir_path119 to get the plugin root di-
rectory. __FILE__ is a magic constant120 that contains the
full path and filename of the current file. DIRECTORY_-
SEPARATOR is a predefined constant that contains either a
forward slash or backslash depending on the OS your
web server is on. We also use realpath121 to normalize
the file path.

This line resolves the path to the class definition file:

$class_file = str_replace('_', DIRECTORY_SEPARATOR,

$class_name) . '.php';

It replaces the underscore (_) in $class_name with the di-
rectory separator and appends .php.

Finally, this line builds the file path to the definition
and includes the file using require_once:

require_once $classes_dir . $class_file;

That’s it! You now have an autoloader. Say goodbye to
long lines of require_once statements.

Plugin Container
A plugin container is a special class that holds together
our plugin code. It simplifies the interaction between the
many working parts of your code by providing a central-
ized location to manage the configuration and objects.

119. http://codex.wordpress.org/Function_Reference/plugin_dir_path
120. http://php.net/manual/en/language.constants.predefined.php
121. http://php.net/manual/en/function.realpath.php

HOW TO USE AUTOLOADING AND A PLUGIN CONTAINER IN WORDPRESS
PLUGINS

188

http://codex.wordpress.org/Function_Reference/plugin_dir_path
http://codex.wordpress.org/Function_Reference/plugin_dir_path
http://codex.wordpress.org/Function_Reference/plugin_dir_path
http://php.net/manual/en/language.constants.predefined.php
http://php.net/manual/en/language.constants.predefined.php
http://php.net/manual/en/language.constants.predefined.php
http://php.net/manual/en/function.realpath.php
http://php.net/manual/en/function.realpath.php
http://php.net/manual/en/function.realpath.php
http://codex.wordpress.org/Function_Reference/plugin_dir_path
http://codex.wordpress.org/Function_Reference/plugin_dir_path
http://php.net/manual/en/language.constants.predefined.php
http://php.net/manual/en/language.constants.predefined.php
http://php.net/manual/en/function.realpath.php
http://php.net/manual/en/function.realpath.php

USES OF OUR PLUGIN CONTAINERUSES OF OUR PLUGIN CONTAINER

Here are the things we can expect from the plugin con-
tainer:

Store global parameters in a single locationStore global parameters in a single location

Often you’ll find this code in plugins:

define('SIMPLARITY_VERSION', '1.0.0');

define('SIMPLARITY_PATH', realpath(plugin_dir_path(

__FILE__)) . DIRECTORY_SEPARATOR);

define('SIMPLARITY_URL', plugin_dir_url(__FILE__)

);

Instead of doing that, we could do this instead:

$plugin = new Simplarity_Plugin();

$plugin['version] = '1.0.0';

$plugin['path'] = realpath(plugin_dir_path(__FILE__

)) . DIRECTORY_SEPARATOR;

$plugin['url'] = plugin_dir_url(__FILE__);

This has the added benefit of not polluting the global
namespace with our plugin’s constants, which in most
cases aren’t needed by other plugins.

Store objects in a single locationStore objects in a single location

Instead of scattering our class instantiations everywhere
in our codebase we can just do this in a single location:

$plugin = new Simplarity_Plugin();

/…/

189

$plugin['scripts'] = new Simplarity_Scripts(); // A

class that loads JavaScript files

Service definitionsService definitions

This is the most powerful feature of the container. A ser-
vice is an object that does something as part of a larger
system. Services are defined by functions that return an
instance of an object. Almost any global object can be a
service.

$plugin['settings_page'] = function ($plugin) {

return new SettingsPage(

$plugin['settings_page_properties']);

};

Services result in lazy initialization whereby objects are
only instantiated and initialized when needed.

It also allows us to easily implement a self-resolving
dependency injection design. An example:

$plugin = new Plugin();

$plugin['door_width'] = 100;

$plugin['door_height'] = 500;

$plugin['door_size'] = function ($plugin) {

return new DoorSize($plugin['door_width'],

$plugin['door_height']);

};

$plugin['door'] = function ($plugin) {

return new Door($plugin['door_size']);

};

$plugin['window'] = function ($plugin) {

HOW TO USE AUTOLOADING AND A PLUGIN CONTAINER IN WORDPRESS
PLUGINS

190

return new Window();

};

$plugin['house'] = function ($plugin) {

return new House($plugin['door'],

$plugin['window']);

};

$house = $plugin['house'];

This is roughly equivalent to:

$door_width = 100;

$door_height = 500;

$door_size = new DoorSize($door_width, $door_height

);

$door = new Door($door_size);

$window = new Window();

$house = new House($door, $window);

Whenever we get an object, as in $house = $plugin[
'house'];, the object is created (lazy initialization) and
dependencies are resolved automatically.

Building The Plugin Container
Let’s start by creating the plugin container class. We will
name it “Simplarity_Plugin”. As our naming convention
dictates, we should create a corresponding file: src/Sim-
plarity/Plugin.php.

Open Plugin.php and add the following code:

<?php

class Simplarity_Plugin implements ArrayAccess {

191

protected $contents;

public function __construct() {

$this->contents = array();

}

public function offsetSet($offset, $value) {

$this->contents[$offset] = $value;

}

public function offsetExists($offset) {

return isset($this->contents[$offset]);

}

public function offsetUnset($offset) {

unset($this->contents[$offset]);

}

public function offsetGet($offset) {

if(is_callable($this->contents[$offset])){

return call_user_func(

$this->contents[$offset], $this);

}

return isset($this->contents[$offset]) ?

$this->contents[$offset] : null;

}

public function run(){

foreach($this->contents as $key => $content){

HOW TO USE AUTOLOADING AND A PLUGIN CONTAINER IN WORDPRESS
PLUGINS

192

// Loop on contents

if(is_callable($content)){

$content = $this[$key];

}

if(is_object($content)){

$reflection = new ReflectionClass($content);

if($reflection->hasMethod('run')){

$content->run(); // Call run method on

// object

}

}

}

}

}

The class implements the ArrayAccess interface:

class Simplarity_Plugin implements ArrayAccess {

This allows us to use it like PHP’s array:

$plugin = new Simplarity_Plugin();

$plugin['version'] = '1.0.0'; // Simplicity is beauty

The functions offsetSet, offsetExists, offsetUnset
and offsetGet are required by ArrayAccess to be imple-
mented. The run function will loop through the contents
of the container and run the runnable objects.

To better illustrate our plugin container, let’s start by
building a sample plugin.

193

Example Plugin: A Settings Page
This plugin will add a settings page named “Simplarity”
under WordPress Admin → Settings.

Let’s go back to the main plugin file. Open up simplari-
ty.php and add the following code. Add this below the au-
toloader code:

add_action('plugins_loaded', 'simplarity_init');

// Hook initialization function

function simplarity_init() {

$plugin = new Simplarity_Plugin(); // Create

// container

$plugin['path'] = realpath(plugin_dir_path(

__FILE__)) . DIRECTORY_SEPARATOR;

$plugin['url'] = plugin_dir_url(__FILE__);

$plugin['version'] = '1.0.0';

$plugin['settings_page_properties'] = array(

'parent_slug' => 'options-general.php',

'page_title' => 'Simplarity',

'menu_title' => 'Simplarity',

'capability' => 'manage_options',

'menu_slug' => 'simplarity-settings',

'option_group' => 'simplarity_option_group',

'option_name' => 'simplarity_option_name'

);

$plugin['settings_page'] = new

Simplarity_SettingsPage(

$plugin['settings_page_properties']);

$plugin->run();

}

HOW TO USE AUTOLOADING AND A PLUGIN CONTAINER IN WORDPRESS
PLUGINS

194

Here we use WP’s add_action to hook our function sim-
plarity_init into plugins_loaded:

add_action('plugins_loaded', 'simplarity_init');

This is important as this will make our plugin overridable
by using remove_action. An example use case would be a
premium plugin overriding the free version.

