

Imprint
© 2015 Smashing Magazine GmbH, Freiburg, Germany
ISBN (PDF): 978-3-945749-24-1
Cover Design: Veerle Pieters
eBook Strategy and Editing: Vitaly Friedman
Technical Editing: Cosima Mielke
Planning and Quality Control: Vitaly Friedman, Iris Lješnjanin
Tools: Elja Friedman
Syntax Highlighting: Prism by Lea Verou
Idea & Concept: Smashing Magazine GmbH

IMPRINT

2

About This Book
We design with viewports in mind, keep track of loading
times, and hunt down even the smallest browser bugs —
all to create the best possible user experience. But despite
all these efforts to constantly improve our products,
there’s still one aspect that, unfortunately, comes up
short quite often: accessibility.

Have you ever tried to navigate your website using on-
ly your keyboard? Your mobile application with a screen
reader? And do you consider your color choices with ac-
cessibility in mind? With the help of this eBook, you will
gain a deeper understanding of common accessibility pit-
falls and learn to circumvent them to create a better expe-
rience for everyone.

The first step towards making informed decisions
about accessible design, though, is fully grasping how the
underlying technology works. That’s why we’ll start off
this eBook with a closer look at accessibility APIs. Based
on that, our authors consider UX principles for accessibil-
ity and share best coding practices that guarantee a better
and smoother interaction, no matter how a user interacts
with your content. Finally, we cover strategies and tools
to simulate how someone with visual impairments expe-
riences your website, as well as key lessons from design-
ing for older people. As you will see, with accessibility in
mind, we can serve many more people than we already
do. It’s about time to finally remove the existing barriers
and build a more inclusive web — the effort is reasonable,
and all our users will benefit from it.

3

TABLE OF CONTENTSTABLE OF CONTENTS

Accessibility APIs: A Key To Web Accessibility 5
Accessibility Originates With UX: A BBC iPlayer Case
Study.. 17
Mobile And Accessibility: Why You Should Care And
What You Can Do About It...36
Making Modal Windows Better For Everyone...................75
Notes On Client-Rendered Accessibility 89
Design Accessibly, See Differently: Color Contrast Tips
And Tools.. 103
Designing For The Elderly: Ways Older People Use
Digital Technology Differently .. 133
About The Authors .. 147

IMPRINT

4

Accessibility APIs: A Key To
Web Accessibility

BY LÉONIE WATSON &BY LÉONIE WATSON &
CHAALS MCCATHIE NEVILECHAALS MCCATHIE NEVILE ❧❧

Web accessibility is about people. Successful web accessi-
bility is about anticipating the different needs of all sorts
of people, understanding your fellow web users and the
different ways they consume information, empathizing
with them and their sense of what is convenient and
what frustratingly unnecessary barriers you could help
them to avoid.

Armed with this understanding, accessibility becomes
a cold, hard technical challenge. A firm grasp of the tech-
nology is paramount to making informed decisions about
accessible design.

How do assistive technologies present a web applica-
tion to make it accessible for their users? Where do they
get the information they need? One of the keys is a tech-
nology known as the accessibility API (or accessibility ap-
plication programming interface, to use its full formal ti-
tle).

Reading The Screen
To understand the role of an accessibility API in making
web applications accessible, it helps to know a bit about
how assistive technologies provide access to applications
and how that has evolved over time.

5

A WORLD OF TEXTA WORLD OF TEXT

With the text-based DOS operating system, the charac-
ters on the screen and the cursor position were held in a
screen buffer in the computer’s memory. Assistive tech-
nologies could obtain this information by reading directly
from the screen buffer or by intercepting signals being
sent to a monitor. The information could then be manipu-
lated — for example, magnified or converted into an alter-
native format such as synthetic speech.

GETTING GRAPHICGETTING GRAPHIC

The arrival of graphical interfaces such as OS/2, Mac OS
and Windows meant that key information about what
was on the screen could no longer be simply read from a
buffer. Everything was now drawn on screen as a picture,
including pictures of text. So, assistive technologies on
those platforms had to find a new way to obtain informa-
tion from the interface.

They dealt with this by intercepting the drawing calls
sent to the graphics engine and using that information to
create an alternate off-screen version of the interface. As
applications made drawing calls through the graphics en-
gine to draw text, carets, text highlights, drop-down win-
dows and so on, information about the appearance of ob-
jects on the screen could be captured and stored in a data-
base called an off-screen model. That model could be read
by screen readers or used by screen magnifiers to zoom
in on the user’s current point of focus within the inter-
face. Rich Schwerdtfeger’s seminal 1991 article in Byte,

ACCESSIBILITY APIS: A KEY TO WEB ACCESSIBILITY

6

“Making the GUI Talk1,” describes the then-emerging par-
adigm in detail.

OFF-SCREEN MODELSOFF-SCREEN MODELS

Recognizing the objects in this off-screen model was
done through heuristic analysis. For example, the operat-
ing system might issue instructions to draw a rectangle
on screen, with a border and some shapes inside it that
represent text. A human might look at that object (in the
context of other information on screen) and correctly de-
duce it is a button. The heuristics required for an assistive
technology to make the same deduction are actually very
complex, which causes some problems.

To inform a user about an object, an assistive technol-
ogy would try to determine what the object is by looking
for identifying information. For example, in a Windows
application, the screen reader might present the Window
Class name of an object. The assistive technology would
also try to obtain information about the state of an object
by the way it is drawn — for example, tracking highlight-
ing might help deduce when an object has been selected.
This works when an object’s role or state can easily be de-
termined, but in many cases the relevant information is
unclear, ambiguous or not available programmatically.

This reverse engineering of information is both falli-
ble and restrictive. An assistive technology could imple-
ment support for a new feature only once it had been in-

1. http://www.paciellogroup.com/blog/2015/01/making-the-gui-talk-1991-by-rich-
schwerdtfeger/

7

http://www.paciellogroup.com/blog/2015/01/making-the-gui-talk-1991-by-rich-schwerdtfeger/
http://www.paciellogroup.com/blog/2015/01/making-the-gui-talk-1991-by-rich-schwerdtfeger/
http://www.paciellogroup.com/blog/2015/01/making-the-gui-talk-1991-by-rich-schwerdtfeger/
http://www.paciellogroup.com/blog/2015/01/making-the-gui-talk-1991-by-rich-schwerdtfeger/
http://www.paciellogroup.com/blog/2015/01/making-the-gui-talk-1991-by-rich-schwerdtfeger/

troduced into the operating system or application. An ob-
ject might not convey useful information, and in any case
it took some time to identify it, develop the heuristics
needed to support it and then ship a new version of the
screen reader. This created a delay between the introduc-
tion of new features and assistive technology’s ability to
support it.

The off-screen model needs to shadow the graphics
engine, but the engines don’t make this easy. The off-
screen model has to independently calculate things like
white-space management and alignment coordination,
and errors would almost inevitably mount up. These er-
rors could result in anomalies in the information con-
veyed to assistive technology users or in garbage buildup
and memory leaks that lead to crashes.

Accessibility APIs
From the late 1990s, operating system accessibility APIs
were introduced as a more reliable way to pass informa-
tion to assistive technologies. Instead of applying com-
plex heuristics to determine what an on-screen object
might be, assistive technologies could query the accessi-
bility API for specific information about each object. Au-
thors could now provide the necessary information about
an application in a form that they knew assistive technol-
ogy would understand.

An accessibility API represents objects in a user inter-
face, exposing information about each object within the
application. Typically, there are several pieces of informa-
tion for an object, including:

ACCESSIBILITY APIS: A KEY TO WEB ACCESSIBILITY

8

• its role (for example, it might be a button, an application
window or an image);

• a name that identifies it within the interface (if there is a
visible label like text on a button, this will typically be its
name, but it could be encoded directly in the object);

• its state or current condition (for example, a checkbox
might currently be selected, partially selected or not se-
lected).

The first platform accessibility API, Microsoft Active Ac-
cessibility (MSAA), was made available in a 1997 update to
Windows 95. MSAA provided information about the role
and state of objects and some of their properties. But it
gave no access to things like text formatting, and the rela-
tionships between objects in the interface were difficult
or impossible to determine.

In 1998, IBM and Sun Microsystems built a cross-plat-
form accessibility API for Java. Java Swing 1.0 gave access
to rich text information, relationships, tables, hyperlinks
and more. The Java Jive screen reader, built on this plat-
form, was the first time a screen reader’s information
about the components of a user interface included role,
state and associated properties, as well as rich text for-
matting details.

Notably, Java Jive was written by three developers in
roughly five months; developing a screen reader through
an off-screen model typically took several years.

9

ACCESSIBILITY APIS GO MAINSTREAMACCESSIBILITY APIS GO MAINSTREAM

In 2001 the Assistive Technology Service Provider Inter-
face (AT-SPI) for Linux was released, based on the work
done on Java, and in 2002 Apple included the NSAccessi-
bility protocol with Mac OS X (10.2 Jaguar).

Meanwhile on Windows, the situation was getting
complicated. Microsoft shipped the User Interface Au-
tomation (UIA) API as part of Windows 7, while IBM re-
leased IAccessible2 as an open standard for Windows and
Linux, again evolved from the work done on Java.

Accessibility APIs existed for mobile platforms before
touchscreen smartphones became dominant, but in 2009
Apple added the UI Accessibility API to iOS 3, and Android
1.6 (Donut) shipped with the Accessibility Framework.

By the beginning of 2015, Chrome OS stood out as the
most mainstream platform lacking a standard accessibili-
ty API. But Google was beta testing its Automation API,
intended to fill that gap in the platform.

MODERN ACCESSIBILITY APISMODERN ACCESSIBILITY APIS

In modern accessibility APIs, user interfaces are repre-
sented as a hierarchical tree. For example, an application
window would contain several objects, the first of which
might be a menu bar. The menu bar would contain a
number of menus, each of which contains a number of
menu items, and so on. The accessibility API describes an
object’s relationship to other objects to provide context.
For example, a radio button would probably be one “sib-
ling” within a group.

ACCESSIBILITY APIS: A KEY TO WEB ACCESSIBILITY

10

Other features such as information about text format-
ting, applicable headers for content sections or table cells
and things such as event notifications have all become
commonplace in modern accessibility APIs.

Assistive technologies now make standard method
calls to the operating system to get information about the
objects on the screen. This is far more reliable, and far
more efficient, than intercepting low-level operating sys-
tem messages and trying to deconstruct them into some-
thing meaningful.

From The Web To The Accessibility API
In browsers, the platform accessibility API is used both to
make information about the browser itself available to as-
sistive technologies and to expose information about the
currently rendered content.

Browsers typically support one or more of the avail-
able accessibility APIs for the platform they’re running
on. For example, on Windows, Firefox, Chrome, Opera
and Yandex support MSAA/IAccessible and IAccessible2,
while Internet Explorer supports MSAA/IAccessible and
UIAExpress. Safari and Chrome support NSAccessibility
on OS X and UIAccessibility on iOS.

The browser uses the HTML DOM, along with further
information derived from CSS, to generate an accessibili-
ty tree hierarchy of the content it is displaying, and it
passes that information to the platform accessibility API.
Information such as the role, name and state of each ob-
ject in the content, as well as how it relates to other ob-

11

jects in the content, can then be queried by assistive tech-
nologies.

Let’s see how this works with some HTML:

<p><img src="mc.png" alt="My cat"

longdesc="meeow.html">Rocks!</p>

We have an image, rendered as part of a paragraph. A
browser exposes several pieces of information about the
image to the accessibility API:

1. It has a role of “image” (or “graphic” — details vary be-
tween platforms). This is implicitly determined from the
fact that it is an HTML img element.

2. Its name is “My cat”. For images, the name is typically de-
rived from the alt attribute.

3. A description is available on request, at the URL
meeow.html (at the same “base” as the image).

4. The parent is a paragraph element, with a role of “text”.

5. The image has a “sibling” in the same container, the text
node “Rocks!”

An assistive technology would query the accessibility API
for this information, which it would present so the user
can interact with it. For example, a screen reader might
announce, “Graphic: My cat. Description available.”

(Does a cat picture need a full description? Perhaps
not, but try explaining that to people who really want to
tell you just how amazing and talented their feline
friends actually are — or those of their readers who want

ACCESSIBILITY APIS: A KEY TO WEB ACCESSIBILITY

12

to know all about what this cat looks like! Meanwhile, the
philistines among us can ignore the extra information.)

