

Imprint
Published 2014 by Smashing Magazine GmbH, Freiburg, Germany.
ISBN: 978-3-94454079-5 (PDF)
Copyeditor and Proofreader: Owen Gregory
Editing and Quality Control: Vitaly Friedman
eBook Production: Cosima Mielke
Tools: Elja Friedman
Syntax Highlighting: Prism by Lea Verou

Apps For All was written by Heydon Pickering and reviewed by Steve Faulkner.

IMPRINT

2

TABLE OF CONTENTSTABLE OF CONTENTS

Chapter 1: This Is For Everyone ... 4
Chapter 2: It’s All About Buttons .. 13
Chapter 3: The WAI Forward.. 32
Chapter 4: Getting Around .. 47
Chapter 5: Peekaboo ..68
Chapter 6: It’s Alive! ... 93
Chapter 7: Welcome To The Community ..111
Credits ... 121

3

CHAPTER 1:

This Is For Everyone
At the focal point of a gigantic, purpose-built stadium, in front of a
crowd of some 80,000 people and an international television audience
of millions, a lone figure, known to many by the enigmatic moniker
TimBL, makes adjustments to some electronic equipment.

Given the nom de plume, the equipment and the anticipation of a
massive audience, one would be forgiven for thinking that this figure is
a superstar DJ, preparing to deliver a payload of gut-vibrating rhythms.
Instead, the London-born computer scientist, making an appearance at
the opening celebrations of the London Olympics, has a simple but en-
during message to share: spelled out in LCD lights attached to banks of
venue seats, “THIS IS FOR EVERYONE” appears.

It has now been just over twenty years since CERN released the World
Wide Web into the public domain1. Through the available software and
associated technologies of DJ TimBL’s (AKA Tim Berners-Lee’s) inven-
tion, we have each been granted the power to contribute to a shared
wealth of information. However, making the software to run web
servers available to anyone in the world and making the information
provided by these servers consumable by anyone in the world are two
different concerns.

The power of the Web is in its universality. Access by everyone regard-
less of disability is an essential aspect.
— Tim Berners-Lee

1. http://home.web.cern.ch/about/updates/2013/04/twenty-years-free-open-web

CHAPTER 1: THIS IS FOR EVERYONE

4

http://home.web.cern.ch/about/updates/2013/04/twenty-years-free-open-web
http://home.web.cern.ch/about/updates/2013/04/twenty-years-free-open-web
http://home.web.cern.ch/about/updates/2013/04/twenty-years-free-open-web
http://home.web.cern.ch/about/updates/2013/04/twenty-years-free-open-web
http://home.web.cern.ch/about/updates/2013/04/twenty-years-free-open-web
http://home.web.cern.ch/about/updates/2013/04/twenty-years-free-open-web

Berners-Lee set up the World Wide Web Consortium (W3C) in October
1994 and left CERN to become its full-time director. Having created a
technology destined to be used globally, it was important to make sure
new and existing parts of the web would continue to work together cor-
rectly so information could thrive. Accordingly, it is the job of the W3C,
with the help of participating individuals and organizations around the
world, to standardize web technologies such as HTML.

Web Standards
Each year, a number of us celebrate the publication of a book by Jeffrey
Zeldman called Designing With Web Standards2, and the blue beanie hat
worn by the author on the book’s cover has become emblematic of the
web standards movement. Standards-based HTML’s ability to work
with a variety of technologies makes our lives much easier. Moreover,
because HTML can be interpreted by a variety of software and devices
it is inclusive, or accessible; standard HTML allows content to be seen,
read, heard, clicked, typed, and even touched3, meaning users with dif-
ferent preferences and abilities can consume marked-up content in a
way that suits their needs.

It is significant that web standards take the form of a movement rather
than a technical criterion. HTML should not simply break whenever it
isn’t made quite the way it should be. If this were the case, only the
highly technically adept would be able to publish content and the medi-
um itself would become inaccessible. Instead, it is our responsibility
not to alienate members of our audience and we do this by innovating
and sharing HTML authoring practices which prove to be inclusive.

In a TED talk4 on the evolving technology which helped him to read,
Ron McCallum, who lost his sight shortly after birth, does not empha-
size the technological side of the web but, instead, appeals to web au-
thors, asking them to use the inherently accessible medium responsi-
bly:

2. http://en.wikipedia.org/wiki/Designing_with_Web_Standards
3. http://en.wikipedia.org/wiki/Refreshable_braille_display
4. http://www.ted.com/talks/ron_mccallum_how_technology_allowed_me_to_read.html

5

http://en.wikipedia.org/wiki/Designing_with_Web_Standards
http://en.wikipedia.org/wiki/Designing_with_Web_Standards
http://en.wikipedia.org/wiki/Designing_with_Web_Standards
http://en.wikipedia.org/wiki/Refreshable_braille_display
http://en.wikipedia.org/wiki/Refreshable_braille_display
http://en.wikipedia.org/wiki/Refreshable_braille_display
http://www.ted.com/talks/ron_mccallum_how_technology_allowed_me_to_read.html
http://www.ted.com/talks/ron_mccallum_how_technology_allowed_me_to_read.html
http://www.ted.com/talks/ron_mccallum_how_technology_allowed_me_to_read.html
http://en.wikipedia.org/wiki/Designing_with_Web_Standards
http://en.wikipedia.org/wiki/Designing_with_Web_Standards
http://en.wikipedia.org/wiki/Refreshable_braille_display
http://en.wikipedia.org/wiki/Refreshable_braille_display
http://www.ted.com/talks/ron_mccallum_how_technology_allowed_me_to_read.html
http://www.ted.com/talks/ron_mccallum_how_technology_allowed_me_to_read.html

Websites are often very visual, and there are all these sorts of graphs
that aren’t labeled and buttons that aren’t labeled, and that’s why the
World Wide Web Consortium 3, known as W3C, has developed world-
wide standards for the Internet. And we want all Internet users or In-
ternet site owners to make their sites compatible so that we persons
without vision can have a level playing field.
—Ron McCallum

THE WEB ACCESSIBILITY INITIATIVETHE WEB ACCESSIBILITY INITIATIVE

In the shadow of the web standards movement, few contemporary
HTML authors (or web designers) have the audacity to ship or share in-
valid HTML code. This is a good thing, but there can be a canyon-like
divide between a technically valid document—for which automated
tests can be instated—and a practically accessible one. Accessible de-
sign requires empathy: it is the product of putting yourself in other
people’s shoes. As Zeldman’s seminal book puts it, accessibility is “the
soul of web standards.”

To address the more oblique nature of web accessibility (compared
with basic web standards) as a discipline in its own right, a special
branch of the W3C called the Web Accessibility Initiative (WAI)5 was
launched in 1997. Through the creation of guidelines and special tech-
nologies, the WAI’s primary focus is on making the web a better and
easier place for people with disabilities. However, the lessons learned
from addressing the specific requirements of those using assistive
technologies or consuming information in unusual ways can be applied
to enrich the web for everyone. We all win.

Take the TED webpage6 which hosts the brilliant Ron McCallum
talk I quoted earlier. By providing a transcript of the talk’s audio in a
number of different languages, it not only includes those who are deaf
or hard of hearing, but is consumable by people of different nationali-
ties. As an upshot, the content of the talk is better archived and more
easily searched (not to mention quoted, as I was able to do a few para-
graphs ago). Meeting specific accessibility requirements here has made
the presentation of the information therein better.

What This Book Will Cover
I think we can agree that web accessibility is really quite a large top-
ic—far too large to fit into a small book. So, what will this small book

5. http://en.wikipedia.org/wiki/Web_Accessibility_Initiative
6. http://www.ted.com/talks/ron_mccallum_how_technology_allowed_me_to_read.html

CHAPTER 1: THIS IS FOR EVERYONE

6

http://en.wikipedia.org/wiki/Web_Accessibility_Initiative
http://en.wikipedia.org/wiki/Web_Accessibility_Initiative
http://en.wikipedia.org/wiki/Web_Accessibility_Initiative
http://www.ted.com/talks/ron_mccallum_how_technology_allowed_me_to_read.html
http://www.ted.com/talks/ron_mccallum_how_technology_allowed_me_to_read.html
http://www.ted.com/talks/ron_mccallum_how_technology_allowed_me_to_read.html
http://en.wikipedia.org/wiki/Web_Accessibility_Initiative
http://en.wikipedia.org/wiki/Web_Accessibility_Initiative
http://www.ted.com/talks/ron_mccallum_how_technology_allowed_me_to_read.html
http://www.ted.com/talks/ron_mccallum_how_technology_allowed_me_to_read.html

cover? Though we shall encounter visual design challenges, deal with
performance issues, and adopt progressive enhancement—all of which
are accessibility concerns—the underlying theme of this book is about
making the interactivity of web applications include keyboard and
screen reader users. Starting by defining simple button controls and
moving on to create reusable, accessible widgets, this book is about
making interactions possible and meaningful for those who suffer
from cognitive and motor impairments, as well as users who experi-
ence a range of vision impairments.

TECHNICAL CONTENTTECHNICAL CONTENT

This is a book about modern web application design and, as such, as-
sumes the reader has some familiarity with HTML5 and building inter-
active applications using JavaScript. JavaScript frameworks like Angu-
larJS7 will be mentioned, but the patterns we’ll accustom ourselves with
exist at a level above application business logic, in the DOM8. So, there
is no affiliation with any particular application design philosophy.
Since JavaScript code examples—used to manipulate the state of the
DOM when required—will be written using jQuery, a basic familiarity
with jQuery syntax is needed.

Throughout, we will pay close attention to the W3C’s advice on writ-
ing accessible HTML and incorporating inclusive design with CSS.
Where the W3C makes recommendations about how JavaScript should
harness and interact with these sibling technologies, we shall also take
note. Two resources available from the WAI will provide us with most
of the specific guidance we’ll put into practice. These are WAI-WCAG
2.09 (Web Content Accessibility Guidelines) and WAI-ARIA10 (Accessible
Rich Internet Applications). Together, they cover the accessibility of
content and the accessibility of interacting with that content fairly com-
prehensively. You do not need to be familiar with either as we embark.

Semantics And Screen Readers
Inescapably, communicating the nature and state of a web application
in an inclusive fashion is a question of semantics. The subject of se-
mantic HTML11 is easily misunderstood and sometimes even maligned.
We’ve all heard the term and many of us have used it, but what do se-

7. http://angularjs.org/
8. http://css-tricks.com/dom/
9. http://www.w3.org/TR/WCAG20/

10. http://www.w3.org/WAI/intro/aria
11. http://en.wikipedia.org/wiki/Semantic_HTML

7

http://angularjs.org/
http://angularjs.org/
http://angularjs.org/
http://angularjs.org/
http://css-tricks.com/dom/
http://css-tricks.com/dom/
http://css-tricks.com/dom/
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/WCAG20/
http://www.w3.org/WAI/intro/aria
http://www.w3.org/WAI/intro/aria
http://www.w3.org/WAI/intro/aria
http://en.wikipedia.org/wiki/Semantic_HTML
http://en.wikipedia.org/wiki/Semantic_HTML
http://en.wikipedia.org/wiki/Semantic_HTML
http://en.wikipedia.org/wiki/Semantic_HTML
http://angularjs.org/
http://angularjs.org/
http://css-tricks.com/dom/
http://css-tricks.com/dom/
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/WCAG20/
http://www.w3.org/WAI/intro/aria
http://www.w3.org/WAI/intro/aria
http://en.wikipedia.org/wiki/Semantic_HTML
http://en.wikipedia.org/wiki/Semantic_HTML

mantics really mean for accessibility? Before moving on, let’s take a
brief refresher. There’s never a good time to talk about semantics, so it
might as well be now.

The term markup derives from a tradition of marking up manu-
scripts. This was the practice of providing written notes and instruc-
tions in the margins of printed manuscripts to better define or correct
their contents. As a type of markup language12, HTML belongs to a larg-
er category of metalanguages. The prefix meta- comes from the Greek
(μετά-) and its meanings include both beyond and self. Metalanguages13

are systems used to help clarify an object language. In other words,
metalanguage is language about language.

Like their printed antecedents, HTML documents are conduits of
human-readable and usable information. That is what they are for.
However, words are just words and a page simply filled with a stream
of undifferentiated prose would be very difficult to unpick and read.
This is where HTML elements come in: by incorporating a helper lan-
guage we break the seamless prose up into distinct parts, be they titles,
paragraphs, lists, or whatever the author intends and HTML allows.
These parts can—among other things—then be differentiated visually
via CSS.

By providing information about the information, we enrich the ba-
sic content of the page and make it more pleasurable to traverse and
consume. Take the tag, for instance. By encapsulating a phrase
within an element, we give a better impression of the tone with

12. http://en.wikipedia.org/wiki/Markup_language
13. http://en.wikipedia.org/wiki/Metalanguage

CHAPTER 1: THIS IS FOR EVERYONE

8

http://en.wikipedia.org/wiki/Markup_language
http://en.wikipedia.org/wiki/Markup_language
http://en.wikipedia.org/wiki/Markup_language
http://en.wikipedia.org/wiki/Metalanguage
http://en.wikipedia.org/wiki/Metalanguage
http://en.wikipedia.org/wiki/Metalanguage
http://en.wikipedia.org/wiki/Markup_language
http://en.wikipedia.org/wiki/Markup_language
http://en.wikipedia.org/wiki/Metalanguage
http://en.wikipedia.org/wiki/Metalanguage

which that phrase should be delivered within a sentence. The tonal
quality is encoded by the HTML element, which is represented visually
by an italicization of the text within the element. Our facili-
tates a typographic substitute for a phonetic feature14 or, to put it an-
other way, it helps the language come to life.

INTEROPERABILITYINTEROPERABILITY

Semantic HTML is HTML which makes a positive contribution to the
meaning conveyed by the plain language of the page. That is, it makes
the semantics known in a standardized way which can be understood
by a maximal range of different user agents15, the bits of software act-
ing on the behalf of users. The ability of different devices and software
to use a common language in this way is sometimes called interoper-
ability.

Let’s look at some HTML which impedes interoperability, and then
some which actually helps it.

By defining some CSS classes, you could create what looks like an
HTML unordered list, by styling manufactured list items marked up
like so:

<div class="list-item">First in list</div>
<div class="list-item">Second list item</div>
<div class="list-item">Final list item</div>

However, this—combined with the requisite CSS class rules—only tells
the browser to render something which looks like a list. By using a
standard unordered list (), containing standard list items…

First in list
Second list item
Final list item

…we experience a number of benefits. First, this pattern is less verbose.
It’s also more easily recognized as a known standard by fellow HTML
developers. Another advantage is that CSS applied to this list will be ap-

14. https://quote.ucsd.edu/phonoloblog/2006/07/26/phonetics-in-grammar/
15. http://www.w3.org/TR/UAAG20/

9

https://quote.ucsd.edu/phonoloblog/2006/07/26/phonetics-in-grammar/
https://quote.ucsd.edu/phonoloblog/2006/07/26/phonetics-in-grammar/
https://quote.ucsd.edu/phonoloblog/2006/07/26/phonetics-in-grammar/
http://www.w3.org/TR/UAAG20/
http://www.w3.org/TR/UAAG20/
http://www.w3.org/TR/UAAG20/
https://quote.ucsd.edu/phonoloblog/2006/07/26/phonetics-in-grammar/
https://quote.ucsd.edu/phonoloblog/2006/07/26/phonetics-in-grammar/
http://www.w3.org/TR/UAAG20/
http://www.w3.org/TR/UAAG20/

plied equally to any list. This means that standard lists created using
WYSIWYG (what you see is what you get) text editors or in Mark-
down16 will all enjoy the same styling, keeping things consistent and
eliminating the need for non-technical writers to code bespoke HTML
directly.

Here’s the same HTML list written in Markdown:

* First in list
* Second list item
* Final list item

The most important advantage for our purposes in this book is that
screen readers (or aural user agents as they are sometimes known), will
recognize this pattern and communicate it aurally to their user. In ef-
fect, the same or similar information is proffered both visually and au-
rally, making sure users who look and users who listen have an equiva-
lent experience of the same content.

So this HTML has achieved a pleasing level of interoperability: it can
be authored in different ways, using different file formats and conven-
tions; and it can be read and heard, depending on the software involved.

Because CSS class names authored by a web designer are not a standard
construct, user agents cannot communicate them in a fully interopera-
ble fashion. That is, if HTML was a form of natural language, then
classes would be words which the browser doesn’t recognize; a browser
can represent those words visually, but it cannot understand them con-
ceptually. It is for this reason that the W3C warns HTML writers against
relying too heavily on classes to define content:

CSS gives so much power to the “class” attribute, that authors could
conceivably design their own “document language” based on elements
with almost no associated presentation (such as DIV and SPAN in

16. http://daringfireball.net/projects/markdown/

CHAPTER 1: THIS IS FOR EVERYONE

10

http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/

HTML) and assigning style information through the “class” attribute.
Authors should avoid this practice since the structural elements of a
document language often have recognized and accepted meanings[…]
— “Selectors”, CSS Level 2, W3C17

When you use classes, it is important to use terminology which is un-
derstood by your fellow developers. For example, using the class page-
wrapper to label a <div> which wraps the page content is better than
using the cryptic p-w. However, to paraphrase Harry Roberts18, this is
not a semantic decision, just a sensible one.

According to the W3C’s “priority of constituencies”, users should be
prioritized over your fellow developers. Hence, using sensible class
names is less important than using interoperable HTML.

In case of conflict, consider users over authors over implementors over
specifiers over theoretical purity. In other words costs or difficulties to
the user should be given more weight than costs to authors[…]
— “HTML Design Principles”, W3C19

MORE MEANING THAN YOU MIGHT THINKMORE MEANING THAN YOU MIGHT THINK

Semantic HTML is often thought of as using the right element for the
job. This is a bit glib. Although an early victory for the web standards
movement was encouraging HTML authors to move away from inap-

17. http://www.w3.org/TR/CSS2/selector.html#class-html
18. http://csswizardry.com/2010/08/semantics-and-sensibility/
19. http://www.w3.org/TR/html-design-principles/#priority-of-constituencies

11

http://www.w3.org/TR/CSS2/selector.html#class-html
http://www.w3.org/TR/CSS2/selector.html#class-html
http://www.w3.org/TR/CSS2/selector.html#class-html
http://csswizardry.com/2010/08/semantics-and-sensibility/
http://csswizardry.com/2010/08/semantics-and-sensibility/
http://csswizardry.com/2010/08/semantics-and-sensibility/
http://www.w3.org/TR/html-design-principles/#priority-of-constituencies
http://www.w3.org/TR/html-design-principles/#priority-of-constituencies
http://www.w3.org/TR/html-design-principles/#priority-of-constituencies
http://www.w3.org/TR/CSS2/selector.html#class-html
http://www.w3.org/TR/CSS2/selector.html#class-html
http://csswizardry.com/2010/08/semantics-and-sensibility/
http://csswizardry.com/2010/08/semantics-and-sensibility/
http://www.w3.org/TR/html-design-principles/#priority-of-constituencies
http://www.w3.org/TR/html-design-principles/#priority-of-constituencies

propriately using nested data tables (<table>s) for constructing visual
layouts, there is much more to semantic HTML than that.

Attributes, as well as elements, have semantic qualities which can be
picked up and interpreted by browsers and other user agents. These at-
tributes can affect the visual appearance of elements as well as their be-
havior. Changing the value of an <input> ’s type attribute from text
to checkbox will affect the visual rendering of the element, the way it
is communicated interoperably, and its behavior. In this case, our
<input> moves from accepting arbitrary text strings to becoming an
on–off switch.

As you progress through this book, you will learn about a special set
of semantic attributes specified in the WAI’s ARIA (Accessible Rich In-
ternet Applications) suite. They are designed to enhance the semantics
and, therefore, accessibility of HTML within your web applications.
They are an enhancement of and not a replacement for semantic
HTML20.

To begin with, we will spend some time familiarizing ourselves with
a generic but strangely unfavored HTML element, without which ac-
cessible web applications are simply untenable.❧

20. http://www.456bereastreet.com/archive/200711/posh_plain_old_semantic_html/

CHAPTER 1: THIS IS FOR EVERYONE

12

http://www.456bereastreet.com/archive/200711/posh_plain_old_semantic_html/
http://www.456bereastreet.com/archive/200711/posh_plain_old_semantic_html/
http://www.456bereastreet.com/archive/200711/posh_plain_old_semantic_html/
http://www.456bereastreet.com/archive/200711/posh_plain_old_semantic_html/
http://www.456bereastreet.com/archive/200711/posh_plain_old_semantic_html/
http://www.456bereastreet.com/archive/200711/posh_plain_old_semantic_html/

CHAPTER 2:

It’s All About Buttons
It’s scarcely possible to imagine any kind of interface that does not in-
volve buttons of some variety. From fruit machines to ATMs, from fu-
turistic spaceship consoles to iPhone apps, most machines—real or
imagined—present their human users with buttons to be pressed at
their discretion to make the machine do things.

Even the fabled BIG RED BUTTON, with its ominous “DO NOT
PRESS” label speaks to us through its familiar form and entices us to
touch it—if only to see what falls apart or explodes when we do.

Such is the power of the button.
For many years, the World Wide Web was defined almost entirely

by a peculiar type of button called a hyperlink which, when pressed,
would take a reader from one location to another in a continuum of in-
terconnected documents. First alphabetically and first in importance,
only the <a> element could be said to truly define the web: it’s the glue
which holds all our shared knowledge together.

Increasingly, however, it is web applications rather than simple
webpages that have become the subject of our work. More and more we

13

find ourselves constructing and using applications which manipulate
rather than simply traverse information. We’re even using web applica-
tions to construct web applications to build more web applications. In
fact, I write this on the day that the ATAG21 (Authoring Tool Accessibili-
ty Guidelines) have reached candidate recommendation. This means
provisions for people with disabilities to author as well as simply use
web applications now have their own, dedicated set of guidelines at the
W3C. Progress.

This kind of standardization and the proliferation of JavaScript through
easy-to-use libraries like jQuery have made it ever easier for web au-
thors to build so-called one-page JavaScript applications: interactive
webpages that are defined not by being connected but by being isolat-
ed. If the hyperlink takes you places but a JavaScript application is self-
contained, what role does the hyperlink even have?

Truly, there’s no such thing as a pure web application and, as we
shall see, hyperlinks still have an important navigational role within
and around application pages. However, the buttons that make things
happen within our application will be the ones that define it.

Accessible applications start at the press of a <button> .

The <button> Element
Some web designers get annoyed with the W3C for providing confus-
ing advice. Out of these designers, I imagine only a few have actually
read whole parts of the HTML specification22 but it’s true that the finer
points of HTML authorship are occasionally difficult. That said, the
specification for <button> is hardly a case in point!

21. http://www.w3.org/WAI/intro/atag.php
22. http://www.w3.org/TR/html5/

CHAPTER 2: IT’S ALL ABOUT BUTTONS

14

http://www.w3.org/WAI/intro/atag.php
http://www.w3.org/WAI/intro/atag.php
http://www.w3.org/WAI/intro/atag.php
http://www.w3.org/TR/html5/
http://www.w3.org/TR/html5/
http://www.w3.org/TR/html5/
http://www.w3.org/WAI/intro/atag.php
http://www.w3.org/WAI/intro/atag.php
http://www.w3.org/TR/html5/
http://www.w3.org/TR/html5/

The button element represents a button.
— W3C23

In the course of this guide we shall look at some of the many ways
<button> elements can be enhanced with WAI-ARIA states and proper-
ties to express detailed information about their different purposes in an
accessible fashion. We’ll look at pressed and unpressed buttons, but-
tons which control other elements, and buttons that show and hide dif-
ferent parts of the application in question. For now, your basic but-
ton—the thing that makes stuff happen in your application—should
look something like this:

<button>Make something change</button>

HOW IS THIS ACCESSIBLE?HOW IS THIS ACCESSIBLE?

It’s easy to think of using proper semantic HTML as fussy and overpar-
ticular; that using the right element for the job is not really that impor-
tant. Since you can attach JavaScript events to any old element and you
can make any old element look like a button with CSS, isn’t which ele-
ment you use a bit academic?

It can seem that way, but no. You see, web standards are all about
agreement. It’s only through agreement that things can be made to
work and behave in ways that are predictable for the greatest number
of people. By designating certain behaviors to the <button> element,
browser vendors can agree on how the element should be rendered and

23. http://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html#the-button-
element

15

http://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html#the-button-element
http://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html#the-button-element
http://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html#the-button-element
http://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html#the-button-element
http://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html#the-button-element

how it should behave. This way, authors like you and I will know which
element to code if we want to elicit these behaviors. We work with the
browser vendors to make our users’ lives easier. By convention, they
know what they’re getting when they encounter a button.

If Assistive Technology vendors do not work with developers and
browser vendors by making use of the information provided through
standardized interfaces for making HTML content accessible, it’s the
user that gets screwed.
— Paciello Group Blog24

In the case of buttons, two important groups of users benefit from the
<button> element being used properly as a button control. These are
keyboard users and screen reader users. Three main features come free
when you use <button> :

• Buttons can receive focus.

• Buttons can be operated conventionally by the keyboard once focused.

• Buttons are announced as “button” by screen readers.

Keyboard users navigate webpages using the keyboard instead of a
mouse. They might do this out of preference, but many do it out of ne-
cessity: it’s not easy for some people to point the mouse accurately or
even see the tiny cursor arrow on the screen to know where it is. Mak-
ing webpages usable by keyboard is part of WCAG 2.0 (the Web Con-
tent Accessibility Guidelines, published by the Web Accessibility Initia-
tive).

Make all functionality available from a keyboard.
— WCAG 2.0 Guideline 2.1

For keyboard users to activate a button, they must first be able to focus
it. Focusing an element is like holding it. In a webpage, pressing the Tab
key will focus the next interactive element (perhaps a button) in the
page. The Enter key or space bar will then activate it and trigger the
event. That event could take any number of forms, but it’s how the
event can be accessed that is our concern here. If the user is not able to
hold the element, its action is not accessible.

24. http://blog.paciellogroup.com/2013/11/short-note-aria-dragon-accessibility/

CHAPTER 2: IT’S ALL ABOUT BUTTONS

16

http://blog.paciellogroup.com/2013/11/short-note-aria-dragon-accessibility/
http://blog.paciellogroup.com/2013/11/short-note-aria-dragon-accessibility/
http://blog.paciellogroup.com/2013/11/short-note-aria-dragon-accessibility/
http://blog.paciellogroup.com/2013/11/short-note-aria-dragon-accessibility/
http://blog.paciellogroup.com/2013/11/short-note-aria-dragon-accessibility/

Screen reader users tend to use keyboards as well, but they can’t see the
button being focused. The screen reader needs to know when to tell
them whether the element they’ve focused is a <button> and marking
up the button as a <button> is by far the easiest way to go about this.

BUTTON TYPESBUTTON TYPES

Given all the lovely common sense stuff we’ve discussed about
<button> so far, it’s astonishing they aren’t used more often as button
controls in our applications. How many times have you inspected a
web app to find the buttons in it are really <a> elements or—even
worse, because they can’t receive focus by default— s and
<div>s?

The main reason for this is that <button>s are associated with
HTML forms, making designers fearful that a <button> necessitates
the presence and submission of a form.

It’s true that <button>s can be used in combination with forms and
other form elements. Button elements even take a form attribute to as-
sociate them with a form’s id . In addition, two of the three type attrib-
ute values for forms— submit and reset—are explicitly for use within
forms. The evidence is stacking up.