Function simplarity_init contains our plugin’s ini-
tialization code. At the start, we simply instantiate our
plugin container:

$plugin = new Simplarity_Plugin();

These lines assign global configuration data:

$plugin['path'] = realpath(plugin_dir_path(__FILE__

)) . DIRECTORY_SEPARATOR;

$plugin['url'] = plugin_dir_url(__FILE__);

$plugin['version'] = '1.0.0';

The plugin path contains the full path to our plugin, the
url contains the URL to our plugin directory. They will
come in handy whenever we need to include files and as-
sets. version contains the current version of the plugin
that should match the one in the header info. Useful
whenever you need to use the version in code.

This next code assigns various configuration data to
settings_page_properties:

$plugin['settings_page_properties'] = array(

'parent_slug' => 'options-general.php',

'page_title' => 'Simplarity',

195

'menu_title' => 'Simplarity',

'capability' => 'manage_options',

'menu_slug' => 'simplarity-settings',

'option_group' => 'simplarity_option_group',

'option_name' => 'simplarity_option_name'

);

These configuration data are related to WP settings
API122.

This next code instantiates the settings page, passing
along settings_page_properties:

$plugin['settings_page'] = new

Simplarity_SettingsPage(

$plugin['settings_page_properties']);

The run method is where the fun starts:

$plugin->run();

It will call Simplarity_SettingsPage‘s own run method.

THETHE SIMPLARITY_SETTINGSPAGE CLASSCLASS

Now we need to create the Simplarity_SettingsPage
class. It’s a class that groups together the settings API
functions.

Create a file named SettingsPage.php in src/Simplarity/.
Open it and add the following code:

122. http://codex.wordpress.org/Settings_API

HOW TO USE AUTOLOADING AND A PLUGIN CONTAINER IN WORDPRESS
PLUGINS

196

http://codex.wordpress.org/Settings_API
http://codex.wordpress.org/Settings_API
http://codex.wordpress.org/Settings_API
http://codex.wordpress.org/Settings_API
http://codex.wordpress.org/Settings_API
http://codex.wordpress.org/Settings_API

<?php

class Simplarity_SettingsPage {

protected $settings_page_properties;

public function __construct(

$settings_page_properties){

$this->settings_page_properties =

$settings_page_properties;

}

public function run() {

add_action('admin_menu', array($this,

'add_menu_and_page'));

add_action('admin_init', array($this,

'register_settings'));

}

public function add_menu_and_page() {

add_submenu_page(

$this->settings_page_properties['parent_slug'],

$this->settings_page_properties['page_title'],

$this->settings_page_properties['menu_title'],

$this->settings_page_properties['capability'],

$this->settings_page_properties['menu_slug'],

array($this, 'render_settings_page')

);

}

public function register_settings() {

197

register_setting(

$this->settings_page_properties['option_group'],

$this->settings_page_properties['option_name']

);

}

public function get_settings_data(){

return get_option(

$this->settings_page_properties['option_name'],

$this->get_default_settings_data());

}

public function render_settings_page() {

$option_name =

$this->settings_page_properties['option_name'];

$option_group =

$this->settings_page_properties['option_group'];

$settings_data = $this->get_settings_data();

?>

<div class="wrap">

<h2>Simplarity</h2>

<p>This plugin is using the settings API.</p>

<form method="post" action="options.php">

<?php

settings_fields(

$this->plugin['settings_page_properties']

['option_group']);

?>

<table class="form-table">

HOW TO USE AUTOLOADING AND A PLUGIN CONTAINER IN WORDPRESS
PLUGINS

198

<tr>

<th><label for="textbox">Textbox:

</label></th>

<td>

<input type="text" id="textbox"

name="<?php echo esc_attr(

$option_name."[textbox]"); ?>"

value="<?php echo esc_attr(

$settings_data['textbox']); ?>" />

</td>

</tr>

</table>

<input type="submit" name="submit"

id="submit" class="button button-primary"

value="Save Options">

</form>

</div>

<?php

}

public function get_default_settings_data() {

$defaults = array();

$defaults['textbox'] = '';

return $defaults;

}

}

The class property $settings_page_properties stores
the settings related to WP settings API:

199

<?php

class Simplarity_SettingsPage {

protected $settings_page_properties;

The constructor function accepts the settings_page_-
properties and stores it:

public function __construct(

$settings_page_properties){

$this->settings_page_properties =

$settings_page_properties;

}

The values are passed from this line in the main plugin
file:

$plugin['settings_page'] = new

Simplarity_SettingsPage(

$plugin['settings_page_properties']);

The run function is use to run startup code:

public function run() {

add_action('admin_menu', array($this,

'add_menu_and_page'));

add_action('admin_init', array($this,

'register_settings'));

}

The most likely candidate for startup code are filters123

and action hooks124. Here we add the action hooks related

123. http://codex.wordpress.org/Plugin_API/Filter_Reference

HOW TO USE AUTOLOADING AND A PLUGIN CONTAINER IN WORDPRESS
PLUGINS

200

http://codex.wordpress.org/Plugin_API/Filter_Reference
http://codex.wordpress.org/Plugin_API/Filter_Reference
http://codex.wordpress.org/Plugin_API/Filter_Reference
http://codex.wordpress.org/Plugin_API/Hooks
http://codex.wordpress.org/Plugin_API/Hooks
http://codex.wordpress.org/Plugin_API/Hooks
http://codex.wordpress.org/Plugin_API/Filter_Reference
http://codex.wordpress.org/Plugin_API/Filter_Reference

to our settings page. Do not confuse this run method
with the run method of the plugin container. This run
method belongs to the settings page class.

This line hooks the add_menu_and_page function on to
the admin_menu action:

add_action('admin_menu', array($this,

'add_menu_and_page'));

Function add_submenu_page in turn calls WP’s
add_submenu_page125 function to add a link under the WP
Admin → Settings:

public function add_menu_and_page() {

add_submenu_page(

$this->settings_page_properties['parent_slug'],

$this->settings_page_properties['page_title'],

$this->settings_page_properties['menu_title'],

$this->settings_page_properties['capability'],

$this->settings_page_properties['menu_slug'],

array($this, 'render_settings_page')

);

}

As you can see, we are pulling the info from our class
property $settings_page_properties which we speci-
fied in the main plugin file.

124. http://codex.wordpress.org/Plugin_API/Hooks
125. http://codex.wordpress.org/add_submenu_page

201

http://codex.wordpress.org/add_submenu_page
http://codex.wordpress.org/add_submenu_page
http://codex.wordpress.org/add_submenu_page
http://codex.wordpress.org/Plugin_API/Hooks
http://codex.wordpress.org/Plugin_API/Hooks
http://codex.wordpress.org/add_submenu_page
http://codex.wordpress.org/add_submenu_page

The parameters for add_submenu_page are:

• parent_slug: slug name for the parent menu

• page_title: text to be displayed in the <title> element
of the page when the menu is selected

• menu_title: text to be used for the menu

• capability: the capability required for this menu to be
displayed to the user

• menu_slug: slug name to refer to this menu by (should be
unique for this menu)

• function: function to be called to output the content for
this page

This line hooks the register_settings function on to
the admin_init action:

add_action('admin_init', array($this,

'register_settings'));

array($this, 'register_settings') means to call
register_settings on $this, which points to our
SettingsPage instance.