ROLESROLES

Most HTML elements have what are called “roles,” which
are a way of describing elements. If you are familiar with
WAI-ARIA, you will be aware of the role attribute, which
sets a role explicitly. Most elements already have implicit
roles, however, which go along with the element type. For
example:

• and have “list” as implicit role,

• <a> has “link” or “hyperlink” as implicit role,

• <body> has “document” as implicit role.

These role mappings are being standardized and docu-
mented in the W3C’s “HTML Accessibility API Map-
pings2” specification.

NAMESNAMES

While roles are typically derived from the type of HTML
element, the name (sometimes referred to as the “accessi-
ble name”) of an object often comes from one of several
different sources. In the case of a form field, the name is
usually taken from the label associated with the field:

2. http://rawgit.com/w3c/aria/master/html-aam/html-aam.html

13

http://rawgit.com/w3c/aria/master/html-aam/html-aam.html
http://rawgit.com/w3c/aria/master/html-aam/html-aam.html
http://rawgit.com/w3c/aria/master/html-aam/html-aam.html
http://rawgit.com/w3c/aria/master/html-aam/html-aam.html
http://rawgit.com/w3c/aria/master/html-aam/html-aam.html
http://rawgit.com/w3c/aria/master/html-aam/html-aam.html

<input type="radio" id="tequila" name="drinks"

checked>

<label for="tequila">Reposado</label>

In this example, a button has the “radio button” role. Its
accessible name will be “Reposado,” the text content of
the label element. So, when a speech-recognition tool is
instructed to “Click Radio button Reposado,” it can target
the correct object within the interface.

The checked attribute indicates the state of the but-
ton, so that a screen reader can announce “Radio button
Reposado Checked” or allow a user to navigate directly
between the checked options in order to rapidly review a
form that contains multiple sets of radio buttons.

Authors have an important role to play, providing the
key information that assistive technologies need. If au-
thors don’t do the “right thing,” assistive technologies
must look in other places to try to get an accessible name
— if there is no label, then a title or some text content
might be near the radio button, or its relationship to other
elements might help the user through context.

It is important to note that authors should not rely on
an assistive technology’s ability to do this, because it is
generally unreliable. It is a “repair” strategy that gives as-
sistive technology users some chance of using a poorly
authored page or website, such as the following:

<p>How good is reposado?

<!--BAD CODE EXAMPLE: DON'T DO THIS-->

<input type="radio" id="fantastic" name="reposado"

checked >

ACCESSIBILITY APIS: A KEY TO WEB ACCESSIBILITY

14

<label for="reposado">Fantastic</label>

<input type="radio" id="notBad" name="tequila">

<input type="radio" id="meh" name="tequila"

title="meh"> Meh

Faced with this case, a screen reader might provide infor-
mation such as “second of three options,” based on infor-
mation that the browser provides to the accessibility API
about the form. Little else can be determined reliably
from the code, though.

Nothing in the code associates the question with the
set of radio buttons, and nothing informs the browser of
what the accessible name for the first two buttons should
be. The for and id attributes of the <label> and <input>
for the first button do not share a common value, and
nothing associates the nearby text content with the sec-
ond button. The browser could use the title of the third
button as an accessible name, but it duplicates the nearby
text and unnecessarily bloats the code.

A well-authored version of this would use the
fieldset element to group the radio buttons and use a
legend element to associate the question with the group.
Each of the buttons would also have a properly associated
label.

<fieldset><legend>How good is reposado?</legend>

<!-- THIS IS A BETTER WAY TO CODE THE EXAMPLE -->

<input type="radio" id="fantastic" name="reposado"

checked>

<label for="fantastic">Fantastic</label>

<input type="radio" id="notBad" name="reposado">

15

<label for="notBad">Not bad</label>

<input type="radio" id="meh" name="reposado">

<label for="meh">Meh</label>

</fieldset>

Making this information available through the accessibil-
ity API is more efficient and less prone to error than rely-
ing on assistive technologies to create an off-screen mod-
el or guess at the information they need.

Conclusion
Today’s technologies — operating systems, browsers and
assistive technologies — work together to extract accessi-
bility information from a web interface and appropriately
present it to the user. If appropriate content semantics
are not available, then assistive technologies will use old
and unreliable techniques to make the interface usable.

The value of accessibility APIs is in allowing the oper-
ating system, browser and assistive technology to effi-
ciently and reliably give users the information they need.
It is now easy to make an interface developed with well-
written HTML, CSS and JavaScript very accessible and
usable for assistive technology users. A big part of acces-
sibility is, therefore, an easily met responsibility of web
developers: Know your job, use your tools well, and many
pieces will fall into place as if by magic.❧

With thanks to Rich Schwerdtfeger, Steve Faulkner and Dominic
Mazzoni.

ACCESSIBILITY APIS: A KEY TO WEB ACCESSIBILITY

16

Accessibility Originates
With UX: A BBC iPlayer
Case Study

BY HENNY SWANBY HENNY SWAN ❧❧

Not long after I started working at the BBC, I fielded a
complaint from a screen reader user who was having
trouble finding a favorite show via the BBC iPlayer’s
home page3. The website had recently undergone an inde-
pendent accessibility audit which indicated that, other
than the odd minor issue here and there, it was reason-
ably accessible.

iPlayer’s old home page.

3. http://www.bbc.co.uk/iplayer

17

http://www.bbc.co.uk/iplayer
http://www.bbc.co.uk/iplayer
http://www.bbc.co.uk/iplayer
http://www.bbc.co.uk/iplayer
http://www.bbc.co.uk/iplayer
http://www.bbc.co.uk/iplayer

I called the customer to establish what exactly the prob-
lem was, and together we navigated the home page using
a screen reader. It was at that point I realized that, while
all of the traditional ingredients of an accessible page
were in place — headings, WAI ARIA Landmarks4, text al-
ternatives and so on — it wasn’t very usable for a screen
reader user.

The first issue was that the subnavigation was made
up of only two links: “TV” and “Radio,” with links to other
key areas such as “Categories,” “Channels” and “A to Z”
buried further down the content order of the page, mak-
ing them harder for the user to find.

The second issue was how verbose the page was to the
screen reader user. Instead of hearing a link to a program

iPlayer’s old home page showing “Categories,” “Channels” and “A to Z” far
down the content order.

4. http://www.w3.org/TR/wai-aria/roles#landmark_roles

ACCESSIBILITY ORIGINATES WITH UX: A BBC IPLAYER CASE STUDY

18

http://www.w3.org/TR/wai-aria/roles#landmark_roles
http://www.w3.org/TR/wai-aria/roles#landmark_roles
http://www.w3.org/TR/wai-aria/roles#landmark_roles
http://www.w3.org/TR/wai-aria/roles#landmark_roles
http://www.w3.org/TR/wai-aria/roles#landmark_roles

once, the program would be announced twice because the
thumbnail image and the heading for the program were
presented as two separate links. This made the page
longer to listen to and was confusing because links to the
same destination were worded differently.

Finally, keyboard access on the page was illogical. In the
“Categories” area, for example, a single click on a category
would reveal four items in a panel next to it. To access the
full list of items in that category, you had to click again
on the same link to be taken to a listing page. This was a
major hurdle for the user and the place where the cus-
tomer I was talking to gave up using the application alto-
gether.

iPlayer’s old home page showing duplicate links.

19

It was clear that, while the website had been built with ac-
cessibility in mind, it hadn’t been designed with accessi-
bility in mind and this is where the issues originated.

The Challenge
At the BBC, a number of internal standards and guide-
lines are in place that teams are required to follow when
delivering accessible website and mobile applications.
Key ones are:

• Accessibility Standards and Guidelines5,

• Screen Reader Testing Guidelines6,

• Mobile Accessibility Standards and Guidelines7.

iPlayer’s old home page showing the “Categories” links highlighted.

5. http://www.bbc.co.uk/guidelines/futuremedia/accessibility/
6. http://www.bbc.co.uk/guidelines/futuremedia/accessibility/screenreader.shtml

ACCESSIBILITY ORIGINATES WITH UX: A BBC IPLAYER CASE STUDY

20

http://www.bbc.co.uk/guidelines/futuremedia/accessibility/
http://www.bbc.co.uk/guidelines/futuremedia/accessibility/
http://www.bbc.co.uk/guidelines/futuremedia/accessibility/
http://www.bbc.co.uk/guidelines/futuremedia/accessibility/screenreader.shtml
http://www.bbc.co.uk/guidelines/futuremedia/accessibility/screenreader.shtml
http://www.bbc.co.uk/guidelines/futuremedia/accessibility/screenreader.shtml
http://www.bbc.co.uk/guidelines/futuremedia/accessibility/mobile_access.shtml
http://www.bbc.co.uk/guidelines/futuremedia/accessibility/mobile_access.shtml
http://www.bbc.co.uk/guidelines/futuremedia/accessibility/mobile_access.shtml
http://www.bbc.co.uk/guidelines/futuremedia/accessibility/
http://www.bbc.co.uk/guidelines/futuremedia/accessibility/
http://www.bbc.co.uk/guidelines/futuremedia/accessibility/screenreader.shtml
http://www.bbc.co.uk/guidelines/futuremedia/accessibility/screenreader.shtml

There is also a strong culture of accessibility; the BBC is a
publicly funded organization8, and accessibility is consid-
ered central to its remit and is a stronger driver than any
legal requirement. So, how did this happen?

Part of the issue is that standards and guidelines tend
to focus more on code than design, more on output than
outcome, more on compliance than experience. As such,
technically compliant pages could be built that are not the
most usable for disabled users.

It may not seem immediately obvious, but visual de-
sign can have a massive impact on users who cannot see
the page. I often find that mobile applications and web-
sites that are problematic to make accessible are the ones
where the visual design, by dictating structure, does not
allow it.

This does not mean that standards and guidelines are
redundant — far from it. But what we have found at the
BBC is that standards need to sit within, and inform, an
accessibility framework that runs through product man-
agement, user experience, development and quality as-
surance. As such, accessibility originates with UX. Most
of the thinking and requirements should be considered
up front so that poor accessibility isn’t designed in.

While redesigning the BBC iPlayer website, renewed
focus was given to inclusive design, which, while adher-
ing to the BBC’s standards and guidelines, is driven by
four principles (more on that below). We then distilled

7. http://www.bbc.co.uk/guidelines/futuremedia/accessibility/
mobile_access.shtml

8. http://www.bbc.co.uk/corporate2/insidethebbc/whoweare

21

http://www.bbc.co.uk/corporate2/insidethebbc/whoweare
http://www.bbc.co.uk/corporate2/insidethebbc/whoweare
http://www.bbc.co.uk/corporate2/insidethebbc/whoweare
http://www.bbc.co.uk/guidelines/futuremedia/accessibility/mobile_access.shtml
http://www.bbc.co.uk/guidelines/futuremedia/accessibility/mobile_access.shtml
http://www.bbc.co.uk/corporate2/insidethebbc/whoweare
http://www.bbc.co.uk/corporate2/insidethebbc/whoweare

our standards and guidelines to create a focused list of re-
quirements for the UX to follow. We also started to train
designers to annotate their own designs for accessibility.

UX Principles
Our four main principles are the following:

• Give users choice.

• Put users in control.

• Design with familiarity in mind.

• Prioritize features that add value.

GIVE USERS CHOICEGIVE USERS CHOICE

Never assume that just because a user can access content
one way that they want to access content in that one way.
Because BBC’s iPlayer has “audio described” and “sign
language” formats, it was never in any doubt that both of
these should have their own dedicated listing pages, ac-
cessed via the “Categories” dropdown link. (Note that all
on-demand content is subtitled, which is why there is no
“Subtitled” category. Subtitles can be switched on in the
media player.)

The “Categories” dropdown with “Audio Described” and “Signed” sections.

ACCESSIBILITY ORIGINATES WITH UX: A BBC IPLAYER CASE STUDY

22

User research and feedback indicated, however, that al-
though people want dedicated categories, they also want
to be able to search for and browse content in the same
way that any other users would and to select their pre-
ferred format from there. I have stayed in touch over the
years with the gentleman who complained about the old
iPlayer page, and he’s said himself, “Don’t send us into
disability silos!”

This means that from the outset the designs need to
signpost “Audio Description” and “Signed” content via
search results, A to Z, category and other listing pages.
Not making any assumptions or not stereotyping users
with disabilities is important — for instance, a person
with a severe vision impairment might not always use
audio descriptions; news, sports, music programs and live
events often aren’t supported by audio description be-
cause commentators already provide enriched commen-
tary.