17

However, a further type value of button is also offered. Buttons
with this type don’t have to have anything directly to do with forms. In
fact, the specification states that, in this regard, <button
type="button"> should:

Do nothing.
— W3C25

So, what we have here is an accessible, keyboard-triggerable control un-
encumbered by form submission or page reloading. It is the most suit-
able markup for controls within a modern, accessible JavaScript appli-
cation and we shall be using it liberally. Here’s a quick recap about but-
ton types:

submit Submits forms

button Good for JavaScript events

reset DANG! WHY DID YOU PUT THAT IN THERE?

test.csstest.css

Most browsers will treat a simple <button> that exists outside a
<form> in the way that most authors intend it: as something that does
JavaScript. However, the implicit type for <button> is submit and
some browsers will assume that a button inside a form without a type
attribute is meant to be a submit button. Not to worry, we can test for
this!

Throughout this guide, we shall be using a special style sheet called
test.css to check for vulnerabilities and accessibility problems. By using
CSS selectors we can define and identify bad patterns in our HTML. In
this case, we want to check that we’ve put an explicit type attribute on
any buttons that go inside our forms. Using pseudo content, we can
warn ourselves with an on-screen message if we’ve messed up.

Add the following declaration block to your test.css file and include it
as the last style sheet in your page’s <head> .

form button:not([type]):after {
background: red;
color: white;
content: 'Warning: this button doesn’t have a type

25. http://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html#the-button-
element

CHAPTER 2: IT’S ALL ABOUT BUTTONS

18

http://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html#the-button-element
http://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html#the-button-element
http://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html#the-button-element
http://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html#the-button-element
http://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html#the-button-element

attribute. Is it a submit, reset or just button?';
}

You can change the appearance of the warning however you wish. I’ve
just made it red with white text.

The Style Of Buttons

Design is a plan for arranging elements in such a way as best to ac-
complish a particular purpose.
— Charles Eames 26

Now that we have the correct code to make our application buttons, it’s
time we concentrated on making those buttons appealing. I’m not talk-
ing about demonstrating good taste (although extremely ugly buttons
would probably be counterproductive) but about ensuring the buttons
appear and change in appearance according to users’ expectations.
They should appeal not just to users’ aesthetic prejudices but to their
prior understanding or cognition of what buttons are.

Cognitive accessibility27 is a field which helps everyone, not just
people with clinically identified difficulties. It is where accessibility and
that other noble goal, usability28, could be said to converge.

26. Eames Design: The Work of the Office of Charles and Ray Eames by John Neuhart, Charles
Eames, Ray Eames and Marilyn Neuhart, 1989

27. http://webaim.org/articles/cognitive/
28. http://en.wikipedia.org/wiki/Usability

19

http://webaim.org/articles/cognitive/
http://webaim.org/articles/cognitive/
http://webaim.org/articles/cognitive/
http://en.wikipedia.org/wiki/Usability
http://en.wikipedia.org/wiki/Usability
http://en.wikipedia.org/wiki/Usability
http://webaim.org/articles/cognitive/
http://webaim.org/articles/cognitive/
http://en.wikipedia.org/wiki/Usability
http://en.wikipedia.org/wiki/Usability

Because HTML is “for everyone”, authors should be able to create us-
able documents and applications without having to be great artists. For
this reason, <button>s which appear in documents without CSS associ-
ated with them look like buttons anyway. It’s not that they’re unstyled
at all; the browser just makes them look OK on the author’s behalf. This
way, any author can make a usable webpage without having to learn
the additional technology of CSS.

Allowing form to follow function in your button design makes it
easier for users of all cognitive abilities to use your app or website. This
is why browsers will render <button>s to look like buttons by default.
When restyling buttons, it’s best to take cues from these conventions.

BUTTONS YOU WANT TO PRESSBUTTONS YOU WANT TO PRESS

At the time of writing, a trend that has come to be known as “flat de-
sign29” has reached a peak of popularity and controversy. The flat de-
sign mode dispenses with the shadows, gradients, and textures that
have become the fabric of our app and website interfaces.

Designers the world over have adopted flat design because it pro-
vides a striking and stylish finish to our applications’ appearance and
helpfully reduces clutter. Either that, or because they’ve got caught up
in flat design as an arbitrary trend. In any case, with flat design you do
have to be careful. Interaction design is about things you can use, not
just admire, and the perceived tactility of interactive controls can help
to communicate their utility.

In the following example I aim to make my button “button-like” by
employing a simple border-radius and a box-shadow to raise it slight-
ly from the page. I know it’s not raised literally because the screen itself
remains flat, but it should look like it is.

button {
background-color: DarkSlateBlue;
border-radius: 0.25em;
box-shadow: 0 4px 0 #222;

}

29. http://www.smashingmagazine.com/2013/09/03/flat-and-thin-are-in/

CHAPTER 2: IT’S ALL ABOUT BUTTONS

20

http://www.smashingmagazine.com/2013/09/03/flat-and-thin-are-in/
http://www.smashingmagazine.com/2013/09/03/flat-and-thin-are-in/
http://www.smashingmagazine.com/2013/09/03/flat-and-thin-are-in/
http://www.smashingmagazine.com/2013/09/03/flat-and-thin-are-in/
http://www.smashingmagazine.com/2013/09/03/flat-and-thin-are-in/
http://www.smashingmagazine.com/2013/09/03/flat-and-thin-are-in/

Size and ContrastSize and Contrast

Don’t be ashamed of your buttons. Make them big and bold. This makes
using controls easier for those who have trouble controlling the mouse
input but have not resolved to use a keyboard instead. This is the rea-
son inputs with a type of checkbox can be wrapped in a <label> ele-
ment which will dutifully act as the expanded target area for clicking
that input.

<label><input type="checkbox" value="Yes" /> Do you agree?</label>

The ability to click or press a label to trigger an event on a control pro-
vides usability and accessibility benefits by increasing the hit area of a
control.
— Emphasis mine, “The label element”, W3C30

In the case of buttons, it is common to design them as self-contained
boxes filled with a background color. So that one, familiar color is used
to signify things the user can press, you may want to make this back-
ground color the same as the text color of your other principle controls:
links. That isn’t a requirement, but you are required to make the con-
trast between your text and background color sufficiently high.

Make it easier for users to see and hear content including separating
foreground from background.
— WCAG 2.0 Guideline 1.4

A quick way to check that your button contrast is viable would be to en-
ter your foreground and background colors into Lea Verou’s simple
tool31. More tools like this one for color testing (and color blindness
testing) are listed in “Welcome To The Community”, chapter 7 of this
book.

30. http://www.w3.org/html/wg/drafts/html/master/forms.html#the-label-element
31. http://leaverou.github.io/contrast-ratio/

21

http://www.w3.org/html/wg/drafts/html/master/forms.html#the-label-element
http://www.w3.org/html/wg/drafts/html/master/forms.html#the-label-element
http://www.w3.org/html/wg/drafts/html/master/forms.html#the-label-element
http://leaverou.github.io/contrast-ratio/
http://leaverou.github.io/contrast-ratio/
http://leaverou.github.io/contrast-ratio/
http://leaverou.github.io/contrast-ratio/
http://www.w3.org/html/wg/drafts/html/master/forms.html#the-label-element
http://www.w3.org/html/wg/drafts/html/master/forms.html#the-label-element
http://leaverou.github.io/contrast-ratio/
http://leaverou.github.io/contrast-ratio/

THE STATES OF A PRESSABLE BUTTONTHE STATES OF A PRESSABLE BUTTON

Buttons can be said to be in different states depending on how far
you’ve got with actually pressing them. Whether you are waving your
cursor over the button (:hover state) or focusing it via the keyboard
(:focus), you can consider these equivalent states of readiness to press.
Because they are equivalent states for different types of user, I suggest
you take Roger Johansson’s advice32 and combine the rules in your
style sheet:

button:hover, button:focus {
/* make it look like you can press it */

}

By default, most browsers will also apply some sort of an outline
(outline: thin dotted , for instance) to hyperlinks to indicate they are
focused. It is important this rule is not removed unless you are sure to
put something at least as visible in its place. The dotted outline is effec-
tive for links because of the irregular shape of the text, but a dotted out-
line is not much use for buttons because the line sits too snugly around
the shape of the box, making it indistinct.

Any keyboard operable user interface has a mode of operation where
the keyboard focus indicator is visible.
— WCAG Guideline 2.4.7

If the button is square, you can improve the visibility of the :hover and
:focus states using a thicker, solid outline. Otherwise, a change in
background-color can help. To achieve something more ambitious,
you could use outline after all, and animate the little known
outline-offset property…

Animated Button OutlinesAnimated Button Outlines

To help draw the attention of keyboard users to newly focused button
controls, wouldn’t it be nice to gradually close in on those controls? By
using a CSS transition to decrease the outline-offset property, we
can cast a wider net of visibility before pinpointing the button’s exact
position.

To set up this technique, we need to set an initially wide
outline-offset and make it invisible. We don’t want big, random box-
es all over the page. We also need to define the transition type.

32. https://twitter.com/rogerjohansson/status/382531860686848000

CHAPTER 2: IT’S ALL ABOUT BUTTONS

22

https://twitter.com/rogerjohansson/status/382531860686848000
https://twitter.com/rogerjohansson/status/382531860686848000
https://twitter.com/rogerjohansson/status/382531860686848000
https://twitter.com/rogerjohansson/status/382531860686848000
https://twitter.com/rogerjohansson/status/382531860686848000

button {
outline: 2px solid transparent;
outline-offset: 100px;
transition: 0.5s all ease;

}

Then we just need to tighten the net while simultaneously making the
outline visible.

button:focus {
outline: 2px solid #000;
outline-offset: 0;

}

For users whose browsers do not support outline-offset (Internet
Explorer, predictably), a two-pixel outline is still visible on focus and
fades into visibility. The poor souls who don’t get CSS transitions or
outline-offset still get that chunky two-pixel outline. In other words,
the technique degrades gracefully33), meaning a minimal number of
users are marginalized.

This shrinking outline technique34 may not suit your needs or tastes,
and your users may not accept it as helpful, but the point is this: acces-
sibility doesn’t have to be a chore, something you just have to do when
the fun parts of designing an interface are over. Sometimes researching
improvements to accessibility can be creatively rewarding too.

The Active StateThe Active State

I’m going to sound like a creep with a button fetish, but it is rather nice
when the button depresses suggestively under one’s touch, no? Cogni-
tively speaking, it is the expected behavior of a pressed button which

33. http://www.css3.info/graceful-degradation/
34. http://www.heydonworks.com/article/shrinking-button-outlines

23

http://www.css3.info/graceful-degradation/
http://www.css3.info/graceful-degradation/
http://www.css3.info/graceful-degradation/
http://www.heydonworks.com/article/shrinking-button-outlines
http://www.heydonworks.com/article/shrinking-button-outlines
http://www.heydonworks.com/article/shrinking-button-outlines
http://www.css3.info/graceful-degradation/
http://www.css3.info/graceful-degradation/
http://www.heydonworks.com/article/shrinking-button-outlines
http://www.heydonworks.com/article/shrinking-button-outlines

started out unpressed and standing proud. This is where the :active
state comes in. Building on my initial example, I’m going to create the
illusion of a real pressed button by reducing the box-shadow by the
same amount I move the button down.

button {
position: relative;
top: 3px; /* 3px drop */
box-shadow: 0 0 0 #222; /* less by 3px (to zero) */

}

HOW TO STYLE HTML ELEMENTSHOW TO STYLE HTML ELEMENTS

Didn’t we just cover this? It depends on what you mean by how. Yes,
we’ve covered how our buttons should appear, but not how we actually
make them this way. As I shall explain, this is an important factor con-
fined not just to the CSS of buttons but all varieties of elements.

CSS frameworks35 tend to base their style rules on CSS classes. The
reason for this is that a CSS framework that contains lots of HTML
can’t really be considered a pure CSS framework. By using classes like
.button in their style sheets, they are able to define the look of a but-
ton in an abstract way. It’s then up to the author to use the framework’s
.button class on elements they see fit.

The problem with this is when accessibility comes in. As we have es-
tablished, only true <button>s should look like buttons because they
represent certain behaviors. Making s, <a>s and other elements
look like buttons is deceptive. Nonetheless, the cipher of .button al-
lows us to make this mistake.

35. http://usablica.github.io/front-end-frameworks/compare.html

CHAPTER 2: IT’S ALL ABOUT BUTTONS

24

http://usablica.github.io/front-end-frameworks/compare.html
http://usablica.github.io/front-end-frameworks/compare.html
http://usablica.github.io/front-end-frameworks/compare.html
http://usablica.github.io/front-end-frameworks/compare.html
http://usablica.github.io/front-end-frameworks/compare.html

CSS classes are neither inaccessible nor accessible, but they are not con-
ducive to accessibility. By confining our button styles to the <button>
element instead, we ensure that anything that looks like a button can
be expected to behave like one.

.button {
/* these styles could go on anything :-/ */

}

button {
/* styles for correct buttons only */

}

Disabling ButtonsDisabling Buttons

As I have established, accessible HTML isn’t just about elements but al-
so element attributes, and we shall look at the special ARIA attributes as
a particular point of interest. Attributes can define the appearance but
also the behavior of the elements to which they are attached. In the case
of the disabled attribute, we want to take away most of the character-
istics which make an enabled button what it is. We are disarming it as
we would a gun by removing its ammunition.

As with .button there are pitfalls in using a class to make a button
appear disabled. A .disabled class or .off class—whatever you
choose—will only make something appear disabled. The separate
disabled attribute still has to do the hard work.

25

There are two inherent dangers in using classes to disable elements vi-
sually.

1. Not all elements can be disabled.

2. Classes don’t properly disable the ones that can.

That’s pretty useless. The only way you can disable a button is by in-
cluding the disabled attribute on the element and the only way to dis-
able a hyperlink is to remove the href attribute. Accordingly, your CSS
could look something like this:

[disabled], a:not([href]) {
/* styles for any element that takes a disabled attribute
or links that do not have the href attribute present */

}

test.csstest.css

Links without hrefs, like buttons which include disabled , do not and
should not receive focus. This does not stop confused developers using
a .button class on <a> elements without hrefs, thinking they have
created a functional, enabled button. If that last sentence made no
sense to you, don’t worry: it probably means you’re on the right track.
You wouldn’t believe the number of times I’ve seen (or made, alas!) this
mistake, though.

<!-- Not a functional button but a disabled link -->
Press me

We’re going to add some new rules to our test.css file now, to check that
we haven’t put a .button class somewhere inappropriate and to make
sure we’re disabling things correctly.

CHAPTER 2: IT’S ALL ABOUT BUTTONS

26

.button:not(button):after {
background: red;
color: white;
content: 'Warning: You are making an element look like a
button here. Is it really a button?';

}

button.disabled:not([disabled]):after, a.disabled[href]:after {
background: red;
color: white;
content: 'Warning: It looks like you are styling an
element to be disabled here. Make sure it is disabled
properly.';

}

Labeling Buttons
We’ve got so carried away with the design of buttons that we’ve forgot-
ten some people can’t see them at all. How do we communicate to these
people (and everyone else as well) what each particular button is for?
The simple answer is: with words; the more technical answer is: via the
<button> element’s text node. WebAIM’s guide to accessible forms36

couldn’t be clearer about the importance of including text nested with-
in a button:

The value attribute for input buttons and the nested text for
<button> elements will be read by screen readers when the button is
accessed. These must never be left empty.

Screen readers will announce the button’s label, usually after announc-
ing that the focused control is indeed a button. For example, “Button:
Save”.

Unless you are deliberately trying to manufacture some sort of
guessing game, the announcement merely of “button” is not going to
win you many accessibility plaudits. For example, when testing an
iPhone app for Southwest Airlines37, Victor Tsaran encounters a screen
announcing just “Button” for each of the controls. “OK. I guess no busi-
ness for Southwest,” he wryly concludes.

However, the text node is not the only way to label a button. It prob-
ably should be, but it isn’t. Inside the <button> you could include an

36. http://webaim.org/techniques/forms/controls#button
37. https://www.youtube.com/watch?v=StI0iIufJzk

27

http://webaim.org/techniques/forms/controls#button
http://webaim.org/techniques/forms/controls#button
http://webaim.org/techniques/forms/controls#button
https://www.youtube.com/watch?v=StI0iIufJzk
https://www.youtube.com/watch?v=StI0iIufJzk
https://www.youtube.com/watch?v=StI0iIufJzk
https://www.youtube.com/watch?v=StI0iIufJzk
http://webaim.org/techniques/forms/controls#button
http://webaim.org/techniques/forms/controls#button
https://www.youtube.com/watch?v=StI0iIufJzk
https://www.youtube.com/watch?v=StI0iIufJzk

 element instead, perhaps representing a recognizable symbol
such as a curved, left-pointing arrow to represent an undo action.

If this is the case, you must make two provisions:

1. Include a tooltip so users who (inevitably!) don’t understand your sym-
bol have a textual hint.

2. Include an alt attribute to provide a textual interpretation of the but-
ton to screen reader users.

<button role="button"><img src="undo_icon.png" alt="undo"
/></button>
<p class="tooltip hidden">Undo</p>

Note: Using the standard title attribute would be a more efficient
substitute for a JavaScript-manipulated tooltip, but titles are only re-
vealed on hover, not focus, making them inaccessible to keyboard
users. Of course, the chances are that whoever made the tooltip library
you’re using didn’t think of supporting the focus event either but, hey,
you can fix that…

button:hover + .tooltip, button:focus + .tooltip {
display: block;

}

We’ll be exploring more accessible, WAI-ARIA-based tooltips in “Peeka-
boo”, chapter 5.

It’s important that the alt text is what a standard text label would
read. So, “Undo” is good but “Picture of an undo arrow” is rubbish. It’s
an alternative way of expressing the function, not a description of
something someone can’t see.

LABELING WITH ARIALABELING WITH ARIA

Provide text alternatives for any non-text content so that it can be
changed into other forms people need, such as large print, braille,
speech, symbols or simpler language.
— WCAG 2.0 Guideline 1.1

It’s time for our first encounter with the Web Accessibility Initiative’s
ARIA suite. ARIA (Accessible Rich Internet Applications) provides two
methods for accessible text in the form of aria-label and
aria-labelledby . The first is an attribute which contains the label text
in its value and the second refers to another element which contains

CHAPTER 2: IT’S ALL ABOUT BUTTONS

28

the text. ARIA offers these properties to assist screen reader accessibili-
ty by providing additional or missing text content to be read.

We shall look more closely at ARIA properties and their contribution
to web application accessibility in more detail in the next chapter.

aria-labelaria-label

In the following example, we’ll use a special Unicode character to ren-
der an icon from an icon font. The Unicode code point exists within the
Private Use Area38, so has no designated meaning and cannot be an-
nounced. The aria-label value adds some readable text to the equa-
tion.

<!-- aria-label example -->
<button aria-label="undo"></button>

aria-labelledbyaria-labelledby

In this example, some descriptive text is used to help people under-
stand the use of the button. Since the undo button is referred to in this
text, we can code the relationship between the button and its descrip-
tion in an accessible way. This is done via the id of the descriptive text.

38. http://en.wikipedia.org/wiki/Private_Use_Areas

29

http://en.wikipedia.org/wiki/Private_Use_Areas
http://en.wikipedia.org/wiki/Private_Use_Areas
http://en.wikipedia.org/wiki/Private_Use_Areas
http://en.wikipedia.org/wiki/Private_Use_Areas
http://en.wikipedia.org/wiki/Private_Use_Areas

<p>To go back a step, press the <strong id="undo-text">undo
button</p>
<button aria-labelledby="undo-text"></button>

Accessible relationships will feature more heavily later in the book.
For now, be aware that using aria-label and aria-labelledby is re-
medial: only do it if you have no other choice. Otherwise, an attractive
button labeled with some nested text is preferable.

THE WORDSTHE WORDS

So much of accessibility, as well as usability, is about convention. In
fact, the backwards arrow originally employed to communicate the pur-
pose of our button is only successful because it is symbolic: its meaning
comes from the convention that going left signifies retracting an ac-
tion.

When you think about it, there are probably better ways to signify
retracting an action (especially when you consider that some languages
read right-to-left), but the left-pointing arrow is a prevalent convention
and—in lieu of a more universal symbol—one not to be sniffed at.
We’ve agreed that’s what it means to us.

Leave ‘creativity’ to the bad designers — This is not the place to do
something different. If a convention exists, use it.
— Mark Boulton39

Words, like pictograms40, can also be symbolic and using conventional
words for common actions may not be creative but it’s usability gold
because it creates less cognitive strain41 for the user.

• Save, not Store

• Delete, not Destroy

• Edit, not Permutate

39. http://www.markboulton.co.uk/journal/icons-symbols-and-a-semiotic-web
40. http://en.wikipedia.org/wiki/Pictogram
41. http://www.nngroup.com/articles/navigation-cognitive-strain/

CHAPTER 2: IT’S ALL ABOUT BUTTONS

30

http://www.markboulton.co.uk/journal/icons-symbols-and-a-semiotic-web
http://www.markboulton.co.uk/journal/icons-symbols-and-a-semiotic-web
http://www.markboulton.co.uk/journal/icons-symbols-and-a-semiotic-web
http://en.wikipedia.org/wiki/Pictogram
http://en.wikipedia.org/wiki/Pictogram
http://en.wikipedia.org/wiki/Pictogram
http://www.nngroup.com/articles/navigation-cognitive-strain/
http://www.nngroup.com/articles/navigation-cognitive-strain/
http://www.nngroup.com/articles/navigation-cognitive-strain/
http://www.markboulton.co.uk/journal/icons-symbols-and-a-semiotic-web
http://www.markboulton.co.uk/journal/icons-symbols-and-a-semiotic-web
http://en.wikipedia.org/wiki/Pictogram
http://en.wikipedia.org/wiki/Pictogram
http://www.nngroup.com/articles/navigation-cognitive-strain/
http://www.nngroup.com/articles/navigation-cognitive-strain/

TEST.CSSTEST.CSS

It’s time to add another rule to our test.css file. This declaration block us-
es an array of selectors to determine whether you’ve at least used some
kind of technique to label buttons in your webpage in an accessible
way.

a:empty:not([aria-label]):not([aria-labelledby]):after,
button:empty:not([aria-label]):not([aria-labelledby]):after,
button:not([aria-label]):not([aria-labelledby])
img:only-child:not([alt]):after,
a:not([aria-label]):not([aria-labelledby])
img:only-child:not([alt]):after {

background: red;
color: white;
content: 'You are not providing enough information about
what this button does. Please include some text within
the button.';

}

Breaking it down, we are saying, “If the button has no content at all and
also has no accessible ARIA label, display a warning.” In conjunction
with that, we are also saying, “If there is some content inside the button
and it’s just an image and that image doesn’t have an alt attibute, dis-
play a warning.” Ugly as that CSS looks, it may help you keep your la-
bels in check.❧

31

CHAPTER 3:

The WAI Forward
In the last chapter, we established the button as the standard control for
web applications. We explored <button> as an exemplar of semantic
HTML, using it to establish predictable behaviors and displaying it un-
ambiguously, heeding the Web Accessibility Initiative’s guidelines.

Even when we branched out to do something a little more radical
with CSS transitions, we made sure our technique was a progressive
enhancement, built on robust foundations. This way, older browsers
and other technologies still had something to fall back on.

As you read through the WCAG 2.0 guidelines, you’ll notice they per-
tain to things you shouldn’t undo as well as things you should do. Ar-
guably, they’re more about not making things inaccessible than making
things accessible. For instance, guideline 2.3 implores you not to “de-
sign content in a way that is known to cause seizures”. It’s possible to
design a webpage that actively sets out to cause seizures, but you’d
have to go out of your way to make something as absurdly irresponsi-
ble as that.

CHAPTER 3: THE WAI FORWARD

32

Because the W3C’s mission was to make the web accessible from the
outset, many accessibility features are built in. As responsible design-
ers, it is our job to create compelling web experiences without disrupt-
ing the inclusive features of a simpler design. As Scott Jehl puts it:

Accessibility is not something we add to a website, but something we
start with and risk losing with each enhancement. It is to be retained.
— Scott Jehl (Twitter, Dec 12, 2013)42

Unfortunately, not all websites are destined to be as simple as the
provocative manifesto that is “This is a motherfucking website43”.

As we together embrace the advancements of the web and our new-
found power to construct hitherto impossible web-based software, we
need to tackle the accessibility of new idioms. We need to find a way to
adopt new tools and techniques to “keep the playing field level”, as Ron
McCallum requested in the first chapter, and maintain a parity of expe-
rience between our different users.

It’s time to embrace change.

ARIA: A Passion For Parity
WAI-ARIA44 is an accessibility resource like WCAG 2.0, with certain no-
table differences. If it helps, you could think of the two resources as sib-
lings: each has been brought up in the same environment and had the
same basic values instilled in them, but they differ in personality.

42. https://twitter.com/scottjehl/status/411237303579721728
43. http://motherfuckingwebsite.com/
44. http://www.w3.org/WAI/intro/aria

33

https://twitter.com/scottjehl/status/411237303579721728
https://twitter.com/scottjehl/status/411237303579721728
https://twitter.com/scottjehl/status/411237303579721728
http://motherfuckingwebsite.com/
http://motherfuckingwebsite.com/
http://motherfuckingwebsite.com/
http://www.w3.org/WAI/intro/aria
http://www.w3.org/WAI/intro/aria
http://www.w3.org/WAI/intro/aria
https://twitter.com/scottjehl/status/411237303579721728
https://twitter.com/scottjehl/status/411237303579721728
http://motherfuckingwebsite.com/
http://motherfuckingwebsite.com/
http://www.w3.org/WAI/intro/aria
http://www.w3.org/WAI/intro/aria

WCAG 2.0 is the cautious homebody who keeps the home fires burn-
ing, while the more gregarious WAI-ARIA has ambitions to take accessi-
bility to new territories.

Unlike WCAG 2.0, ARIA is not only a set of recommendations but a
suite of attributes to be included in your HTML. It gives you the tools to
alter and increase the amount of information shared about your HTML
to users of assistive technologies. When making web apps, this is ex-
tremely useful because the roles, properties, states, and relationships of
your elements are liable to be a lot more complex and dynamic. One
way of looking at it is this: ARIA gives you the tools to meet WCAG re-
quirements in web apps.

THE TWO PURPOSES OF ARIATHE TWO PURPOSES OF ARIA

ARIA gives you the ability to reclassify and otherwise augment the per-
ceived meaning (or semantics) of your HTML. That’s pretty powerful,
but what is the purpose of it? There are two main applications of ARIA.

RemedyRemedy

ARIA can be used as a remedy to improve the information provided to
assistive technology by poorly coded, unsemantic markup.

For example, a developer might use a <div> and some JavaScript to em-
ulate a type="checkbox" . They probably shouldn’t, but they might. To
make this <div> actually understandable as a checkbox, the ARIA role

CHAPTER 3: THE WAI FORWARD

34

https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques/Using_the_checkbox_role

of checkbox45 can be added as an attribute, making screen readers
think it is, in fact, a standard checkbox. In addition, our developer must
use the aria-checked attribute to indicate whether the checkbox is in-
deed checked.

<div class="toggle-thingy" role="checkbox" aria-checked="false"
tabindex="0">Yes?</div>

It’s better to use the proper input element, type attribute, and
checked attribute to communicate this information—it is better sup-
ported than ARIA (which is relatively modern) and the input would al-
so be automatically focusable, like the semantic <button>s of the previ-
ous chapter (no need for the tabindex). Nonetheless, we can employ
ARIA in this way to make quick fixes to markup, often without disturb-
ing the design of the application.

EnhancementEnhancement

As we’ve established, web applications are more complex than simple
web documents and our use of HTML elements tends to exceed the ba-
sic semantics gifted to them. ARIA’s killer feature is its ability to help
authors like you and me communicate many of these more ambitious
uses in an accessible way.

Take ARIA’s aria-haspopup attribute46. This represents a property
of certain elements which have a hidden submenu. The owner of this
property is likely to be an <a> or a <button> and, without this special
attribute, that’s all they’d be to a screen reader user: no clue would be
given that the submenu existed.