The register_settings then calls WP’s regis-
ter_setting to register a setting:

public function register_settings() {

register_setting(

$this->settings_page_properties['option_group'],

HOW TO USE AUTOLOADING AND A PLUGIN CONTAINER IN WORDPRESS
PLUGINS

202

$this->settings_page_properties['option_name']

);

}

Function render_settings_page is responsible for ren-
dering the page:

public function render_settings_page() {

$option_name =

$this->settings_page_properties['option_name'];

$option_group =

$this->settings_page_properties['option_group'];

$settings_data = $this->get_settings_data();

?>

<div class="wrap">

<h2>Simplarity</h2>

<p>This plugin is using the settings API.</p>

<form method="post" action="options.php">

<?php

settings_fields($option_group);

?>

<table class="form-table">

<tr>

<th><label for="textbox">Textbox:

</label></th>

<td>

<input type="text" id="textbox"

name="<?php echo esc_attr(

$option_name."[textbox]"); ?>"

value="<?php echo esc_attr(

203

$settings_data['textbox']); ?>" />

</td>

</tr>

</table>

<input type="submit" name="submit" id="submit"

class="button button-primary" value="Save

Options">

</form>

</div>

<?php

}

We hooked render_settings_page earlier using
add_submenu_page.

Function get_settings_data is a wrapper function
for get_option:

public function get_settings_data(){

return get_option(

$this->plugin['settings_page_properties']

['option_name']);

}

This is to easily get the settings data with a single func-
tion call.

Function get_default_settings_data is used to sup-
ply us with our own default values:

public function get_default_settings_data() {

$defaults = array();

$defaults['textbox'] = '';

HOW TO USE AUTOLOADING AND A PLUGIN CONTAINER IN WORDPRESS
PLUGINS

204

return $defaults;

}

Abstracting Our Settings Page Class
Right now our settings page class cannot be reused if you
want to create another subpage. Let’s move the reusable
code for the settings page to another class.

Let’s call this class Simplarity_WpSubPage. Go ahead
and create the file src/Simplarity/WpSubPage.php.

Now add the code below:

<?php

abstract class Simplarity_WpSubPage {

protected $settings_page_properties;

public function __construct(

$settings_page_properties){

$this->settings_page_properties =

$settings_page_properties;

}

public function run() {

add_action('admin_menu', array($this,

'add_menu_and_page'));

add_action('admin_init', array($this,

'register_settings'));

}

public function add_menu_and_page() {

205

add_submenu_page(

$this->settings_page_properties['parent_slug'],

$this->settings_page_properties['page_title'],

$this->settings_page_properties['menu_title'],

$this->settings_page_properties['capability'],

$this->settings_page_properties['menu_slug'],

array($this, 'render_settings_page')

);

}

public function register_settings() {

register_setting(

$this->settings_page_properties['option_group'],

$this->settings_page_properties['option_name']

);

}

public function get_settings_data(){

return get_option(

$this->settings_page_properties['option_name'],

$this->get_default_settings_data());

}

public function render_settings_page(){

}

HOW TO USE AUTOLOADING AND A PLUGIN CONTAINER IN WORDPRESS
PLUGINS

206

public function get_default_settings_data() {

$defaults = array();

return $defaults;

}

}

Notice that it is an abstract class. This will prevent intan-
tiating this class directly. To use it you need to extend it
first with another class, which in our case is Simplari-
ty_SettingsPage:

<?php

class Simplarity_SettingsPage extends

Simplarity_WpSubPage {

public function render_settings_page() {

$option_name =

$this->settings_page_properties['option_name'];

$option_group =

$this->settings_page_properties['option_group'];

$settings_data = $this->get_settings_data();

?>

<div class="wrap">

<h2>Simplarity</h2>

<p>This plugin is using the settings API.</p>

<form method="post" action="options.php">

<?php

settings_fields($option_group);

?>

207

<table class="form-table">

<tr>

<th><label for="textbox">Textbox:

</label></th>

<td>

<input type="text" id="textbox"

name="<?php echo esc_attr(

$option_name."[textbox]"); ?>"

value="<?php echo esc_attr(

$settings_data['textbox']);?>"

/>

</td>

</tr>

</table>

<input type="submit" name="submit" id="submit"

class="button button-primary" value="Save

Options">

</form>

</div>

<?php

}

public function get_default_settings_data() {

$defaults = array();

defaults['textbox'] = '';

return $defaults;

}

}

HOW TO USE AUTOLOADING AND A PLUGIN CONTAINER IN WORDPRESS
PLUGINS

208

The only functions we have implemented are render_-
settings_page and get_default_settings_data, which
are customized to this settings page.

To create another WP settings page you’ll just need to
create a class and extend the Simplarity_WpSubPage. And
implement your own render_settings_page and
get_default_settings_data.

Defining A Service
The power of the plugin container is in defining services.
A service is a function that contains instantiation and ini-
tialization code that will return an object. Whenever we
pull a service from our container, the service function is
called and will create the object for you. The object is only
created when needed. This is called lazy initialization.

To better illustrate this, let’s define a service for our
settings page.

Open simplarity.php and add this function below the
Simplarity code:

function simplarity_service_settings($plugin){

$object = new Simplarity_SettingsPage(

$plugin['settings_page_properties']);

return $object;

}

Notice that our service function has a $plugin parameter
which contains our plugin container. This allows us to ac-
cess all configuration, objects, and services that have
been stored in our plugin container. We can see that the

209

Simplarity_SettingsPage has a dependency on $plug-
in['settings_page_properties']. We inject this depen-
dency to Simplarity_SettingsPage here. This is an ex-
ample of dependency injection. Dependency injection is a
practice where objects are designed in a manner where
they receive instances of the objects from other pieces of
code, instead of constructing them internally. This im-
proves decoupling of code.

Now let’s replace this line in simplarity_init:

$plugin['settings_page'] = new

Simplarity_SettingsPage(

$plugin['settings_page_properties']);

with a service definition assignment:

$plugin['settings_page'] =

'simplarity_service_settings'

So instead of assigning our object instance directly, we
assign the name of our function as string. Our container
handles the rest.

Defining A Shared Service
Right now, every time we get $plugin['settings_-
page'], a new instance of Simplarity_SettingsPage is
returned. Ideally, Simplarity_SettingsPage should only
be instantiated once as we are using WP hooks, which in
turn should only be registered once.

HOW TO USE AUTOLOADING AND A PLUGIN CONTAINER IN WORDPRESS
PLUGINS

210

To solve this we use a shared service. A shared service
will return a new instance of an object on first call, on
succeeding calls it will return the same instance.

Let’s create a shared service using a static variable:

function simplarity_service_settings($plugin){

static $object;

if (null !== $object) {

return $object;

}

$object = new Simplarity_SettingsPage(

$plugin['settings_page_properties']);

return $object;

}

On first call, $object is null, and on succeeding calls it
will contain the instance of the object created on first call.
Notice that we are using a static variable. A static variable
exists only in a local function scope, but it does not lose
its value when program execution leaves this scope.

That’s it.
Now if you activate the plugin, an admin menu will

appear in Admin → Settings named “Simplarity”. Click on
it and you will be taken to the settings page we have cre-
ated.

211

The Future: PHP 5.3+
Earlier we mentioned that our class naming convention
was future-ready. In this section we will discuss how our
codebase will work in PHP version 5.3 and up. Two of the
best features that have graced the PHP world are name-
spaces and anonymous functions.

NAMESPACESNAMESPACES

PHP does not allow two classes or functions to share the
same name. When this happens, a name collision occurs
and causes a nasty error.