On-demand pages also list alternative formats, allowing
users to choose what they want. Looking ahead, the op-
tion to choose your format could also be included in the
Standard Media Player9 — the BBC media player used for

List pages such as search, shown here, indicate what formats programs
are available in.

9. http://www.bbc.co.uk/blogs/internet/posts/Standard-Media-Player

23

http://www.bbc.co.uk/blogs/internet/posts/Standard-Media-Player
http://www.bbc.co.uk/blogs/internet/posts/Standard-Media-Player
http://www.bbc.co.uk/blogs/internet/posts/Standard-Media-Player
http://www.bbc.co.uk/blogs/internet/posts/Standard-Media-Player
http://www.bbc.co.uk/blogs/internet/posts/Standard-Media-Player

on-demand and live streaming video across all BBC prod-
ucts, including iPlayer.

PUT USERS IN CONTROLPUT USERS IN CONTROL

Never taking control away from the user is essential. A
key aspect of this in iPlayer, which is responsive, is not
suppressing pinch zoom. Time and again in user testing,
we have observed users zooming content, even on re-
sponsive websites, where text might be intentionally larg-
er.

Due to an iOS bug that was rectified in iOS 6, the abili-
ty to pinch zoom was suppressed on many websites due
to poor resizing when the orientation is changed from
portrait to landscape. Now that this has been fixed, there
is no reason to continue suppressing zoom.

Screenshot of the playback page showing HD and AD formats.

ACCESSIBILITY ORIGINATES WITH UX: A BBC IPLAYER CASE STUDY

24

Another aspect of control is autoplay. While iPlayer
currently has autoplay for live content, this can be a prob-
lem because the sound of the video can make it difficult
for a screen reader user to hear their reader’s output.
However, we do know of screen reader users who request
autoplay because it means they don’t have to navigate to
the player, find the play button and activate play. The an-
swer is to look at ways to give users control over playback
by opting in or out of autoplay, such as by using a popup
and saving preferences with cookies.

DESIGN WITH FAMILIARITY IN MINDDESIGN WITH FAMILIARITY IN MIND

There needs to be a balance between the new and the fa-
miliar. Users understand how to interact with pages and
apps that use familiar design patterns. This is especially
important in native apps for iOS and Android, where
standard UI components come with accessibility built in.

Equally important is the language used across the
BBC’s native iPlayer apps and responsive website. Where
the platform allows, consistent labels for headings, links
and buttons — not just visually, but also via alternatives
for screen reader users — ensure that the experience is fa-
miliar and recognizably “BBC iPlayer,” regardless of the
platform.

Tied into this, the new designs reinforce a logical
heading structure within the code, which in turn sup-
ports navigation for screen reader users. Key to this is en-
suring that the pattern used for the heading structure is
repeated across pages, so that users do not find main
headings in different places depending on what page

25

they are on. While structure is typically viewed as a re-
sponsibility of developers, it needs to be decided before
designs are signed off in order to prevent poor structure
getting coded in — more on that later.

PRIORITIZE FEATURES THAT ADD VALUEPRIORITIZE FEATURES THAT ADD VALUE

Accessibility at the BBC is not just about meeting code,
content and design requirements, but also about incorpo-
rating helpful features that add value for all users, includ-
ing disabled users. A large proportion of feedback we get
from our disabled users pertains to usability issues that
could be experienced by anyone on some level but that se-
riously adversely affect disabled users. When we incorpo-
rate features to help users with specific disabilities, every-
one gains access to a richer and easier experience.

One obstacle that comes up time and again is finding a
favorite show. I’ve spoken with many screen reader users
who say they save shortcuts to their favorite shows on
their desktop but, due to changing URLs, often lose con-
tent. A simple way to address this that benefits all users is
to ensure that there is a mechanism for saving favorites
on the website. Adding in options to sort favorites and list
them the way you want further improves this. It may
sound unrelated to accessibility, but it was the single
most requested feature received from disabled users.
Simply accessing the favorites page to watch the latest
episode of something, rather than having to search the
website, makes all the difference.

ACCESSIBILITY ORIGINATES WITH UX: A BBC IPLAYER CASE STUDY

26

Finding ways to allow people to get to the content they
want more quickly has also influenced what is available
within the media player itself. Once an episode has fin-
ished playing, exiting the media player and navigating
back to the website to find the next episode is a massive
overhead for some users. Adding a “More” button to the
player itself — showing the next episode or programs

The “Favourites” page, with options to sort by “A to Z” and “Recent”.

The “You may also like” plugin shows related content and next episodes
within the Standard Media Player.

27

similar to the current one — cuts down on the amount of
effort it takes users to find new content.

One key feature that has added value to BBC iPlayer’s
native iOS and Android apps, as well as the website (when
viewed in Chrome), is support for Google Chromecast10.
Being able to control what content you view on TV with-
out having to use a remote or complex TV user interface
is invaluable. Using one’s device of choice, whether it be
iOS or Android, is much easier for a disabled user than us-
ing a remote control and a potentially inaccessible TV in-
terface.

Guidelines
The principles above exist to create a mindset that helps
product owners and UX practitioners alike when shaping
and designing inclusive products. In addition to the four

BBC iPlayer and Chromecast.

10. http://www.bbc.co.uk/blogs/internet/posts/Accessibility-on-BBC-iPlayer-on-
Chromecast

ACCESSIBILITY ORIGINATES WITH UX: A BBC IPLAYER CASE STUDY

28

http://www.bbc.co.uk/blogs/internet/posts/Accessibility-on-BBC-iPlayer-on-Chromecast
http://www.bbc.co.uk/blogs/internet/posts/Accessibility-on-BBC-iPlayer-on-Chromecast
http://www.bbc.co.uk/blogs/internet/posts/Accessibility-on-BBC-iPlayer-on-Chromecast
http://www.bbc.co.uk/blogs/internet/posts/Accessibility-on-BBC-iPlayer-on-Chromecast
http://www.bbc.co.uk/blogs/internet/posts/Accessibility-on-BBC-iPlayer-on-Chromecast

principles, a set of guidelines is used to design more ac-
cessible interfaces. The following are a subset taken from
the “BBC Mobile Accessibility Standards and Guide-
lines11”:

1. Color contrast
Ensure that text and backgrounds exceed the WCAG Dou-
ble A 4.5:1 contrast minimum.

2. Color and meaning
Information conveyed with color must also be identifi-
able from context or markup.

3. Content order
Content order must be logical.

4. Structure
When supported by the platform, pages must provide a
logical and hierarchical heading structure.

5. Containers and landmarks
When supported by the platform, page containers or
landmarks should be used to describe page structure.

6. Duplicate links
Controls, objects and grouped interface elements must be
represented as a single component.

7. Touch target size
Targets must be large enough to touch accurately (44 pix-
els).

11. http://www.bbc.co.uk/guidelines/futuremedia/accessibility/mobile

29

http://www.bbc.co.uk/guidelines/futuremedia/accessibility/mobile
http://www.bbc.co.uk/guidelines/futuremedia/accessibility/mobile
http://www.bbc.co.uk/guidelines/futuremedia/accessibility/mobile
http://www.bbc.co.uk/guidelines/futuremedia/accessibility/mobile
http://www.bbc.co.uk/guidelines/futuremedia/accessibility/mobile
http://www.bbc.co.uk/guidelines/futuremedia/accessibility/mobile

8. Spacing
An inactive space must surround all active elements (un-
less they are large blocks exceeding 44 pixels).

9. Zoom
Where zoom is supported by the platform, it must not be
suppressed.

10. Actionable elements
Links and other actionable elements must be clearly dis-
tinguishable.

The New iPlayer
Keeping in mind this backdrop of principles and guide-
lines, along with the renewed focus on adding value and
features that enhance the experience for disabled users,
here are a few of the changes introduced in the BBC’s
new iPlayer:

The BBC’s new iPlayer home page has better content order, search tools,
structure and keyboard access.

ACCESSIBILITY ORIGINATES WITH UX: A BBC IPLAYER CASE STUDY

30

At launch, the iPlayer’s navigation housed the BBC’s
channels, a “TV Guide,” “Favourites” and “Categories.”
These all sit at the start of the page, high up in the con-
tent order. While they are visually easy to see, they are al-
so easily discoverable by screen reader users via a hidden
heading and labeled navigation landmark:

<div role="navigation">

<h2>iPlayer navigation</h2>

Where previously the “Categories” were unusable for the
screen reader user I spoke with, they are now prominent
in the page and fully keyboard navigable. Since launch,
the addition of more channels has meant that the channel
links have been rehoused in their own dropdown menu.

Search tools have also been added, enabling users to
carry out predictive search, browse A to Z or view their
most recently watched program. This is all keyboard ac-
cessible, it makes use of headings, and it has landmarks
where appropriate.

The home page carousel is also fully keyboard accessi-
ble. Each program in the stream is presented as one link,
with the reading order of text starting with the primary
information first: channel attribution, program name,
episode information, abstract and program duration.

Work has also been carried out to improve visible fo-
cus and bring both the iPlayer website and the Standard
Media Player in line with the BBC header and footer. The
pink underline used for the hover and focus states in the
main BBC navigation is now used within the Standard
Media Player to indicate when a button is selected — for
example, when the subtitles are switched on. This re-

31

places the use of color only to indicate a selected state,
which was indistinguishable from the hover and focus
states.

You can read more about what steps were taken to make
iPlayer web-accessible12 and to make the Standard Media
Player accessible13, including creation of an accessible
media player in Flash14, on the BBC’s Internet Blog.

Annotated UX
All of the thinking around inclusive design that comes
from product owners, UX practitioners and designers
needs to be captured and communicated to developers
and engineers. At the BBC, we are moving to a model

The hover and focus pink underline used in the BBC header for iPlayer.

Active and inactive hover and focus states on the subtitle button in the
Standard Media Player.

12. http://www.bbc.co.uk/blogs/internet/posts/Making-the-new-iPlayer-accessible-
for-all-users

13. http://www.bbc.co.uk/blogs/internet/posts/Standard-Media-Player-accessibility
14. http://www.bbc.co.uk/blogs/internet/posts/Creating-an-accessible-media-

player-in-Flash

ACCESSIBILITY ORIGINATES WITH UX: A BBC IPLAYER CASE STUDY

32

http://www.bbc.co.uk/blogs/internet/posts/Making-the-new-iPlayer-accessible-for-all-users
http://www.bbc.co.uk/blogs/internet/posts/Making-the-new-iPlayer-accessible-for-all-users
http://www.bbc.co.uk/blogs/internet/posts/Making-the-new-iPlayer-accessible-for-all-users
http://www.bbc.co.uk/blogs/internet/posts/Standard-Media-Player-accessibility
http://www.bbc.co.uk/blogs/internet/posts/Standard-Media-Player-accessibility
http://www.bbc.co.uk/blogs/internet/posts/Standard-Media-Player-accessibility
http://www.bbc.co.uk/blogs/internet/posts/Standard-Media-Player-accessibility
http://www.bbc.co.uk/blogs/internet/posts/Creating-an-accessible-media-player-in-Flash
http://www.bbc.co.uk/blogs/internet/posts/Creating-an-accessible-media-player-in-Flash
http://www.bbc.co.uk/blogs/internet/posts/Creating-an-accessible-media-player-in-Flash
http://www.bbc.co.uk/blogs/internet/posts/Creating-an-accessible-media-player-in-Flash
http://www.bbc.co.uk/blogs/internet/posts/Making-the-new-iPlayer-accessible-for-all-users
http://www.bbc.co.uk/blogs/internet/posts/Making-the-new-iPlayer-accessible-for-all-users
http://www.bbc.co.uk/blogs/internet/posts/Standard-Media-Player-accessibility
http://www.bbc.co.uk/blogs/internet/posts/Standard-Media-Player-accessibility
http://www.bbc.co.uk/blogs/internet/posts/Creating-an-accessible-media-player-in-Flash
http://www.bbc.co.uk/blogs/internet/posts/Creating-an-accessible-media-player-in-Flash

where designs need to be annotated for accessibility. This
includes:

• headings,

• containers,

• content order,

• color contrast,

• alternatives to color and meaning,

• visible focus,

• keyboard and input interactions.