<a href="#submenu" aria-haspopup="true"aria-controls=
"submenu1">Main link
<ul id="submenu">

Submenu link
Another link

As we shall address in the following chapter, “Getting Around”, some of
these ARIA attributes are expected to be replaced by simple HTML ele-
ments and attributes. As I write, the <dialog> element is being slowly

45. https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques/Us-
ing_the_checkbox_role

46. http://www.w3.org/TR/wai-aria/states_and_properties#aria-haspopup

35

https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques/Using_the_checkbox_role
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques/Using_the_checkbox_role
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques/Using_the_checkbox_role
http://www.w3.org/TR/wai-aria/states_and_properties#aria-haspopup
http://www.w3.org/TR/wai-aria/states_and_properties#aria-haspopup
http://www.w3.org/TR/wai-aria/states_and_properties#aria-haspopup
https://twitter.com/stevefaulkner/status/413263499863658496
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques/Using_the_checkbox_role
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques/Using_the_checkbox_role
http://www.w3.org/TR/wai-aria/states_and_properties#aria-haspopup
http://www.w3.org/TR/wai-aria/states_and_properties#aria-haspopup

adopted47 as the successor of the dialog and alertdialog ARIA role
attributes, for example.

Where possible, superceding ARIA with plain HTML(5) is good be-
cause it can simplify writing the markup and centralizes the W3C’s ad-
vice. However, many attributes which communicate specific, contextu-
al information like the aria-haspopup and aria-controls48 proper-
ties in the above code, are unlikely to find many mainstream support-
ers for inclusion as, perhaps, haspopup and controls .

As Steve Faulkner points out in “HTML5 and the myth of WAI-ARIA
redundance49”, much of ARIA will continue to exist unbested. It is the
unique power of ARIA to bridge the gap between the experiences of
sighted and unsighted web users which is the subject of much of this
book.

Role-Playing
A lot of my friends and colleagues are keen on tabletop role-playing
games which, if you’re not familiar with them, are games in which par-
ticipants play fictional characters embarking on quests and fighting
battles in fantastical worlds. Although I’m not a big exponent of these
games myself, I’ve noticed similarities between the way characters are
role-played in games and the way HTML elements act within web ap-
plications. Accordingly, I’m going to use this role-playing metaphor to
explain ARIA’s roles, properties, and states in greater detail.

Don’t worry, you won’t have to be a big role-playing geek to follow
along. I’m not!

ROLESROLES

Each player in a role-playing game normally maintains a “character
sheet” which lists the important characteristics of the character they
are playing. Compared to HTML, the name of the character might be
the id of an element. Each must be unique.

There’s a lot more information than that in a character sheet,
though. For example, characters dwelling in these fantasy worlds usu-
ally belong to one “race” or another. Common standbys are races like
elves, dwarves, and trolls. These are like HTML element types: broad
groupings of participants with common characteristics.

47. https://twitter.com/stevefaulkner/status/413263499863658496
48. http://msdn.microsoft.com/en-us/library/ie/cc848872%28v=vs.85%29.aspx
49. http://blog.paciellogroup.com/2010/04/html5-and-the-myth-of-wai-aria-redundance/

CHAPTER 3: THE WAI FORWARD

36

https://twitter.com/stevefaulkner/status/413263499863658496
https://twitter.com/stevefaulkner/status/413263499863658496
https://twitter.com/stevefaulkner/status/413263499863658496
http://msdn.microsoft.com/en-us/library/ie/cc848872%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/ie/cc848872%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/ie/cc848872%28v=vs.85%29.aspx
http://blog.paciellogroup.com/2010/04/html5-and-the-myth-of-wai-aria-redundance/
http://blog.paciellogroup.com/2010/04/html5-and-the-myth-of-wai-aria-redundance/
http://blog.paciellogroup.com/2010/04/html5-and-the-myth-of-wai-aria-redundance/
http://blog.paciellogroup.com/2010/04/html5-and-the-myth-of-wai-aria-redundance/
https://twitter.com/stevefaulkner/status/413263499863658496
https://twitter.com/stevefaulkner/status/413263499863658496
http://msdn.microsoft.com/en-us/library/ie/cc848872%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/ie/cc848872%28v=vs.85%29.aspx
http://blog.paciellogroup.com/2010/04/html5-and-the-myth-of-wai-aria-redundance/
http://blog.paciellogroup.com/2010/04/html5-and-the-myth-of-wai-aria-redundance/

In ARIA, the role attribute overrides the element type, much like a role-
player overriding their workaday existence as a twenty-first century
human in favor of becoming a mighty dwarf. In the example from the
last section, an insipid <div> assumed the role of a checkbox by having
role="checkbox" .

Roles in ARIA50, like races in role-playing, are a part of the character’s
identity we might be interested in. We may expect dwarves to be
strong and good at constructing machines like we expect <button>s to
have the characteristics and behaviors we have already discussed. By
putting role="button" on an element which isn’t actually a <button> ,
you are asking assistive technologies to identify it as a button, evoking
these characteristics.

50. http://www.w3.org/TR/wai-aria/roles

37

http://www.w3.org/TR/wai-aria/roles
http://www.w3.org/TR/wai-aria/roles
http://www.w3.org/TR/wai-aria/roles
http://www.w3.org/TR/wai-aria/roles
http://www.w3.org/TR/wai-aria/roles

PROPERTIESPROPERTIES

Character sheets with just names and races would be a bit limited. I
think we’d all be a bit uncomfortable with so much emphasis on race,
too. The whole point of ARIA is that it recognizes elements not just for
their generic, reductive classification. Much better to identify charac-
ters and elements by their individual assets and talents.

In a typical character sheet, the character will have a set of charac-
teristics listed which, in one way or another, the game will identify as
having a certain currency and importance. For instance, you may be an
elf, but one who is special for her ability to cast certain magic spells. In
much the same way, we looked at an <a> element which was made spe-
cial for having the property that it secreted a submenu. This would be
identified to the accessibility layer, just like the basic role, via the
aria-haspopup="true" property attribute.

There are a huge number of properties51 specified and documented.
Some are global, meaning any element can have them, while others are
reserved for particular contexts and elements. Dwarves are usually pre-
cluded from having good longbow accuracy, but it is a common proper-
ty of elves. The aria-label we used to label our button in the previous
chapter is global, while aria-required—which denotes a required
user entry—should only normally be used on form fields or elements
with form field roles such as listbox or textbox .

STATESSTATES

Perhaps the most important distinction between a static web document
and an application is that the elements in an application tend to
change—sometimes dramatically—according to user interaction and
timed events. Depending on what’s happening in an application at any

51. http://www.w3.org/TR/wai-aria/states_and_properties

CHAPTER 3: THE WAI FORWARD

38

http://www.w3.org/TR/wai-aria/states_and_properties
http://www.w3.org/TR/wai-aria/states_and_properties
http://www.w3.org/TR/wai-aria/states_and_properties
http://www.w3.org/TR/wai-aria/states_and_properties
http://www.w3.org/TR/wai-aria/states_and_properties

one time, the elements therein could be said to be in certain, often tem-
porary, states.

In role-playing games, you have to keep tabs on the state of your
character: how healthy are you? What items have you collected? Who
have you befriended? This is all scribbled down, erased, and scribbled
down some more on the character sheet. Keeping track of the state of
interactive elements is important for accessibility too.

In your application, the state of elements is usually represented vi-
sually. In role-playing games and in screen reader buffers this is not the
case: you can only imagine. If your dwarf character has donned his
magic cloak of invisibility it’s probably best to write this down on the
character sheet so you remember. Similarly, writing the aria-hidden
attribute52 on an element ensures the accessible state of invisibility is
recorded properly.

States like aria-expanded53, which will feature in the building of col-
lapsible content in chapter 5, “Peekaboo”, are announced according to a
value of true or false. An item with aria-expanded="false" is an-
nounced by the JAWS and NVDA Windows screen readers as “col-
lapsed”. If—or rather when—it is set to aria-expanded="true" , the
item is announced as “expanded.”

52. http://www.w3.org/TR/wai-aria/states_and_properties#aria-hidden
53. http://www.w3.org/TR/wai-aria/states_and_properties#aria-expanded

39

http://www.w3.org/TR/wai-aria/states_and_properties#aria-hidden
http://www.w3.org/TR/wai-aria/states_and_properties#aria-hidden
http://www.w3.org/TR/wai-aria/states_and_properties#aria-hidden
http://www.w3.org/TR/wai-aria/states_and_properties#aria-hidden
http://www.w3.org/TR/wai-aria/states_and_properties#aria-expanded
http://www.w3.org/TR/wai-aria/states_and_properties#aria-expanded
http://www.w3.org/TR/wai-aria/states_and_properties#aria-expanded
http://www.w3.org/TR/wai-aria/states_and_properties#aria-hidden
http://www.w3.org/TR/wai-aria/states_and_properties#aria-hidden
http://www.w3.org/TR/wai-aria/states_and_properties#aria-expanded
http://www.w3.org/TR/wai-aria/states_and_properties#aria-expanded

Our First ARIA Widget
It’s about time we put everything we᾿ve learned about roles, properties,
and states into practice and build our first ARIA widget.

The term widget is often used in JavaScript development to denote a
singular pocket of script-enabled interactive functionality. Mercifully,
the ARIA definition corresponds and ARIA widgets can be thought of as
JavaScript widgets which have been made accessible using appropriate
ARIA attributes.

For the following example, we are going to make a simple toolbar; a
group of button controls which allow you to organize some content. In
this case, I’ll provide controls to sort the content alphabetically and re-
verse alphabetically. Fortunately, we have access to a W3C guide on au-
thoring ARIA widgets called “General Steps for Building an Accessible
Widget with WAI-ARIA54” which covers a similar toolbar example.

THE TOOLBAR ROLETHE TOOLBAR ROLE

There’s no such thing as a <toolbar> element in HTML unless you cre-
ate one as a web component55. In any case, because there’s no standard
element for toolbars, we need to include the toolbar role on our tool-
bar’s containing (parent) element. This marks the scope of the widget:

<div role="toolbar">
/* toolbar functionality goes here */

</div>

(Note: There is a <menu> element which takes a type of toolbar but
the element has not been adopted by browsers56, so is unable to provide
the information we need.)

It should be obvious what the toolbar is for in our design by its visu-
al relationship to the content it affects. This won’t help to communicate
anything aurally, however, so we should provide an accessible name for
our toolbar via the now familiar aria-label property. That’s one role
and one property so far.

<div role="toolbar" aria-label="sorting options">
/* toolbar functionality goes here */

</div>

Now we’re going to add the buttons which will be our controls.

54. http://www.w3.org/WAI/PF/aria-practices/#accessiblewidget
55. http://www.techrepublic.com/blog/web-designer/learn-more-about-web-components-

with-these-demos/
56. https://developer.mozilla.org/en-US/docs/Web/HTML/Element/menu

CHAPTER 3: THE WAI FORWARD

40

http://www.w3.org/WAI/PF/aria-practices/#accessiblewidget
http://www.w3.org/WAI/PF/aria-practices/#accessiblewidget
http://www.w3.org/WAI/PF/aria-practices/#accessiblewidget
http://www.w3.org/WAI/PF/aria-practices/#accessiblewidget
http://www.techrepublic.com/blog/web-designer/learn-more-about-web-components-with-these-demos/
http://www.techrepublic.com/blog/web-designer/learn-more-about-web-components-with-these-demos/
http://www.techrepublic.com/blog/web-designer/learn-more-about-web-components-with-these-demos/
http://www.techrepublic.com/blog/web-designer/learn-more-about-web-components-with-these-demos/
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/menu
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/menu
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/menu
http://www.w3.org/WAI/PF/aria-practices/#accessiblewidget
http://www.w3.org/WAI/PF/aria-practices/#accessiblewidget
http://www.techrepublic.com/blog/web-designer/learn-more-about-web-components-with-these-demos/
http://www.techrepublic.com/blog/web-designer/learn-more-about-web-components-with-these-demos/
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/menu
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/menu

<div role="toolbar" aria-label="sorting options">
<button>A to Z</button>
<button>Z to A</button>

</div>

Even without the additional widget properties and states, we’ve already
improved the user’s recognition of the toolbar: using the NVDA screen
reader or the JAWS screen reader with Firefox, when a user focuses the
first button, they are informed that they’re inside a toolbar
and—thanks to the aria-label—what it is for.

THE RELATIONSHIPTHE RELATIONSHIP

So far, we haven’t actually connected our toolbar to the content it con-
trols. We need a relationship attribute, which is a special kind of prop-
erty attribute communicating a relationship between elements. Our
widget is used to control the content, to manipulate and reorganize it,
so we’re going with aria-controls . We join up the dots using an id
value, just as we did in the earlier popup menu example.

<div role="toolbar" aria-label="sorting options"
aria-controls="sortable">

<button>A to Z</button>
<button>Z to A</button>

</div>

<ul id="sortable">
Fiddler crab
Hermit crab
Red crab
Robber crab
Sponge crab
Yeti crab

41

Note how we’ve added aria-controls to the toolbar itself, not each in-
dividual button. Both would be acceptable but using it just the once is
good for brevity and the buttons should each be considered individual
components belonging to the controlling toolbar. To check which prop-
erties and states are supported for widget roles like toolbar , the speci-
fication provides a list of “inherited states and properties57” in each
case. You are advised to consult this when building a widget. As you
will see58, aria-controls is an inherited property of toolbar .

Some screen readers do very little explicitly with this relationship
information, while others are quite outspoken. JAWS actually an-
nounces a keyboard command to let you move focus to the controlled
element: “Use JAWS key + ALT + M to move to controlled element.” Once
you’ve affected it, you might want to go and inspect it, so this is JAWS
helping you to do just that.

PRESSED AND UNPRESSEDPRESSED AND UNPRESSED

Depending on which sorting option is our current preference, it could
be said that the button which commands that option is in a selected or
pressed state. This is where the aria-pressed state attribute comes in,
taking a value of true for pressed or false for unpressed. As we cov-
ered, states are dynamic and should be toggled with JavaScript. On
loading the page, just the first button will be set to true .

57. http://www.w3.org/WAI/PF/aria/roles#toolbar
58. http://www.w3.org/WAI/PF/aria/roles#toolbar

CHAPTER 3: THE WAI FORWARD

42

http://www.w3.org/WAI/PF/aria/roles#toolbar
http://www.w3.org/WAI/PF/aria/roles#toolbar
http://www.w3.org/WAI/PF/aria/roles#toolbar
http://www.w3.org/WAI/PF/aria/roles#toolbar
http://www.w3.org/WAI/PF/aria/roles#toolbar
http://www.w3.org/WAI/PF/aria/roles#toolbar
http://www.w3.org/WAI/PF/aria/roles#toolbar
http://www.w3.org/WAI/PF/aria/roles#toolbar
http://www.w3.org/WAI/PF/aria/roles#toolbar
http://www.w3.org/WAI/PF/aria/roles#toolbar
http://www.w3.org/WAI/PF/aria/roles#toolbar

<div role="toolbar" aria-label="sorting options"
aria-controls="sortable">

<button aria-pressed="true">A to Z</button>
<button aria-pressed="false">Z to A</button>

</div>
<ul id="sortable">

Fiddler crab
Hermit crab
Red crab
Robber crab
Sponge crab
Yeti crab

It’s good practice to pair the styles for active (:active) buttons we cre-
ated in the last chapter with the styles for aria-pressed buttons. Each,
whether momentarily or semi-permanently, are buttons which have
been pushed down.

button:active, button[aria-pressed="true"] {
position: relative;
top: 3px; /* 3px drop */
box-shadow: 0 1px 0 #222; /* less by 3px */

}

When focusing a button with aria-pressed present using either
NVDA or JAWS with Firefox, the button is identified as a “toggle but-
ton”. Using the latest version of JAWS and focusing a button with
aria-pressed="true"will append the word “pressed” to the announce-
ment accordingly. In the ChromeVox59 screen reader for the Chrome

59. http://www.chromevox.com/

43

http://www.chromevox.com/
http://www.chromevox.com/
http://www.chromevox.com/
http://www.chromevox.com/
http://www.chromevox.com/

browser, an aria-pressed="true" button is announced as “button
pressed” and aria-pressed="false" as “button not pressed”. To a
greater or lesser extent, most modern browsers and screen readers ar-
ticulate clarifying information about the state or potential state of these
buttons.

KEYBOARD CONTROLSKEYBOARD CONTROLS

Not quite there yet. For toolbars—as with many ARIA widgets—the
W3C recommends certain keyboard navigation features60, often to em-
ulate equivalent desktop software. Pressing the left and right arrow
keys should switch focus between the buttons and pressing Tab should
move focus out of the toolbar. We’ll add tabindex="-1" to the list and
focus it using JavaScript whenever the user presses Tab. We do this to
allow users to move directly to the list once their sorting option is cho-
sen. In a toolbar with several buttons, this would save them from po-
tentially having to tab through a number of adjacent buttons to get to
the list.

<div role="toolbar" aria-label="sorting options"
aria-controls="sortable">

<button aria-pressed="true">A to Z</button>
<button aria-pressed="false">Z to A</button>

</div>
<ul id="sortable" tabindex="-1">

Fiddler crab
Hermit crab
Red crab
Robber crab
Sponge crab
Yeti crab

$(listToSort).focus();

We’ll talk in more depth about managing focus like this in later exam-
ples.

ALL DONEALL DONE

That concludes our first ARIA widget. As with many of the examples in
this guide, I have made a live demo61 available to play with and test. Re-

60. http://www.w3.org/WAI/PF/aria-practices/#toolbar

CHAPTER 3: THE WAI FORWARD

44

http://www.w3.org/WAI/PF/aria-practices/#toolbar
http://www.w3.org/WAI/PF/aria-practices/#toolbar
http://www.w3.org/WAI/PF/aria-practices/#toolbar
http://www.w3.org/WAI/PF/aria-practices/#toolbar
http://heydonworks.com/practical_aria_examples/#toolbar-widget
http://heydonworks.com/practical_aria_examples/#toolbar-widget
http://heydonworks.com/practical_aria_examples/#toolbar-widget
http://www.w3.org/WAI/PF/aria-practices/#toolbar
http://www.w3.org/WAI/PF/aria-practices/#toolbar

member: It’s not really about sorting, per se; that’s all done with
JavaScript. The aim here is to make explicit the relationships and states
of our application, so that whatever we are doing to our content—sort-
ing it, editing it, searching it, creating it, recreating it—our keyboard
and screen reader users are kept in the loop.

Know The Rules
As we progress through this book, making increasingly complex ARIA
widgets, it would be impractical to test every single little tweak and nu-
ance manually in all of the browser and screen reader combinations. Al-
though testing is essential, avoiding basic screw-ups in the first in-
stance needs little more than a handful of guiding principles to keep
close at hand.

To start out on the right foot, we are going to abide by the three rules
of ARIA use62 as laid out by the the WAI-ARIA experts at the W3C. Let’s
study these now or else we might do something embarrassing.

FIRST RULE OF ARIA USEFIRST RULE OF ARIA USE

If you can use a native HTML element [HTML5] or attribute with the
semantics and behaviour you require already built in, instead of
re-purposing an element and adding an ARIA role, state or property to
make it accessible, then do so.

Remember that ARIA is used to remedy or enhance HTML code. There’s
no need to use ARIA attributes if the built-in or native semantics of
HTML will do. As in the checkbox example earlier on, the use of the
checkbox role was suboptimal and would only come about under cer-
tain circumstances where the inert <div> element could not be easily
replaced.

In some cases, the support for new HTML attributes is currently less
widespread than the support for their ARIA counterparts. For example,
tests from a couple of years back63 showed that required was not sup-
ported at all across screen reader and browser combinations, while sup-
port for aria-required was strong. For the time being, you should
take a belt-and-braces approach by including both attributes to maxi-
mize compatibility: a phrase we’ll hear more of as we progress.

61. http://heydonworks.com/practical_aria_examples/#toolbar-widget
62. http://www.w3.org/TR/aria-in-html/#first-rule-of-aria-use
63. http://wps.pearsoned.com/wps/media/objects/8956/9171771/aria-required.html

45

http://www.w3.org/TR/aria-in-html/#first-rule-of-aria-use
http://www.w3.org/TR/aria-in-html/#first-rule-of-aria-use
http://www.w3.org/TR/aria-in-html/#first-rule-of-aria-use
http://www.w3.org/TR/aria-in-html/#first-rule-of-aria-use
http://wps.pearsoned.com/wps/media/objects/8956/9171771/aria-required.html
http://wps.pearsoned.com/wps/media/objects/8956/9171771/aria-required.html
http://wps.pearsoned.com/wps/media/objects/8956/9171771/aria-required.html
http://heydonworks.com/practical_aria_examples/#toolbar-widget
http://heydonworks.com/practical_aria_examples/#toolbar-widget
http://www.w3.org/TR/aria-in-html/#first-rule-of-aria-use
http://www.w3.org/TR/aria-in-html/#first-rule-of-aria-use
http://wps.pearsoned.com/wps/media/objects/8956/9171771/aria-required.html
http://wps.pearsoned.com/wps/media/objects/8956/9171771/aria-required.html

<input type="text" id="text-entry" required aria-required="true"
/>

SECOND RULE OF ARIA USESECOND RULE OF ARIA USE

Do not change native semantics, unless you really have to.

As the same “Using WAI-ARIA in HTML” guide explains64, adding a
role attribute to an element will override the native semantics of that
element. So, adding checkbox to <div> , helpfully makes that unseman-
tic <div> parade as a checkbox. Less helpfully, adding a role of button
to an <h1> would effectively make that <h1> a button—at least, in the
accessibility layer where it would be announced. So, the information
about the element being a first-level heading would be lost.

When we make clickable headings later on in “Peekaboo”, chapter 5,
we instead use JavaScript to place a <button> as a child of the heading,
meaning we keep the heading semantics, which are still important. It is
precisely this which the W3C recommends:

<h1><button>heading button</button></h1>

THIRD RULE OF ARIA USETHIRD RULE OF ARIA USE

All interactive ARIA controls must be usable with the keyboard.

Sound familiar? That’s because it echoes WCAG 2.0’s guideline, 2.1,
“Make all functionality available from a keyboard”. And, with that,
we’ve come full circle.

In our toolbar example, basic keyboard navigation is made possible
simply by including focusable <button>s as controls. We enhanced
this by enabling users to switch between buttons using the arrow keys.
We shall explore more complex custom keyboard functionality using
programmatic focus management in later examples.

That is all to come. First, we shall put our application functionality
to one side and be addressing how to actually find that application func-
tionality in the first place. Mobility is a big part of accessibility online
and off, so we’ll look at different ways to help our users get around.❧

64. http://www.w3.org/TR/aria-in-html/#what-does-adding-a-role-do-to-the-native-seman-
tics

CHAPTER 3: THE WAI FORWARD

46

http://www.w3.org/TR/aria-in-html/#what-does-adding-a-role-do-to-the-native-semantics
http://www.w3.org/TR/aria-in-html/#what-does-adding-a-role-do-to-the-native-semantics
http://www.w3.org/TR/aria-in-html/#what-does-adding-a-role-do-to-the-native-semantics
http://www.w3.org/TR/aria-in-html/#what-does-adding-a-role-do-to-the-native-semantics
http://www.w3.org/TR/aria-in-html/#what-does-adding-a-role-do-to-the-native-semantics

CHAPTER 4:

Getting Around
Contemplate the ease with which I can quickly consume an interface.
Darting my eyes back and forth over the screen, it takes moments for
me to chart its topology. My apprehension of how much information is
there, which parts of it are important and which bits I’d really rather
avoid is almost instantaneous. Can’t see it all at once? I simply grab the
scrollbar and briefly dip below the so-called fold. “OK, that’s a lot of
stuff. Maybe I’ll bookmark it for later.”

Hyperlinks, which let us traverse between pages are innately accessible
and have been from the beginning. They can be focused and are identi-
fied by assistive technologies for what they are: “Link.” The same <a>
element can also take you to parts of the same page and most screen
readers will helpfully announce focused links on the same page as,
well, “same page link.”

So that’s getting around done, then. Except it isn’t.
The structure of webpages which many people consume visually,

set to a grid, is no structure at all to those who are not looking. To
screen reader users, grids do not exist. The extra time it takes the page to
load your perfect golden ratio grid system framework is all for nothing
to them. Even keyboard users (who can at least adjust their gaze to a
new item) are not really helped by a multiple column layout. They still
have to cover the same distance, just sideways.

47

While I can scope a webpage with little more than a cursory glance, if
the developer of the page hasn’t been thoughtful, keyboard and screen
reader users are forced to trudge through a formless no man’s land of
text, links and little more.

Like any problem, this needs to be broken down. In this case literal-
ly, since we need to break the page down into manageable and recog-
nizable regions. Using semantic HTML enhanced with a few choice
ARIA attributes, we can begin to draw our users an invisible map of our
app. Once they know where things are, we can help our users get be-
tween them.

Dividing Things Up
In HTML5 we were given a handful of new elements. These sectioning
elements65 (<section> , <article> , <nav> , and <aside>) are no doubt
familiar to you already, but I wonder whether you’ve considered them
in terms of accessibility?

Sectioning content is one of three basic content types in HTML. You
have phrasing content (inline elements like and); flow
content (mostly block-level elements like <p> and <div>); and sections
which are used to define the scope of parts of your page. In other
words, you have small bits of content, larger bits of content, and big ar-
eas of scoped content.

In well-structured webpages, each piece of phrasing content should
belong to a piece of flow content, which should probably belong to a
section. If no HTML5 sectioning elements are used, <body> can be
thought as the single section that wraps the lot.

65. http://www.w3.org/WAI/GL/wiki/Using_HTML5_section_elements

CHAPTER 4: GETTING AROUND

48

http://www.w3.org/WAI/GL/wiki/Using_HTML5_section_elements
http://www.w3.org/WAI/GL/wiki/Using_HTML5_section_elements
http://www.w3.org/WAI/GL/wiki/Using_HTML5_section_elements
http://www.w3.org/WAI/GL/wiki/Using_HTML5_section_elements
http://www.w3.org/WAI/GL/wiki/Using_HTML5_section_elements
http://www.w3.org/WAI/GL/wiki/Using_HTML5_section_elements

The potential advantage of using HTML5’s sectioning elements is they
can break up content into manageable chunks. When using some ver-
sions of the screen reader JAWS, <section>s and <article>s are an-
nounced as such when you reach them in the page, then concluded
(with “Article end,” for instance) when you have reached their end.

The superiority of using a sectioning element over the previously com-
mon <div> should be clear: while sectioning elements are often identi-
fied aurally, <div>s never are. The <div> may be good for constructing
grids but it’s really just masonry. It doesn’t provide any meaning to
users of AT. In fact, it isn’t supposed to impart any semantic informa-
tion at all.

In HTML, the span and div elements are used for generic organiza-
tional or stylistic applications, typically when extant meaningful ele-
ments have exhausted their purpose.
— Wikipedia66

The potential advantage of using sectioning elements breaks down
when <section>s are wrongly adopted as an equivalent to <div>s and
you see examples of markup like this:

<section class="outer">
<section class="inner">

<section class="content">

66. http://en.wikipedia.org/wiki/Span_and_div

49

http://en.wikipedia.org/wiki/Span_and_div
http://en.wikipedia.org/wiki/Span_and_div
http://en.wikipedia.org/wiki/Span_and_div
http://en.wikipedia.org/wiki/Span_and_div
http://en.wikipedia.org/wiki/Span_and_div

<!-- content goes here -->
</section>

</section>
</section>

It is considered bad practice to nest <div>s too deeply because it adds
unnecessary bloat to your HTML code, but nesting <section> creates
much worse problems. At least not each and every extraneous <div> is
announced to the quickly tiring screen reader user!