With namespaces you can have the same class names
as long as they live in their own namespace. A good analo-

Settings Page In Action

HOW TO USE AUTOLOADING AND A PLUGIN CONTAINER IN WORDPRESS
PLUGINS

212

gy for namespaces are the folders you have in your OS.
You cannot have files with the same name in one folder.
However, you can have the same filenames in different
folders.

With namespaces, class and function names won’t
need unique prefixes anymore.

ANONYMOUS FUNCTIONSANONYMOUS FUNCTIONS

Anonymous functions, also known as closures, allow the
creation of functions which have no specified name. They
are most useful as the value of callback parameters, but
they have many other uses. You can also store closures in
variables.

Here’s an example of closure:

<?php

$greet = function($name) {

printf("Hello %s\r\n", $name);

};

$greet('World');

$greet('PHP');

Using Namespaces In Classes
Let’s go ahead and use namespaces in our class defini-
tions. Open up the following files in src/Simplarity:

• Plugin.php

• SettingsPage.php

213

• WpSubPage.php

In each of these files, add a namespace declaration on top
and remove the “Simplarity_” prefix on class names:

// Plugin.php

namespace Simplarity;

class Plugin {

...

// SettingsPage.php

namespace Simplarity;

class SettingsPage extends WpSubPage {

...

// WpSubPage.php

namespace Simplarity;

abstract class WpSubPage {

...

Since we have updated our class names we also need to
update our class instantiations in simplarity.php. We do
this by deleting the prefixes:

function simplarity_init() {

$plugin = new Plugin();

...

}

...

HOW TO USE AUTOLOADING AND A PLUGIN CONTAINER IN WORDPRESS
PLUGINS

214

function simplarity_service_settings($plugin){

...

$object = new SettingsPage(

$plugin['settings_page_properties']);

return $object;

}

By default, PHP will try to load the class from the root
namespace so we need to tell it about our namespaced
classes. We add this to the top of simplarity.php just above
the autoloader code:

use Simplarity\Plugin;

use Simplarity\SettingsPage;

This is called importing/aliasing with the use operator126.

Updating The Autoloader
Open up simplarity.php and change this line in the au-
toloader from:

$class_file = str_replace('_', DIRECTORY_SEPARATOR,

$class_name) . '.php';

to:

$class_file = str_replace('\\', DIRECTORY_SEPARATOR,

$class_name) . '.php';

126. http://php.net/manual/en/language.namespaces.importing.php

215

http://php.net/manual/en/language.namespaces.importing.php
http://php.net/manual/en/language.namespaces.importing.php
http://php.net/manual/en/language.namespaces.importing.php
http://php.net/manual/en/language.namespaces.importing.php
http://php.net/manual/en/language.namespaces.importing.php

Remember that in 5.2 code we are using underscores as
hierarchy separators. For 5.3+ we are using namespaces
which use backslash “\” as hierarchy separators. Thus we
simply swap “_” for “\”. We use another backslash to es-
cape the original one: “\\”.

Updating Our Service Definitions To Use
Anonymous Functions
We can now replace the global functions we created for
our service definitions with anonymous functions. So in-
stead of doing this:

function simplarity_init() {

...

$plugin['settings_page'] =

'simplarity_service_settings';

...

}

...

function simplarity_service_settings($plugin){

static $object;

if (null !== $object) {

return $object;

}

$object = new Simplarity_SettingsPage(

$plugin['settings_page_properties']);

return $object;

}

HOW TO USE AUTOLOADING AND A PLUGIN CONTAINER IN WORDPRESS
PLUGINS

216

we can just replace this with an inline anonymous func-
tion:

function simplarity_init() {

$plugin = new Plugin();

...

$plugin['settings_page'] = function ($plugin) {

static $object;

if (null !== $object) {

return $object;

}

return new SettingsPage(

$plugin['settings_page_properties']);

};

...

}

Using Pimple As A Plugin Container
Pimple is a small dependency injection (DI) container for
PHP 5.3+. Pimple has the same syntax as our simple plug-
in container. In fact our plugin container was inspired by
Pimple. In this part, we will extend Pimple and use it.

Download Pimple container from GitHub127 and save
it in src/Simplarity/Pimple.php.

Open up Pimple.php and replace the namespace and
the classname to:

127. https://raw.githubusercontent.com/silexphp/Pimple/master/src/Pimple/
Container.php

217

https://raw.githubusercontent.com/silexphp/Pimple/master/src/Pimple/Container.php
https://raw.githubusercontent.com/silexphp/Pimple/master/src/Pimple/Container.php
https://raw.githubusercontent.com/silexphp/Pimple/master/src/Pimple/Container.php
https://raw.githubusercontent.com/silexphp/Pimple/master/src/Pimple/Container.php
https://raw.githubusercontent.com/silexphp/Pimple/master/src/Pimple/Container.php

...

namespace Simplarity;

/**

* Container main class.

*

* @author Fabien Potencier

*/

class Pimple implements \ArrayAccess

...

Open up Plugin.php and replace all the code with:

<?php

namespace Simplarity;

class Plugin extends Pimple {

public function run(){

foreach($this->values as $key => $content){

// Loop on contents

$content = $this[$key];

if(is_object($content)){

$reflection = new \ReflectionClass($content

);

if($reflection->hasMethod('run')){

$content->run(); // Call run method on

// object

}

}

HOW TO USE AUTOLOADING AND A PLUGIN CONTAINER IN WORDPRESS
PLUGINS

218

}

}

}

Now let’s change the service definition in simplarity.php
to:

$plugin['settings_page'] = function ($plugin) {

return new SettingsPage(

$plugin['settings_page_properties']);

};

By default, each time you get a service, Pimple returns the
same instance of it. If you want a different instance to be
returned for all calls, wrap your anonymous function
with the factory() method:

$plugin['image_resizer'] = $plugin->factory(function

($plugin) {

return new ImageResizer($plugin['image_dir']);

});

Conclusion
The PHP community is big. A lot of best practices have
been learned over the years. It’s good to always look be-
yond the walled garden of WordPress to look for answers.
With autoloading and a plugin container we are one step
closer to better code.

219

CODE SAMPLESCODE SAMPLES

• Simplarity: settings page128

• Simplarity: settings page (PHP5.3+)129

RESOURCESRESOURCES

• PEAR naming standards130

• Namespaces explanation131

• Pimple (a small DI container)132❧

128. https://github.com/kosinix/simplarity
129. https://github.com/kosinix/simplarity-php53
130. http://pear.php.net/manual/en/standards.naming.php
131. http://daylerees.com/php-namespaces-explained
132. https://github.com/silexphp/Pimple

HOW TO USE AUTOLOADING AND A PLUGIN CONTAINER IN WORDPRESS
PLUGINS

220

https://github.com/kosinix/simplarity
https://github.com/kosinix/simplarity
https://github.com/kosinix/simplarity
https://github.com/kosinix/simplarity-php53
https://github.com/kosinix/simplarity-php53
https://github.com/kosinix/simplarity-php53
http://pear.php.net/manual/en/standards.naming.php
http://pear.php.net/manual/en/standards.naming.php
http://pear.php.net/manual/en/standards.naming.php
http://daylerees.com/php-namespaces-explained
http://daylerees.com/php-namespaces-explained
http://daylerees.com/php-namespaces-explained
https://github.com/silexphp/Pimple
https://github.com/silexphp/Pimple
https://github.com/silexphp/Pimple
https://github.com/kosinix/simplarity
https://github.com/kosinix/simplarity
https://github.com/kosinix/simplarity-php53
https://github.com/kosinix/simplarity-php53
http://pear.php.net/manual/en/standards.naming.php
http://pear.php.net/manual/en/standards.naming.php
http://daylerees.com/php-namespaces-explained
http://daylerees.com/php-namespaces-explained
https://github.com/silexphp/Pimple
https://github.com/silexphp/Pimple

How To Deploy WordPress
Plugins With GitHub Using
Transients

BY MATTHEW RAYBY MATTHEW RAY ❧❧

If you’ve worked with WordPress for a while, you may
have tried your hand at writing a plugin. Many develop-
ers will start creating plugins to enhance a custom theme
or to modularize their code. Eventually, though, you may
want to distribute your plugin to a wider audience.