The design above, showing an early version of the BBC
One home page in iPlayer, outlines where the <h1> to

An example of an annotated UX showing headings and labels.
(View large version15)

15. http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2015/02/
114-iPlayerCarousel-opt.png

33

http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2015/02/114-iPlayerCarousel-opt.png
http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2015/02/114-iPlayerCarousel-opt.png
http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2015/02/114-iPlayerCarousel-opt.png
http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2015/02/114-iPlayerCarousel-opt.png
http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2015/02/114-iPlayerCarousel-opt.png

<h6> headings should be. The UX practitioner doesn’t
need an in-depth knowledge of code, but rather an under-
standing of the hierarchy of data within a page. As such,
an equally acceptable approach would be to indicate the
“main heading,” “secondary heading,” “third-level head-
ing” and so on. Developers can then take this and trans-
late it into semantic markup.

Equally, indicating the logical order of content helps
developers to code content in the right sequence (i.e.
source order) — something that is essential to a screen
reader or sighted keyboard user’s comprehension of the
page.

Annotating the UX in this way is key to identifying de-
signs that don’t allow for a logical page structure, content
order or behavior. It is the first step to generating a style
guide that documents focus states, colors and so on. Fur-
ther down the line, these requirements can also be used
to generate user acceptance criteria and automated quali-
ty assurance tests.

Even if you’re working in an agile way, where designs
are iterative and not delivered in a complete form, anno-
tation still works. As long as the basic framework of the
page is well defined, the visual design can evolve from
that.

Summary
It’s very easy to get bogged down by accessible output
and to forget that, ultimately, accessibility is about peo-
ple. As such, keep the following in mind, whether you are

ACCESSIBILITY ORIGINATES WITH UX: A BBC IPLAYER CASE STUDY

34

working in product, UX, development or quality assuran-
ce:

• Design with choice in mind.

• Always give users control over the page.

• Prioritize features that add value for disabled users.

• Design with familiarity in mind.

• Integrate accessibility into annotated UX and style
guides.

• Make no assumptions. Test ideas and concepts.

Fostering these key principles across the entire team will
go a long way to ensuring that products are inclusive and
usable for disabled people. Listening to users and actively
including their feedback, along with adhering to organi-
zational standards and guidelines, are essential.❧

35

Mobile And Accessibility:
Why You Should Care And
What You Can Do About It

BY TJ VANTOLLBY TJ VANTOLL ❧❧

Mobile has revolutionized the way we use the web. This
is especially true of disabled users, for whom mobile de-
vices open the door to a whole new spectrum of interac-
tions.

And they are taking advantage of it. A July 2013 sur-
vey16 (PDF) of adults with disabilities done by the Wire-
less Rehabilitation Engineering Research Center17 found
that 91% of people with disabilities use a “wireless device
such as a cell phone or tablet.” Among these users, screen
reader usage is common, even on mobile devices.

A study of 1782 screen reader users18 done by Web Ac-
cessibility in Mind19 (WebAIM) in 2012 showed that 71.8%
used screen readers on their mobile devices. And we’re
not talking about only a handful of people. The 2010 U.S.
Census found that nearly one in five people have a dis-
ability20!

16. http://www.wirelessrerc.org/sites/default/files/publications/SUNspot_2013-03_
Wireless_Devices_and_Adults_with_Disabilities_2013-07-12%5B1%5D.pdf

17. http://www.wirelessrerc.org/
18. http://webaim.org/projects/screenreadersurvey4/#mobile
19. http://webaim.org/
20. http://www.census.gov/newsroom/releases/archives/miscellaneous/

cb12-134.html

MOBILE AND ACCESSIBILITY: WHY YOU SHOULD CARE AND WHAT YOU
CAN DO ABOUT IT

36

http://www.wirelessrerc.org/sites/default/files/publications/SUNspot_2013-03_Wireless_Devices_and_Adults_with_Disabilities_2013-07-12%5B1%5D.pdf
http://www.wirelessrerc.org/sites/default/files/publications/SUNspot_2013-03_Wireless_Devices_and_Adults_with_Disabilities_2013-07-12%5B1%5D.pdf
http://www.wirelessrerc.org/sites/default/files/publications/SUNspot_2013-03_Wireless_Devices_and_Adults_with_Disabilities_2013-07-12%5B1%5D.pdf
http://www.wirelessrerc.org/sites/default/files/publications/SUNspot_2013-03_Wireless_Devices_and_Adults_with_Disabilities_2013-07-12%5B1%5D.pdf
http://www.wirelessrerc.org/
http://www.wirelessrerc.org/
http://www.wirelessrerc.org/
http://www.wirelessrerc.org/
http://webaim.org/projects/screenreadersurvey4/#mobile
http://webaim.org/projects/screenreadersurvey4/#mobile
http://webaim.org/projects/screenreadersurvey4/#mobile
http://webaim.org/
http://webaim.org/
http://webaim.org/
http://webaim.org/
http://www.census.gov/newsroom/releases/archives/miscellaneous/cb12-134.html
http://www.census.gov/newsroom/releases/archives/miscellaneous/cb12-134.html
http://www.census.gov/newsroom/releases/archives/miscellaneous/cb12-134.html
http://www.census.gov/newsroom/releases/archives/miscellaneous/cb12-134.html
http://www.wirelessrerc.org/sites/default/files/publications/SUNspot_2013-03_Wireless_Devices_and_Adults_with_Disabilities_2013-07-12%5B1%5D.pdf
http://www.wirelessrerc.org/sites/default/files/publications/SUNspot_2013-03_Wireless_Devices_and_Adults_with_Disabilities_2013-07-12%5B1%5D.pdf
http://www.wirelessrerc.org/
http://www.wirelessrerc.org/
http://webaim.org/projects/screenreadersurvey4/#mobile
http://webaim.org/projects/screenreadersurvey4/#mobile
http://webaim.org/
http://webaim.org/
http://www.census.gov/newsroom/releases/archives/miscellaneous/cb12-134.html
http://www.census.gov/newsroom/releases/archives/miscellaneous/cb12-134.html

Despite this, many basic best practices for accessibility
are forgotten on mobile websites. Developers implement
complex solutions such as responsive design and respon-
sive images, yet forget about basic techniques such as im-
age replacement. Therefore, disabled users — who have a
difficult enough time on the desktop — are frequently
presented with interfaces that are at best frustrating, and
at worst, impossible to use.

While accessibility can be a complex topic, following a
few best practices goes a long way towards building ac-
cessible sites and applications. In this article we’ll discuss
a few practical measures that address the most common
issues disabled users encounter. Specifically, we’ll look at
the importance of the following:

The results of WebAIM’s study of screen reader users (Source: WebAIM21)

21. http://webaim.org/projects/screenreadersurvey4/#mobile

37

http://webaim.org/projects/screenreadersurvey4/#mobile
http://webaim.org/projects/screenreadersurvey4/#mobile
http://webaim.org/projects/screenreadersurvey4/#mobile
http://webaim.org/projects/screenreadersurvey4/#mobile
http://webaim.org/projects/screenreadersurvey4/#mobile

• making sure everything works with a keyboard,

• marking up forms semantically,

• providing plenty of contrast,

• ensuring that screen readers know what your controls do,

• testing your website on an actual screen reader.

We’ll see that following these best practices leads to a bet-
ter experience for everyone, not just disabled users. Let’s
get started by looking at a piece of hardware rarely con-
sidered in the mobile space: the keyboard.

1. Make Sure Everything Works With The
Keyboard
While we usually associate keyboards with traditional
desktops and laptops, the situation is no longer that sim-
ple. Microsoft’s Surface tablet has a keyboard built into
the cover, Bluetooth keyboards are made to work seam-
lessly on iOS and Android, and some keyboards can even
be rolled up22 for traveling.

Keyboard navigation on mobile websites has become
increasingly important also because more websites are
built responsively. Because these websites serve the same
markup to all devices, the keyboard must function cor-
rectly, even if the vast majority of visitors use a touch-
screen.

22. https://www.google.com/search?site=&tbm=isch&source=hp&biw=1600&bih=
1008&q=roll-up+keyboard&oq=roll-up+keyboard

MOBILE AND ACCESSIBILITY: WHY YOU SHOULD CARE AND WHAT YOU
CAN DO ABOUT IT

38

https://www.google.com/search?site=&tbm=isch&source=hp&biw=1600&bih=1008&q=roll-up+keyboard&oq=roll-up+keyboard
https://www.google.com/search?site=&tbm=isch&source=hp&biw=1600&bih=1008&q=roll-up+keyboard&oq=roll-up+keyboard
https://www.google.com/search?site=&tbm=isch&source=hp&biw=1600&bih=1008&q=roll-up+keyboard&oq=roll-up+keyboard
https://www.google.com/search?site=&tbm=isch&source=hp&biw=1600&bih=1008&q=roll-up+keyboard&oq=roll-up+keyboard
https://www.google.com/search?site=&tbm=isch&source=hp&biw=1600&bih=1008&q=roll-up+keyboard&oq=roll-up+keyboard
https://www.google.com/search?site=&tbm=isch&source=hp&biw=1600&bih=1008&q=roll-up+keyboard&oq=roll-up+keyboard

Try putting your mouse away and visiting your website.
Can you perform all tasks using only your keyboard? If
not, then neither can keyboard users. Two main problems
break keyboard navigation on the web. Let’s discuss each.

NOT USING THE CORRECT ELEMENT FOR THENOT USING THE CORRECT ELEMENT FOR THE
TASKTASK

Web browsers are really good at making keyboard navi-
gation work automatically, as long as you use semantical-
ly appropriate elements. In particular, the following ele-
ments are focusable by default: <button>, <a> (with an
href attribute), <input>, <select> and <textarea>. For
these elements, keyboard navigation just works without
any extra effort. However, developers frequently fail to

Keyboard support is important, even on mobile. (Image: Shane Pope23)

23. http://www.flickr.com/photos/24285431@N04/2375499336

39

http://www.flickr.com/photos/24285431@N04/2375499336
http://www.flickr.com/photos/24285431@N04/2375499336
http://www.flickr.com/photos/24285431@N04/2375499336
http://www.flickr.com/photos/24285431@N04/2375499336
http://www.flickr.com/photos/24285431@N04/2375499336

use these elements appropriately, specifically <button>
and <a>.

Buttons should be used for controls that perform ac-
tions, whereas links should be used for controls that navi-
gate users to other documents. However, developers of-
ten incorrectly use generic elements, such as and
<div>, for controls that perform these actions. Consider
the iPhone landing page of Fidelity24, a banking institu-
tion.

The two controls on this page sure look like buttons, but
they’re actually generated by the following markup.

Are those buttons on Fidelity’s iPhone landing page or not?

24. http://www.fidelity.com/interstitial/index.shtml

MOBILE AND ACCESSIBILITY: WHY YOU SHOULD CARE AND WHAT YOU
CAN DO ABOUT IT

40

http://www.fidelity.com/interstitial/index.shtml
http://www.fidelity.com/interstitial/index.shtml
http://www.fidelity.com/interstitial/index.shtml
http://www.fidelity.com/interstitial/index.shtml
http://www.fidelity.com/interstitial/index.shtml

<div id="download_button">

<div id="download_text"

onclick="goToStore();">Download the Fidelity

App</div>

</div>

<div id="no_thanks_button" onclick="goHome();">

<div id="no_thanks_text"

onclick="goHome();">No thanks</div>

</div>

Because of this, keyboards will not navigate to these con-
trols. They would, however, if the controls were marked
up as actual <button> elements.

<div id="download_button">

<button id="download_text"

onclick="goToStore();">Download the Fidelity

App</button>

</div>

<div id="no_thanks_button" onclick="goHome();">

<button id="no_thanks_text"

onclick="goHome();">No thanks</button>

</div>

While this most commonly happens with buttons, links
are often misused as well. Consider the popup that people

41

see when visiting American Express’ home page25 on an
iPad:

Despite the “Click here to download the American Ex-
press app” being a simple link, American Express uses the
following HTML:

<div class="asl-link" role="link">

<div class="asl-app-store" title="...">

Click here to download the American

Express® App

</div>

</div>

The linking is done in JavaScript, with a click handler that
changes window.location. Because a <div> is used, key-
boards cannot access the control, but they would be able
to if an <a> element were used.

American Express shows this popup to iPad users on its home page.

25. https://www.americanexpress.com/

MOBILE AND ACCESSIBILITY: WHY YOU SHOULD CARE AND WHAT YOU
CAN DO ABOUT IT

42

https://www.americanexpress.com/
https://www.americanexpress.com/
https://www.americanexpress.com/
https://www.americanexpress.com/
https://www.americanexpress.com/

<div class="asl-link">

Click here to download the American

Express® App

</div>

(On a related note, the “close” button in American Ex-
press’ popup is also a <div>, so keyboard users can nei-
ther perform that action in the popup nor close it.)