For this reason, the HTML5.1 specification67 — the newest version of
the HTML5 specification — has recently been altered to strongly en-
courage the use of headings to label individual sections and emphasize
their true purpose.

The theme of each section should be identified, typically by includ-
ing a heading (h1–h6 element) as a child of the section element.

In addition, the W3C now recommends that browser and assistive tech-
nology vendors “only convey the presence of […] section elements
when the section element has an accessible name68”. Anticipating
some author error, we would hope that this safeguard becomes widely
adopted.

We shall talk about the role of headings in webpage accessibility lat-
er. For now, suffice it to say that users of the NVDA and JAWS screen
readers can use keyboard shortcuts to navigate between headings,
which essentially means they can jump between sections. For instance,

67. http://www.w3.org/html/wg/drafts/html/master/sections.html#the-section-element
68. http://www.w3.org/html/wg/drafts/html/master/dom.html#sec-implicit-aria-semantics

CHAPTER 4: GETTING AROUND

50

http://www.w3.org/html/wg/drafts/html/master/sections.html#the-section-element
http://www.w3.org/html/wg/drafts/html/master/sections.html#the-section-element
http://www.w3.org/html/wg/drafts/html/master/sections.html#the-section-element
http://www.w3.org/html/wg/drafts/html/master/dom.html#sec-implicit-aria-semantics
http://www.w3.org/html/wg/drafts/html/master/dom.html#sec-implicit-aria-semantics
http://www.w3.org/html/wg/drafts/html/master/dom.html#sec-implicit-aria-semantics
http://www.w3.org/html/wg/drafts/html/master/dom.html#sec-implicit-aria-semantics
http://www.w3.org/html/wg/drafts/html/master/sections.html#the-section-element
http://www.w3.org/html/wg/drafts/html/master/sections.html#the-section-element
http://www.w3.org/html/wg/drafts/html/master/dom.html#sec-implicit-aria-semantics
http://www.w3.org/html/wg/drafts/html/master/dom.html#sec-implicit-aria-semantics

in JAWS the keys 1–6 correspond to the HTML heading elements <h1>
to <h6> . To give you a head start on using JAWS keyboard shortcuts or
“quick keys”, WebAIM has a useful guide69.

TEST.CSSTEST.CSS

To check that we haven’t become overzealous with our <section>s and
started using them like <div>s, we can include a fairly simple rule to
check. Add this to your test.css style sheet.

section > section:first-child:after {
background: red;
color: #fff;
content: 'Warning: it looks like you are using sections like
divs. Sections should each have a heading';

}

Famous Landmarks
Even when used sparingly and correctly, sectioning elements can only
improve the way users read content in a linear fashion, from top to bot-
tom. It is, as stated, only their headings which allow users to jump be-
tween them and skip the boring parts. Sectioning elements are like
building blocks: helpful in terms of construction but little more than
generic pieces, just slightly better than old fashioned <div>s.

What we really need is a way to identify the major components that
make up just about any well-coded webpage; famous landmarks, if you
will, in the design of an ordinary page. This is where ARIA’s landmark
roles70 step in. Building a webpage from sectioning elements is like lay-
ing bricks in a wall. Working with landmarks is more like identifying
the essential organs that make up the page’s anatomy.

69. http://webaim.org/articles/jaws/#quick
70. http://www.nomensa.com/blog/2010/wai-aria-document-landmark-roles/

51

http://webaim.org/articles/jaws/#quick
http://webaim.org/articles/jaws/#quick
http://webaim.org/articles/jaws/#quick
http://www.nomensa.com/blog/2010/wai-aria-document-landmark-roles/
http://www.nomensa.com/blog/2010/wai-aria-document-landmark-roles/
http://www.nomensa.com/blog/2010/wai-aria-document-landmark-roles/
http://www.nomensa.com/blog/2010/wai-aria-document-landmark-roles/
http://webaim.org/articles/jaws/#quick
http://webaim.org/articles/jaws/#quick
http://www.nomensa.com/blog/2010/wai-aria-document-landmark-roles/
http://www.nomensa.com/blog/2010/wai-aria-document-landmark-roles/

Landmarks relate to WCAG’s guideline 2.471: “Provide ways to help
users navigate, find content, and determine where they are.” As we
shall explore, landmarks can be particularly helpful in the design of
web application interfaces because they can be used to quickly move
between key parts of the application.

The landmark roles:

• banner (role="banner")

• contentinfo (role="contentinfo")

• main (role="main")

• navigation (role="navigation")

• complementary (role="complementary)

• search (role="search")

• form (role="form")

Let’s imagine a page which, thanks to a conscientious designer, in-
cludes each of these landmarks…

Now let’s revisit our landmarks list with some clarification on what the
roles are for.

71. http://www.w3.org/TR/WCAG20/#navigation-mechanisms

CHAPTER 4: GETTING AROUND

52

http://www.w3.org/TR/WCAG20/#navigation-mechanisms
http://www.w3.org/TR/WCAG20/#navigation-mechanisms
http://www.w3.org/TR/WCAG20/#navigation-mechanisms
http://www.w3.org/TR/WCAG20/#navigation-mechanisms
http://www.w3.org/TR/WCAG20/#navigation-mechanisms

• banner: the preamble to the page, usually containing the main <h1>
heading and sometimes a role="navigation" landmark, too. Can only
be used once per page.

• contentinfo: information about the page and the website as a whole.
The best place to put copyright and contact information. Can only be
used once per page.

• main: this is where the main content of your page goes. Visitors who’ve
already read your banner on another page may want to skip straight to
this. Can only be used once per page.

• navigation: a landmark containing links to other pages of your site or
important sections of the page itself. You can have multiple
role="navigation" blocks. Can be nested in other landmarks such as
banner and main. Can be used more than once per page but exercise re-
straint: it is not to be used on just any list of links.

• complementary: easy to spell incorrectly as complimentary. This consti-
tutes a landmark to contain subsidiary or tangential information. In
HTML4 we might have labeled a prototype for this landmark sidebar.
That doesn’t mean it has to appear on the side of your page, though: fat
footers containing Twitter updates, lists of links to recommended sites,
and other content probably qualify as complementary. This role maps
to HTML5’s <aside> element. Probably best used only once per page.

• search: a special role for any form in the page that lets you search or fil-
ter the site’s content. You may want to use the search role for site-wide
searches, and searches within sections or single pages of a site. In
which case, more than one of these may be applicable per page.

• form: a generic role related to <form> used to identify any important
areas for user input on the page. In single page applications, this role
would identify any interactive parts of the application.

TELEPORTATIONTELEPORTATION

ARIA landmark roles, like other ARIA attributes, are gleaned from the
HTML and communicated, via the web browser, to a screen reader to
reveal special information about the page’s structure.

Like headings, landmarks can be used as navigational aids because
screen reader vendors like JAWS and NVDA provide keyboard shortcuts
to move between them. For example, in JAWS 15 you can press the R
key to go to the next landmark or Shift + R to go back one.

Compared to hopping from one link to another, this is like teleport-
ing across continents. Better still, both JAWS and NVDA provide special
dialogs which list the landmarks in the page and let you move to them.

53

In NVDA, you access this dialog by pressing Insert + F7. Helpfully, land-
marks nested within other landmarks are indicated as being so placed:

• banner

◦ navigation

◦ search

• main

◦ navigation

◦ form

• complementary

• contentinfo

In the above example, note how we have employed two navigation
landmarks. This is totally legitimate: by nesting, we are able to define
their different roles within the overall structure. In this case, the ban-
ner navigation would probably take you to other parts of the site, while
the navigation block inside main would most likely use same-page links
to provide navigation for the page’s content.

A Keyboard Tour Of Famous LandmarksA Keyboard Tour Of Famous Landmarks

The dialog interface for landmarks is a powerful tool and credit is due
to the vendors of NVDA and JAWS for implementing similar solutions,
making switching between their respective products nice and easy.

Unfortunately, keyboard users miss out, because the screen reader
software must be running to provide this special functionality. Not to
worry: someone has thought of this. Users of Firefox are able to install
a free extension72 which provides simple keyboard shortcuts for jump-
ing between landmarks (and implied landmarks — see following sec-
tion).

• n — takes you to the next landmark

• p — takes you to the previous landmark

Just as focusing buttons and other controls should be indicated by a vi-
sual cue, arriving at a landmark using the extension will highlight that

72. https://github.com/davidtodd/landmarks

CHAPTER 4: GETTING AROUND

54

https://github.com/davidtodd/landmarks
https://github.com/davidtodd/landmarks
https://github.com/davidtodd/landmarks
https://github.com/davidtodd/landmarks
https://github.com/davidtodd/landmarks

landmark with a colored border. The difference is that navigating by
landmark happens on a much bigger scale and helps you cover a lot
more ground. In applications, where landmarks surrounding the
<main> area essentially represent tools, this can make performing tasks
a lot quicker.

CODING LANDMARKSCODING LANDMARKS

ARIA is a bridging technology73. It was developed as an extension of
HTML to provide accessible semantics lacking in the language and,
hopefully, stimulate interest in adopting the ARIA attributes as simple
HTML elements and attributes later on. Put another way, ARIA is a pro-
totype for the richer HTML we should like to see in the future.

Sometimes, HTML is able to catch up with ARIA and this can result
in some confusion. When do we stop using ARIA and start using simple
HTML? There’s no easy answer to that, so the best tactic for now is to
write ARIA attributes for any HTML elements that would later convey
meaning without the help of ARIA.

For example, the semantic meaning of the explicit banner role
should be considered no different from the meaning conveyed by any
<header> element that exists as a direct child of <body> . Since

73. http://www.w3.org/TR/wai-aria/introduction#co-evolution

55

http://www.w3.org/TR/wai-aria/introduction#co-evolution
http://www.w3.org/TR/wai-aria/introduction#co-evolution
http://www.w3.org/TR/wai-aria/introduction#co-evolution
http://www.w3.org/TR/wai-aria/introduction#co-evolution
http://www.w3.org/TR/wai-aria/introduction#co-evolution

<header>s are used to introduce sections and <body> is the biggest sec-
tion, browsers should be able to interpret this <header> as a banner
without extra prompting. Most won’t, though — not yet. So, we leave
the role in as a helping hand.

<body>
<header role="banner"> <!-- implicit / explicit banner -->

<h1>Title of page</h1>
<p>Introductory paragraph</p>

</header>
<article>

<header> <!-- normal header -->
... etc...

If it helps, think of it like training wheels on a bicycle. You don’t re-
move the bike’s wheels just because the training wheels are there: the
training wheels are there to support the bike’s own wheels until they
can be used on their own. The W3C maintains a recommendations
table74 that shows you which HTML elements are equivalent to which
ARIA attributes if you need to look up anything.

As Léonie Watson (senior accessibility engineer at The Paciello Group)
warns in her “Rock ‘n’ Roll Guide to HTML5 and ARIA”75, you should be
careful not to use an element and a role separately. In the following in-

74. http://www.w3.org/TR/aria-in-html/#recommendations-table
75. http://www.slideshare.net/LeonieWatson/generate-2013-09

CHAPTER 4: GETTING AROUND

56

http://www.w3.org/TR/aria-in-html/#recommendations-table
http://www.w3.org/TR/aria-in-html/#recommendations-table
http://www.w3.org/TR/aria-in-html/#recommendations-table
http://www.w3.org/TR/aria-in-html/#recommendations-table
http://www.slideshare.net/LeonieWatson/generate-2013-09
http://www.slideshare.net/LeonieWatson/generate-2013-09
http://www.slideshare.net/LeonieWatson/generate-2013-09
http://www.w3.org/TR/aria-in-html/#recommendations-table
http://www.w3.org/TR/aria-in-html/#recommendations-table
http://www.slideshare.net/LeonieWatson/generate-2013-09
http://www.slideshare.net/LeonieWatson/generate-2013-09

correct example, the role="navigation" attribute should be on the
<nav> element because the ARIA attribute and the element imply the
same thing. Separating the role from the <nav> creates duplicate indi-
cators for the one landmark. Screen readers would be liable to read
“navigation landmark, navigation landmark”

<nav>
<ul role="navigation">

...
...
...

</nav>

The Main Event
The main landmark is rather special in that a unique HTML element,
<main> , is the direct offspring of the ARIA landmark role="main" . The
case for marking up the main contents of webpages and applications
was so strong that it was agreed an actual tag should take care of the
job.

The main content area consists of content that is directly related to or
expands upon the central topic of a document or central functionality
of an application.
— W3C Editor’s Draft76

Whether you think of <main> as a landmark or everything that’s left
over after you’ve set your other landmarks, it quickly became clear that
browsers were not clever enough to determine the main part of a page
for themselves. A so-called Scooby Doo algorithm77 for deducing the
main content was proposed but early experiments showed it was, well,
totally rubbish.

The reason main became the responsibility of authors is that HTML,
like English and other natural languages, is a way to express meaning,
not just procedure. Only human HTML authors truly grasp the individ-
ual semantic structure they are putting forth.

76. http://www.w3.org/html/wg/drafts/html/master/grouping-content.html#the-main-ele-
ment

77. https://willnorris.com/2013/07/scooby-doo-algorithm

57

http://www.w3.org/html/wg/drafts/html/master/grouping-content.html#the-main-element
http://www.w3.org/html/wg/drafts/html/master/grouping-content.html#the-main-element
http://www.w3.org/html/wg/drafts/html/master/grouping-content.html#the-main-element
https://willnorris.com/2013/07/scooby-doo-algorithm
https://willnorris.com/2013/07/scooby-doo-algorithm
https://willnorris.com/2013/07/scooby-doo-algorithm
http://www.w3.org/html/wg/drafts/html/master/grouping-content.html#the-main-element
http://www.w3.org/html/wg/drafts/html/master/grouping-content.html#the-main-element
https://willnorris.com/2013/07/scooby-doo-algorithm
https://willnorris.com/2013/07/scooby-doo-algorithm

It’s worth remembering that accessibility is often about empathy, and
computers are not inclined to be empathetic: only the humans instruct-
ing those machines are capable of that. The <main> element is an exem-
plar of empathetic specification, having taken into account the needs of
users and the conventions of authors in its design.

GETTING TO THE JUICY STUFFGETTING TO THE JUICY STUFF

A key feature of <main> is to signify contents that are unique to the
particular page. As the specification puts it, <main> “includes content
that is unique to that document and excludes content that is repeated
across a set of documents”.

Keeping in mind that keyboard users and screen readers traverse
documents from top to bottom, and the common role="banner" land-
mark usually resides at the top, you can see the problem:

• Users don’t need to be told your site’s name more than once.

• Users don’t want to read your corny slogan more than once (if at all).

• Users especially don’t want to have to repeatedly encounter the
<iframe> banner advert you’ve lodged up there.

CHAPTER 4: GETTING AROUND

58

Including a link reading something like “skip to content” right at the
top of the page (so it’s the first thing users encounter when they arrive)
is a time-honored convention. This should link to the main part of the
page as defined similar to below:

<main role="main" id="main">...</main>

However, it is often coded incorrectly. Because the skip link is only
there for keyboard and screen reader users, designers like to tidy it
away for users who don’t need it. The first mistake is by using a
display value of none , which hides the link from sighted and screen
reader users alike.

a.skip {
display: none; /* nobody can see this */

}

To trick screen readers into thinking the link should be visible, you
could simply move it off screen, perhaps using position: relative
and a negative value like top: -100px . The second and more common
mistake is to not reveal the skip link to keyboard users. As documented
by David Walsh78, it’s possible to reveal the link to keyboard users
when they tab to it by reverting the position value on focus:

a.skip:focus {
top: 0;

}

To make revealing the link more obvious, you could even use a CSS3
transition79 to animate the position and slide the link into view.

a.skip {
position: relative;
top: -100px;
transition: position 0.5s ease;

}

a.skip:focus {
top: 0;

}

78. http://davidwalsh.name/accessibility-elements
79. https://developer.mozilla.org/en-US/docs/Web/CSS/transition

59

http://davidwalsh.name/accessibility-elements
http://davidwalsh.name/accessibility-elements
http://davidwalsh.name/accessibility-elements
http://davidwalsh.name/accessibility-elements
https://developer.mozilla.org/en-US/docs/Web/CSS/transition
https://developer.mozilla.org/en-US/docs/Web/CSS/transition
https://developer.mozilla.org/en-US/docs/Web/CSS/transition
https://developer.mozilla.org/en-US/docs/Web/CSS/transition
http://davidwalsh.name/accessibility-elements
http://davidwalsh.name/accessibility-elements
https://developer.mozilla.org/en-US/docs/Web/CSS/transition
https://developer.mozilla.org/en-US/docs/Web/CSS/transition

As described, using the landmarks dialogs offered by screen readers or
the landmarks extension are more elegant ways to let your visitors get
to the important stuff. Nonetheless, only modern setups, sometimes re-
quiring deliberate configuration, will support these features. To help
users stuck with older systems, it’s often helpful to try some little tech-
niques of our own, like this one.

Who knows: if the solutions you come up with really take off, you
might see them in a future specification. That’s what being part of a
community is all about.

Don’t Forget Headings!
For many of us, our first encounter with the importance of headings
comes with learning their impact on search engine optimization (SEO).
It is well known that search engines like Google give more weight to
the words and phrases in important headings like <h1> and <h2> when
trying to determine what a site is about. If we have a site that sells gui-
tar amplifiers, we can be proactive and put this important term in our
main heading(s). This will enable Google to deem our site relevant to
budding guitarists searching with this term.

In accessibility terms, the story is ever so slightly different.
The <h1> text is still considered important, but more for its structur-

al significance. When a screen reader announces the <h1> heading as
“First-level heading: Guitar Amplifiers,” the first-level heading qualifi-

CHAPTER 4: GETTING AROUND

60

cation indicates that guitar amplifiers are an outer theme to which sub-
themes are likely to belong.

As with nesting landmarks, nesting content by heading level involves
describing a structure of ownership and telling the user which bits of
content belong to which. Nothing is meaningful without context and,
since context is dependent on structure, structure surely aids compre-
hension.

• h1. Stuff I do

◦ h2. Play guitar

▪ h3. Blues guitar

▪ h3. Sludge metal guitar

◦ h2. Write

▪ h3. Writing about HTML

▪ h3. Writing about typography

HEADINGS AND SECTIONS?HEADINGS AND SECTIONS?

For some time it was felt that when we started using sectioning ele-
ments to describe structure, we could just use <h1> headings every-
where and their level would be calculated algorithmically. Unfortunate-
ly, this was utterly useless because it couldn’t work with browsers that
didn’t support sectioning elements. Accordingly, and for the benefit of

61

screen reader users experiencing HTML5 pages, the W3C’s advice was
changed80.

To express the above structure with sections and headings, the head-
ings for each section should reflect the nesting level or rank of the sec-
tion itself:

<body>
<h1>Stuff I do</h1>
<section>

<h2>Play guitar</h2>
<section>

<h3>Blues guitar</h3>
</section>
<section>

<h3>Sludge metal guitar</h3>
</section>

</section>
<section>

<h2>Write</h2>
<section>

<h3>Writing about HTML</h3>
</section>
<section>

<h3>Writing about typography</h3>
</section>

</section>
</body>

Because structure is paramount, skipping heading levels should be
avoided81. Remember: <h4> doesn’t mean the content is fourth most
important and not really worth bothering with; it labels a fourth-level
subsection — the information within could still be key. Skipping head-
ing levels — like placing an <h4> directly after an <h2> — makes a
nonsense of the structure and leaves some users wondering where they
are.

REMEDIAL HEADINGSREMEDIAL HEADINGS

As we covered in chapter 3, “The WAI Forward”, one of ARIA’s useful ap-
plications is in remedying the poor accessibility of badly coded web-
pages.

80. http://lists.w3.org/Archives/Public/public-html/2013Feb/0125.html
81. http://accessibilitytips.com/2008/03/10/avoid-skipping-header-levels/

CHAPTER 4: GETTING AROUND

62

http://lists.w3.org/Archives/Public/public-html/2013Feb/0125.html
http://lists.w3.org/Archives/Public/public-html/2013Feb/0125.html
http://lists.w3.org/Archives/Public/public-html/2013Feb/0125.html
http://lists.w3.org/Archives/Public/public-html/2013Feb/0125.html
http://accessibilitytips.com/2008/03/10/avoid-skipping-header-levels/
http://accessibilitytips.com/2008/03/10/avoid-skipping-header-levels/
http://accessibilitytips.com/2008/03/10/avoid-skipping-header-levels/
http://accessibilitytips.com/2008/03/10/avoid-skipping-header-levels/
http://lists.w3.org/Archives/Public/public-html/2013Feb/0125.html
http://lists.w3.org/Archives/Public/public-html/2013Feb/0125.html
http://accessibilitytips.com/2008/03/10/avoid-skipping-header-levels/
http://accessibilitytips.com/2008/03/10/avoid-skipping-header-levels/

Let’s imagine that a professional designer, Johnny Paycheck, has
coded a website with the headings all out of order. The following <h2> ,
for instance, appears inside a <section> labeled with an <h3> . The
mistake he made was to choose headings based on the visual impact of
their font size. He just wanted this bit of text to look relatively big and
that’s all.

<h2>Text that looks big</h2>

Then let’s imagine that another developer, Anna Muggins, has accepted
the challenge of making the webpage in question more accessible. She’s
not considered much of a designer, so she’s not allowed to access the
style sheet. She’s smart enough to know, however, that changing this
<h2> to a hierarchically correct <h4> will reduce the visual size of the
text, sending the stakeholders into a frenzy.

Levels increase with depth. If the DOM ancestry does not accurately
represent the level, authors should explicitly define the aria-level
attribute
— WAI-ARIA 1.082

Using ARIA’s aria-level property, Anna is able to invisibly correct the
underlying structure of the page as described by its heading hierarchy.
She simply places the attribute on the <h2> , telling screen readers to
record and announce the <h2> as a fourth-level heading.

<h2 aria-level="4">Text that looks big</h2>

Although Johnny Paycheck has the kind of talent for visual flair that
earns him the title of designer, it is Anna with her knowledge of the
specification and appreciation of the medium, who is able to instill
structural integrity. Of the two, Anna is the better designer.

Hijacking Links
Imagine you were new to JavaScript and I told you it was possible to
add a special line of code which deliberately prevented hyperlinks from
doing what hyperlinks were designed for. What would be your first im-
pression? Isn’t that just a little reminiscent of the BIG RED BUTTON
we talked about in chapter 2, which we should never, ever press?

Sometimes there are legitimate reasons for using return false or
e.preventDefault to cancel the normal behavior of hyperlinks in our

82. http://www.w3.org/TR/wai-aria/states_and_properties#aria-level

63

http://www.w3.org/TR/wai-aria/states_and_properties#aria-level
http://www.w3.org/TR/wai-aria/states_and_properties#aria-level
http://www.w3.org/TR/wai-aria/states_and_properties#aria-level
http://www.w3.org/TR/wai-aria/states_and_properties#aria-level
http://www.w3.org/TR/wai-aria/states_and_properties#aria-level

JavaScript code. For a thumbnail gallery, we could use progressive en-
hancement and handle activating the link differently depending on
whether the user has JavaScript available to them: without JavaScript, a
clicked thumbnail link would simply follow the href value to the larger
picture. With JavaScript available, this default behavior would be sup-
pressed so that we could generate a popup of the larger image in the
same page.

The action that the <a> element now performs is more akin to a but-
ton’s action than a link’s. To communicate this change of behavior to
assistive technology users, we should add the button role via the
JavaScript which mutates the behavior:

larger picture

The benefits of progressive enhancement to accessibility83 are clear.
Since basic access to content is the foundation, a safety net is provided
and fewer users are marginalized. It’s usually when we start trying to
enhance, rather than replace, the default behavior that we start getting
in a muddle.

For example, take the employment of a scrolling effect to navigate to
anchors within the page. We’ll use a nice, reusable piece of jQuery de-
moed on CSS-Tricks84:

$(function() {
$('a[href*=#]:not([href=#])').click(function() {

if (location.pathname.replace(/^\//,'') ==
this.pathname.replace(/^\//,'') && location.hostname ==
this.hostname) {

var target = $(this.hash);
target = target.length ? target : $('[name=' +
this.hash.slice(1) +']');
if (target.length) {

$('html,body').animate({
scrollTop: target.offset().top

}, 1000);
return false;

}
}

});
});

83. http://en.wikipedia.org/wiki/Progressive_enhancement#Benefits_for_accessibility
84. http://css-tricks.com/snippets/jquery/smooth-scrolling/

CHAPTER 4: GETTING AROUND

64

http://en.wikipedia.org/wiki/Progressive_enhancement#Benefits_for_accessibility
http://en.wikipedia.org/wiki/Progressive_enhancement#Benefits_for_accessibility
http://en.wikipedia.org/wiki/Progressive_enhancement#Benefits_for_accessibility
http://css-tricks.com/snippets/jquery/smooth-scrolling/
http://css-tricks.com/snippets/jquery/smooth-scrolling/
http://css-tricks.com/snippets/jquery/smooth-scrolling/
http://en.wikipedia.org/wiki/Progressive_enhancement#Benefits_for_accessibility
http://en.wikipedia.org/wiki/Progressive_enhancement#Benefits_for_accessibility
http://css-tricks.com/snippets/jquery/smooth-scrolling/
http://css-tricks.com/snippets/jquery/smooth-scrolling/

The great thing about this proof of concept is that the jQuery code is
based on the correct, standardized markup for creating same-page
links. That is, when JavaScript is turned off, the hash relationship be-
tween the href of the link and the id of the target can still be relied on
to trigger the expected behavior and jump to the target.

jump to section 2

<!-- lots of content -->

<!-- and lots more content -->

<!-- and even more content -->

<section id="section2">
<h2>Section 2</h2>
<!-- etc -->

</section>

The only problem is that screen reader users are not users without
JavaScript. In fact, many of the accessible patterns we will explore later
in this book depend on JavaScript to manage attribute values and other
characteristics of our widgets.

To consider a screen reader user as not a JavaScript user is an em-
barrassing misconception — like shouting at someone in a wheelchair
because you assume they are deaf.

In the example, the screen reader user’s action is undertaken by
JavaScript, but all the JavaScript does is animate the scrollbar. It ani-
mates the linked anchor into view, but it doesn’t explicitly link to it in a
way most screen readers understand. The unfortunate upshot is that
the newly visible section has not been focused. It’s on the screen, but
that’s no good: we haven’t technically moved to it.

65

To make sure the target section is focused and ready to be read and
navigated, we need to add two lines to our JavaScript code. The first
makes sure the target section can be focused. As a <section> element,
it can’t be focused by default. To do this, we dynamically add a
tabindex value of -1 .

target.attr('tabindex', '-1');

The value of -1 is perhaps confusing because it sounds like off, or last
in array, but it really means the target is focusable by JavaScript. A value
of tabindex="0" would also work, but it would make the element fo-
cusable by users, too. Since the section is not interactive, this would de-
part from expected behavior and confuse some users. Still, anything’s
better than using positive integers as tabindex values, which can
quickly result in an illogical tab order as this WebAIM article on
tabindex85 attests.

The second line we need to add focuses the target section after it has
been scrolled to by the click event:

target.focus();

By focusing the section itself, the next thing we can focus on is the first
focusable element inside the section. Had we not done this, keyboard
users would be looking at this section but tabbing through the links of
a previous one.