While you always have the option to use the Word-
Press Subversion repository, there may be instances
where you prefer to host a plugin yourself. Perhaps you
are offering your users a premium plugin. Maybe you
need a way to keep your client’s code in sync across mul-
tiple sites. It could simply be that you want to use a Git
workflow instead of Subversion. Whatever the reason,
this tutorial will show you how to set up a GitHub reposi-
tory to push updates to your plugin, wherever it resides.

The Plan
Before we get too far into the code we should start with
an outline of what we will be doing:

1. First, we will learn a little bit about transients and how
they work within WordPress.

2. Then, we will build a PHP class to house all of our code.

221

3. Next, we are going to connect our plugin to GitHub.

4. Lastly, we will create the interface elements that allow
users to interact with our plugin.

When you finish this article you should have a fully func-
tioning plugin that will update directly using GitHub re-
leases. Ready to get started?

WordPress Transients
First of all, what are WordPress transients133? WordPress
transients are a short-lived entry of data that is stored for
a defined duration and will be automatically removed
when it has expired — think of them as server-side cook-
ies. WordPress uses transients to store information about
all of the plugins that have been installed, including their
version number. Every once in a while WordPress will re-
fresh the data that is stored in the transient. It is this
event that WordPress uses to check the Subversion repos-
itory for updated plugins. It is also this event that we will
use to check for updates on our own plugin on GitHub.

Getting Started
Let’s begin by setting up our updater class:

class Smashing_Updater {

protected $file;

133. https://codex.wordpress.org/Transients_API

HOW TO DEPLOY WORDPRESS PLUGINS WITH GITHUB USING
TRANSIENTS

222

https://codex.wordpress.org/Transients_API
https://codex.wordpress.org/Transients_API
https://codex.wordpress.org/Transients_API
https://codex.wordpress.org/Transients_API
https://codex.wordpress.org/Transients_API

public function __construct($file) {

$this->file = $file;

return $this;

}

}

The first thing we must do is create a class name and a
constructor (the class name can be anything you want).
We are going to need to figure out some basic informa-
tion about the WordPress plugin we are updating, includ-
ing the version number. We’ll do this by passing the main
plugin file’s path into our updater and then we’ll assign
that value to a property.

You might be wondering why we need to pass the plu-
gin’s path into our class. You see, the way WordPress
stores plugin information is by using the main plugin
file’s path as a unique identifier (i.e. the basename). Let’s
say our plugin is in the directory /wp-content/plugins/
smashing-plugin/smashing-plugin.php, the basename for our
plugin would be smashing-plugin/smashing-plugin.php. We
will use this basename to check if the plugin we are up-
dating is activated, among other things.

Next we need to get the plugin data and set it to a
property in our class:

class Smashing_Updater {

protected $file;

protected $plugin;

protected $basename;

protected $active;

223

public function __construct($file) {

$this->file = $file;

add_action('admin_init', array($this,

'set_plugin_properties'));

return $this;

}

public function set_plugin_properties() {

$this->plugin = get_plugin_data($this->file);

$this->basename = plugin_basename($this->file);

$this->active = is_plugin_active(

$this->basename);

}

}

You may have noticed that I am using the action ad-
min_-init134 to set the plugin properties. This is because
the function get_plugin_data() may not have been de-
fined at the point in which this code was called. By hook-
ing it to admin_init we are ensuring that we have that
function available to get our plugin data. We are also
checking if the plugin is activated, and assigning that and
the plugin object to properties in our class.

To learn more about WordPress actions and filters you
should take a look at the plugin API135.

134. https://codex.wordpress.org/Plugin_API/Action_Reference
135. https://codex.wordpress.org/Plugin_API

HOW TO DEPLOY WORDPRESS PLUGINS WITH GITHUB USING
TRANSIENTS

224

https://codex.wordpress.org/Plugin_API/Action_Reference
https://codex.wordpress.org/Plugin_API/Action_Reference
https://codex.wordpress.org/Plugin_API/Action_Reference
https://codex.wordpress.org/Plugin_API/Action_Reference
https://codex.wordpress.org/Plugin_API
https://codex.wordpress.org/Plugin_API
https://codex.wordpress.org/Plugin_API
https://codex.wordpress.org/Plugin_API/Action_Reference
https://codex.wordpress.org/Plugin_API/Action_Reference
https://codex.wordpress.org/Plugin_API
https://codex.wordpress.org/Plugin_API

Now that we have our class set up and grabbed some
of the basic plugin data we’ll need, it’s time we start talk-
ing about GitHub.

Setting Up GitHub
We can start by creating a repository for our plugin. It is
important to remember that we will pull the files down
from here, so the directory structure is important. You’ll
need the root of your repository to be the contents of your
plugin folder, not the plugin folder itself. Here is an ex-
ample of what you should see:

In my repository I have two files. The main plugin file
smashing-plugin.php and the updater script updater.php.
Your repo may look a little different depending on your
plugin files.

Now that we have a repository set up, let’s talk about
how we are going to check the version number on
GitHub. We have a couple of options here. We could pull
down the main file and parse the contents to try to find

The root directory of our GitHub repository.

225

the version number. However, I prefer using the built-in
release functionality of GitHub. Let’s add a new release.

Start by going to the “releases” tab and hitting “Create
a new release”:

Here you will find a few fields we need to fill out. The
most important one is the “Tag version” field. This is
where we will put the current release version of our plug-
in. By now, you are probably familiar with the semantic
versioning format136. This is the format we are going to
use for our field. We should also use this format for our
main plugin file, in the PHP comments. Continue filling
out the title and description fields in the release until
your release looks like something like this:

Creating a new release in the GitHub release section.

136. http://semver.org/

HOW TO DEPLOY WORDPRESS PLUGINS WITH GITHUB USING
TRANSIENTS

226

http://semver.org/
http://semver.org/
http://semver.org/
http://semver.org/
http://semver.org/
http://semver.org/

Hit the “Publish release” button to create the release. This
will create a ZIP file in our repo that we can use in our up-
dater script. Then, you simply repeat this process when-
ever you want to deploy a new plugin release. We can
now use the GitHub API to check the version number and
we have a ZIP file ready to go.

BUT I HAVE A PRIVATE PLUGIN!BUT I HAVE A PRIVATE PLUGIN!

Don’t worry, just a couple of extra steps. Private plugins
require you to pass an authorization token when you
make requests to the API. First go to your account set-
tings:

A new release of our plugin.

227

Then go to “Personal access tokens” on the left menu and
click “Generate a new access token” button on the top
right. You will be brought to this page:

GitHub settings panel.

GitHub generate token.

HOW TO DEPLOY WORDPRESS PLUGINS WITH GITHUB USING
TRANSIENTS

228

You can give the token any description you like, then se-
lect the repo scope and hit “Generate token”. Once you’ve
generated your token, copy it down somewhere — we will
use it later.