American Express could also have used the Apple ap-
proved26 method of informing users that an app is avail-
able with an apple-itunes-app <meta> tag.

<meta name="apple-itunes-app"

content="app-id=myAppStoreID,

affiliate-data=myAffiliateData, app-argument=myURL">

In general, browsers provide keyboard access automati-
cally for semantic elements. But what if you’re using ele-
ments more complex than a simple <button> or <a>?

WRITING YOUR OWN COMPLEX WIDGETSWRITING YOUR OWN COMPLEX WIDGETS

As web developers, we often use widgets for complex in-
teractions in our interfaces. We do this sometimes to
work around deficiencies in a platform (for example, to
build a more customizable <select> element) and some-

26. https://developer.apple.com/library/ios/documentation/AppleApplications/
Reference/SafariWebContent/PromotingAppswithAppBanners/PromotingApps
withAppBanners.html

43

https://developer.apple.com/library/ios/documentation/AppleApplications/Reference/SafariWebContent/PromotingAppswithAppBanners/PromotingAppswithAppBanners.html
https://developer.apple.com/library/ios/documentation/AppleApplications/Reference/SafariWebContent/PromotingAppswithAppBanners/PromotingAppswithAppBanners.html
https://developer.apple.com/library/ios/documentation/AppleApplications/Reference/SafariWebContent/PromotingAppswithAppBanners/PromotingAppswithAppBanners.html
https://developer.apple.com/library/ios/documentation/AppleApplications/Reference/SafariWebContent/PromotingAppswithAppBanners/PromotingAppswithAppBanners.html
https://developer.apple.com/library/ios/documentation/AppleApplications/Reference/SafariWebContent/PromotingAppswithAppBanners/PromotingAppswithAppBanners.html
https://developer.apple.com/library/ios/documentation/AppleApplications/Reference/SafariWebContent/PromotingAppswithAppBanners/PromotingAppswithAppBanners.html

times to build a powerful UI element (for example, a grid,
tab or chart).

Let’s look at replacing a <select> element. On the sur-
face, this seems like an easy widget to write:

1. Create a <div>.

2. Create a , with a element for each replacement
<option>.

3. On a click of the <div>, open the menu.

4. On a click of a element, transfer the value back into
the <div>.

Easy.

However, consider all of the keyboard controls that a na-
tive <select> element has:

• The space bar opens the menu of options.

• The up and down arrows open the menu and cycle be-
tween options.

• The page-up and page-down keys cycle through whole
pages of options in long lists.

• The “Escape” key closes the menu.

• Typing in values while the element has focus will trigger
autocompletion options.

Suddenly, replicating the native <select> element has
gotten significantly harder. Not to mention that we have

MOBILE AND ACCESSIBILITY: WHY YOU SHOULD CARE AND WHAT YOU
CAN DO ABOUT IT

44

to ensure that screen readers can access the options and
read them at the appropriate time.

To make these complex interactions possible, a special
set of HTML attributes is available to provide the neces-
sary context to screen readers. These are known as Acces-
sible Rich Internet Applications27, or ARIA attributes.

The main ARIA attribute, role, tells browsers and as-
sistive devices the general type of an object — for exam-
ple, dialog, slider or alert. From there, a number of aria-*
attributes are used to provide more detailed information
about an element’s state. Below is a boilerplate for devel-
oping an accessible <select> replacement.

<span tabindex="0" id="button" role="combobox"

aria-expanded="false"

aria-autocomplete="list" aria-owns="menu"

aria-haspopup="true"

aria-activedescendant="option-1"

aria-labelledby="option-1"

aria-disabled="false">

One

<ul aria-hidden="true" aria-labelledby="button"

id="menu"

role="listbox" tabindex="0"

aria-activedescendant="option-1"

style="display: none;">

<li id="option-1" role="option"

27. https://developer.mozilla.org/en-US/docs/Accessibility/ARIA

45

https://developer.mozilla.org/en-US/docs/Accessibility/ARIA
https://developer.mozilla.org/en-US/docs/Accessibility/ARIA
https://developer.mozilla.org/en-US/docs/Accessibility/ARIA
https://developer.mozilla.org/en-US/docs/Accessibility/ARIA
https://developer.mozilla.org/en-US/docs/Accessibility/ARIA
https://developer.mozilla.org/en-US/docs/Accessibility/ARIA

tabindex="-1">One

<li id="option-2" role="option"

tabindex="-1">Two

<li id="option-3" role="option"

tabindex="-1">Three

Screen readers use these ARIA attributes to help keyboard
users operate these controls. For example, because this
example’s has a role of "combobox", VoiceOver
on OS X reads “You are currently on a combo box, type
text or, to display a list of choices, press Control-Option-
Space.” VoiceOver knows what choices are available be-
cause the has an aria-owns attribute set to
"menu", the id of the that contains the options.

But as you can see, there are a whole lot of ARIA attrib-
utes to account for; therefore, because of the difficultly of
getting this right, most developers are better off using a
JavaScript UI library for such controls rather than build-
ing them themselves. Many big libraries ensure that
these controls are accessible by applying appropriate
ARIA roles28 and keyboard shortcuts automatically. For
example, jQuery UI’s upcoming selectmenu29 and Kendo
UI’s DropDownList30 both generate accessible <select>
replacements.

This concludes our look at supporting keyboard navi-
gation on the web. While this set of guidelines is by no

28. https://developer.mozilla.org/en-US/docs/Accessibility/ARIA/ARIA_Techniques
29. http://wiki.jqueryui.com/w/page/12138056/Selectmenu
30. http://demos.kendoui.com/web/dropdownlist/index.html

MOBILE AND ACCESSIBILITY: WHY YOU SHOULD CARE AND WHAT YOU
CAN DO ABOUT IT

46

https://developer.mozilla.org/en-US/docs/Accessibility/ARIA/ARIA_Techniques
https://developer.mozilla.org/en-US/docs/Accessibility/ARIA/ARIA_Techniques
https://developer.mozilla.org/en-US/docs/Accessibility/ARIA/ARIA_Techniques
http://wiki.jqueryui.com/w/page/12138056/Selectmenu
http://wiki.jqueryui.com/w/page/12138056/Selectmenu
http://wiki.jqueryui.com/w/page/12138056/Selectmenu
http://demos.kendoui.com/web/dropdownlist/index.html
http://demos.kendoui.com/web/dropdownlist/index.html
http://demos.kendoui.com/web/dropdownlist/index.html
http://demos.kendoui.com/web/dropdownlist/index.html
https://developer.mozilla.org/en-US/docs/Accessibility/ARIA/ARIA_Techniques
https://developer.mozilla.org/en-US/docs/Accessibility/ARIA/ARIA_Techniques
http://wiki.jqueryui.com/w/page/12138056/Selectmenu
http://wiki.jqueryui.com/w/page/12138056/Selectmenu
http://demos.kendoui.com/web/dropdownlist/index.html
http://demos.kendoui.com/web/dropdownlist/index.html

means comprehensive, it should help you get the most
important parts of your website working properly. For a
more thorough list of keyboard accessibility, see the
W3C’s complete guidelines31.

Next, we’ll look at another often abused best practice:
building semantic forms.

2. Mark Up Forms Semantically
With the proliferation of single-page applications — espe-
cially mobile ones — a diminishing number of websites
use native HTML form submissions. Instead, data is sub-
mitted to the server by JavaScript-initiated XMLHttpRe-
quests. While nothing is inherently wrong with this, us-
ing the same semantic markup that you would use if the
data were to be sent with a native HTML form submis-
sion is still important.

Most screen readers have entire modes dedicated to
form interaction that require forms to be marked up cor-
rectly. Consider this log-in form:

Username: <input type="text" id="username"

name="username">

Password: <input type="password" id="password"

name="password">

<button>Submit</button>

<script>

document.querySelector("button")

.addEventListener("click",

31. http://www.w3.org/WAI/WCAG20/quickref/#keyboard-operation

47

http://www.w3.org/WAI/WCAG20/quickref/#keyboard-operation
http://www.w3.org/WAI/WCAG20/quickref/#keyboard-operation
http://www.w3.org/WAI/WCAG20/quickref/#keyboard-operation
http://www.w3.org/WAI/WCAG20/quickref/#keyboard-operation
http://www.w3.org/WAI/WCAG20/quickref/#keyboard-operation

function() {

// Send AJAX request to log

// user in

});

</script>

While this form will log users in, it has a few problems
that would make it painful for power users and impossi-
ble for impaired users to complete. Let’s look at the issues
in turn.

ASSOCIATING LABELS WITH INPUTSASSOCIATING LABELS WITH INPUTS

Most screen readers require that form elements —
<input>, <select> and <textarea> — be associated with
<label> elements that describe them. Each <label> ele-
ment should have a for attribute that corresponds to the
appropriate form element’s id attribute, as shown here:

<label for="field">Field:</label>

<input id="field">

As is, our log-in form does not have this association,
which would trip up assistive devices. Below is the user
name <input> that we’re currently using. Note that there
is no <label>.

Username: <input type="text" id="username"

name="username">

When this user name <input> gets focus, the screen
reader NVDA32 simply reads “Edit text, blank.”

MOBILE AND ACCESSIBILITY: WHY YOU SHOULD CARE AND WHAT YOU
CAN DO ABOUT IT

48

http://www.nvaccess.org/
http://www.nvaccess.org/
http://www.nvaccess.org/

This is common in the wild, unfortunately. Amazon,
for instance, has a trimmed-down website, amazon.com/
access33, that is “optimized for screen readers and mobile
devices.”

The website is appropriately simple, with a single
search box and a short list of links. Ironically, though, de-
spite directing screen reader users to this page, Amazon
has not given its search <input> a <label>; thus, many
screen reader users will have no idea that the <input>
can be used to search.

(Note: As with browsers, screen readers vary in their sup-
port of markup patterns. In the example above,
VoiceOver does read the “Search” text, but NVDA does
not. We’ll discuss compatibility testing later in this arti-
cle.)

We can easily solve this problem in our sample form
with a few <label> elements:

Amazon’s accessible website does not associate the “Search” label with the
text box.

32. http://www.nvaccess.org/
33. http://amazon.com/access

49

http://amazon.com/access
http://amazon.com/access
http://amazon.com/access
http://amazon.com/access
http://www.nvaccess.org/
http://www.nvaccess.org/
http://amazon.com/access
http://amazon.com/access

<label for="username">Username:</label>

<input type="text" id="username" name="username">

<label for="password">Password:</label>

<input type="password" id="password" name="password">

<button>Submit</button>

<script>

document.querySelector("button")

.addEventListener("click",

function() {

// Send AJAX request to log

// user in

});

</script>

Now all screen readers will associate each form element
with a label that describes it. This practice is beneficial to
more than users of assistive devices. All browsers are
smart enough to transfer clicks on <label> elements to
their associated <input>, <select> or <textarea> ele-
ments.

Ever had trouble clicking a 10 × 10-pixel checkbox to
accept a service’s terms of use? On websites with seman-
tic markup, you can click a checkbox’s far larger label in-
stead. On mobile devices, bigger targets help fat fingers
hit them:

MOBILE AND ACCESSIBILITY: WHY YOU SHOULD CARE AND WHAT YOU
CAN DO ABOUT IT

50

This solves one problem with our log-in form. But there’s
still one more issue to discuss.

HANDLING THE “ENTER” KEYHANDLING THE “ENTER” KEY

Have you ever noticed that some log-in forms on the web
can be submitted by pressing the “Enter” key in a textbox
and some cannot? What makes the “Enter” key work for a
submission?

Submitting with the “Enter” key is known as an im-
plicit submission34, and it is supported by all browsers —
even mobile ones. There are only two requirements to
making implicit submission work.

1. All <input> elements need to be in a <form>.

2. If the form has more than one element — <input>,
<select> or <textarea> — then the <form> must have a
“Submit” button.

Clicking a label gives focus to the corresponding control.

34. http://www.whatwg.org/specs/web-apps/current-work/multipage/association-
of-controls-and-forms.html#implicit-submission

51

http://www.whatwg.org/specs/web-apps/current-work/multipage/association-of-controls-and-forms.html#implicit-submission
http://www.whatwg.org/specs/web-apps/current-work/multipage/association-of-controls-and-forms.html#implicit-submission
http://www.whatwg.org/specs/web-apps/current-work/multipage/association-of-controls-and-forms.html#implicit-submission
http://www.whatwg.org/specs/web-apps/current-work/multipage/association-of-controls-and-forms.html#implicit-submission
http://www.whatwg.org/specs/web-apps/current-work/multipage/association-of-controls-and-forms.html#implicit-submission
http://www.whatwg.org/specs/web-apps/current-work/multipage/association-of-controls-and-forms.html#implicit-submission

Our sample form already has a “Submit” button (the de-
fault type of <button> is submit). Therefore, we only
need to add a <form>.