THE PROBLEM WITH VIEWSTHE PROBLEM WITH VIEWS

Another interface type that suffers from focus-related problems is the
JavaScript MV* views interface. Modern JavaScript frameworks like
AngularJS base their navigation on views because it enables them to do
everything on one page and hold the user data in memory. Views work
by rebuilding the HTML in situ whenever the user requests a new
screen. It feels very much like going to a new page, but you’re really re-
constructing the page the user’s already on.

ngView is a directive that complements the $route service by in-
cluding the rendered template of the current route into the main lay-
out (index.html) file.
— AngularJS documentation86

85. http://webaim.org/techniques/keyboard/tabindex
86. http://docs.angularjs.org/api/ngRoute.directive:ngView

CHAPTER 4: GETTING AROUND

66

http://webaim.org/techniques/keyboard/tabindex
http://webaim.org/techniques/keyboard/tabindex
http://webaim.org/techniques/keyboard/tabindex
http://webaim.org/techniques/keyboard/tabindex
http://docs.angularjs.org/api/ngRoute.directive:ngView
http://docs.angularjs.org/api/ngRoute.directive:ngView
http://docs.angularjs.org/api/ngRoute.directive:ngView
http://webaim.org/techniques/keyboard/tabindex
http://webaim.org/techniques/keyboard/tabindex
http://docs.angularjs.org/api/ngRoute.directive:ngView
http://docs.angularjs.org/api/ngRoute.directive:ngView

This sort of thing is catnip to JavaScript developers, but it doesn’t make
a whole lot of sense to browsers trying to ensure conventional, accessi-
ble navigation. As in the last example, we need to add some more
JavaScript to fix the JavaScript. Isn’t that always the way?

We can write tabindex="-1" on the view container manually be-
cause that will remain the same. Then, we just need to focus the view
container with the focus() method whenever the $route has changed.

<div class="view-container" ng-view tabindex="-1">
<!-- main page content rebuilt dynamically here -->

</div>

Optionally, we could transform the view container into an ARIA live re-
gion87 so screen readers begin speaking the contents of the new view
content as soon as they are detected. This would still require the view
container to be focused for interaction, though. Another issue is that
live regions tend to blurt out all their contents in quick succession un-
less you are careful.

<div class="view-container" ng-view tabindex="-1"
aria-live="assertive">

<!-- main page content rebuilt dynamically here -->
</div>

We shall cover live regions in greater detail in chapter 6 but before that
it’s time for a little game of peekaboo.❧

87. https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Live_Regions

67

https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Live_Regions
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Live_Regions
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Live_Regions
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Live_Regions
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Live_Regions
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Live_Regions

CHAPTER 5:

Peekaboo
peekaboo (noun) a game for amusing a baby by repeatedly hiding
one’s face or body and popping back into view exclaiming ‘Peekaboo!’
— Merriam-Webster definition88

Looking at JavaScript-driven web interfaces, by far the most common
interaction style is based on showing stuff or hiding it or… oh, that’s
pretty much it. Strip away the idiosyncratic design, the transition type,
scaling, and all the other nuances and—underneath—you’re left with
one of:

• A thing appearing.

• More than one thing appearing.

• Something(s) appearing and something(s) disappearing at the same time.

What about some examples?

• Reveal your site navigation: “Peekaboo!”

• Reveal a dropdown submenu: “Peekaboo!”

• Expand a definition item: “Peekaboo!”

• Switch tabs in a tabbed interface: “Peekaboo!”

• Select accordion menu item: “Peekaboo!”

• Next step in form process: “Peekaboo!”

• Fade in a tooltip: “Peekaboo!”

• Trigger an alert message: “Peekaboo!”

• Open a dialog: “Peekaboo!”

The fact that so many of the so-called rich interactions possible with
JavaScript are analogous to an infantile game is no bad thing. First, it
stops us from getting big heads about how clever we are as interface

88. http://www.merriam-webster.com/dictionary/peekaboo

CHAPTER 5: PEEKABOO

68

http://www.merriam-webster.com/dictionary/peekaboo
http://www.merriam-webster.com/dictionary/peekaboo
http://www.merriam-webster.com/dictionary/peekaboo
http://www.merriam-webster.com/dictionary/peekaboo
http://www.merriam-webster.com/dictionary/peekaboo

designers. More importantly, the common mechanisms uncovered can
help us make a finite set of reusable, accessible components.

In magic performance, a hat trick is still a hat trick whether the hat
is made of silk or felt. The same can be said of accessible interface de-
sign: the content might slide, fade or grow, but the important thing is
whether the content—like the white rabbit—is apparent to the audi-
ence.

The WAI’s ARIA specification recognizes the essential simplicity of typ-
ical interface components and provides attributes to define the basic
roles, states, properties, and relationships of the elements involved. Used
together in logical patterns, there’s no reason why a connection be-
tween the way things can be seen to behave and how they behave
should be lost.

In fact, as we shall explore, harnessing ARIA attributes as CSS and
jQuery selectors can help us write code which is more reusable and
DRY (don’t repeat yourself89), hopefully saving us effort as well as en-
suring accessible solutions.

The Politics Of Hiding
Before showing, comes hiding.

The decision to hide content from some users but not from others is
a minefield—an apt metaphor in this case, since much of the danger of
explosive mines lies in their being hidden. By definition, hiding from
some is an act of discrimination. However, there are different kinds of
discrimination.

discrimination
1. The practice of unfairly treating a person or group of people differ-
ently from other people or groups of people

89. http://en.wikipedia.org/wiki/Don%27t_repeat_yourself

69

http://en.wikipedia.org/wiki/Don%27t_repeat_yourself
http://en.wikipedia.org/wiki/Don%27t_repeat_yourself
http://en.wikipedia.org/wiki/Don%27t_repeat_yourself
http://en.wikipedia.org/wiki/Don%27t_repeat_yourself
http://en.wikipedia.org/wiki/Don%27t_repeat_yourself

2. The ability to understand that one thing is different from another
thing.
— Merriam-Webster definition90

BAD DISCRIMINATIONBAD DISCRIMINATION

One example of prejudicial treatment (the bad kind of discrimination)
would be to make an application work only on certain types of devices.
By building a web application that only works on Apple’s iPhone, you
are not creating something in the spirit of the Open Web91. Since the
free and interoperable92 technologies you use to make your application
are inherently device independent, failing to make its contents avail-
able to a wider audience is the worst kind of discrimination: arbitrary
discrimination.

Accessibility is not just about addressing specific disabilities, but mak-
ing sure as many people as possible have access to the same informa-
tion. There’s rarely a good reason to lock people out when openness is a
foundational principle of the web.

90. http://www.merriam-webster.com/dictionary/discrimination
91. http://www.w3.org/wiki/Open_Web_Platform
92. http://en.wikipedia.org/wiki/Web_interoperability

CHAPTER 5: PEEKABOO

70

http://www.merriam-webster.com/dictionary/discrimination
http://www.merriam-webster.com/dictionary/discrimination
http://www.merriam-webster.com/dictionary/discrimination
http://www.w3.org/wiki/Open_Web_Platform
http://www.w3.org/wiki/Open_Web_Platform
http://www.w3.org/wiki/Open_Web_Platform
http://en.wikipedia.org/wiki/Web_interoperability
http://en.wikipedia.org/wiki/Web_interoperability
http://en.wikipedia.org/wiki/Web_interoperability
http://www.merriam-webster.com/dictionary/discrimination
http://www.merriam-webster.com/dictionary/discrimination
http://www.w3.org/wiki/Open_Web_Platform
http://www.w3.org/wiki/Open_Web_Platform
http://en.wikipedia.org/wiki/Web_interoperability
http://en.wikipedia.org/wiki/Web_interoperability

GOOD DISCRIMINATIONGOOD DISCRIMINATION

Other times, discriminating between users is about identifying the
types of content they simply can or cannot consume. We have to be
sensitive to specific needs and preferences. However, content should
never be hidden without an alternative version of that content being
provided. Under WCAG 2.0’s “Perceivable” principle, guideline 1.1 reads
“Provide text alternatives for any non-text content so that it can be
changed into other forms people need”.

THE ARIA-HIDDEN STATETHE ARIA-HIDDEN STATE

The aria-hidden state is typically used on elements to hide their—and
their descendant elements’—content from all users. Hence, the specifi-
cation for aria-hidden recommends tying the visual disappearance of
the element(s) to the accessible state:

[aria-hidden="true"] { display: none }

However, the spec also stipulates that you may, with caution, use
aria-hidden to hide things just from AT users in cases where the con-
tent is “redundant or extraneous” to them. Remember: if one form of a
piece of content is hidden to some users, another must be revealed to
them.

Using aria-hidden SafelyUsing aria-hidden Safely

So, when would aria-hidden be used to hide content just from screen
reader users? Typically, when it eliminates duplication. Roger Johans-
son wrote about his custom <select> elements93, designed for the pur-
pose of allowing greater design control over items notoriously difficult
to style with CSS.

For the technique to work, the <select> itself has to be replaced vi-
sually with some more malleable tags. Because the semantic
<select> element remains a layer below for accessibility purposes, this
results in duplicated content. By hiding the -based construction
with aria-hidden , this duplication is suppressed:

<select id="id" class="custom replaced" name="id">...</select>
...

The clever part is that the standard <select> , hidden with opacity: 0 ,
is placed over the top of the custom , meaning it captures clicks

93. http://www.456bereastreet.com/archive/201111/
an_accessible_keyboard_friendly_custom_select_menu/

71

http://www.456bereastreet.com/archive/201111/an_accessible_keyboard_friendly_custom_select_menu/
http://www.456bereastreet.com/archive/201111/an_accessible_keyboard_friendly_custom_select_menu/
http://www.456bereastreet.com/archive/201111/an_accessible_keyboard_friendly_custom_select_menu/
http://www.456bereastreet.com/archive/201111/an_accessible_keyboard_friendly_custom_select_menu/
http://www.456bereastreet.com/archive/201111/an_accessible_keyboard_friendly_custom_select_menu/

from mouse users. That is, though it is visually hidden, it is still interac-
tive to mouse and keyboard users. Imitating the full functionality of an
element like <select> is hard but this method doesn’t require you to
because you are still interacting with the standard <select> , even
when you can’t see it.

HIDING FROM VIEWHIDING FROM VIEW

Let’s turn the last example on its head and imagine a scenario where we
want to provide a text alternative for assistive technology which is in-
visible on the screen.

Say we have an image containing some represented text. It’s not real
text so it’s not interoperable. It’s just the semblance of some text, which
many users will read as text. Screen readers cannot deconstruct each
pixel that forms that image to understand it and communicate it as
text, however. We have to provide some real text for them as an alterna-
tive.

The standard way to provide alternative content for images is via the
aptly named alt attribute. The problem is, when screen readers en-
counter the image, they will speak “graphic” before the value of the alt
attribute (“Graphic: My text”) or “image” after it. This is fine when the
image is a piece of content which should be described as an image but,
in our example, the function of the image is textual: reading “graphic”
before the text is the equivalent of emblazoning a visible watermark

CHAPTER 5: PEEKABOO

72

across the image reading “THIS IS AN IMAGE”. Nobody needs to know
that.

To avoid repeating the same content to either set of users we need to
create separate channels: a channel of visual content, and a channel of
textual content. Each must be exclusive to its target audience. We need
to hide the unwanted channels from the users who don’t want them.

Our first step is to provide an empty or null94 alt attribute: alt="" .
This makes sure the image is not available to screen readers. Next, we
need to include the alternative text and make sure it can’t be seen. This
is the tricky part.

<h2>My title
text</h2>

Hiding Without HidingHiding Without Hiding

That leaves us with the problem of what to do if we only want to hide
the text visually. There are a number of techniques described by
WebAIM95, mostly involving positioning the text off the screen or us-
ing the CSS clip property. Another interesting alternative has emerged
recently, though, which involves the typography itself.

The Type Team at Adobe has developed a font called Blank96 which,
as the name suggests, is a font of blank letterforms. The cool thing
about this is that while the letterforms are invisible, letters are still
there, in the HTML code.

Employing Blank is as simple as including a class on the hold-
ing the text with the font-family set to the invisible font:

94. http://www.w3.org/TR/WCAG-TECHS/H67.html
95. http://webaim.org/techniques/css/invisiblecontent/
96. http://blog.typekit.com/2013/03/28/introducing-adobe-blank/

73

http://www.w3.org/TR/WCAG-TECHS/H67.html
http://www.w3.org/TR/WCAG-TECHS/H67.html
http://www.w3.org/TR/WCAG-TECHS/H67.html
http://webaim.org/techniques/css/invisiblecontent/
http://webaim.org/techniques/css/invisiblecontent/
http://webaim.org/techniques/css/invisiblecontent/
http://webaim.org/techniques/css/invisiblecontent/
http://blog.typekit.com/2013/03/28/introducing-adobe-blank/
http://blog.typekit.com/2013/03/28/introducing-adobe-blank/
http://blog.typekit.com/2013/03/28/introducing-adobe-blank/
http://www.w3.org/TR/WCAG-TECHS/H67.html
http://www.w3.org/TR/WCAG-TECHS/H67.html
http://webaim.org/techniques/css/invisiblecontent/
http://webaim.org/techniques/css/invisiblecontent/
http://blog.typekit.com/2013/03/28/introducing-adobe-blank/
http://blog.typekit.com/2013/03/28/introducing-adobe-blank/

.visually-hidden {
font-family: Blank;

}

<h2>My title text</h2>

Of course, you will have to load the font via @font-face too, which is
out of the scope of this book. However, using a version of Adobe
Blank97 which has a reduced character set will improve loading time.
Performance is an accessibility issue too!

Naturally, given that we have the ability to embed lovely webfonts,
there’s really no reason to use an image of text98 and, in most cases, it
should be avoided. Text nodes are highly interoperable, the bread and
butter of an accessible interface.

OK, that’s enough about hiding already. Let’s talk about the big re-
veal.

Give Me A Clue!
One time you might want to hide content and then show it (“peeka-
boo!”) is when it becomes relevant after a certain action is performed by
the user. In this example, we are going to explore how to accessibly re-
veal hints for entering information into form inputs. There are two ad-
vantages to using this kind of peekaboo technique:

1. It removes unnecessary clutter from the form which would make it ap-
pear complex and confusing.

2. Dynamically revealing hints when interacting with individual form ele-
ments draws attention to them and clearly associates them with the
chosen input.

THE SETUPTHE SETUP

Let’s start by marking up the basic form. Just because we’re going to be
using a fancy enhancement doesn’t mean we can get away with using
inaccessible form elements. First things first.

<form>
<fieldset>

97. https://github.com/stowball/Adobe-Blank
98. http://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-text-presen-

tation.html

CHAPTER 5: PEEKABOO

74

https://github.com/stowball/Adobe-Blank
https://github.com/stowball/Adobe-Blank
https://github.com/stowball/Adobe-Blank
https://github.com/stowball/Adobe-Blank
http://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-text-presentation.html
http://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-text-presentation.html
http://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-text-presentation.html
https://github.com/stowball/Adobe-Blank
https://github.com/stowball/Adobe-Blank
http://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-text-presentation.html
http://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-text-presentation.html

<legend>Login form</legend>
<div>

<label for="username">Your username</label>
<input id="username" type="text">

</div>
<div>

<label for="password">Your password</label>
<input id="password" type="password">

</div>
</fieldset>
<button type="submit">Enter site</button>

</form>

Note the for and id attributes. These are used to build a relationship
between the inputs and their respective labels. You should already be
accustomed to coding inputs and labels this way. The reason we do it is
so the label is read out when the corresponding input is focused. This
way users know which input they’re using—always an advantage. As-
sociating an input with a label like this also makes the label interactive,
expanding the hit area for the control. This has a similar effect to nest-
ing the input inside the label and helps users target fields more easily.

Many screen readers will prefix the label text with the <legend>
text, so be careful the two snippets of info make sense when read to-
gether (“Login form. Your username”).

75

The final piece in our HTML puzzle is to mark up the hint elements and
connect them up with the appropriate inputs. Then we’ll code up some
CSS to show the hints when needed.

<form>
<fieldset>

<legend>Login form</legend>
<div>

<label for="username">Your username</label>
<input id="username" type="text"
aria-describedby="username-hint">
<div role="tooltip" id="username-hint">… is
your email address</div>

</div>
<div>

<label for="password">Your password</label>
<input id="password" type="password"
aria-describedby="password-hint">
<div role="tooltip" id="password-hint" >… was
emailed to you</div>

</div>
</fieldset>
<button type="submit">Enter site</button>

</form>

Now to break down what the new elements and attributes do.

CHAPTER 5: PEEKABOO

76

• aria-describedby99: Like the label’s for attribute, this creates a rela-
tionship, but this time between the <input> and the hint <div> . Assis-
tive technologies, via the browser, are told the form field should be de-
scribed by the hint with this id value.

• role="tooltip" : Used on the hint itself, this communicates to assis-
tive technologies to treat the hint as a tooltip.

In each case, the hint element is the element after the <input> element,
meaning we can use a CSS adjacent sibling combinator100 to show and
hide it easily when the input is focused. Note that we are using
display: none to hide the hint in the first instance because it should be
invisible on the screen and to screen readers.

[role="tooltip"] {
background: orange;
color: white;
padding: 0.25em;
display: none;

}

input:focus + [role="tooltip"] {
display: block;

}

Put together, when you now focus the username <input> , first the
<legend> is announced, followed by the <input> ’s associated label. Af-
ter that, the hint text—associated with the <input> ’s id attribute with-
in the aria-describedby value—is also spoken. So, you would hear
“Login form. Your username (pause) is your email address.” All of the
information available to a sighted user is disclosed to a screen reader
user, read in a logical order.

Note: In many cases, an input with a descriptive label could be con-
sidered sufficient and the inclusion of a <legend> information overkill.
Although many automated testing tools will throw an error if a
<fieldset> does not contain a <legend> , exercise discretion and ask
yourself if one is needed for clarity. Because AT will read the legend as
well as the label and hint, it’s best to keep <legend>s short101.

99. http://www.marcozehe.de/2008/03/23/easy-aria-tip-2-aria-labelledby-and-aria-described-
by/

100. http://reference.sitepoint.com/css/adjacentsiblingselector
101. http://www.456bereastreet.com/archive/200904/

use_the_fieldset_and_legend_elements_to_group_html_form_controls/

77

http://www.marcozehe.de/2008/03/23/easy-aria-tip-2-aria-labelledby-and-aria-describedby/
http://www.marcozehe.de/2008/03/23/easy-aria-tip-2-aria-labelledby-and-aria-describedby/
http://www.marcozehe.de/2008/03/23/easy-aria-tip-2-aria-labelledby-and-aria-describedby/
http://reference.sitepoint.com/css/adjacentsiblingselector
http://reference.sitepoint.com/css/adjacentsiblingselector
http://reference.sitepoint.com/css/adjacentsiblingselector
http://www.456bereastreet.com/archive/200904/use_the_fieldset_and_legend_elements_to_group_html_form_controls/
http://www.456bereastreet.com/archive/200904/use_the_fieldset_and_legend_elements_to_group_html_form_controls/
http://www.456bereastreet.com/archive/200904/use_the_fieldset_and_legend_elements_to_group_html_form_controls/
http://www.marcozehe.de/2008/03/23/easy-aria-tip-2-aria-labelledby-and-aria-describedby/
http://www.marcozehe.de/2008/03/23/easy-aria-tip-2-aria-labelledby-and-aria-describedby/
http://reference.sitepoint.com/css/adjacentsiblingselector
http://reference.sitepoint.com/css/adjacentsiblingselector
http://www.456bereastreet.com/archive/200904/use_the_fieldset_and_legend_elements_to_group_html_form_controls/
http://www.456bereastreet.com/archive/200904/use_the_fieldset_and_legend_elements_to_group_html_form_controls/

We haven’t forgotten keyboard users either! By toggling the visibility
of the hint using the :focus pseudo class, it will appear when the key-
board user focuses the input, usually by moving to it with the Tab key.

What text actually goes into any hint element is a question of context
and the state of the application’s data model. This is a job for JavaScript
or a server-side programming language to determine. In any case, with
just HTML, CSS, and some ARIA, we’ve established an accessible,
reusable pattern for communicating those hints.

A working demo102 similar to this example is available.

102. http://heydonworks.com/practical_aria_examples/#input-tooltip

CHAPTER 5: PEEKABOO

78

http://heydonworks.com/practical_aria_examples/#input-tooltip
http://heydonworks.com/practical_aria_examples/#input-tooltip
http://heydonworks.com/practical_aria_examples/#input-tooltip
http://heydonworks.com/practical_aria_examples/#input-tooltip
http://heydonworks.com/practical_aria_examples/#input-tooltip

Progressively Collapsible
It’s time we looked at a more complex example of the peekaboo game
using some progressive enhancement.

Let’s imagine we’ve created a page of frequently asked questions
(FAQs). People ask us a lot of questions about our web application, so
this page is quite long. Each question is marked up with an <h2> and
the answer in a number of paragraphs, images and other content fol-
lowing that <h2> .

<h2>How do I change my password?</h2>
<p>Lorem etc etc etc.</p>
<p>etc.</p>

<h2>Is my data stored anywhere?</h2>
<p>Lorem etc etc etc.</p>

<p>etc.</p>

<h2>What is your contact number?<h2>
<p>Lorem etc etc etc.</p>
<p>Some text with a
link in it etc.</p>

This markup is in pretty good shape, semantically speaking. We’ve
used proper headings to mark up the questions, helping to create a
structural hierarchy that is both visually apparent and ensures screen
reader users can jump from question to question with ease, via the 2
quick key.

The drawback is the length of the page, making it difficult to break
down and get an overview. Since <h2> elements are not focusable via
the keyboard, there’s also no way for keyboard users to easily navigate
between independent questions. It’s a solid foundation, but we’d like to
progressively enhance the experience for the many people who have ac-
cess to JavaScript.

79

THE HTMLTHE HTML

What we’d like to do is collapse the content of each section so that just
the questions remain. Then we’d like to enable users to reveal individ-
ual answers based on a click, tap, or keystroke. Overall, identifying
questions and having them answered would be a more pleasant experi-
ence.

Many of the helper elements and attributes we are going to use
should be added by jQuery because they are irrelevant in pages where
JavaScript is not available. It also means we have less markup to write
manually, which is good. Let’s look at the HTML of one question and
answer panel which has been adapted by our script.

<h2><button aria-expanded="false"
aria-controls="how-do-I-change-my-password">How do I change my
password?</button></h2>
<div id="how-do-I-change-my-password" aria-hidden="true">

<p>Lorem ipsum with a link
thrown in etc.</p>
<p>etc.</p>

</div>

1. We have wrapped all of the answer’s content in a common <div> so we
only have one thing to expand or collapse. To do this in jQuery is sim-
ple: $(’h2’).nextUntil(’h2’).wrapAll(’div’)

2. We have wrapped the content of the <h2> with a button which will be
used to perform the expansion of the answer <div> . We could use a
role of button on the <h2> but we’d lose our heading semantics (re-
member the second rule of ARIA use103).

3. We have established a relationship between the heading button and the
hidden answer using the aria-controls property104 and a generated
id so assistive technology knows which element is affected by which.
To generate a valid slug from the question text like I have, you could
use this tiny helper plugin105 or generate a random key. To establish the
relationship, it doesn’t matter what the id is, so long as it’s unique.

4. The button includes the aria-expanded state106 to indicate whether or
not the corresponding answer is available (displayed and able to be
read). To start with, it is set to false , naturally.

103. http://www.w3.org/TR/aria-in-html/#second-rule-of-aria-use
104. http://www.w3.org/TR/wai-aria/states_and_properties#aria-controls
105. https://github.com/pmcelhaney/jQuery-Slugify-Plugin
106. http://www.w3.org/TR/wai-aria/states_and_properties#aria-controls

CHAPTER 5: PEEKABOO

80

http://www.w3.org/TR/aria-in-html/#second-rule-of-aria-use
http://www.w3.org/TR/aria-in-html/#second-rule-of-aria-use
http://www.w3.org/TR/aria-in-html/#second-rule-of-aria-use
http://www.w3.org/TR/wai-aria/states_and_properties#aria-controls
http://www.w3.org/TR/wai-aria/states_and_properties#aria-controls
http://www.w3.org/TR/wai-aria/states_and_properties#aria-controls
https://github.com/pmcelhaney/jQuery-Slugify-Plugin
https://github.com/pmcelhaney/jQuery-Slugify-Plugin
https://github.com/pmcelhaney/jQuery-Slugify-Plugin
http://www.w3.org/TR/wai-aria/states_and_properties#aria-controls
http://www.w3.org/TR/wai-aria/states_and_properties#aria-controls
http://www.w3.org/TR/wai-aria/states_and_properties#aria-controls
http://www.w3.org/TR/aria-in-html/#second-rule-of-aria-use
http://www.w3.org/TR/aria-in-html/#second-rule-of-aria-use
http://www.w3.org/TR/wai-aria/states_and_properties#aria-controls
http://www.w3.org/TR/wai-aria/states_and_properties#aria-controls
https://github.com/pmcelhaney/jQuery-Slugify-Plugin
https://github.com/pmcelhaney/jQuery-Slugify-Plugin
http://www.w3.org/TR/wai-aria/states_and_properties#aria-controls
http://www.w3.org/TR/wai-aria/states_and_properties#aria-controls

5. We have told assistive technologies that the unexpanded answer <div>
should be hidden with aria-hidden . With aria-hidden , we are trying
to ensure the answer is not stumbled on unexpectedly.

THE CSSTHE CSS

Just a few notes on the CSS. As described in chapter 2, “It’s All About
Buttons”, it’s good form to tie the presentation to the accessible states.

Tie CSS display property to WAI-ARIA hidden state. This is impor-
tant for assistive technologies who communicate directly with the
user agent’s DOM versus a platform accessibility API supported by the
user agent.
— WAI-ARIA Authoring Practices107

By doing this we can dispense with extraneous class attributes and
values, but also make sure that visual changes reflect real state
changes. For example, we collapse and expand each answer by toggling
the aria-hidden state:

[aria-hidden] {
display: none;

}

[aria-hidden="false"] {
display: block;

}

Additionally, we use some :before pseudo content to place an arrow
next to the question text. The direction this arrow points—right for col-
lapsed and down for expanded—is tied to the value of the
aria-expanded state (false or true).

[aria-expanded]:before {
content: '\25ba\0020';

}

[aria-expanded="true"]:before {
content: '\25bc\0020';

}

Using Unicode symbols for the arrows is much less complex and more
efficient than inserting graphics or background images. It also means

107. http://www.w3.org/WAI/PF/aria-practices/#docmgt

81

http://www.w3.org/WAI/PF/aria-practices/#docmgt
http://www.w3.org/WAI/PF/aria-practices/#docmgt
http://www.w3.org/WAI/PF/aria-practices/#docmgt
http://www.w3.org/WAI/PF/aria-practices/#docmgt
http://www.w3.org/WAI/PF/aria-practices/#docmgt

there’s no loss in quality should a user decide to zoom the page. Tip: the
\0020 encoding corresponds to SPACE U+0020108 and should respect
the word spacing of your heading typography. Note that some screen
readers will announce “right pointing arrow” or similar.

WHAT HAPPENS THEN?WHAT HAPPENS THEN?

Well, once the markup has been set up, all the JavaScript does is handle
button clicks to toggle the aria-expanded and aria-hidden states on
the button and the corresponding panel respectively. What we actually
get from adding and changing all these attributes is a lot more interest-
ing.

When a button representing a question is focused, screen readers an-
nounce four important pieces of information:

• The heading (question) text itself.

• The level of that heading (2, in this example).

• That we are focused on a button.

• Whether this button represents a collapsed or expanded state.

When we press the <button> , its aria-expanded state it toggled to
false and the aria-hidden state of the corresponding panel is also

108. http://www.fileformat.info/info/unicode/char/0020/index.htm

CHAPTER 5: PEEKABOO

82

http://www.fileformat.info/info/unicode/char/0020/index.htm
http://www.fileformat.info/info/unicode/char/0020/index.htm
http://www.fileformat.info/info/unicode/char/0020/index.htm
http://www.fileformat.info/info/unicode/char/0020/index.htm
http://www.fileformat.info/info/unicode/char/0020/index.htm

false . The announcement, “How do I change my password button expand-
ed”, tells the user that the content is now available to read. Now, they
can move to that content, typically by using the down arrow key.