Connecting To GitHub
We can now start adding some code to connect our up-
dater to GitHub. First we’ll add a few more properties to
hold our repo information, and one to hold our response
from GitHub:

private $username;

private $repository;

private $authorize_token;

private $github_response;

Then we’ll add some setters for our new properties:

public function set_username($username) {

$this->username = $username;

}

public function set_repository($repository) {

$this->repository = $repository;

}

public function authorize($token) {

$this->authorize_token = $token;

}

These setters allow us to modify usernames and reposito-
ries without reinstantiating our updater class. Say you
wanted to have an unlockable feature or require the users

229

to register, you could change the repo to a pro version of
your plugin by simply adding a conditional statement.
Let’s take a look at how we should include this code in our
main plugin file:

// Include our updater file

include_once(plugin_dir_path(__FILE__) .

'update.php');

$updater = new Smashing_Updater(__FILE__); //

instantiate our class

$updater->set_username('rayman813'); // set username

$updater->set_repository('smashing-plugin'); // set

// repo

Now let’s write the code we will need to get the version
tag from GitHub.

private function get_repository_info() {

if (is_null($this->github_response)) { // Do we

// have a response?

$request_uri = sprintf('https://api.github.com/

repos/%s/%s/releases', $this->username,

$this->repository); // Build URI

if($this->authorize_token) { // Is there an

// access token?

$request_uri = add_query_arg('access_token',

$this->authorize_token, $request_uri);

// Append it

}

$response = json_decode(wp_remote_retrieve_body(

HOW TO DEPLOY WORDPRESS PLUGINS WITH GITHUB USING
TRANSIENTS

230

wp_remote_get($request_uri)), true); // Get

// JSON and parse it

if(is_array($response)) { // If it is an array

$response = current($response); // Get the

// first item

}

if($this->authorize_token) { // Is there an

// access token?

$response['zipball_url'] = add_query_arg(

'access_token', $this->authorize_token,

$response['zipball_url']); // Update our zip

// url with token

}

$this->github_response = $response; // Set it to

// our property

}

}

In this method we are checking if we’ve already gotten a
response; if we haven’t, then make a request to the
GitHub API endpoint using the username and repo that
we’ve supplied. We’ve also added some code to check for
an access token for private repos. If there is one, append it
to the URL and update the zipball URL (the file we will
download when we update). We are then getting the
JSON response, parsing it, and grabbing the latest release.
Once we have the latest release, we’re setting it to the
property we created earlier.

231

Modifying WordPress
Alright, so far we’ve collected information about our plug-
in and our repo, and we’ve connected to the repo using
the API. Now it’s time to start modifying WordPress to
find our new data and put it in the right spots. This is go-
ing to involve three steps:

1. Modifying the output of the WordPress update transient.

2. Updating the WordPress interface to show our plugin’s
info properly.

3. Making sure our plugin is working properly after the up-
date.

Before we get too deep into how we are going to accom-
plish each step, we should talk about how we are going to
hook into the transient.

HOOKING INTO THE UPDATE TRANSIENTHOOKING INTO THE UPDATE TRANSIENT

There are a few ways to hook into this transient event.
There are two filters and two actions we can use to inject
our code; they are:

• Filter: pre_set_transient_update_plugins

• Filter: pre_set_site_transient_update_plugins

• Action: set_transient_update_plugins

• Action: set_site_transient_update_plugins

HOW TO DEPLOY WORDPRESS PLUGINS WITH GITHUB USING
TRANSIENTS

232

You will notice that the tags are fairly similar. The differ-
ence here is the addition of the word site. This distinc-
tion is important because it changes the scope of our in-
jected code. The tags without the word site will only
work on single-site installations of WordPress; the other
will work on both single-site and multi-site installations.
Depending on your plugin you may choose to use one
over the other.

I simply want to modify the default transient, so I am
going to use one of the filters. I’ve decided to use
pre_set_site_transient_update_plugins so that our
code will work on both single and multi-site installations.

Update: If you are using this script to update a theme
you can also use the filter pre_set_site_transient_-
update_themes. Source: Andy Fragen137

Let’s take a look at our initialize function:

public function initialize() {

add_filter(

'pre_set_site_transient_update_plugins', array(

$this, 'modify_transient'), 10, 1);

add_filter('plugins_api', array($this,

'plugin_popup'), 10, 3);

add_filter('upgrader_post_install', array($this,

'after_install'), 10, 3);

}

In this example I have added three filters. Each one corre-
sponds to the steps we talked about earlier. Our first filter

137. https://github.com/afragen

233

https://github.com/afragen
https://github.com/afragen
https://github.com/afragen
https://github.com/afragen
https://github.com/afragen

is going to modify the transient; the second will ensure
that our plugin data gets passed into the WordPress in-
terface; and the last will make sure that our plugin is acti-
vated after the update.

Now we need to call this new method in our main plu-
gin file to initialize the updater script. Here is what the
updated code should look like:

// Include our updater file

include_once(plugin_dir_path(__FILE__) .

'update.php');

$updater = new Smashing_Updater(__FILE__); //

instantiate our class

$updater->set_username('rayman813'); // set username

$updater->set_repository('smashing-plugin'); // set

// repo

$updater->initialize(); // initialize the updater

Now our initialize method will run and the filters within
the method will be active. If you are planning on having
your plugin’s automatic updates be a premium feature,
the initialize method would be a good spot to put your
checks and conditionals.

WRITING THE CODE FOR OUR FILTERSWRITING THE CODE FOR OUR FILTERS

I have written out all of the methods we will need for
each filter we will be using. We can start with the
modify_transient method:

HOW TO DEPLOY WORDPRESS PLUGINS WITH GITHUB USING
TRANSIENTS

234

public function modify_transient($transient) {

if(property_exists($transient, 'checked')) {

// Check if transient has a checked property

if($checked = $transient->checked) { // Did

// WordPress check for updates?

$this->get_repository_info(); // Get the repo

// info

$out_of_date = version_compare(

$this->github_response['tag_name'],

$checked[$this->basename], 'gt'); // Check if

// we're out of date

if($out_of_date) {

$new_files =

$this->github_response['zipball_url']; // Get

// the ZIP

$slug = current(explode('/', $this->basename

)); // Create valid slug

$plugin = array(// setup our plugin info

'url' => $this->plugin["PluginURI"],

'slug' => $slug,

'package' => $new_files,

'new_version' =>

$this->github_response['tag_name']

);

$transient->response[$this->basename] =

(object) $plugin; // Return it in response

}

}

}

235

return $transient; // Return filtered transient

}

This snippet simply takes the version number from the
comments in our main plugin file, and compares them
with the tag name we gave our release on GitHub. If the
one on GitHub is higher, our code tells WordPress that
there is a newer version available. If you change the ver-
sion number in the main plugin file to a version that is
lower than our GitHub tag, you should start seeing the
update notification in the WordPress admin:

You might notice, however, that if you click on the “View
version 1.0.0 details” link, you receive an error from
WordPress. This is because WordPress is trying to find
the details of this plugin from its repositories. Instead, we
need to load our own data about the plugin. That is where
our next method, plugin_popup, comes in:

public function plugin_popup($result, $action, $args

) {

if(! empty($args->slug)) { // If there is a slug

if($args->slug == $this->basename) { // And

// it's our slug

$this->get_repository_info(); // Get our repo

// info

WordPress plugin interface showing updates available.