<form method="POST">

<label for="username">Username:</label>

<input type="text" id="username"

name="username">

<label for="password">Password:</label>

<input type="password" id="password"

name="password">

<button>Submit</button>

</form>

<script>

document.querySelector("button")

.addEventListener("click", function(

event) {

// Prevent the default form

// submission

event.preventDefault();

// Send AJAX request

});

</script>

A couple of things to note:

• When implicit submission occurs, the browser performs
a click on the <form>’s “Submit” button. Therefore, listen-

MOBILE AND ACCESSIBILITY: WHY YOU SHOULD CARE AND WHAT YOU
CAN DO ABOUT IT

52

ing for click events on the “Submit” button to perform
submit actions is still safe. You could, alternatively, listen
for a submit event on the <form>.

• Even though JavaScript will intercept the form’s submis-
sion, method="POST" is still explicitly declared. In case
JavaScript fails (because of unsupported browsers, net-
work issues, etc.), we don’t want the browser to submit a
GET request that would place the user-supplied user name
and password in the query string.

Enabling implicit submission saves mobile users some
clicking. The image above shows two <input> elements,
one in a <form> and one not. Note that the <form>-based

Implicit form submission works only with true form elements.

53

example can be submitted while the <input> has focus —
no need for additional taps or hunting for a “Submit” but-
ton.

This concludes our look at building accessible forms.
As with keyboard access, these guidelines are far from
comprehensive, but they address some of the most com-
mon problems with forms today. For a more complete list
of best practices, check out the W3C’s guidelines for col-
lecting input from users35.

Next, we’ll look at a problem that most smartphone
owners have experienced at some point: low contrast.

3. Provide Plenty Of Contrast
If you’ve ever used your phone outdoors, especially in
harsh sunlight, then you’ve struggled to read the screen
at some point. This is not unlike what some users with vi-
sion disabilities experience all of the time.

When designing any website, remember that most
users will not be visiting it indoors on a high-end monitor
like yours. This is especially critical for mobile websites
because of the wide variety of contexts in which people
use their phone.

How do you make your website adapt to these con-
texts? Unlike more subjective aspects, contrast ratio can
be calculated, and the W3C puts numeric guidelines for
these ratios in its “Web Content Accessibility Guide-
lines36” (WCAG), a series of recommendations for making

35. http://www.w3.org/WAI/WCAG20/quickref/#minimize-error
36. http://www.w3.org/TR/WCAG/

MOBILE AND ACCESSIBILITY: WHY YOU SHOULD CARE AND WHAT YOU
CAN DO ABOUT IT

54

http://www.w3.org/WAI/WCAG20/quickref/#minimize-error
http://www.w3.org/WAI/WCAG20/quickref/#minimize-error
http://www.w3.org/WAI/WCAG20/quickref/#minimize-error
http://www.w3.org/WAI/WCAG20/quickref/#minimize-error
http://www.w3.org/TR/WCAG/
http://www.w3.org/TR/WCAG/
http://www.w3.org/TR/WCAG/
http://www.w3.org/TR/WCAG/
http://www.w3.org/WAI/WCAG20/quickref/#minimize-error
http://www.w3.org/WAI/WCAG20/quickref/#minimize-error
http://www.w3.org/TR/WCAG/
http://www.w3.org/TR/WCAG/

web content more accessible to individuals with disabili-
ties.

The WCAG defines three levels of conformance: Level
A, Level AA and Level AAA. According to the specifica-
tion37, for a website to conform, Level A requirements
must be met, Level AA requirements should be met and
Level AAA requirements may be met.

The Level A contrast ratio is set at 3:1; Level AA is set at
4.5:1; and Level AAA is set at 7:1. As a point of reference,
the specification recommends38 a contrast ratio of 4.5:1
for users with 20/40 vision, which is common among el-
derly people.

This means that we should make our contrast ratios at
least 3:1 and, ideally, 4.5:1 or greater. But, how exactly do
we calculate this?

CALCULATING CONTRAST RATIOCALCULATING CONTRAST RATIO

Luckily, Lea Verou39 has created a tool to calculate con-
trast ratio40 easily.

It’s simple to use. Input a background color and a text
color, and the tool will output the contrast ratio:

37. http://www.w3.org/TR/WAI-WEBCONTENT/#wc-priority-1
38. http://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-

contrast.html
39. http://lea.verou.me/
40. http://leaverou.github.io/contrast-ratio/

55

http://www.w3.org/TR/WAI-WEBCONTENT/#wc-priority-1
http://www.w3.org/TR/WAI-WEBCONTENT/#wc-priority-1
http://www.w3.org/TR/WAI-WEBCONTENT/#wc-priority-1
http://www.w3.org/TR/WAI-WEBCONTENT/#wc-priority-1
http://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
http://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
http://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
http://lea.verou.me/
http://lea.verou.me/
http://lea.verou.me/
http://leaverou.github.io/contrast-ratio/
http://leaverou.github.io/contrast-ratio/
http://leaverou.github.io/contrast-ratio/
http://leaverou.github.io/contrast-ratio/
http://www.w3.org/TR/WAI-WEBCONTENT/#wc-priority-1
http://www.w3.org/TR/WAI-WEBCONTENT/#wc-priority-1
http://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
http://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
http://lea.verou.me/
http://lea.verou.me/
http://leaverou.github.io/contrast-ratio/
http://leaverou.github.io/contrast-ratio/

A couple of things to note:

• The tool supports any CSS color that the browser sup-
ports. So, keywords (e.g. white), HEX, RGB, RGBa, HSL
and HSLa are all accepted.

• The tool generates unique URLs as you input valid values.
For developers, this feature is perfect for telling designers
that their gray on light-gray design is a bad idea41.

Lea Verou’s tool determines the contrast ratio between text and its back-
ground.

41. http://leaverou.github.io/contrast-ratio/#gray-on-lightgray

MOBILE AND ACCESSIBILITY: WHY YOU SHOULD CARE AND WHAT YOU
CAN DO ABOUT IT

56

http://leaverou.github.io/contrast-ratio/#gray-on-lightgray
http://leaverou.github.io/contrast-ratio/#gray-on-lightgray
http://leaverou.github.io/contrast-ratio/#gray-on-lightgray
http://leaverou.github.io/contrast-ratio/#gray-on-lightgray
http://leaverou.github.io/contrast-ratio/#gray-on-lightgray

While high contrast seems like common sense, plenty of
poor contrast can be found in the wild, even on major
websites. Square’s42 footer fails Level A:

Even Facebook43 is guilty. The links in its header on the
desktop fail to meet Level A as well:

Square’s footer has very low contrast.

Square’s footer fails Level A.

The text in Facebook’s header has very low contrast.

Facebook’s header fails Level A.

42. https://squareup.com/
43. http://facebook.com

57

https://squareup.com/
https://squareup.com/
https://squareup.com/
http://facebook.com
http://facebook.com
http://facebook.com
https://squareup.com/
https://squareup.com/
http://facebook.com
http://facebook.com

To summarize, giving all of your text a contrast ratio of at
least 3:1 (and, ideally, 4.5:1 or greater) will make it accessi-
ble to people with vision impairments, as well as make it
more readable for everyone. Lea Verou’s tool is perfect for
calculating contrast ratios and sharing the results with
others.

To find out more about conformance levels, the
WCAG has a formatted checklist of criteria44 for each lev-
el.

Next, we’ll return to discussing screen readers —
specifically, making sure they can understand our web-
sites.

4. Ensure That Screen Readers Know What
Your Controls Do
Earlier, we looked at a WebAIM study that shows that
71.8% of screen reader users also use a reader on their mo-
bile device. In this same study, users were asked for the
most common problems they experience on the web45.
Third and fourth on this list are the following:

3. links or buttons that do not make sense,

4. images with missing or improper descriptions (alt text).

(First and second on the list are Flash and CAPTCHAs.
Please don’t use either.)

The following snippet shows both of these problems.

44. http://www.w3.org/TR/2006/WD-WCAG20-20060427/appendixB.html
45. http://webaim.org/projects/screenreadersurvey4/#problems

MOBILE AND ACCESSIBILITY: WHY YOU SHOULD CARE AND WHAT YOU
CAN DO ABOUT IT

58

http://www.w3.org/TR/2006/WD-WCAG20-20060427/appendixB.html
http://www.w3.org/TR/2006/WD-WCAG20-20060427/appendixB.html
http://www.w3.org/TR/2006/WD-WCAG20-20060427/appendixB.html
http://webaim.org/projects/screenreadersurvey4/#problems
http://webaim.org/projects/screenreadersurvey4/#problems
http://webaim.org/projects/screenreadersurvey4/#problems
http://www.w3.org/TR/2006/WD-WCAG20-20060427/appendixB.html
http://www.w3.org/TR/2006/WD-WCAG20-20060427/appendixB.html
http://webaim.org/projects/screenreadersurvey4/#problems
http://webaim.org/projects/screenreadersurvey4/#problems

<style>

button {

background: url('search.png')

no-repeat;

}

</style>

<button></button>

The <button> would not make sense to a user on a screen
reader; nothing would be read. For the , screen
readers would literally read ABC123.jpg, which is not
very helpful.

The fixes for these problems are well documented. For
the <button>, we can add text to our control and use one
of many image-replacement techniques46 to make the text
invisible to sighted users. The snippet below shows one
of these techniques: applying a large negative text-in-
dent rule.

<style>

button {

background: url('search.png')

no-repeat;

text-indent: -9999px;

}

</style>

<button>Search</button>

46. http://css-tricks.com/css-image-replacement/

59

http://css-tricks.com/css-image-replacement/
http://css-tricks.com/css-image-replacement/
http://css-tricks.com/css-image-replacement/
http://css-tricks.com/css-image-replacement/
http://css-tricks.com/css-image-replacement/

The fix for the is as simple as adding an alt attrib-
ute that describes the image.

<img src="ABC123.jpg" alt="A view of the trees

outside my window in Lansing, Michigan">

Despite these problems being well known and easy to fix,
they continue to be abundant across the web. To prove
this, let’s look at some actual websites. I live in the great
US state of Michigan, known for its association with the
“Big Three” automakers: Ford, GM and Chrysler. Surely,
these large companies have produced accessible mobile
websites that don’t violate these practices… right?

CASE STUDY: THE BIG THREE AUTOMAKERSCASE STUDY: THE BIG THREE AUTOMAKERS

Let’s start with GM. Its mobile website47 is shown on the
next page. The appended text in quotation marks shows
what VoiceOver on OS X actually reads when the corre-
sponding element is selected.

As you can see, GM’s website relies heavily on large
images that serve as links to additional content. Unfortu-
nately, GM provides no text for these links, so screen
readers are limited to the information they can find in the
images. GM does provide alt attributes for these images;
but, strangely, they are set to the images’ file names.

47. http://m.gm.com

MOBILE AND ACCESSIBILITY: WHY YOU SHOULD CARE AND WHAT YOU
CAN DO ABOUT IT

60

http://m.gm.com
http://m.gm.com
http://m.gm.com
http://m.gm.com
http://m.gm.com

For example, here is the source for the Cadillac image:

<img title="HomepageBrand_Cadillac_290x170.jpg"

height="85"

alt="HomepageBrand_Cadillac_290x170.jpg"

class="side-gutters"

src="/content/dam/gm/Global/master/mobilesite/en/home/

Homepage/HomepageBrand_Cadillac_290x170.jpg">

Thus, when this image is selected, VoiceOver literally
reads “Homepagebrand underscore Cadillac underscore
two nine zero x one seven zero dot jpeg.”

GM’s mobile website has accessibility issues. Items in quotation marks are
what VoiceOver on OS X actually reads. (View large version48)

48. http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2013/10/
gm.png

61

http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2013/10/gm.png
http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2013/10/gm.png
http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2013/10/gm.png
http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2013/10/gm.png
http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2013/10/gm.png

GM fails our tests, then. Next, let’s try Ford, whose
mobile website49 is shown on the next page.

Ford has some of the same problems as GM. Its banner is
a link that has no text and an image with no alt attribute;
so, VoiceOver reads “index.html image.”