JAWS provides one additional piece of information: “Use the JAWS key
plus ALT plus M to move to the controlled element.” JAWS has made explicit
the relationship formed using aria-controls and has offered the user
a way to navigate to the expanded content. Because the expanded con-
tent appears directly after the controller in our example, this isn’t really
needed. It would be helpful, however, in situations where the expanded
content is elsewhere in the page.

A working demo109 of this example is available.

ONE PATTERN TO RULE THEM ALLONE PATTERN TO RULE THEM ALL

In the last example, we took some semantic HTML, then used some
ARIA and a pinch of JavaScript to progressively enhance it, turning a
page of content into a quick reference. The accessibility of this tech-
nique is twofold:

1. It makes the content accessible to users whose JavaScript has an error,
hasn’t loaded or is blocked by security.

2. It makes the JavaScript-enhanced view of the same content usable by
keyboard navigators and screen reader users.

109. http://heydonworks.com/practical_aria_examples/#progressive-collapsibles

83

http://heydonworks.com/practical_aria_examples/#progressive-collapsibles
http://heydonworks.com/practical_aria_examples/#progressive-collapsibles
http://heydonworks.com/practical_aria_examples/#progressive-collapsibles
http://heydonworks.com/practical_aria_examples/#progressive-collapsibles
http://heydonworks.com/practical_aria_examples/#progressive-collapsibles

At the heart of the enhanced view there is very little in terms of sys-
temic complexity and its applications are highly varied. The same ARIA
expand/collapse metaphor could be applied to accordion menus (where
only one region is expanded at a time), or to reveal navigation menus
hidden behind the “☰” icon or navicon.

NaviconsNavicons

The only significant difference between the previous example and the
next one for expandable navigation menus (via the navicon) would be
the way it degrades to basic HTML. Without JavaScript, we should see a
simple same-page link to the navigation landmark:

Menu
<!-- some other markup, possibly -->
<nav id="navigation" role="navigation">

home
about
blog

</nav>

With JavaScript available, we would disguise the link as a button using
ARIA’s role="button" . This makes sense because we would be chang-
ing the action from going to the navigation to opening it. That is, our
link would be made to return false . The rest should be familiar to you
already…

<a href="#navigation" role="button" aria-controls="navigation"
aria-expanded="false">Menu
<!-- some other markup, possibly -->
<nav id="navigation" role="navigation" aria-hidden="true">

home
about
blog

</nav>

CHAPTER 5: PEEKABOO

84

NotesNotes

• When the menu button is pressed, the screen reader should confirm
that it is now a “Menu button expanded”. This lets screen reader users
know they can now use the navigation menu.

• We would attach a keypress event to $([aria-expanded]) so that
when the user presses Tab, they would focus the first item in the navi-
gation menu. We have to do this programmatically because the menu
is not necessarily next in the tab order (other interactive elements
might exist between the menu button and the menu, depending on
how your DOM is organized).

• Note that using aria-hidden to hide the navigation landmark will
make it inaccessible to screen reader users via the landmarks dialog. In
this off-canvas navigation demo110, the problem is solved by cloning the
landmark and hiding it visually at the foot of the page.

TEST.CSSTEST.CSS

By removing classes from our design, this off-canvas menu pattern is
reduced to its essential parts. It should be difficult to code badly with-
out knowing because all of the ARIA attributes would also be used as

110. http://heydonworks.com/practical_aria_examples/#hamburger

85

http://heydonworks.com/practical_aria_examples/#hamburger
http://heydonworks.com/practical_aria_examples/#hamburger
http://heydonworks.com/practical_aria_examples/#hamburger
http://heydonworks.com/practical_aria_examples/#hamburger
http://heydonworks.com/practical_aria_examples/#hamburger

styling hooks. Nonetheless, it’s better to be safe than sorry. Add these
rules to your test.css file:

#navigation:not([role="navigation"]):after {
background: red;
color: white;
content: 'Warning: You appear to be linking to a principal
navigation block. Make sure it has the navigation ARIA role';

}

[aria-controls="navigation"]:not([href="#navigation"]):after {
background: red;
color: white;
content: 'Warning: When JavaScript is turned off, this should
be a link and should go to the navigation landmark';

}

Note: When just displaying the navicon symbol, without “menu” ap-
pended to it, you should include an aria-label attribute with a value
of something like “navigation menu” as discussed in chapter 2, “It’s All
About Buttons”. Though this would make the button recognizable to
screen reader users, it does not make up for the fact that the symbol
may be ambiguous to many others. As Luis Abreu attests in “Why And
How To Avoid Hamburger Menus”111, this side drawer pattern can be
damaging to usability across the board. If a design pattern is demon-
strably unusable, making it more accessible doesn’t help: all you
achieve is better access to something nobody wants!

Can I Get A Tab?
You won’t get far on the web these days without stumbling on some
sort of tabbed interface. You know the kind of thing: a line of tabs, like
those used in a filing cabinet, with each corresponding to their own
pane or panel of content. It’s a popular pattern because it allows users
to browse and switch between content, excluding from view anything
they’re not interested in.

In fact, tabbed interfaces are so popular, it’s tempting to think of
them as done: the JavaScript to show and hide panels is easy to write
and easier to steal, which just leaves the visual design to be pondered.

• Should the tabs be rounded?

111. http://lmjabreu.com/post/why-and-how-to-avoid-hamburger-menus/

CHAPTER 5: PEEKABOO

86

http://lmjabreu.com/post/why-and-how-to-avoid-hamburger-menus/
http://lmjabreu.com/post/why-and-how-to-avoid-hamburger-menus/
http://lmjabreu.com/post/why-and-how-to-avoid-hamburger-menus/
http://lmjabreu.com/post/why-and-how-to-avoid-hamburger-menus/
http://lmjabreu.com/post/why-and-how-to-avoid-hamburger-menus/
http://lmjabreu.com/post/why-and-how-to-avoid-hamburger-menus/

• Maybe some overlap would look nice.

• How do I make the selected one look like it’s on top?

• Is pink really the best color for this?

Important questions I’m sure, but a good-looking tabbed interface does
not a good tabbed interface make—not on its own. Is the underlying
structure properly semantic and accessible? The JavaScript shows one
panel and hides the others, but is this action really communicated to
everyone? Can everyone perform that action in the first place?

Recognizing the prevalence of the tabbed interface and conceding its
relative complexity, ARIA provides a number of dedicated roles and as-
sociated properties and states for building composite tab widgets to
make this kind of navigation a reality to screen reader users. By com-
bining these attributes with some carefully designed keyboard support,
we can finally fulfill the real brief of making an accessible tabbed inter-
face.

We only have to get this right once. After that, you can reuse the pat-
tern and restyle it as much and as many times as you like.

THE SETUPTHE SETUP

In Léonie Watson’s presentation “A Rock ‘n’ Roll Guide To HTML5 And
ARIA112,” the section on tabbed widgets is prefaced with You Ain’t Seen
Nothin’ Yet by Bachman Turner Overdrive. It certainly is more ambi-

112. http://www.slideshare.net/LeonieWatson/generate-2013-09

87

http://www.slideshare.net/LeonieWatson/generate-2013-09
http://www.slideshare.net/LeonieWatson/generate-2013-09
http://www.slideshare.net/LeonieWatson/generate-2013-09
http://www.slideshare.net/LeonieWatson/generate-2013-09
http://www.slideshare.net/LeonieWatson/generate-2013-09
http://www.slideshare.net/LeonieWatson/generate-2013-09

tious than anything else we’ve tried so far, but it’s not so bad when you
break it down.

We’re going to employ some progressive enhancement again, so
let’s start with the basic HTML. All tabbed interfaces should begin life
as a list of navigation links that take you to different parts of some con-
tent. Remember the animated same-page links we fixed in chapter 4?
That’s the sort of markup we’re after. Perfectly serviceable.

Section 1
Section 2
Section 3

<section id="section1">...</section>
<section id="section2">...</section>
<section id="section3">...</section>

(Note: Tabbed interfaces pertain to interfaces that allow the user to
switch between content sections on the same page. Though you may
style your main website navigation to look like a set of tabs, this does
not count as a true tabbed interface, semantically speaking.)

That’s a good start, but it’s not a tabbed interface. Not even if we
style it to look like one. Let’s incorporate the ARIA attributes and extend
the semantics to create our accessible widget.

<ul role="tablist">
<li role="presentation"><a href="#section1" role="tab"
aria-controls="panel1" aria-selected="true">Section 1
<li role="presentation"><a href="#section2" role="tab"

aria-controls="panel2">Section 2
<li role="presentation"><a href="#section3" role="tab"
aria-controls="panel2">Section 3

<section id="section1" role="tabpanel">...</section>
<section id="section2" role="tabpanel"aria-hidden="true">
...</section>
<section id="section3" role="tabpanel" aria-hidden="true">
...</section>

Yikes!—that’s a lot of new attributes. Here’s how they work together:

CHAPTER 5: PEEKABOO

88

• tablist (role): This is a “composite113”, meaning it groups navigational
items together as part of a widget. It houses our tabs.

• tab (role): One tab helping to make up our tablist.

• aria-selected (state): Indicates the selected or open tab in a way that’s
infinitely more accessible than class="selected" (which communi-
cates nothing to assistive technology).

• tabpanel (role): Defines one tab’s associated panel of content. An acces-
sible relationship is created between each tab and its tabpanel via
aria-controls , as in previous examples.

• presentation (role): A special role which removes the meaning of the
element. Practically speaking, it turns into <> . Without removing
them altogether, we can stop the s being identified when the roles
and states are added and we don’t need them anymore.

MANAGING FOCUSMANAGING FOCUS

Sticking a few fancy new attributes on some elements is easy enough,
but thinking about managing focus114 and how different users interact
with the widget is more of a stretch. Fortunately, keyboard control boils
down to just two things here. We want to:

1. Switch between (that is, change focus to) adjacent tabs using the left
and right arrow keys—an action which will also reveal the correspond-
ing tab panel.

2. Switch between the active (aria-selected) tab and its contolled
tabpanel using the Tab key, and back again with Shift + Tab.

For the second item, we could just make the tabpanel itself focusable
using tabindex="0" but focusing the panel itself stops some user
agents from announcing “tab panel” for context. Instead, we’ll move fo-
cus to the first element inside the panel. In this example, that will al-
ways be a heading because sections should have headings. In which
case, “Heading level 3, [Heading text], tab panel” should be announced
on focus.

The panels that are hidden (using display: none and
aria-hidden="true") are removed from the tab order, leaving just the
open one which we can jump into. That is, the visible <h3> (the first one
below) with tabindex="0" is next in the tab order.

113. http://www.w3.org/TR/wai-aria/roles#composite
114. http://www.w3.org/TR/wai-aria/usage#managingfocus

89

http://www.w3.org/TR/wai-aria/roles#composite
http://www.w3.org/TR/wai-aria/roles#composite
http://www.w3.org/TR/wai-aria/roles#composite
http://www.w3.org/TR/wai-aria/usage#managingfocus
http://www.w3.org/TR/wai-aria/usage#managingfocus
http://www.w3.org/TR/wai-aria/usage#managingfocus
http://www.w3.org/TR/wai-aria/roles#composite
http://www.w3.org/TR/wai-aria/roles#composite
http://www.w3.org/TR/wai-aria/usage#managingfocus
http://www.w3.org/TR/wai-aria/usage#managingfocus

<section id="section1" role="tabpanel">
<h3 tabindex="0">Section 1</h3>

</section>
<section id="section2" role="tabpanel" style="display: none"
aria-hidden="true">

<h3 tabindex="0">Section 2</h3>
</section>
<section id="section3" role="tabpanel" style="display: none"
aria-hidden="true">

<h3 tabindex="0">Section 3</h3>
</section>

Moving between the open tabpanel and the tab which names it isn’t
possible unless the tabs between the panel and this tab have ceased to
be focusable via the Tab key. We make this happen by giving all but the
aria-selected tab a tabindex of -1 , removing them from the tab or-
der.

<ul role="tablist">
<li role="presentation"><a href="#section1" role="tab"
aria-controls="panel1" aria-selected="true">Section 1
<li role="presentation"><a href="#section2" role="tab"
aria-controls="panel2" tabindex="-1">Section 2
<li role="presentation"><a href="#section3" role="tab"
aria-controls="panel2" tabindex="-1">Section 3

CHAPTER 5: PEEKABOO

90

We still want the other tabs to be focusable (it’s not much of a tabbed
interface otherwise!) but we want to switch between them with the ar-
row keys only. Using JavaScript, we bind functions to the keys which
programmatically focus either the previous or next tab. In pseudocode
it would be something like this:

if (a key was pressed while a tab was focused) {
if (the right arrow was pressed and a right tab exists) {

focus the next right tab;
make the next right tab's tabindex '0' and this one's
'-1';

}
if (the left arrow was pressed and a left tab exists) {

focus the next left tab;
make the next left tab's tabindex '0' and this one's '-1';

}
}

A working demo115 of this tabbed interface example is available. It is al-
so worth reading Jason Kiss’s research116 into ARIA tabbed interfaces
for more detail and some alternative solutions.

TEST.CSSTEST.CSS

A few rules to make sure our interface’s HTML is on the right track.
You may want to add more of your own rules here, especially if your
development team insist on using classes for the styling and state
switching! You could test for the presence of the correct ARIA attributes
with selectors like .tab:not([role="tab"]):after {} .

115. http://heydonworks.com/practical_aria_examples/#tab-interface
116. http://accessibleculture.org/articles/2010/08/aria-tabs/

91

http://heydonworks.com/practical_aria_examples/#tab-interface
http://heydonworks.com/practical_aria_examples/#tab-interface
http://heydonworks.com/practical_aria_examples/#tab-interface
http://accessibleculture.org/articles/2010/08/aria-tabs/
http://accessibleculture.org/articles/2010/08/aria-tabs/
http://accessibleculture.org/articles/2010/08/aria-tabs/
http://heydonworks.com/practical_aria_examples/#tab-interface
http://heydonworks.com/practical_aria_examples/#tab-interface
http://accessibleculture.org/articles/2010/08/aria-tabs/
http://accessibleculture.org/articles/2010/08/aria-tabs/

[role="tablist"] a:not([role="tab"]):after {
background: red;
color: white;
content: 'Warning: All links inside a tablist should be
defined as tabs, using the tab ARIA role';

}

[role="tabpanel"]:not([id]):after {
background: red;
color: white;
content: 'Warning: Each tabpanel should be identified with an
id attribute';

}

[role="tab"]:not([aria-controls]):after {
background: red;
color: white;
content: 'Warning: Each tab should explicitly control
a tabpanel using the aria-controls attribute';

}

OK, now we’re done with showing and hiding things. Well, we’ve got a
general grasp of doing it accessibly anyway. Next up: live regions and
how they can help us keep users informed about changes as they hap-
pen within the application. Changes that have been made either by the
user or by the application on their behalf. We’ll also build a modal dia-
log, which intercepts an action the user is trying to make and gives
them the option to back out. It’s all about keeping open the communica-
tion channel shared by the application and the user.❧

CHAPTER 5: PEEKABOO

92

CHAPTER 6:

It’s Alive!
Picture the scene: it’s a day like any other and you’re at your desk, en-
closed in a semicircular bank of monitors that make up your extended
desktop, intently cranking out enterprise-level CSS for MegaDigiSpace-
Hub Ltd. You are one of many talented front-end developers who share
this floor in your plush London office.

You don’t know it, but a fire has broken out on the floor below you due
to a “mobile strategist” spontaneously combusting. Since no expense
was spared on furnishing the office with adorable postmodern orna-
ments, no budget remained for installing a fire alarm system. It is up to
the floor manager in question to travel throughout the office, warning
individual departments in person.

He does this by walking silently into each room, holding a business
card aloft with the word “fire” written on it in 12pt Arial for a total of
three seconds, then leaving. You and the other developers—ensconced
behind your monitors—have no idea he even visited the room.

This book is, for the most part, about making using your websites
and applications accessible. That is, we’re concerned with everyone be-
ing able to do things with them easily. However, it is important to ac-
knowledge that when something is done (or simply happens), some-
thing else will probably happen as a result: there are actions and reac-
tions.

When one body exerts a force on a second body, the second body si-
multaneously exerts a force equal in magnitude and opposite in direc-
tion to that of the first body.
— Newton’s third law of motion (Newton’s laws of motion,
Wikipedia117)

117. http://en.wikipedia.org/wiki/Newton%27s_laws_of_motion

93

http://en.wikipedia.org/wiki/Newton%27s_laws_of_motion
http://en.wikipedia.org/wiki/Newton%27s_laws_of_motion
http://en.wikipedia.org/wiki/Newton%27s_laws_of_motion
http://en.wikipedia.org/wiki/Newton%27s_laws_of_motion
http://en.wikipedia.org/wiki/Newton%27s_laws_of_motion
http://en.wikipedia.org/wiki/Newton%27s_laws_of_motion

Providing feedback to users, to confirm the course they’ve taken, ad-
dress the result of a calculation they’ve made or to insert helpful com-
mentary of all sorts, is an important part of application design. The
problem which needs to be addressed is that interrupting a user visual-
ly, by making a message appear on screen, is a silent occurrence. It is al-
so one which—in the case of dialogs—often involves the activation of
an element that originates from a completely remote part of the docu-
ment, many DOM nodes away from the user’s location of focus.

To address these issues and to ensure users (unlike the poor devel-
opers in the introductory story) get the message, ARIA provides live re-
gions118. As their name suggests, live regions are elements whose con-
tents may change in the course of the application’s use. They are living
things, so don’t always stand still. By adorning them with the appropri-
ate ARIA attributes, these regions will interrupt the user to announce
their changes as they happen.

We shall look in this chapter at various uses for different live region
roles and other, associated attributes. Mostly this involves feedback
on actions taken by the user. As in the following example, we will also
look at how to alert users to changes which they didn’t ask for, but—like
the building being on fire—really ought to know about anyway.

Alert!
Perhaps the only thing worse than a fire that could happen to the office
of a web development company would be losing connectivity to the
web. Certainly, if I was working using an online application, I’d like to
know the application will no longer behave in the way I expect and per-
haps store my data properly. This is why Google Mail inserts a warning
whenever you go offline. As noted in Marco Zehe’s 2008 blog post119,
Google was an early adopter of ARIA live regions.

118. https://developer.mozilla.org/en-US/docs/Accessibility/ARIA/ARIA_Live_Regions
119. http://www.marcozehe.de/2008/08/04/aria-in-gmail-1-alerts/

CHAPTER 6: IT’S ALIVE!

94

https://developer.mozilla.org/en-US/docs/Accessibility/ARIA/ARIA_Live_Regions
https://developer.mozilla.org/en-US/docs/Accessibility/ARIA/ARIA_Live_Regions
https://developer.mozilla.org/en-US/docs/Accessibility/ARIA/ARIA_Live_Regions
https://developer.mozilla.org/en-US/docs/Accessibility/ARIA/ARIA_Live_Regions
http://www.marcozehe.de/2008/08/04/aria-in-gmail-1-alerts/
http://www.marcozehe.de/2008/08/04/aria-in-gmail-1-alerts/
http://www.marcozehe.de/2008/08/04/aria-in-gmail-1-alerts/
https://developer.mozilla.org/en-US/docs/Accessibility/ARIA/ARIA_Live_Regions
https://developer.mozilla.org/en-US/docs/Accessibility/ARIA/ARIA_Live_Regions
http://www.marcozehe.de/2008/08/04/aria-in-gmail-1-alerts/
http://www.marcozehe.de/2008/08/04/aria-in-gmail-1-alerts/

We are going to create a script which tests whether the user is online or
off and uses ARIA to warn screen reader users of the change in this sta-
tus so they know whether it’s worth staying at their desk or giving up
and going for a beer.

THE SETUPTHE SETUP

For live regions, ARIA provides a number of values for both the role
and aria-live attributes. This can be confusing because there is some
crossover between the two and some screen readers only support either
the role or aria-live alternatives. It’s OK, there are ways around this.

At the most basic level, there are two common types of message:

1. “This is pretty important but I’m going to wait and tell you when you’re
done doing whatever it is you’re doing.”

2. “Drop everything! You need to know this now or we’re all in big trouble.
AAAAAAAAAAGHH!”

Mapped to the respective role and aria-live attributes, these com-
mon types are written as follows:

1. “This is pretty important but I’m going to wait and tell you when you’re
done doing whatever it is you’re doing.” (aria-live="polite" or
role="status")

2. “Drop everything! You need to know this now or we’re all in big trouble.
AAAAAAAAAAGHH.” (aria-live="assertive" or role="alert")

When marking up our own live region, we’re going to maximize com-
patibility by putting both of the equivalent attributes and values in
place. This is because, unfortunately, some user agents do not support
one or other of the equivalent attributes. More detailed information on
maximizing compatibility120 of live regions is available from Mozilla.

Since losing internet connectivity is a major disaster, we’re going to
use the more aggressive form.

<div id="message" role="alert" aria-live="assertive"
class="online">

<p>You are online.</p>
</div>

120. https://developer.mozilla.org/en-US/docs/Accessibility/ARIA/ARIA_Live_Regions

95

https://developer.mozilla.org/en-US/docs/Accessibility/ARIA/ARIA_Live_Regions
https://developer.mozilla.org/en-US/docs/Accessibility/ARIA/ARIA_Live_Regions
https://developer.mozilla.org/en-US/docs/Accessibility/ARIA/ARIA_Live_Regions
https://developer.mozilla.org/en-US/docs/Accessibility/ARIA/ARIA_Live_Regions
https://developer.mozilla.org/en-US/docs/Accessibility/ARIA/ARIA_Live_Regions

The code above doesn’t alert in any way by itself—the contents of the
live region would have to dynamically change for that to take place. The
script below will run a check to see if it can load test_resource.html every
three seconds. If it fails to load it, or it has failed to load it but has subse-
quently succeeded, it will update the live region’s class value and
change the wording of the paragraph. If you go offline unexpectedly, it
will display <p>There’s no internets. Time to go to the pub!</p> .

The change will cause the contents of that #message live region to
be announced, abruptly interrupting whatever else is currently being
read on the page.

// Function to run when going offline

var offline = function() {
if (!$('#message').hasClass('offline')) {

$('#message') // the element with [role="alert"] and
[aria-live="assertive"]

.attr('class', 'offline')

.text('There\'s no internets. Go to the pub!');
}

}

// Function to run when back online

var online = function() {
if (!$('#message').hasClass('online')) {

$('#message') // the element with [role="alert"] and
[aria-live="assertive"]

.attr('class', 'online')

.text('You are online.');
}

}

// Test by trying to poll a file

function testConnection(url) {
var xmlhttp = new XMLHttpRequest();
xmlhttp.onload = function() {

online();
}
xmlhttp.onerror = function() {

offline();
}

CHAPTER 6: IT’S ALIVE!

96

xmlhttp.open("GET",url,true);
xmlhttp.send();

}

// Loop the test every three seconds for "test_resource.html"

function start() {
rand = Math.floor(Math.random()*90000) + 10000;
testConnection('test_resource.html?fresh=' + rand);
setTimeout(start, 3000);

}

// Start the first test

start();

There are more comprehensive ways to test to see if your application is
online or not, including a dedicated script called offline.js121, but this lit-
tle one is included for context. Note that some screen readers will pre-
fix the announcement with “Alert!”, so you probably don’t want to in-
clude “Alert!” in the actual text as well, unless it’s really, really important
information.

There is a demo of this example122 available.

121. http://github.hubspot.com/offline/docs/welcome/
122. http://heydonworks.com/practical_aria_examples/#offline-alert

97

http://github.hubspot.com/offline/docs/welcome/
http://github.hubspot.com/offline/docs/welcome/
http://github.hubspot.com/offline/docs/welcome/
http://heydonworks.com/practical_aria_examples/#offline-alert
http://heydonworks.com/practical_aria_examples/#offline-alert
http://heydonworks.com/practical_aria_examples/#offline-alert
http://github.hubspot.com/offline/docs/welcome/
http://github.hubspot.com/offline/docs/welcome/
http://heydonworks.com/practical_aria_examples/#offline-alert
http://heydonworks.com/practical_aria_examples/#offline-alert

TEST.CSSTEST.CSS

We would like to maximize compatibility of live regions across
browsers and assistive technologies. We can add a rule in our test.css to
make sure equivalent attributes are all present like so:

[role="status"]:not([aria-live="polite"]),
[role="alert"]:not([aria-live="assertive"]) {

content: 'Warning: For better support, you should include
a politeness setting for your live region role using the
aria-live attribute';

}

[aria-live="polite"]:not([role="status"]),
[aria-live="assertive"]:not([role="alert"]) {

content: 'Warning: For better support, you should
include a corresponding role for your aria-live
politeness setting';

}

I Want The Whole Story

Taken out of context, I must seem so strange.
— Fire Door by Ani DiFranco

By default, when the contents of a live region alter, only the nodes
(HTML elements, to you and me) which have actually changed are an-
nounced. This is helpful behavior in most situations because you don’t
want a huge amount of content reread to you just because a tiny part of
it is different. In fact, if it’s all read out at once, how would you tell

CHAPTER 6: IT’S ALIVE!

98

which part had changed? It would be like the memory tray game where
you have to memorize the contents of a tray to recall which things were
removed.

In some cases, however, a bit of context is desirable for clarification.
This is where the aria-atomic attribute comes in. With no
aria-atomic set, or with an aria-atomic value of false , only the ele-
ments which have actually changed will be notified to the user. When
aria-atomic is set to true , all of the contents of the element with
aria-atomic set on it will be read.

The term atomic is a little confusing. To be true means to treat the
contents of this element as one, indivisible thing (an atom), not to
smash the element into little pieces (atoms). Whether or not you think
atomic is a good piece of terminology, the expected behavior is what
counts and it is the first of the two behaviors which is defined.

Gez Lemon offers a great example of aria-atomic123. In his example,
we imagine an embedded music player which tells users what the cur-
rently playing track is, whenever it changes.

<div aria-live="polite" role="status" aria-atomic="true">
<h3>Currently playing:</h3>
<p>Jake Bugg — Lightning Bolt</p>

</div>

Even though only the name of the artist and song within the paragraph
will change, because aria-atomic is set to true the whole region will

123. http://juicystudio.com/article/wai-aria_live-regions_updated.php

99

http://juicystudio.com/article/wai-aria_live-regions_updated.php
http://juicystudio.com/article/wai-aria_live-regions_updated.php
http://juicystudio.com/article/wai-aria_live-regions_updated.php
http://juicystudio.com/article/wai-aria_live-regions_updated.php
http://juicystudio.com/article/wai-aria_live-regions_updated.php

be read out each time: “Currently playing: Jake Bugg—Lightning Bolt”.
The “Currently playing” prefix is important for context.

Note that the politeness setting of the live region is polite not
assertive as in the previous example. If the user is busy reading
something else or typing, the notification will wait until they have
stopped. It isn’t important enough to interrupt the user, not least be-
cause it’s their playlist: they might recognize all the songs anyway.

The aria-atomic attribute doesn’t have to be used on the same ele-
ment that defines the live region, as in Lemon’s example. In fact, you
could use aria-atomic on separate child elements within the same re-
gion. According to the specification:

When the content of a live region changes, user agents SHOULD ex-
amine the changed element and traverse the ancestors to find the first
element with aria-atomic set, and apply the appropriate behavior.
— Supported States and Properties124

This means we could also include another block within our live region
to tell users which track is coming up next.

<div aria-live="polite" role="status">

<div aria-atomic="true">
<h3>Currently playing:</h3>
<p>Jake Bugg — Lightning Bolt</p>

</div>

<div aria-atomic="true">
<h3>Next in queue:</h3>
<p>Napalm Death — You Suffer</p>

124. http://www.w3.org/TR/wai-aria/states_and_properties#aria-atomic

CHAPTER 6: IT’S ALIVE!