HOW TO DEPLOY WORDPRESS PLUGINS WITH GITHUB USING
TRANSIENTS

236

// Set it to an array

$plugin = array(

'name' => $this->plugin["Name"],

'slug' => $this->basename,

'version' =>

$this->github_response['tag_name'],

'author' =>

$this->plugin["AuthorName"],

'author_profile' =>

$this->plugin["AuthorURI"],

'last_updated' =>

$this->github_response['published_at'],

'homepage' =>

$this->plugin["PluginURI"],

'short_description' =>

$this->plugin["Description"],

'sections' => array(

'Description' =>

$this->plugin["Description"],

'Updates' =>

$this->github_response['body'],

),

'download_link' =>

$this->github_response['zipball_url']

);

return (object) $plugin; // Return the data

}

}

return $result; // Otherwise return default

}

237

This snippet is actually pretty simple. We are just check-
ing if WordPress is looking for data about our plugin, and
if it is, returning our own array of data. We get the data
from a combination of our GitHub response and our plu-
gin’s comment data. You might have also noticed the
sections key in this array. Each item in that array is out-
put as a tab in the plugin popup meta box. You could add
pretty much anything you’d like in those sections, includ-
ing HTML. Right now, we are just showing the plugin de-
scription and the release notes we wrote earlier.

Let’s take a look at our final method, after_install:

public function after_install($response,

$hook_extra, $result) {

global $wp_filesystem; // Get global FS object

$install_directory = plugin_dir_path($this->file

); // Our plugin directory

$wp_filesystem->move($result['destination'],

$install_directory); // Move files to the plugin

// dir

Plugin update popup.

HOW TO DEPLOY WORDPRESS PLUGINS WITH GITHUB USING
TRANSIENTS

238

$result['destination'] = $install_directory; // Set

// the destination for the rest of the stack

if ($this->active) { // If it was active

activate_plugin($this->basename); // Reactivate

}

return $result;

}

This snippet does two things. First, it sets an argument
named destination, which is simply the directory where
WordPress is going to install our new code. We are pass-
ing the main plugin file’s directory into this argument
since it should always be the root of the plugin. Second, it
checks if the plugin was activated using the property we
set earlier. If it was active before updating, our method
will reactivate it.

Conclusion
Congratulations! You should now be able to update your
plugin by clicking the “Update now” button on the plug-
ins page. You should keep in mind, though, that your plu-
gin’s version in the main plugin file needs to be updated
to match the current release of your plugin — they should
always match. If you didn’t update your version in the
comments, you may find yourself in an endless “There is
an update available” loop.

239

If you would like to see the completed script from this tu-
torial, you can view it in the sample GitHub repository138

that we made.❧

138. https://github.com/rayman813/smashing-plugin

HOW TO DEPLOY WORDPRESS PLUGINS WITH GITHUB USING
TRANSIENTS

240

https://github.com/rayman813/smashing-plugin
https://github.com/rayman813/smashing-plugin
https://github.com/rayman813/smashing-plugin
https://github.com/rayman813/smashing-plugin
https://github.com/rayman813/smashing-plugin

About The Authors

Brian Onorio
Brian Onorio is the Founder and President of O3 Cre-
ative139. He earned his Bachelor of Science in Computer
Science from North Carolina State University and brings
10 years of industry experience to the table. He plays an
active role in day-to-day operations, supporting his team
throughout the project journey, from strategy, design,
implementation, and release. Brian is recognized in the
industry for bringing creative approaches to digital mar-
keting and was instrumental in growing and tripling the
size of O3 Creative over the course of 2015.
Twitter: @brianonorio140.

Carlo Daniele
Carlo is a freelance front-end designer and developer
based in Romagna, Italy. In the last years he’s been writ-
ing for both printed and digital computer magazines,
dealing with web services and web standards, but his
main interest is WordPress. Currently, he’s writing for
Smashing Magazine141 and HTML.it142. You can follow
him on Twitter @carlodaniele143.

139. http://www.weareo3.com/
140. https://twitter.com/brianonorio
141. http://www.smashingmagazine.com/author/carlodaniele/
142. http://www.html.it/autore/c-daniele/
143. https://twitter.com/carlodaniele

241

http://www.weareo3.com/
http://www.weareo3.com/
http://www.weareo3.com/
http://www.weareo3.com/
https://twitter.com/brianonorio
https://twitter.com/brianonorio
https://twitter.com/brianonorio
http://www.smashingmagazine.com/author/carlodaniele/
http://www.smashingmagazine.com/author/carlodaniele/
http://www.smashingmagazine.com/author/carlodaniele/
http://www.html.it/autore/c-daniele/
http://www.html.it/autore/c-daniele/
http://www.html.it/autore/c-daniele/
https://twitter.com/carlodaniele
https://twitter.com/carlodaniele
https://twitter.com/carlodaniele
http://www.weareo3.com/
http://www.weareo3.com/
https://twitter.com/brianonorio
https://twitter.com/brianonorio
http://www.smashingmagazine.com/author/carlodaniele/
http://www.smashingmagazine.com/author/carlodaniele/
http://www.html.it/autore/c-daniele/
http://www.html.it/autore/c-daniele/
https://twitter.com/carlodaniele
https://twitter.com/carlodaniele

Daniel Pataki
Daniel Pataki builds plugins, themes and apps - then pro-
ceeds to write or talk about them. He’s the editor for the
WordPress section on Smashing Magazine and contrib-
utes to various other online sites. When not coding or
writing you'll find him playing board games or running
with his dog. Drop him a line on Twitter144 or visit his
personal website145.

Karol K
Karol K is a blogger and writer for hire. His work has been
published all over the web, on sites like NewInterne-
tOrder.com146, MarketingProfs.com, Adobe.com, ProBlog-
ger, ThemeIsle147, and others. Feel free to contact him to
find out how he can help your business grow by writing
unique and engaging content for your blog or website.
Twitter: @carlosinho148.

Matthew Ray
Matthew Ray149 is a full-stack web developer working for
the worldwide public relations firm, Weber Shandwick.
He currently focusses his efforts on product develop-
ment, plugin architecture, and service integration. In his

144. http://twitter.com/danielpataki/
145. http://danielpataki.com/
146. http://newinternetorder.com/
147. https://themeisle.com/
148. https://twitter.com/carlosinho
149. http://www.matthewray.com

ABOUT THE AUTHORS

242

http://twitter.com/danielpataki/
http://twitter.com/danielpataki/
http://twitter.com/danielpataki/
http://danielpataki.com/
http://danielpataki.com/
http://danielpataki.com/
http://newinternetorder.com/
http://newinternetorder.com/
http://newinternetorder.com/
http://newinternetorder.com/
https://themeisle.com/
https://themeisle.com/
https://themeisle.com/
https://twitter.com/carlosinho
https://twitter.com/carlosinho
https://twitter.com/carlosinho
http://www.matthewray.com
http://www.matthewray.com
http://www.matthewray.com
http://twitter.com/danielpataki/
http://twitter.com/danielpataki/
http://danielpataki.com/
http://danielpataki.com/
http://newinternetorder.com/
http://newinternetorder.com/
https://themeisle.com/
https://themeisle.com/
https://twitter.com/carlosinho
https://twitter.com/carlosinho
http://www.matthewray.com
http://www.matthewray.com

free time, Matthew is an avid photographer, musician
and bulldog enthusiast. Twitter: @matthewray1150.

Nick Schäferhoff
Nick is an entrepreneur, online marketer and profession-
al blogger. A longtime WordPress enthusiast, he helps
clients across the world build successful online business-
es through a mix of content marketing, blogging and web
design. You can get in touch with him via Twitter151 or
through his website152.

Nico Amarilla
Nico Amarilla is a web developer working remotely on a
small island in the Philippines where he makes plugins
and themes for WordPress. He is fond of finding simple
solutions to complex problems. When not coding, he is ei-
ther backpacking or riding his mountain bike. He has a
blog153 where he occasionally posts about web related
stuff.