Below this, Ford has a fancy 3-D cube effect with im-
ages of its vehicles. Unfortunately, this is implemented
with a number of <div>s, with background-images and
JavaScript that takes the user away on click. Therefore,
screen readers have absolutely no idea what’s going on in
this large portion of the screen. VoiceOver on iOS just

Ford’s mobile website also has accessibility issues. Items in quotation
marks are what VoiceOver on OS X reads. (View large version50)

49. http://m.ford.com/
50. http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2013/10/

ford.png

MOBILE AND ACCESSIBILITY: WHY YOU SHOULD CARE AND WHAT YOU
CAN DO ABOUT IT

62

http://m.ford.com/
http://m.ford.com/
http://m.ford.com/
http://m.ford.com/
http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2013/10/ford.png
http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2013/10/ford.png
http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2013/10/ford.png
http://m.ford.com/
http://m.ford.com/
http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2013/10/ford.png
http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2013/10/ford.png

beeps when you touch this “cube” that takes up half the
screen.

Finally, the “links” at the bottom of the screen are not
actually links; they are <div>s with onclick attributes
that change window.location to navigate the user. Thus,
these controls are inaccessible from the keyboard and are
confusing for screen readers.

Just when you thought things couldn’t get any worse,
let’s look at the last of the Big Three automakers,
Chrysler. Its mobile website51 is shown below.

Chrysler’s mobile website, too, has accessibility issues. Items in quotation
marks are what VoiceOver on OS X reads. (View large version52)

51. http://m.chrysler.com/

63

http://m.chrysler.com/
http://m.chrysler.com/
http://m.chrysler.com/
http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2013/10/chrysler.png
http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2013/10/chrysler.png
http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2013/10/chrysler.png
http://m.chrysler.com/
http://m.chrysler.com/

You can see that almost nothing on Chrysler’s website
provides any context for screen readers. We are reminded
of the importance of meaningful alt attributes. Here, the
one alt attribute that is provided — “This Is the Hero
Carousal” — is less than helpful. Worse, all images in the
carousel have the exact same alt attributes; so, screen
reader users would have no idea that different links are
being presented. To add insult to injury, the word
“carousel” is spelled incorrectly (“carousal”), causing it to
be mispronounced.

These carousel images occupy over half the space on
an iPhone screen and are almost certainly the most
clicked-on items on the screen. An alt attribute should
tell users something about the image they’re seeing, as
well as where they will go if they click the link. For exam-
ple:

<img src="/path/to/TnC.jpg" alt="Learn more about the

J.D. Power 2013 award-winning Chrysler Town &

Country">

This tells screen reader users what the link is for and
what they will see if they select it.

Unfortunately, examples like these are far too com-
mon. Even though many accessibility best practices are
well documented, they are frequently forgotten — even
on big websites and especially on mobile.

Why?

52. http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2013/10/
chrysler.png

MOBILE AND ACCESSIBILITY: WHY YOU SHOULD CARE AND WHAT YOU
CAN DO ABOUT IT

64

http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2013/10/chrysler.png
http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2013/10/chrysler.png

One reason is that the consequences of violating these
best practices are not obvious. To sighted touch users, all
of these websites operate fine. Secondly, no good way ex-
ists to automate your website’s accessibility. The W3C’s
validator53 will warn of missing alt attributes, but it can-
not test for more complex scenarios, such as icon buttons
and lack of keyboard functionality. It also cannot test
whether the alt attributes are actually meaningful.

Because of this, we must trust all web developers to
learn and remember to use accessibility practices that
have no apparent benefit. As we’ve seen in this case
study, frequently they don’t.

But all is not doom and gloom. We’ve seen that apply-
ing a few easy-to-implement best practices can drastically
improve the accessibility of your sites, and open them to
a new, surprisingly large audience. That building accessi-
ble sites builds a better experience for everyone.

But if the W3C validator cannot catch accessibility is-
sues, how do you verify that you’re applying these best
practices correctly? As it turns out, the best way to test the
accessibility of your site is also a great way to gain insight
into how disabled users interact with it — by using a
screen reader.

5. Test Your Website On An Actual Screen
Reader
Most web developers have a slew of browsers and devices
to test their websites, yet few know how to use a single

53. http://validator.w3.org/

65

http://validator.w3.org/
http://validator.w3.org/
http://validator.w3.org/
http://validator.w3.org/
http://validator.w3.org/
http://validator.w3.org/

screen reader. Unfortunately, this has led most develop-
ers to treat accessibility guidelines as some sort of
voodoo. They conjecture about what’s best for impaired
users without actually testing their theories.

This is a shame, because the best way to discover
whether your website is accessible is to try it out as an
impaired user would. Personally, I’m not sure why screen
readers are shrouded in mystery; they’re actually quite
easy to use.

If you’re on a Mac, type Command + F5 to activate
VoiceOver. Navigate around this page with the Tab key
and see what’s read. You can also press Control + Option
plus the left and right arrow keys to target content that is
not in the tab order. There are more advanced controls
available54, but you can get the idea with these basics.

If you’re on Windows, you can download and use NV-
DA55 for free. JAWS56 is the most popular paid reader; it
has a demo mode that you can try for free.

Mobile devices are a tad different because there is no
keyboard by default. Therefore, using a screen reader
forces you to reconsider how you interact with your de-
vice. Let’s explore this by looking at the screen readers
built into iOS and Android — VoiceOver and TalkBack, re-
spectively.

54. http://www.apple.com/voiceover/info/guide/_1131.html
55. http://www.nvaccess.org/
56. http://www.freedomscientific.com/products/fs/jaws-product-page.asp

MOBILE AND ACCESSIBILITY: WHY YOU SHOULD CARE AND WHAT YOU
CAN DO ABOUT IT

66

http://www.apple.com/voiceover/info/guide/_1131.html
http://www.apple.com/voiceover/info/guide/_1131.html
http://www.apple.com/voiceover/info/guide/_1131.html
http://www.apple.com/voiceover/info/guide/_1131.html
http://www.nvaccess.org/
http://www.nvaccess.org/
http://www.nvaccess.org/
http://www.nvaccess.org/
http://www.freedomscientific.com/products/fs/jaws-product-page.asp
http://www.freedomscientific.com/products/fs/jaws-product-page.asp
http://www.freedomscientific.com/products/fs/jaws-product-page.asp
http://www.apple.com/voiceover/info/guide/_1131.html
http://www.apple.com/voiceover/info/guide/_1131.html
http://www.nvaccess.org/
http://www.nvaccess.org/
http://www.freedomscientific.com/products/fs/jaws-product-page.asp
http://www.freedomscientific.com/products/fs/jaws-product-page.asp

USING VOICEOVER ON IOSUSING VOICEOVER ON IOS

VoiceOver is iOS’ primary accessibility aid for all applica-
tions, not just the Web. Because most users don’t use it,
VoiceOver is disabled by default. To enable it, go to Set-
tings → General → Accessibility → VoiceOver. You’ll see
the screen shown below.

Be warned — once you turn it on, VoiceOver will funda-
mentally change the way you interact with the phone.
Therefore, you must learn the basics; otherwise, you won’t
be able to turn VoiceOver back off.

The settings screen for VoiceOver on iOS

67

Once VoiceOver is on, a single tap on the screen will
select an item but will not activate it. For example, if you
tap on the Safari icon, VoiceOver will read “Safari” but
will not launch the application. After a selection, a double
tap is needed to actually start the application. This makes
sense if you consider the perspective of someone who
cannot see the icon. They would need confirmation that
they’ve selected the correct item before activating it.

The other important difference with VoiceOver is that
you have to use three fingers to scroll. Why? Because
while in VoiceOver mode, iOS listens for one-finger
“flick” gestures in all four directions:

• “Up”
Move to previous item based on rotor setting

• “Down”
Move to next item based on rotor setting

• “Right”
Move to previous item

• “Left”
Move to next item

What’s this “rotor”? We’ll get to that in a moment. First,
try flicking left and right on the screen to move between
available items. These flicks let vision-impaired users dis-
cover what’s on the screen without having to tap around.

Things get more interesting with VoiceOver’s rotor, a
means of configuring how to navigate between items on
the screen.

MOBILE AND ACCESSIBILITY: WHY YOU SHOULD CARE AND WHAT YOU
CAN DO ABOUT IT

68

To activate the rotor, rotate two fingers on the screen
as if you were turning a dial. The rotor and its default op-
tions are shown below.

By setting the rotor, you can change how up and down
flicks navigate the page. For instance, if the rotor is set to
“Links,” then up and down flicks will cycle between links
on the page and nothing else. In this sense, the rotor acts
as a filter, enabling users to sift through the type of con-
tent that they’re interested in.

The rotor shows the importance of semantic markup.
If your links are not actually <a> tags, then they won’t

The rotor control in VoiceOver for iOS

69

show up in the rotor setting for “Links.” If your form’s
controls are not actual form elements, then they won’t
show up in the rotor setting for “Form Controls.”

As you can see, using a screen reader forces you to
fundamentally change how you use and approach the
web on a mobile device. Play around with any websites
you maintain to see how well you can navigate and ac-
complish tasks. As an added challenge, once you’re famil-
iar with VoiceOver, try closing your eyes and see what
you can get done.

USING TALKBACK ON ANDROIDUSING TALKBACK ON ANDROID

Like VoiceOver, TalkBack is an accessibility service for
vision-impaired users that is native to Android devices.
Because most people do not need the service, it is also dis-
abled by default. To enable it, go to Settings → Accessi-
bility → TalkBack and tap the switch shown below.

Again, be warned. Once TalkBack is activated, you’ll at
least need to know the basic controls to turn it off.

TalkBack’s controls are extremely similar to
VoiceOver’s. One tap selects an item, and a double tap ac-
tivates it. Scrolling with TalkBack requires two fingers

The settings page for TalkBack on Android

MOBILE AND ACCESSIBILITY: WHY YOU SHOULD CARE AND WHAT YOU
CAN DO ABOUT IT

70

(recall that VoiceOver requires three), and TalkBack lis-
tens for the same flick actions to move between items on
the page.

While TalkBack has nothing comparable to
VoiceOver’s rotor, it does support a number of additional
gestures57 to customize the navigation.

Wrapping Up
In this article, we’ve discussed a number of best practices
to improve the accessibility of your websites. How do you
apply this information to your existing or new websites?
Here are a few action items:

• Keyboard

◦ Make sure that all tasks can be performed using only
the keyboard.

◦ Use semantic elements — <button> for buttons and
<a> for links.

◦ If you’re having trouble making complex widgets
keyboard-friendly, consider using a framework.

• Forms

◦ Use the actual <form> element.

◦ Associate all form elements (<input>, <select> and
<textarea>) with a <label>.

57. https://support.google.com/nexus/answer/2926960?hl=en

71

https://support.google.com/nexus/answer/2926960?hl=en
https://support.google.com/nexus/answer/2926960?hl=en
https://support.google.com/nexus/answer/2926960?hl=en
https://support.google.com/nexus/answer/2926960?hl=en
https://support.google.com/nexus/answer/2926960?hl=en
https://support.google.com/nexus/answer/2926960?hl=en

◦ Make sure the “Enter” key can be used to submit the
form.

• Contrast

◦ Ensure that all text has a contrast ratio of at least 3.0,
using Lea Verou’s Contrast Ratio58. Ideally, all text
should meet this criterion, but focus on the main con-
tent first.

• Images

◦ Include alt attributes that describe the images.

• Links and buttons

◦ Always give these controls readable content. If the con-
tent should not be shown to sighted users, then use an
image-replacement technique to hide it.

While this list is not comprehensive, it does provide a
number of practices that are easy to implement and that
address the most common problems affecting disabled
users. Furthermore, we’ve seen that adhering to these
guidelines benefits everyone, not just the disabled.

Finally, the best way to test your website is on an actu-
al screen reader. By taking mere minutes to learn some
commands, you will gain insight into how a good portion
of the population interacts on the web.

58. http://leaverou.github.io/contrast-ratio/

MOBILE AND ACCESSIBILITY: WHY YOU SHOULD CARE AND WHAT YOU
CAN DO ABOUT IT

72

http://leaverou.github.io/contrast-ratio/
http://leaverou.github.io/contrast-ratio/
http://leaverou.github.io/contrast-ratio/
http://leaverou.github.io/contrast-ratio/
http://leaverou.github.io/contrast-ratio/

RESOURCESRESOURCES

• “Web Content Accessibility Guidelines 2.059,” W3C
If you’re looking for a more comprehensive checklist than
what’s provided in the conclusion above, this is it.