100

http://www.w3.org/TR/wai-aria/states_and_properties#aria-atomic
http://www.w3.org/TR/wai-aria/states_and_properties#aria-atomic
http://www.w3.org/TR/wai-aria/states_and_properties#aria-atomic
http://www.w3.org/TR/wai-aria/states_and_properties#aria-atomic
http://www.w3.org/TR/wai-aria/states_and_properties#aria-atomic

</div>

</div>

Now, when Jake Bugg’s Lightning Bolt is nearing an end, we update the
<p> within the next in queue block to warn users that Napalm Death
are ready to take the mic: “Next in queue: Napalm Death—You Suffer”.
As Napalm Death begin to play, the currently playing block also up-
dates with their credentials and at the next available juncture the user
is reminded that the noise they are being subjected to is indeed Napalm
Death.

ARIA-BUSYARIA-BUSY

I was a bit mischievous using Napalm Death’s You Suffer as an exam-
ple track because, at 1.316 seconds long, the world’s shortest recorded
song would have ended before the live region could finish telling you it
had started! If every track was that short, the application would go hay-
wire.

In cases where lots of complex changes to a live region must take
place before the result would be understandable to the user, you can in-
clude the aria-busy attribute125. You simply set this to true while the
region is busy updating and back to false when it’s done. It’s effective-
ly the equivalent of a loading spinner used when loading assets in
JavaScript applications.

Usually you set aria-busy="true" before the first element (or addi-
tion) in the live region is loaded or altered, and false when the last ex-
pected element has been dealt with. In the case of our music player ex-
ample, we’d probably want to set a timeout of ten seconds or so, mak-

125. http://www.w3.org/TR/wai-aria/states_and_properties#aria-busy

101

http://www.w3.org/TR/wai-aria/states_and_properties#aria-busy
http://www.w3.org/TR/wai-aria/states_and_properties#aria-busy
http://www.w3.org/TR/wai-aria/states_and_properties#aria-busy
http://www.w3.org/TR/wai-aria/states_and_properties#aria-busy
http://www.w3.org/TR/wai-aria/states_and_properties#aria-busy

ing sure only music tracks longer than the announcement of those
tracks get announced.

$('#music-info').attr('aria-busy', 'true');

// Update the song artist & title here, then...

setTimeout(function() {
$('#music-info').attr('aria-busy', 'false');

}, 10000);

Dialogs
Accessibility engineers and evangelists the world over cringe at the
suggestion of including dialogs in web application design. As with
dreaded carousels126, they are a UI enhancement that requires a great
deal of consideration to make them usable for one user or the user sat
next to them.

Dialogue: a conversation between two or more persons; also a simi-
lar exchange between a person and something else (as a computer)
— Merriam-Webster definition127

Unlike carousels, dialogs are an almost inescapably important pattern
in desktop and web application design. As the name suggests, dialogs

126. http://www.creativebloq.com/accessibility-expert-warns-stop-using-carousels-7133778
127. http://www.merriam-webster.com/dictionary/dialogue

CHAPTER 6: IT’S ALIVE!

102

http://www.creativebloq.com/accessibility-expert-warns-stop-using-carousels-7133778
http://www.creativebloq.com/accessibility-expert-warns-stop-using-carousels-7133778
http://www.creativebloq.com/accessibility-expert-warns-stop-using-carousels-7133778
http://www.merriam-webster.com/dictionary/dialogue
http://www.merriam-webster.com/dictionary/dialogue
http://www.merriam-webster.com/dictionary/dialogue
http://www.creativebloq.com/accessibility-expert-warns-stop-using-carousels-7133778
http://www.creativebloq.com/accessibility-expert-warns-stop-using-carousels-7133778
http://www.merriam-webster.com/dictionary/dialogue
http://www.merriam-webster.com/dictionary/dialogue

represent an impasse where an agreement between the user and the ap-
plication must be reached before any other activity can take place. Di-
alogs usually take one of two forms:

• Some information that the user must read to keep them informed be-
fore they continue.

• A fork in the road; a choice of actions, one of which the user must take
before doing anything else.

To keep things relatively simple for now, we are going to examine the
cluster of techniques required to make a successfully accessible warn-
ing dialog. Despite paring things down, this will still require us to em-
ploy everything we’ve learned in previous chapters about semantic
HTML, accessible roles, properties, and states and artfully managing
and representing the focus of our controls.

THE ESSENTIALSTHE ESSENTIALS

The dialog needn’t exist until the impasse is reached, at which time we
shall build it dynamically. Not only does this give us flexibility and re-
move redundant markup from the page, but conjuring it into existence
also helps assistive technologies to recognize it as new, live content and
treat it as a priority. The question is, what are the essential parts that
make it a dialog?

A true dialog consists of just two parts: what one person (or computer,
in this case) says; and what the other person says in response. To make
our dialog pattern reusable, we are going to store these two variables in
HTML5 data attributes (data-dialog-call and
data-dialog-response) attached to any button control which might
invoke a dialog. The benefit of data attributes128 is that they are for pri-

128. http://ejohn.org/blog/html-5-data-attributes/

103

http://ejohn.org/blog/html-5-data-attributes/
http://ejohn.org/blog/html-5-data-attributes/
http://ejohn.org/blog/html-5-data-attributes/
http://ejohn.org/blog/html-5-data-attributes/
http://ejohn.org/blog/html-5-data-attributes/

vate storage: like <div> elements, the meaning of data attributes is not
revealed to the user. If it were, we would create unnecessary noise.

THE SETUPTHE SETUP

Remember the BIG RED BUTTON from way back in chapter 2? Let’s
use that as the trigger for a warning dialog. After all, no good will come
from pressing the BIG RED BUTTON, and the user—whoever they
are—should probably be aware of that.

<button class="big-red" data-dialog-call="YI really don't like
you pressing that" data-dialog-response="I understand">Big Red
Button</button>

The <dialog> ElementThe <dialog> Element

As we shall soon discover, creating accessible web-based dialogs isn’t
the simplest of tasks. There’s a lot to remember and a lot that can go
wrong. This is why an easy-to-use programming interface for such di-
alogs is currently being specified.

It is already possible to enable standardized dialogs129 using
<dialog> and the element’s associated attributes and methods in the
experimental Chrome Canary browser and Chrome (versions 25+). By
enabling experimental web platform features, you gain access to the
following methods as part of the HTMLDialogElement interface:

• show() : shows a basic dialog.

• showModal() : shows an alert-like dialog and prevents the user from in-
teracting with anything else on the page.

• close() : the method for properly closing a dialog.

With standardization comes clarity, meaning we no longer have to
think twice about how a dialog should be made. However, it is not an
interface which is ready for use in production yet and discussions130 on
how it will actually handle user behavior rage on.

For the time being, we can still use the <dialog> element so long as
we register it as a known element via an HTML5 shim131. In addition,
we can simulate the open attribute by attaching some CSS to it. Our

129. http://blog.teamtreehouse.com/a-preview-of-the-new-dialog-element
130. http://lists.w3.org/Archives/Public/public-html-bugzilla/2013Sep/0357.html
131. https://github.com/aFarkas/html5shiv/blob/master/src/html5shiv.js

CHAPTER 6: IT’S ALIVE!

104

http://blog.teamtreehouse.com/a-preview-of-the-new-dialog-element
http://blog.teamtreehouse.com/a-preview-of-the-new-dialog-element
http://blog.teamtreehouse.com/a-preview-of-the-new-dialog-element
http://lists.w3.org/Archives/Public/public-html-bugzilla/2013Sep/0357.html
http://lists.w3.org/Archives/Public/public-html-bugzilla/2013Sep/0357.html
http://lists.w3.org/Archives/Public/public-html-bugzilla/2013Sep/0357.html
https://github.com/aFarkas/html5shiv/blob/master/src/html5shiv.js
https://github.com/aFarkas/html5shiv/blob/master/src/html5shiv.js
https://github.com/aFarkas/html5shiv/blob/master/src/html5shiv.js
http://blog.teamtreehouse.com/a-preview-of-the-new-dialog-element
http://blog.teamtreehouse.com/a-preview-of-the-new-dialog-element
http://lists.w3.org/Archives/Public/public-html-bugzilla/2013Sep/0357.html
http://lists.w3.org/Archives/Public/public-html-bugzilla/2013Sep/0357.html
https://github.com/aFarkas/html5shiv/blob/master/src/html5shiv.js
https://github.com/aFarkas/html5shiv/blob/master/src/html5shiv.js

script will toggle the open attribute directly to show and hide the dia-
log.

dialog {
display: none;

}

dialog[open] {
display: block;

}

Building the DialogBuilding the Dialog

As mentioned, we shall be constructing the dialog dynamically, based
on an inert <dialog> element. After running the script on the trigger’s
click function, the fully augmented <dialog> will look like this:

<dialog tabindex="0" open role="alertdialog"
aria-describedby="d-message">

<div>
<div>

<p id="d-message">I really do not like you pressing
that</p>

<button>I understand</button>
</div>

</div>
</dialog>

• role="alertdialog" overrides the native <dialog> semantics and de-
fines the dialog as one intended for warnings and errors. Standard di-
alogs just take the dialog role. The alertdialog role is a special case
live region132 related to alert .

• open is just a Boolean attribute which says whether the dialog is open
or—you guessed it—not.

• tabindex="0" is included so the <dialog> can be focused. On opening
the dialog, we focus the close button, but making the dialog itself focus-
able will enable users to switch between the message and the close but-
ton to read either of them more than once if needed.

132. http://www.w3.org/TR/wai-aria-practices/#chobet

105

http://www.w3.org/TR/wai-aria-practices/#chobet
http://www.w3.org/TR/wai-aria-practices/#chobet
http://www.w3.org/TR/wai-aria-practices/#chobet
http://www.w3.org/TR/wai-aria-practices/#chobet
http://www.w3.org/TR/wai-aria-practices/#chobet
http://www.w3.org/TR/wai-aria-practices/#chobet

• aria-describedby="d-message" establishes a relationship between the
dialog’s message and the dialog, making sure the message is read
whenever the <dialog> is focused.

Using the free NVDA screen reader, opening the dialog reads “Dialog: I
really do not like you pressing that. I understand (button)”. That is, the
dialog is announced for what it is, then the user is told what the dialog
concerns, before finally being given their single option of compliance.
Not all dialogs would offer just the one course of action, of course, but
we’re trying to keep things simple.

THE FOCUS CONUNDRUMTHE FOCUS CONUNDRUM

I’ve said it before and I’ll say it again: managing the user’s focus is one
of the hardest and most important aspects of accessible application de-
sign. This is never truer than in the case of modal dialogs. There are
three key areas we have to address:

1. Users must not be able to interact with elements outside the dialog
while it is open.

2. Users’ focus must not be trapped within the dialog entirely: they must
be able to escape to the browser’s address bar and other controls outside
the page.

3. When closing the dialog, focus must be returned to the element (if any)
which invoked it so they may continue where they left off.

Making all contents of the page except the dialog contents focusable is
a bit of a head-scratcher all its own. First, we have to consider all the

CHAPTER 6: IT’S ALIVE!

106

types of elements which may be focusable. Written as CSS selectors,
these include:

• a[href]

• button:not([disabled])

• [tabindex]:not([tabindex="-1"])

as well as all types of form elements.
In the NC State University blog post “The Incredible Accessible

Modal Dialog133”,Greg Krauss describes a technique whereby all of
these elements are identified, rendered not focusable, and stored in
memory so that focus can be restored to each of them when the dialog
is closed again. This feels inefficient, so perhaps it would be better to
add a marker attribute on each, so only elements matching that marker
are made focusable again.

<a href="http://www.google.com" tabindex="-1"
data-modal-unfocused>

To make matters more complex, we have to remember that these ele-
ments should also not be readable in a screen reader’s browse mode.
That is, unless they are hidden to screen readers, users could casually
wander out of the dialog and continue reading whatever else is in the
page.

The aria-hidden state will hide the contents of the page from most
modern screen readers, so we ought to place aria-hidden="true" on
all contents outside the dialog. Unfortunately, this will not stop key-
board users focusing elements, so we still have to control that separate-
ly. Seems like a lot of work. What if there’s a better way?

TheThe visibility:hidden SolutionSolution

You may recall discussion earlier in this book about how screen readers
have a clever—though sometimes too clever—ability to apprehend cer-
tain CSS styles. We talked about how elements hidden with
display:none or visibility:hidden are hidden both from view and
from being read: equality.

Well, elements hidden with visibility:hidden or display:none
are also not focusable, making them unnavigable by keyboard. All we
have to do is identify the contents of the page which aren’t part of the
dialog and attach a class attribute corresponding to the

133. http://accessibility.oit.ncsu.edu/blog/2013/09/13/the-incredible-accessible-modal-dialog/

107

http://accessibility.oit.ncsu.edu/blog/2013/09/13/the-incredible-accessible-modal-dialog/
http://accessibility.oit.ncsu.edu/blog/2013/09/13/the-incredible-accessible-modal-dialog/
http://accessibility.oit.ncsu.edu/blog/2013/09/13/the-incredible-accessible-modal-dialog/
http://accessibility.oit.ncsu.edu/blog/2013/09/13/the-incredible-accessible-modal-dialog/
http://accessibility.oit.ncsu.edu/blog/2013/09/13/the-incredible-accessible-modal-dialog/
http://accessibility.oit.ncsu.edu/blog/2013/09/13/the-incredible-accessible-modal-dialog/

visibility:hidden rule. (We choose visibility:hidden over
display: none so that the elements retain their layout. We don’t want
to jog anything around.)

The following jQuery one-liner will add the mod-hidden class to all
elements that are siblings of the <dialog> and will affect all of their de-
scendent elements, too. For this to work, the <dialog> must be a direct
child node of <body> , but that’s a simple authoring task.

$('body > *:not(dialog)').addClass('mod-hidden');

It’s a Trap!It’s a Trap!

To stop the user from escaping the dialog and interacting with other
parts of the page before the dialog is attended to, we should make sure
pressing Tab on the last focusable element within the dialog returns fo-
cus to the dialog itself. This can be done by overriding the close button’s
keydown handler:

close.on('keydown', function(e) {
if ((e.keyCode || e.which) == 9) {

dialog.focus();
e.preventDefault();

}
});

CHAPTER 6: IT’S ALIVE!

108

In some implementations, pressing Shift + Tab on the dialog element
would move focus back to the close button (or last focusable element in
the dialog). However, creating this focus loop seals the user within the
dialog, making it difficult for them to leave the page at all. In our ver-
sion we shall let pressing Shift + Tab release the user to the browser’s ad-
dress bar, giving them an escape route.

THE CLOSE FUNCTIONTHE CLOSE FUNCTION

The “I understand” button will run a function called, let’s say,
closeDialog() to close the dialog and remove all the generated
markup. This should also be possible by pressing the Esc key; a feature
which is advised for dialogs under “ARIA practices”134.

$(dialog).on('keypress.escape', function(e) {
if (e.keyCode == 27) {

closeDialog();
}

});

Closing the dialog is as simple as removing the open attribute, but we
must also remember to remove all the other attributes, leaving the
<dialog> a simple placeholder for future dialog invocations. Impor-
tantly, we must return focus to the element which opened the dialog in
the first place.

We can create an identifier for the trigger element using its id (or
giving it a temporary id if it doesn’t already have one):

134. http://www.w3.org/WAI/PF/aria-practices/#dialog_modal

109

http://www.w3.org/WAI/PF/aria-practices/#dialog_modal
http://www.w3.org/WAI/PF/aria-practices/#dialog_modal
http://www.w3.org/WAI/PF/aria-practices/#dialog_modal
http://www.w3.org/WAI/PF/aria-practices/#dialog_modal
http://www.w3.org/WAI/PF/aria-practices/#dialog_modal

var trigger = $(this).attr('id') ? $(this).attr('id') : 'origin';

Then, as the last task in our closing process, we simply shift focus to it:

$('#' + trigger).focus();

The benefit of this is twofold, affecting both screen reader users and
keyboard users. First, it reinstates the focus style on our BIG RED
BUTTON, confirming it has focus and moving to it if it has slipped out
of the viewport. Second, the reinstated focus is announced in context.

In the demo page135 for this dialog example, the title of the page is
announced, then the landmark location (main), followed by the button
text. In a short sentence, the user has their location pinpointed.

You have been warned. Just don’t press it again. Actually, do you know
what? I have no idea why I put it there in the first place. It doesn’t make
any sense.❧

135. http://heydonworks.com/practical_aria_examples/#warning-dialog

CHAPTER 6: IT’S ALIVE!

110

http://heydonworks.com/practical_aria_examples/#warning-dialog
http://heydonworks.com/practical_aria_examples/#warning-dialog
http://heydonworks.com/practical_aria_examples/#warning-dialog
http://heydonworks.com/practical_aria_examples/#warning-dialog
http://heydonworks.com/practical_aria_examples/#warning-dialog

CHAPTER 7:

Welcome To The
Community
I’m happy to report that learning about web accessibility has never
been a lonely experience. The community of accessibility engineers,
consultants and advocates I have been fortunate to correspond and
meet with are particularly generous with their time and exper-
tise—even when compared with the already open nature of the wider
web community. Without conversing and collaborating with folk in-
volved in web accessibility, this would be a much thinner—and fre-
quently factually inaccurate!—book.

To conclude this introduction to web application accessibility, I’d
like to introduce you to the accessibility community and many of the
fantastic free tools and resources available to help you build accessible
applications.

#a11y
In your travels around the web you may encounter the curious nu-
meronym a11y. This is an abbreviation of the word “accessibility” where
the “11” represents the number of omitted characters. In the accessibili-
ty community, the Twitter hashtag #a11y is frequently used as a sort of
Bat-Signal to indicate that a resource has some bearing on accessibility
practice. Sometimes #a11y is used as a distress signal, indicating a fail-
ure to address accessibility but, more often, it is used to draw attention
to successes in the field of accessibility.

I highly recommend you follow #a11y on Twitter to keep abreast of in-
novations in accessibility techniques, updates to specifications and im-
provements to the accessibility of popular applications and websites.

111

SOME FOLKS TO FOLLOWSOME FOLKS TO FOLLOW

Here are a few of the people I follow on Twitter for their expertise and
experience regarding web accessibility. This is by no means a complete
list of #a11y stalwarts. If you want to reach out further, check out who
these folks follow too!

@stevefaulkner@stevefaulkner

Steve works for The Paciello Group, who are leaders in accessibility
consultation. He is also an editor of the W3C’s HTML specification, the
innovator of the <main> , element and the technical reviewer of this
book. Steve frequently writes for The Paciello Group’s blog136.

@LeonieWatson@LeonieWatson

Previously accessibility director at Nomensa, Léonie is now a colleague
of Steve’s at The Paciello Group and an influential accessibility advo-
cate. A prolific user of the #a11y hashtag and owner of the blog, The
Tink Tank137.

@rogerjohansson@rogerjohansson

Roger Johansson has been involved in web development since 1994 and
I have been reading his blog 456 Berea Street138, which focuses on web
standards and accessibility, since 2006.

@karlgroves@karlgroves

Karl is a tireless campaigner for accessibility. He blogs at karl-
groves.com139 and is looking for participants to help him build a CSS ac-
cessibility testing tool140 much like the test.css we have been using here,
but more comprehensive.

@jsutt@jsutt

Jennifer Sutton is passionate about accessibility and has a deep knowl-
edge of the subject. She helped to develop the W3C’s guide to contact-
ing organizations who have inaccessible websites141.

136. http://blog.paciellogroup.com/
137. http://tink.co.uk/about-tink/
138. http://www.456bereastreet.com/
139. http://www.karlgroves.com
140. http://www.karlgroves.com/2013/09/07/diagnostic-css-super-quick-web-accessibility-

testing/
141. http://www.w3.org/WAI/users/inaccessible

CHAPTER 7: WELCOME TO THE COMMUNITY

112

http://blog.paciellogroup.com/
http://blog.paciellogroup.com/
http://blog.paciellogroup.com/
http://tink.co.uk/about-tink/
http://tink.co.uk/about-tink/
http://tink.co.uk/about-tink/
http://tink.co.uk/about-tink/
http://www.456bereastreet.com/
http://www.456bereastreet.com/
http://www.456bereastreet.com/
http://www.karlgroves.com
http://www.karlgroves.com
http://www.karlgroves.com
http://www.karlgroves.com
http://www.karlgroves.com/2013/09/07/diagnostic-css-super-quick-web-accessibility-testing/
http://www.karlgroves.com/2013/09/07/diagnostic-css-super-quick-web-accessibility-testing/
http://www.karlgroves.com/2013/09/07/diagnostic-css-super-quick-web-accessibility-testing/
http://www.karlgroves.com/2013/09/07/diagnostic-css-super-quick-web-accessibility-testing/
http://www.w3.org/WAI/users/inaccessible
http://www.w3.org/WAI/users/inaccessible
http://www.w3.org/WAI/users/inaccessible
http://www.w3.org/WAI/users/inaccessible
http://blog.paciellogroup.com/
http://blog.paciellogroup.com/
http://tink.co.uk/about-tink/
http://tink.co.uk/about-tink/
http://www.456bereastreet.com/
http://www.456bereastreet.com/
http://www.karlgroves.com
http://www.karlgroves.com
http://www.karlgroves.com/2013/09/07/diagnostic-css-super-quick-web-accessibility-testing/
http://www.karlgroves.com/2013/09/07/diagnostic-css-super-quick-web-accessibility-testing/
http://www.w3.org/WAI/users/inaccessible
http://www.w3.org/WAI/users/inaccessible

@dennisl@dennisl

Dennis Lembrée is the founder and main host of the Web Axe142 acces-
sibility blog and podcast. You should follow @WebAxe too.

@jkiss@jkiss

Jason Kiss is an advocate and researcher for accessibility whose de-
tailed articles at Accessible Culture143 leave no stone unturned in the
search for demonstrably successful accessibility techniques.

@dboudreau@dboudreau

Denis Boudreau is another big name who, in addition to #a11y, also
tweets with #a11yTips: a great tag to follow for easily digestible accessi-
bility improvements.

@yatil@yatil

Eric Eggert is a seasoned accessibility specialist who works for the
W3C, providing workshops and talks about web accessibility.

@aardrian@aardrian

Adrian Roselli writes about usability mostly but our discussions about
accessibility have always been interesting and fruitful. He is an invited
expert at the W3C and writings in the accessibility category144 of his
blog are always lively.

@cookiecrook@cookiecrook

I was happy to have a heated debate about dialog implementations with
James Craig. He has helped author the WAI-ARIA specification and has
a book available on progressive enhancement145.

@MarcoInEnglish@MarcoInEnglish

Marco Zehe is Mozilla’s accessibility quality assurance engineer. He al-
so blogs at marcozehe.de146 where his “easy ARIA tips” are excellent.

142. http://www.webaxe.org/
143. http://accessibleculture.org/articles/
144. http://blog.adrianroselli.com/search/label/accessibility
145. http://filamentgroup.com/dwpe/
146. http://www.marcozehe.de

113

http://www.webaxe.org/
http://www.webaxe.org/
http://www.webaxe.org/
http://accessibleculture.org/articles/
http://accessibleculture.org/articles/
http://accessibleculture.org/articles/
http://blog.adrianroselli.com/search/label/accessibility
http://blog.adrianroselli.com/search/label/accessibility
http://blog.adrianroselli.com/search/label/accessibility
http://filamentgroup.com/dwpe/
http://filamentgroup.com/dwpe/
http://filamentgroup.com/dwpe/
http://www.marcozehe.de
http://www.marcozehe.de
http://www.marcozehe.de
http://www.webaxe.org/
http://www.webaxe.org/
http://accessibleculture.org/articles/
http://accessibleculture.org/articles/
http://blog.adrianroselli.com/search/label/accessibility
http://blog.adrianroselli.com/search/label/accessibility
http://filamentgroup.com/dwpe/
http://filamentgroup.com/dwpe/
http://www.marcozehe.de
http://www.marcozehe.de

@gezlemon@gezlemon

Gez knows a lot about accessibility. He is the owner of the blog, Juicy
Studio147, from which I pilfered the music player live region example
for chapter 6.

@icaaq@icaaq

Isac Lagerblad is a sighted screen reader user with a great deal of in-
sight regarding HTML semantics.

@patrick_h_lauke@patrick_h_lauke

Patrick has been a great help to me as I’ve been grappling with some of
the less transparent parts of the ARIA specification. He’s currently do-
ing a lot of research into touch events148 and their accessibility implica-
tions.

@marcysutton@marcysutton

Marcy is a speaker and researcher who’s been doing a lot of experimen-
tation with accessibility regarding JavaScript frameworks like Angular-
JS and web components. Cutting-edge stuff.

@jared_w_smith@jared_w_smith

Jared writes for the WebAIM149 resource I have alluded to frequently
throughout this book. WebAIM has even curated its own list of accessi-
bility people to follow on Twitter150, so I’ll let him take over from here.

Blogs
Some excellent blogs—many by the aforementioned Twitter users—to
bolster your Feedly. Other RSS readers are available.

• The Paciello Group Blog151

• Humanising Technology Blog152 (Nomensa)

• WebAIM153 (Jared Smith)

147. http://juicystudio.com/articles.php
148. http://www.slideshare.net/redux/getting-touchy-an-introduction-to-touch-events-saint
149. http://webaim.org/blog/
150. http://webaim.org/blog/twitter-accessibility-roundup/
151. http://blog.paciellogroup.com/
152. http://www.nomensa.com/blog/

CHAPTER 7: WELCOME TO THE COMMUNITY

114

http://juicystudio.com/articles.php
http://juicystudio.com/articles.php
http://juicystudio.com/articles.php
http://juicystudio.com/articles.php
http://www.slideshare.net/redux/getting-touchy-an-introduction-to-touch-events-saint
http://www.slideshare.net/redux/getting-touchy-an-introduction-to-touch-events-saint
http://www.slideshare.net/redux/getting-touchy-an-introduction-to-touch-events-saint
http://webaim.org/blog/
http://webaim.org/blog/
http://webaim.org/blog/
http://webaim.org/blog/twitter-accessibility-roundup/
http://webaim.org/blog/twitter-accessibility-roundup/
http://webaim.org/blog/twitter-accessibility-roundup/
http://webaim.org/blog/twitter-accessibility-roundup/
http://blog.paciellogroup.com/
http://blog.paciellogroup.com/
http://blog.paciellogroup.com/
http://www.nomensa.com/blog/
http://www.nomensa.com/blog/
http://www.nomensa.com/blog/
http://webaim.org/blog/
http://webaim.org/blog/
http://webaim.org/blog/
http://juicystudio.com/articles.php
http://juicystudio.com/articles.php
http://www.slideshare.net/redux/getting-touchy-an-introduction-to-touch-events-saint
http://www.slideshare.net/redux/getting-touchy-an-introduction-to-touch-events-saint
http://webaim.org/blog/
http://webaim.org/blog/
http://webaim.org/blog/twitter-accessibility-roundup/
http://webaim.org/blog/twitter-accessibility-roundup/
http://blog.paciellogroup.com/
http://blog.paciellogroup.com/
http://www.nomensa.com/blog/
http://www.nomensa.com/blog/

• WAI154

• Marco’s Accessibility Blog155 (Marco Zehe)

• WebAxe156 (Dennis Lembrée)

• Adobe Accessibility157

• Access Sites158

• Juicy Studio159 (Gez Lemon)

• Accessible Culture160 (Jason Kiss)

• Simply Accessible161

• Karl Grove’s Blog162

• The Tink Tank163 (Léonie Watson)

• 456 Berea Street164 (Roger Johansson)

Testing Tools
Again, not a complete list, but a selection of some of the best open
source tools for testing the accessibility of web applications. It should
be noted that using automated tools is necessary but not sufficient. An
interface employing semantic HTML correctly is a good start, but this
does not confirm that the application is usable. User Acceptance Test-
ing165 will help to give you a better indication.