150. https://twitter.com/matthewray1
151. https://twitter.com/nschaeferhoff
152. http://www.nickschaeferhoff.de/en
153. http://www.kosinix.com/

243

https://twitter.com/matthewray1
https://twitter.com/matthewray1
https://twitter.com/matthewray1
https://twitter.com/nschaeferhoff
https://twitter.com/nschaeferhoff
https://twitter.com/nschaeferhoff
http://www.nickschaeferhoff.de/en
http://www.nickschaeferhoff.de/en
http://www.nickschaeferhoff.de/en
http://www.kosinix.com/
http://www.kosinix.com/
http://www.kosinix.com/
https://twitter.com/matthewray1
https://twitter.com/matthewray1
https://twitter.com/nschaeferhoff
https://twitter.com/nschaeferhoff
http://www.nickschaeferhoff.de/en
http://www.nickschaeferhoff.de/en
http://www.kosinix.com/
http://www.kosinix.com/

About Smashing Magazine
Smashing Magazine154 is an online magazine dedicated to
Web designers and developers worldwide. Its rigorous
quality control and thorough editorial work has gathered
a devoted community exceeding half a million sub-
scribers, followers and fans. Each and every published ar-
ticle is carefully prepared, edited, reviewed and curated
according to the high quality standards set in Smashing
Magazine’s own publishing policy155.

Smashing Magazine publishes articles on a daily basis
with topics ranging from business, visual design, typog-
raphy, front-end as well as back-end development, all the
way to usability and user experience design. The maga-
zine is — and always has been — a professional and inde-
pendent online publication neither controlled nor influ-
enced by any third parties, delivering content in the best
interest of its readers. These guidelines are continually
revised and updated to assure that the quality of the pub-
lished content is never compromised. Since its emergence
back in 2006 Smashing Magazine has proven to be a
trustworthy online source.

154. http://www.smashingmagazine.com
155. http://www.smashingmagazine.com/publishing-policy/

ABOUT THE AUTHORS

244

http://www.smashingmagazine.com
http://www.smashingmagazine.com
http://www.smashingmagazine.com
http://www.smashingmagazine.com/publishing-policy/
http://www.smashingmagazine.com/publishing-policy/
http://www.smashingmagazine.com/publishing-policy/
http://www.smashingmagazine.com
http://www.smashingmagazine.com
http://www.smashingmagazine.com/publishing-policy/
http://www.smashingmagazine.com/publishing-policy/

	Imprint
	About This Book
	Table of Contents

	A Detailed Guide To WordPress Custom Page Templates
	Template Files In WordPress
	Page Templates And Their Use

	How To Customize Any Page In WordPress
	Using Conditional Tags In DefaultTemplates
	Creating Page-Specific Files In The WordPress Hierarchy
	Assigning Custom Page Templates
	1. Assigning Custom Page Templates From TheWordPress Editor
	2. Setting A Custom Template Via Quick Edit

	A Step-By-Step Guide To Creating Custom Page Templates
	1. Find The Default Template
	2. Copy And Rename The Template File
	3. Customize The Template File Header
	4. Customize The Code
	5. Upload The Page Template
	6. Activate The Template

	Five Different Ways To Use Page Templates
	1. Full-Width Page Template
	2. Dynamic 404 Error Page With Widget Areas
	3. Page Template For Displaying Custom Post Types
	4. Contributor Page With Avatar Images
	5. Customized Archive Page

	WordPress Page Templates In A Nutshell

	Extending WordPress With Custom Content Types
	Custom Post Types
	Registering The Post Type
	labels
	public
	exclude_from_search
	publicly_queryable
	show_ui
	show_in_nav_menus
	show_in_menu
	show_in_admin_bar
	menu_position
	menu_icon
	capability_type
	hierarchical
	supports
	has_archive
	rewrite
	query_var

	Extending The Post Type With A Taxonomy (Or Two)
	Enhancing The Experience With Meta Data
	Adding Columns To The Administration Screen
	Sorting
	Putting It All Together
	Summing Up
	References

	Building A Custom Archive Page For WordPress
	The Story Of WordPress Archives
	How To Build A Custom Archives Page In WordPress
	Getting Started With The Main File
	Adding a Custom Welcome Message
	Adding New Widget Areas
	Listing the 15 Latest Posts
	Displaying Links to the Author Archives
	Displaying Links to the Monthly Archives
	The Complete Archive Page Template
	The Style Sheet

	How To Integrate This Template With Any Theme
	What’s Next?

	Customizing Tree-Like Data Structures In WordPress With The Walker Class
	Tree-Like Data Structures
	What We’ll Be Doing
	The Walker Class And Its Extensions
	The Walker Class’ Structure
	$tree_type
	$db_fields
	$max_pages
	$has_children
	start_lvl
	end_lvl
	start_el
	end_el
	display_element
	walk
	paged_walk
	get_number_of_root_elements
	unset_children

	Basic Customization Of The Navigation Menu: The wp_nav_menu Template Tag
	The Walker_Nav_Menu Class
	Extending The Walker_Nav_Menu Class
	A Working Example: The Foundation Top Bar As WordPress Navigation Menu
	Adding Fields To The WordPress Menu Items’ Editing Box
	Step 1: Register A Custom Field For The Nav Menu Item
	Step 2: Save The User’s Input
	Step 3: Set Up A New Walker For The Edit Menu Tree

	Final Notes

	Extending Advanced Custom Fields With Your Own Controls
	How ACF Works
	What’s Available Out Of The Box
	Extending Advanced Custom Fields
	Step 1: A Local Environment
	Step 2: Adding The Plugin And Renaming
	Step 3: Field Basics
	Step 4: Field Settings
	Step 5: Field Front-End
	Step 6: Adding Scripts And Styles
	Step 7: Modifying Values

	Further Possibilities

	Building An Advanced Notification System For WordPress
	Can I Use A Plugin?
	Things To Do
	Add Meta Fields To User Profiles
	Custom Meta Box And Custom Fields
	Building The Notification System
	A Note About Status Transitions
	A Confirmation Message
	wp_mail Function And SMTP
	Designing Better Emails
	Conclusion
	Further Reading

	How To Use Autoloading And A Plugin Container In WordPress Plugins
	Let’s Begin
	Folder Structure
	The Main Plugin File

	Autoloading
	Adopting The PEAR Naming Convention For Class Names
	What About The WordPress Coding Standards For Class Names?

	Building Our Autoloader
	Plugin Container
	Uses Of Our Plugin Container
	Store global parameters in a single location
	Store objects in a single location
	Service definitions

	Building The Plugin Container
	Example Plugin: A Settings Page
	The Simplarity_SettingsPage Class

	Abstracting Our Settings Page Class
	Defining A Service
	Defining A Shared Service
	The Future: PHP 5.3+
	Namespaces
	Anonymous Functions

	Using Namespaces In Classes
	Updating The Autoloader
	Updating Our Service Definitions To Use Anonymous Functions
	Using Pimple As A Plugin Container
	Conclusion
	Code Samples
	Resources

	How To Deploy WordPress Plugins With GitHub Using Transients
	The Plan
	WordPress Transients
	Getting Started
	Setting Up GitHub
	But I Have A Private Plugin!

	Connecting To GitHub
	Modifying WordPress
	Hooking Into The Update Transient
	Writing The Code For Our Filters

	Conclusion

	About The Authors
	Brian Onorio
	Carlo Daniele
	Daniel Pataki
	Karol K
	Matthew Ray
	Nick Schäferhoff
	Nico Amarilla
	About Smashing Magazine