153. http://webaim.org/blog/
154. http://www.w3.org/WAI/
155. http://www.marcozehe.de/
156. http://www.webaxe.org/
157. http://blogs.adobe.com/accessibility/
158. http://accessites.org/site/
159. http://juicystudio.com/
160. http://accessibleculture.org/
161. http://simplyaccessible.com/
162. http://www.karlgroves.com
163. http://tink.co.uk/
164. http://www.456bereastreet.com/
165. http://www.techopedia.com/definition/3887/user-acceptance-testing-uat

115

http://www.w3.org/WAI/
http://www.w3.org/WAI/
http://www.w3.org/WAI/
http://www.marcozehe.de/
http://www.marcozehe.de/
http://www.marcozehe.de/
http://www.webaxe.org/
http://www.webaxe.org/
http://www.webaxe.org/
http://blogs.adobe.com/accessibility/
http://blogs.adobe.com/accessibility/
http://blogs.adobe.com/accessibility/
http://accessites.org/site/
http://accessites.org/site/
http://accessites.org/site/
http://juicystudio.com/
http://juicystudio.com/
http://juicystudio.com/
http://accessibleculture.org/
http://accessibleculture.org/
http://accessibleculture.org/
http://simplyaccessible.com/
http://simplyaccessible.com/
http://simplyaccessible.com/
http://www.karlgroves.com
http://www.karlgroves.com
http://www.karlgroves.com
http://tink.co.uk/
http://tink.co.uk/
http://tink.co.uk/
http://www.456bereastreet.com/
http://www.456bereastreet.com/
http://www.456bereastreet.com/
http://www.techopedia.com/definition/3887/user-acceptance-testing-uat
http://www.techopedia.com/definition/3887/user-acceptance-testing-uat
http://www.techopedia.com/definition/3887/user-acceptance-testing-uat
http://www.techopedia.com/definition/3887/user-acceptance-testing-uat
http://webaim.org/blog/
http://webaim.org/blog/
http://www.w3.org/WAI/
http://www.w3.org/WAI/
http://www.marcozehe.de/
http://www.marcozehe.de/
http://www.webaxe.org/
http://www.webaxe.org/
http://blogs.adobe.com/accessibility/
http://blogs.adobe.com/accessibility/
http://accessites.org/site/
http://accessites.org/site/
http://juicystudio.com/
http://juicystudio.com/
http://accessibleculture.org/
http://accessibleculture.org/
http://simplyaccessible.com/
http://simplyaccessible.com/
http://www.karlgroves.com
http://www.karlgroves.com
http://tink.co.uk/
http://tink.co.uk/
http://www.456bereastreet.com/
http://www.456bereastreet.com/
http://www.techopedia.com/definition/3887/user-acceptance-testing-uat
http://www.techopedia.com/definition/3887/user-acceptance-testing-uat

BROWSER EXTENSIONSBROWSER EXTENSIONS

Accessibility Evaluation ToolbarAccessibility Evaluation Toolbar166

This has long been a stand-by for me. Gives a good overview of poten-
tial accessibility problems in your HTML.

Author: Jon Gunderson

Dom Inspector (DOMi)Dom Inspector (DOMi)167

This Firefox add-on is much like Firebug except it has the additional
feature of indicating which parts of the DOM are actually accessible. By
switching to “accessible tree” mode, only nodes (parts of the HTML)
which are accessible are shown.

Juicy Studio Accessibility ToolbarJuicy Studio Accessibility Toolbar168

Gez’s tool has the neat feature of providing information about ARIA live
regions.

Author: Gez Lemon

WAVE ToolbarWAVE Toolbar169

Gives you a quick overview of issues and features (including ARIA fea-
tures) using graphics added to the page design.

Author: WebAIM

Chrome VoxChrome Vox170

A fully fledged screen reader designed as an extension for Google’s
Chrome browser. Good support for ARIA and a worthy addition to any
screen reader testing suite.

Author: Google

166. https://addons.mozilla.org/en-US/firefox/addon/accessibility-evaluation-toolb/
167. https://addons.mozilla.org/en-US/firefox/addon/dom-inspector-6622/
168. https://addons.mozilla.org/en-US/firefox/addon/juicy-studio-accessibility-too/
169. https://addons.mozilla.org/en-US/firefox/addon/wave-toolbar/?src=ss
170. https://chrome.google.com/webstore/detail/chromevox/kgejglhpjiefppelpmljglcjb-

hoiplfn

CHAPTER 7: WELCOME TO THE COMMUNITY

116

https://addons.mozilla.org/en-US/firefox/addon/accessibility-evaluation-toolb/
https://addons.mozilla.org/en-US/firefox/addon/accessibility-evaluation-toolb/
https://addons.mozilla.org/en-US/firefox/addon/accessibility-evaluation-toolb/
https://addons.mozilla.org/en-US/firefox/addon/dom-inspector-6622/
https://addons.mozilla.org/en-US/firefox/addon/dom-inspector-6622/
https://addons.mozilla.org/en-US/firefox/addon/dom-inspector-6622/
https://addons.mozilla.org/en-US/firefox/addon/juicy-studio-accessibility-too/
https://addons.mozilla.org/en-US/firefox/addon/juicy-studio-accessibility-too/
https://addons.mozilla.org/en-US/firefox/addon/juicy-studio-accessibility-too/
https://addons.mozilla.org/en-US/firefox/addon/wave-toolbar/?src=ss
https://addons.mozilla.org/en-US/firefox/addon/wave-toolbar/?src=ss
https://addons.mozilla.org/en-US/firefox/addon/wave-toolbar/?src=ss
https://chrome.google.com/webstore/detail/chromevox/kgejglhpjiefppelpmljglcjbhoiplfn
https://chrome.google.com/webstore/detail/chromevox/kgejglhpjiefppelpmljglcjbhoiplfn
https://chrome.google.com/webstore/detail/chromevox/kgejglhpjiefppelpmljglcjbhoiplfn
https://addons.mozilla.org/en-US/firefox/addon/accessibility-evaluation-toolb/
https://addons.mozilla.org/en-US/firefox/addon/accessibility-evaluation-toolb/
https://addons.mozilla.org/en-US/firefox/addon/dom-inspector-6622/
https://addons.mozilla.org/en-US/firefox/addon/dom-inspector-6622/
https://addons.mozilla.org/en-US/firefox/addon/juicy-studio-accessibility-too/
https://addons.mozilla.org/en-US/firefox/addon/juicy-studio-accessibility-too/
https://addons.mozilla.org/en-US/firefox/addon/wave-toolbar/?src=ss
https://addons.mozilla.org/en-US/firefox/addon/wave-toolbar/?src=ss
https://chrome.google.com/webstore/detail/chromevox/kgejglhpjiefppelpmljglcjbhoiplfn
https://chrome.google.com/webstore/detail/chromevox/kgejglhpjiefppelpmljglcjbhoiplfn

WEB-BASED TOOLS AND BOOKMARKLETSWEB-BASED TOOLS AND BOOKMARKLETS

HTML Code SnifferHTML Code Sniffer171

HTML Code Sniffer is a bookmarklet which reports errors, warnings
and notices regarding WCAG 2.0 compliance. A nice interface and the
ability to fork and extend.

Author: Squiz

accesslint.comaccesslint.com172

A web-based accessibility evaluator. Just enter a URL.
Author: Cameron Cundiff

pa11ypa11y173

A browser-based dashboard for monitoring the accessibility of a num-
ber of your sites simultaneously. Requires node.js, MongoDB and
PhantomJS.

FireEyesFireEyes174

FireEyes is an extension for Firebug. It is a free and comprehensive re-
porting service which requires you to create an account but is free.

Author: Deque

WAVEWAVE175

The web-based alternative to WebAIM’s browser extension.
Author: WebAIM

Diagnostic CSSDiagnostic CSS176

A “super quick” accessibility testing tool using CSS only, much like our
test.css file, but more complex and comprehensive.

Author: Karl Groves

171. http://www.squizlabs.com/general/html-codesniffer
172. http://www.accesslint.com/
173. http://pa11y.org/
174. http://www.deque.com/deque-fireeyes
175. http://wave.webaim.org/
176. http://www.karlgroves.com/2013/09/07/diagnostic-css-super-quick-web-accessibility-

testing

117

http://www.squizlabs.com/general/html-codesniffer
http://www.squizlabs.com/general/html-codesniffer
http://www.squizlabs.com/general/html-codesniffer
http://www.accesslint.com/
http://www.accesslint.com/
http://www.accesslint.com/
http://pa11y.org/
http://pa11y.org/
http://pa11y.org/
http://www.deque.com/deque-fireeyes
http://www.deque.com/deque-fireeyes
http://www.deque.com/deque-fireeyes
http://wave.webaim.org/
http://wave.webaim.org/
http://wave.webaim.org/
http://www.karlgroves.com/2013/09/07/diagnostic-css-super-quick-web-accessibility-testing
http://www.karlgroves.com/2013/09/07/diagnostic-css-super-quick-web-accessibility-testing
http://www.karlgroves.com/2013/09/07/diagnostic-css-super-quick-web-accessibility-testing
http://www.squizlabs.com/general/html-codesniffer
http://www.squizlabs.com/general/html-codesniffer
http://www.accesslint.com/
http://www.accesslint.com/
http://pa11y.org/
http://pa11y.org/
http://www.deque.com/deque-fireeyes
http://www.deque.com/deque-fireeyes
http://wave.webaim.org/
http://wave.webaim.org/
http://www.karlgroves.com/2013/09/07/diagnostic-css-super-quick-web-accessibility-testing
http://www.karlgroves.com/2013/09/07/diagnostic-css-super-quick-web-accessibility-testing

REVENGE.CSSREVENGE.CSS177

My own CSS-based testing tool. Warnings appear in pink boxes with
text in Comic Sans. Inaccessible webpages deserve to look ugly (until
they are fixed!)

Author: Heydon Pickering

CONTRAST AND COLOR BLINDNESSCONTRAST AND COLOR BLINDNESS

colororacle.orgcolororacle.org178

A powerful desktop application for Windows, Mac and Linux which
emulates typical color vision impairments. You can see, at a glance,
whether certain parts of your design suffer from lack of definition.

Contrast RatioContrast Ratio179

A really easy-to-use contrast checker which allows you to enter a fore-
ground and background color, and then returns a WCAG 2.0 complian-
ce rating.

Author: Lea Verou

Contrast CheckerContrast Checker180

Similar to Lea’s tool above, but from WebAIM. Gives you the ability to
increment and decrement the shade of either color (foreground or back-
ground) to see where the failure points are.

Author: WebAIM

Contrast AnalyzerContrast Analyzer181

Another analyzer by the good people at The Paciello Group. Available
for Windows and Mac OS X.

Colour ContrastColour Contrast182

A tool that takes the concept one step further, with sliders to tweak the
colour components, including hue and saturation.

Author: Jonathan Snook

177. http://heydonworks.com/revenge_css_bookmarklet/
178. http://colororacle.org/
179. http://leaverou.github.io/contrast-ratio/
180. http://webaim.org/resources/contrastchecker/
181. http://www.paciellogroup.com/resources/contrastAnalyser
182. http://snook.ca/technical/colour_contrast/colour.html

CHAPTER 7: WELCOME TO THE COMMUNITY

118

http://heydonworks.com/revenge_css_bookmarklet/
http://heydonworks.com/revenge_css_bookmarklet/
http://heydonworks.com/revenge_css_bookmarklet/
http://colororacle.org/
http://colororacle.org/
http://colororacle.org/
http://leaverou.github.io/contrast-ratio/
http://leaverou.github.io/contrast-ratio/
http://leaverou.github.io/contrast-ratio/
http://webaim.org/resources/contrastchecker/
http://webaim.org/resources/contrastchecker/
http://webaim.org/resources/contrastchecker/
http://www.paciellogroup.com/resources/contrastAnalyser
http://www.paciellogroup.com/resources/contrastAnalyser
http://www.paciellogroup.com/resources/contrastAnalyser
http://snook.ca/technical/colour_contrast/colour.html
http://snook.ca/technical/colour_contrast/colour.html
http://snook.ca/technical/colour_contrast/colour.html
http://heydonworks.com/revenge_css_bookmarklet/
http://heydonworks.com/revenge_css_bookmarklet/
http://colororacle.org/
http://colororacle.org/
http://leaverou.github.io/contrast-ratio/
http://leaverou.github.io/contrast-ratio/
http://webaim.org/resources/contrastchecker/
http://webaim.org/resources/contrastchecker/
http://www.paciellogroup.com/resources/contrastAnalyser
http://www.paciellogroup.com/resources/contrastAnalyser
http://snook.ca/technical/colour_contrast/colour.html
http://snook.ca/technical/colour_contrast/colour.html

WAI-ARIA
Some resources and resource round-ups specific to ARIA practice.

W3C SPECIFICATIONS AND GUIDELINESW3C SPECIFICATIONS AND GUIDELINES

• WAI-ARIA Overview183: as good a place as any to start

• WAI-ARIA 1.1184: the latest draft of the WAI-ARIA specification

• The Roles Model185: information on types of ARIA role and the relation-
ships between different roles

• Supported States and Properties186: an introduction to the various state
and property attributes that different roles support

• WAI-ARIA Authoring Practices187: includes step-by-step guidelines for
creating ARIA widgets

• Using WAI-ARIA in HTML188: includes the “rules of ARIA use” which
we covered early in the book. Note, this is only an Editor’s Draft: a work
in progress liable to change before it is published as an official Working
Draft.

ARIA ON MOZILLA MDNARIA ON MOZILLA MDN189

A fantastic round-up of ARIA learning resources which I shall not try to
compete with here. Just go and take a look.

PRACTICAL ARIA EXAMPLESPRACTICAL ARIA EXAMPLES190

All of the examples created for this book on one page, as well as one or
two bonus widgets.

WAI-ARIA: INFORMATION AND EXAMPLESWAI-ARIA: INFORMATION AND EXAMPLES191

Another round-up, with some interesting examples not covered by this
book, including calendars and drag-and-drop interfaces.

183. http://www.w3.org/WAI/intro/aria
184. http://www.w3.org/TR/wai-aria-1.1/
185. http://www.w3.org/TR/wai-aria-1.1/roles
186. http://www.w3.org/TR/wai-aria-1.1/states_and_properties
187. http://www.w3.org/TR/wai-aria-practices/
188. http://www.w3.org/TR/aria-in-html/
189. https://developer.mozilla.org/en-us/docs/web/accessibility/aria
190. http://heydonworks.com/practical_aria_examples/
191. http://wai-aria.punkchip.com/

119

http://www.w3.org/WAI/intro/aria
http://www.w3.org/WAI/intro/aria
http://www.w3.org/WAI/intro/aria
http://www.w3.org/TR/wai-aria-1.1/
http://www.w3.org/TR/wai-aria-1.1/
http://www.w3.org/TR/wai-aria-1.1/
http://www.w3.org/TR/wai-aria-1.1/roles
http://www.w3.org/TR/wai-aria-1.1/roles
http://www.w3.org/TR/wai-aria-1.1/roles
http://www.w3.org/TR/wai-aria-1.1/states_and_properties
http://www.w3.org/TR/wai-aria-1.1/states_and_properties
http://www.w3.org/TR/wai-aria-1.1/states_and_properties
http://www.w3.org/TR/wai-aria-practices/
http://www.w3.org/TR/wai-aria-practices/
http://www.w3.org/TR/wai-aria-practices/
http://www.w3.org/TR/aria-in-html/
http://www.w3.org/TR/aria-in-html/
http://www.w3.org/TR/aria-in-html/
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA
http://heydonworks.com/practical_aria_examples/
http://heydonworks.com/practical_aria_examples/
http://heydonworks.com/practical_aria_examples/
http://wai-aria.punkchip.com/
http://wai-aria.punkchip.com/
http://wai-aria.punkchip.com/
http://www.w3.org/WAI/intro/aria
http://www.w3.org/WAI/intro/aria
http://www.w3.org/TR/wai-aria-1.1/
http://www.w3.org/TR/wai-aria-1.1/
http://www.w3.org/TR/wai-aria-1.1/roles
http://www.w3.org/TR/wai-aria-1.1/roles
http://www.w3.org/TR/wai-aria-1.1/states_and_properties
http://www.w3.org/TR/wai-aria-1.1/states_and_properties
http://www.w3.org/TR/wai-aria-practices/
http://www.w3.org/TR/wai-aria-practices/
http://www.w3.org/TR/aria-in-html/
http://www.w3.org/TR/aria-in-html/
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA
http://heydonworks.com/practical_aria_examples/
http://heydonworks.com/practical_aria_examples/
http://wai-aria.punkchip.com/
http://wai-aria.punkchip.com/

And Finally...
It would be remiss of me not to mention the web application the
Smashing Magazine team and I have been using to write and edit this
very book. Editorially (which, regrettably will have been discontinued
by the time this book has been published) has been an intuitive and en-
joyable tool to use and—as it turns out—an impressively accessible
one.

Having already drafted chapters of this book with Editorially, when
a discussion about web-based content editors took place on Twitter, I
was all too happy to recommend my new favorite toy. However, when
Jennifer Sutton (an #a11y expert mentioned above and a blind screen
reader user) asked me whether it was worth her bother, I wasn’t sure
what to say. Certainly, it was a simple application and simplicity is usu-
ally a good indicator of accessibility. But what if the simplicity I experi-
enced was by virtue of the visual interface alone?

We exchanged emails and I told Jennifer I’d be interested in her
opinion of the application. A few days later she replied with a glowing
report. In fact, she found it so easy to use that—in her own words—“I
almost fell out of my chair.”

Of course, it wasn’t perfect, but it was so good she wanted to meet
with the creators to iron out the few remaining creases. No doubt in
full knowledge that the app would soon be defunct, a co-creator agreed
to meet with Jennifer regardless, for a face-to-face screen reader testing
session. They wanted to learn more.

Over the course of this book we’ve examined some specific tech-
nologies and techniques that can help you make your web applications
more accessible. I hope that you can refer to the book when you are un-
sure about the accessibility of particular design patterns and are hoping
to iron out a few creases of your own. But remember the case of Editori-
ally: the reason Editorially was accessible overall, despite some techni-
cal shortcomings, is because it offered a simple interface designed for
people to get a task done painlessly. Some call this approach user expe-
rience design, others user-centered design. Since interfaces necessitate
users, I think it’s fair to just call it good design. In any case, designing for
users, their preferences, and their limitations rather than for the whims
of stakeholders, marketers, peers, or passing trends is the most direct
route to accessibility. Take it.❧

CHAPTER 7: WELCOME TO THE COMMUNITY

120

Credits

The Author
Heydon Pickering is a user experience designer, coder and writer (ob-
viously) from Norwich in the United Kingdom. He is particularly inter-
ested in accessible design patterns and the relationship between form
and function in web development. Heydon is a regular writer for
Smashing Magazine, SitePoint and his own blog, heydonworks.com192.
He’s also a type designer and a couple of his free icon fonts are hosted
on Font Squirrel193.

The Technical Reviewer
Steve Faulkner is the senior web accessibility consultant and technical
director, TPG Europe. He joined The Paciello Group194 in 2006. He is the
creator and lead developer of the Web Accessibility Toolbar accessibili-
ty testing tool. Steve is a member of several groups, including the W3C
HTML Working Group and the W3C Protocols and Formats Working
Group. He is an editor of several specifications at the W3C195 including
HTML 5.1196, Using WAI-ARIA in HTML197 and HTML5: Techniques for
providing useful text alternatives198. He also develops and maintains
www.HTML5accessibility.com199

The Cover
The web accessibility icon featured on the cover of this book was creat-
ed by the author, Heydon Pickering, based on a design by The Accessi-
ble Icon Project200. The aim of The Accessible Icon Project is to provide
a vigorous, dynamic alternative to the old International Symbol Of Ac-
cess201.

192. http://www.heydonworks.com
193. http://www.fontsquirrel.com/foundry/Heydon-Pickering
194. http://www.paciellogroup.com
195. http://w3.org
196. http://www.w3.org/html/wg/drafts/html/master/
197. https://dvcs.w3.org/hg/aria-unofficial/raw-file/tip/index.html
198. http://dev.w3.org/html5/alt-techniques/
199. http://www.HTML5accessibility.com
200. http://www.accessibleicon.org/about.html
201. http://en.wikipedia.org/wiki/International_Symbol_of_Access

121

http://www.heydonworks.com
http://www.heydonworks.com
http://www.heydonworks.com
http://www.fontsquirrel.com/foundry/Heydon-Pickering
http://www.fontsquirrel.com/foundry/Heydon-Pickering
http://www.fontsquirrel.com/foundry/Heydon-Pickering
http://www.fontsquirrel.com/foundry/Heydon-Pickering
http://www.paciellogroup.com
http://www.paciellogroup.com
http://www.paciellogroup.com
http://w3.org
http://w3.org
http://w3.org
http://www.w3.org/html/wg/drafts/html/master/
http://www.w3.org/html/wg/drafts/html/master/
http://www.w3.org/html/wg/drafts/html/master/
https://dvcs.w3.org/hg/aria-unofficial/raw-file/tip/index.html
https://dvcs.w3.org/hg/aria-unofficial/raw-file/tip/index.html
https://dvcs.w3.org/hg/aria-unofficial/raw-file/tip/index.html
http://dev.w3.org/html5/alt-techniques/
http://dev.w3.org/html5/alt-techniques/
http://dev.w3.org/html5/alt-techniques/
http://dev.w3.org/html5/alt-techniques/
http://www.HTML5accessibility.com
http://www.HTML5accessibility.com
http://www.HTML5accessibility.com
http://www.accessibleicon.org/about.html
http://www.accessibleicon.org/about.html
http://www.accessibleicon.org/about.html
http://www.accessibleicon.org/about.html
http://en.wikipedia.org/wiki/International_Symbol_of_Access
http://en.wikipedia.org/wiki/International_Symbol_of_Access
http://en.wikipedia.org/wiki/International_Symbol_of_Access
http://en.wikipedia.org/wiki/International_Symbol_of_Access
http://www.heydonworks.com
http://www.heydonworks.com
http://www.fontsquirrel.com/foundry/Heydon-Pickering
http://www.fontsquirrel.com/foundry/Heydon-Pickering
http://www.paciellogroup.com
http://www.paciellogroup.com
http://w3.org
http://w3.org
http://www.w3.org/html/wg/drafts/html/master/
http://www.w3.org/html/wg/drafts/html/master/
https://dvcs.w3.org/hg/aria-unofficial/raw-file/tip/index.html
https://dvcs.w3.org/hg/aria-unofficial/raw-file/tip/index.html
http://dev.w3.org/html5/alt-techniques/
http://dev.w3.org/html5/alt-techniques/
http://www.HTML5accessibility.com
http://www.HTML5accessibility.com
http://www.accessibleicon.org/about.html
http://www.accessibleicon.org/about.html
http://en.wikipedia.org/wiki/International_Symbol_of_Access
http://en.wikipedia.org/wiki/International_Symbol_of_Access

	Imprint
	Table of Contents

	Chapter 1: This Is For Everyone
	Web Standards
	The Web Accessibility Initiative

	What This Book Will Cover
	Technical Content

	Semantics And Screen Readers
	Interoperability
	More Meaning Than You Might Think

	Chapter 2: It’s All About Buttons
	The <button> Element
	How Is This Accessible?
	Button Types
	test.css

	The Style Of Buttons
	Buttons You Want To Press
	Size and Contrast

	The States Of A Pressable Button
	Animated Button Outlines
	The Active State

	How To Style HTML Elements
	Disabling Buttons
	test.css

	Labeling Buttons
	Labeling With ARIA
	aria-label
	aria-labelledby

	The Words
	test.css

	Chapter 3: The WAI Forward
	ARIA: A Passion For Parity
	The Two Purposes Of ARIA
	Remedy
	Enhancement

	Role-Playing
	Roles
	Properties
	States

	Our First ARIA Widget
	The Toolbar Role
	The Relationship
	Pressed and Unpressed
	Keyboard Controls
	All Done

	Know The Rules
	First Rule Of ARIA Use
	Second Rule Of ARIA Use
	Third Rule Of ARIA Use

	Chapter 4: Getting Around
	Dividing Things Up
	test.css

	Famous Landmarks
	Teleportation
	A Keyboard Tour Of Famous Landmarks

	Coding Landmarks

	The Main Event
	Getting To The Juicy Stuff

	Don’t Forget Headings!
	Headings And Sections?
	Remedial Headings

	Hijacking Links
	The Problem With Views

	Chapter 5: Peekaboo
	The Politics Of Hiding
	Bad Discrimination
	Good Discrimination
	The aria-hidden State
	Using aria-hidden Safely

	Hiding From View
	Hiding Without Hiding

	Give Me A Clue!
	The Setup

	Progressively Collapsible
	The HTML
	The CSS
	What Happens Then?
	One Pattern To Rule Them All
	Navicons
	Notes

	test.css

	Can I Get A Tab?
	The Setup
	Managing Focus
	test.css

	Chapter 6: It’s Alive!
	Alert!
	The Setup
	test.css

	I Want The Whole Story
	aria-busy

	Dialogs
	The Essentials
	The Setup
	The <dialog> Element
	Building the Dialog

	The Focus Conundrum
	The visibility:hidden Solution
	It’s a Trap!

	The Close Function

	Chapter 7: Welcome To The Community
	#a11y
	Some Folks To Follow
	@stevefaulkner
	@LeonieWatson
	@rogerjohansson
	@karlgroves
	@jsutt
	@dennisl
	@jkiss
	@dboudreau
	@yatil
	@aardrian
	@cookiecrook
	@MarcoInEnglish
	@gezlemon
	@icaaq
	@patrick_h_lauke
	@marcysutton
	@jared_w_smith

	Blogs
	Testing Tools
	Browser Extensions
	Accessibility Evaluation Toolbarhttps://addons.mozilla.org/en-US/firefox/addon/accessibility-evaluation-toolb/
	Dom Inspector (DOMi)https://addons.mozilla.org/en-US/firefox/addon/dom-inspector-6622/
	Juicy Studio Accessibility Toolbarhttps://addons.mozilla.org/en-US/firefox/addon/juicy-studio-accessibility-too/
	WAVE Toolbarhttps://addons.mozilla.org/en-US/firefox/addon/wave-toolbar/?src=ss
	Chrome Voxhttps://chrome.google.com/webstore/detail/chromevox/kgejglhpjiefppelpmljglcjbhoiplfn

	Web-Based Tools And Bookmarklets
	HTML Code Snifferhttp://www.squizlabs.com/general/html-codesniffer
	accesslint.comhttp://www.accesslint.com/
	pa11yhttp://pa11y.org/
	FireEyeshttp://www.deque.com/deque-fireeyes
	WAVEhttp://wave.webaim.org/
	Diagnostic CSShttp://www.karlgroves.com/2013/09/07/diagnostic-css-super-quick-web-accessibility-testing
	REVENGE.CSShttp://heydonworks.com/revenge_css_bookmarklet/

	Contrast And Color Blindness
	colororacle.orghttp://colororacle.org/
	Contrast Ratiohttp://leaverou.github.io/contrast-ratio/
	Contrast Checkerhttp://webaim.org/resources/contrastchecker/
	Contrast Analyzerhttp://www.paciellogroup.com/resources/contrastAnalyser
	Colour Contrasthttp://snook.ca/technical/colour_contrast/colour.html

	WAI-ARIA
	W3C Specifications And Guidelines
	ARIA On Mozilla MDNhttps://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA
	Practical ARIA Exampleshttp://heydonworks.com/practical_aria_examples/
	WAI-ARIA: Information and Exampleshttp://wai-aria.punkchip.com/

	And Finally...

	Credits
	The Author
	The Technical Reviewer
	The Cover