• “Shared Web Experiences: Barriers Common to Mobile
Device Users and People With Disabilities60,” W3C Web
Accessibility Initiative
This page describes the issues that people with disabili-
ties encounter on the web and how they are addressed by
the W3C’s guidelines and specifications.

• “Talk To Me61,” Jörn Zaefferer
These slides are from Zaefferer’s 2013 talk on making
websites accessible.

• Contrast Rebellion62

An amusing look at why contrast is important on the web.

• “VoiceOver Getting Started63,” Apple
The official guide to getting started with VoiceOver on
OS X.

• The Accessibility Project64

A nice collection of accessibility tips.

59. http://www.w3.org/TR/WCAG/
60. http://www.w3.org/WAI/mobile/experiences
61. http://jzaefferer.github.io/talk-to-me/
62. http://contrastrebellion.com/
63. http://help.apple.com/voiceover/info/guide/10.8/English.lproj/
64. http://a11yproject.com/

73

http://www.w3.org/TR/WCAG/
http://www.w3.org/TR/WCAG/
http://www.w3.org/TR/WCAG/
http://www.w3.org/WAI/mobile/experiences
http://www.w3.org/WAI/mobile/experiences
http://www.w3.org/WAI/mobile/experiences
http://www.w3.org/WAI/mobile/experiences
http://jzaefferer.github.io/talk-to-me/
http://jzaefferer.github.io/talk-to-me/
http://jzaefferer.github.io/talk-to-me/
http://contrastrebellion.com/
http://contrastrebellion.com/
http://contrastrebellion.com/
http://help.apple.com/voiceover/info/guide/10.8/English.lproj/
http://help.apple.com/voiceover/info/guide/10.8/English.lproj/
http://help.apple.com/voiceover/info/guide/10.8/English.lproj/
http://a11yproject.com/
http://a11yproject.com/
http://a11yproject.com/
http://www.w3.org/TR/WCAG/
http://www.w3.org/TR/WCAG/
http://www.w3.org/WAI/mobile/experiences
http://www.w3.org/WAI/mobile/experiences
http://jzaefferer.github.io/talk-to-me/
http://jzaefferer.github.io/talk-to-me/
http://contrastrebellion.com/
http://contrastrebellion.com/
http://help.apple.com/voiceover/info/guide/10.8/English.lproj/
http://help.apple.com/voiceover/info/guide/10.8/English.lproj/
http://a11yproject.com/
http://a11yproject.com/

• “You Can’t Create a Button65,” Nicholas Zakas
Zakas explains when to use <a> and <button> elements.
❧

65. http://www.nczonline.net/blog/2013/01/29/you-cant-create-a-button/

MOBILE AND ACCESSIBILITY: WHY YOU SHOULD CARE AND WHAT YOU
CAN DO ABOUT IT

74

http://www.nczonline.net/blog/2013/01/29/you-cant-create-a-button/
http://www.nczonline.net/blog/2013/01/29/you-cant-create-a-button/
http://www.nczonline.net/blog/2013/01/29/you-cant-create-a-button/
http://www.nczonline.net/blog/2013/01/29/you-cant-create-a-button/
http://www.nczonline.net/blog/2013/01/29/you-cant-create-a-button/

Making Modal Windows
Better For Everyone

BY SCOTT O'HARABY SCOTT O'HARA ❧❧

To you, modal windows66 might be a blessing of addition-
al screen real estate, providing a way to deliver contextual
information, notifications and other actions relevant to
the current screen. On the other hand, modals might feel
like a hack that you’ve been forced to commit in order to
cram extra content on the screen. These are the extreme
ends of the spectrum, and users are caught in the middle.
Depending on how a user browses the Internet, modal
windows can be downright confusing.

Modals quickly shift visual focus from one part of a
website or application to another area of (hopefully relat-
ed) content. The action is usually not jarring if initiated
by the user, but it can be annoying and disorienting if it
occurs automatically, as happens with the modal win-
dow’s evil cousins, the “nag screen” and the “interstitial.”

However, modals are merely a mild annoyance in the
end, right? The user just has to click the “close” button,
quickly skim some content or fill out a form to dismiss it.

Well, imagine that you had to navigate the web with a
keyboard. Suppose that a modal window appeared on the
screen, and you had very little context to know what it is
and why it’s obscuring the content you’re trying to
browse. Now you’re wondering, “How do I interact with

66. http://www.smashingmagazine.com/2009/05/27/modal-windows-in-modern-
web-design/

75

http://www.smashingmagazine.com/2009/05/27/modal-windows-in-modern-web-design/
http://www.smashingmagazine.com/2009/05/27/modal-windows-in-modern-web-design/
http://www.smashingmagazine.com/2009/05/27/modal-windows-in-modern-web-design/
http://www.smashingmagazine.com/2009/05/27/modal-windows-in-modern-web-design/
http://www.smashingmagazine.com/2009/05/27/modal-windows-in-modern-web-design/

this?” or “How do I get rid of it?” because your keyboard’s
focus hasn’t automatically moved to the modal window.

This scenario is more common than it should be. And
it’s fairly easy to solve, as long as we make our content ac-
cessible to all through sound usability practices.

For an example, I’ve set up a demo of an inaccessible
modal window67 that appears on page load and that isn’t
entirely semantic. First, interact with it using your mouse
to see that it actually works. Then, try interacting with it
using only your keyboard.

Better Semantics Lead To Better Usability
And Accessibility
Usability and accessibility are lacking in many modal
windows. Whether they’re used to provide additional ac-
tions or inputs for interaction with the page, to include
more information about a particular section of content, or
to provide notifications that can be easily dismissed,
modals need to be easy for everyone to use.

To achieve this goal, first we must focus on the se-
mantics of the modal’s markup. This might seem like a
no-brainer, but the step is not always followed.

Suppose that a popular gaming website has a full-page
modal overlay and has implemented a “close” button with
the code below:

67. http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2014/
inaccessible.html

MAKING MODAL WINDOWS BETTER FOR EVERYONE

76

http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2014/inaccessible.html
http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2014/inaccessible.html
http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2014/inaccessible.html
http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2014/inaccessible.html
http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2014/inaccessible.html
http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2014/inaccessible.html

<div id="modal_overlay">

<div id="modal_close" onClick="modalClose()">

X

</div>

…

</div>

This div element has no semantic meaning behind it.
Sighted visitors will know that this is a “close” button be-
cause it looks like one. It has a hover state, so there is
some visual indication that it can be interacted with.

But this element has no inherit semantic meaning to
people who use a keyboard or screen reader.

There’s no default way to enable users to tab to a div
without adding a tabindex attribute to it. However, we
would also need to add a :focus state to visually indicate
that it is the active element. That still doesn’t give screen
readers enough information for users to discern the ele-
ment’s meaning. An “X” is the only label here. While we
can assume that people who use screen readers would
know that the letter “X” means “close,” if it was a multipli-
cation sign (using the HTML entity ×) or a cross
mark (❌), then some screen readers wouldn’t read
it at all. We need a better fallback.

We can circumvent all of these issues simply by writ-
ing the correct, semantic markup for a button and by
adding an ARIA label for screen readers:

<div id="modal_overlay">

<button type="button" class="btn-close"

id="modal_close" aria-label="close">

77

X

</button>

</div>

By changing the div to a button, we’ve significantly im-
proved the semantics of our “close” button. We’ve ad-
dressed the common expectation that the button can be
tabbed to with a keyboard and appear focused, and we’ve
provided context by adding the ARIA label for screen
readers.

That’s just one example of how to make the markup of
our modals more semantic, but we can do a lot more to
create a useful and accessible experience.

Making Modals More Usable And
Accessible
Semantic markup goes a long way to building a fully us-
able and accessible modal window, but still more CSS and
JavaScript can take the experience to the next level.

INCLUDING FOCUS STATESINCLUDING FOCUS STATES

Provide a focus state! This obviously isn’t exclusive to
modal windows; many elements lack a proper focus state
in some form or another beyond the browser’s basic de-
fault one (which may or may not have been cleared by
your CSS reset). At the very least, pair the focus state with
the hover state you’ve already designed:

MAKING MODAL WINDOWS BETTER FOR EVERYONE

78

.btn:hover, .btn:focus {

background: #f00;

}

However, because focusing and hovering are different
types of interaction, giving the focus state its own style
makes sense.

.btn:hover {

background: #f00;

}

:focus {

box-shadow: 0 0 3px rgba(0,0,0,.75);

}

Really, any item that can be focused should have a focus
state. Keep that in mind if you’re extending the browser’s
default dotted outline.

SAVING LAST ACTIVE ELEMENTSAVING LAST ACTIVE ELEMENT

When a modal window loads, the element that the user
last interacted with should be saved. That way, when the
modal window closes and the user returns to where they
were, the focus on that element will have been main-
tained. Think of it like a bookmark. Without it, when the
user closes the modal, they would be sent back to the be-
ginning of the document, left to find their place. Add the
following to your modal’s opening and closing functions
to save and reenable the user’s focus.

79

var lastFocus;

function modalShow () {

lastFocus = document.activeElement;

}

function modalClose () {

lastFocus.focus(); // place focus on the saved

// element

}

SHIFTING FOCUSSHIFTING FOCUS

When the modal loads, focus should shift from the last
active element either to the modal window itself or to the
first interactive element in the modal, such as an input el-
ement. This will make the modal more usable because
sighted visitors won’t have to reach for their mouse to
click on the first element, and keyboard users won’t have
to tab through a bunch of DOM elements to get there.

var modal =

document.getElementById('your-modal-id-here');

function modalShow () {

modal.setAttribute('tabindex', '0');

modal.focus();

}

MAKING MODAL WINDOWS BETTER FOR EVERYONE

80

GOING FULL SCREENGOING FULL SCREEN

If your modal takes over the full screen, then obscure the
contents of the main document for both sighted users
and screen reader users. Without this happening, a key-
board user could easily tab their way outside of the modal
without realizing it, which could lead to them interacting
with the main document before completing whatever the
modal window is asking them to do.

Use the following JavaScript to confine the user’s fo-
cus to the modal window until it is dismissed:

function focusRestrict (event) {

document.addEventListener('focus', function(event

) {

if (modalOpen && !modal.contains(event.target)

) {

event.stopPropagation();

modal.focus();

}

}, true);

}

While we want to prevent users from tabbing through
the rest of the document while a modal is open, we don’t
want to prevent them from accessing the browser’s
chrome (after all, sighted users wouldn’t expect to be
stuck in the browser’s tab while a modal window is open).
The JavaScript above prevents tabbing to the document’s
content outside of the modal window, instead bringing
the user to the top of the modal.

81

If we also put the modal at the top of the DOM tree, as
the first child of body, then hitting Shift + Tab would
take the user out of the modal and into the browser’s
chrome. If you’re not able to change the modal’s location
in the DOM tree, then use the following JavaScript in-
stead:

var m = document.getElementById('modal_window'),

p = document.getElementById('page');

// Remember that <div id="page"> surrounds the whole

// document, so aria-hidden="true" can be applied to

// it when the modal opens.

function swap () {

p.parentNode.insertBefore(m, p);

}

swap();

If you can’t move the modal in the DOM tree or reposi-
tion it with JavaScript, you still have other options for
confining focus to the modal. You could keep track of the
first and last focusable elements in the modal window.
When the user reaches the last one and hits Tab, you
could shift focus back to the top of the modal. (And you
would do the opposite for Shift + Tab.)

A second option would be to create a list of all focus-
able nodes in the modal window and, upon the modal fir-
ing, allow for tabbing only through those nodes.

A third option would be to find all focusable nodes
outside of the modal and set tabindex="-1" on them.

MAKING MODAL WINDOWS BETTER FOR EVERYONE

82

The problem with these first and second options is
that they render the browser’s chrome inaccessible. If you
must take this route, then adding a well-marked “close”
button to the modal and supporting the Escape key are
critical; without them, you will effectively trap keyboard
users on the website.

The third option allows for tabbing within the modal
and the browser’s chrome, but it comes with the perfor-
mance cost of listing all focusable elements on the page
and negating their ability to be focused. The cost might
not be much on a small page, but on a page with many
links and form elements, it can become quite a chore. Not
to mention, when the modal closes, you would need to re-
turn all elements to their previous state.

Clearly, we have a lot to consider to enable users to ef-
fectively tab within a modal.

DISMISSINGDISMISSING

Finally, modals should be easy to dismiss. Standard
alert() modal dialogs can be closed by hitting the
Escape key, so following suit with our modal would be
expected — and a convenience. If your modal has multi-
ple focusable elements, allowing the user to just hit Es-
cape is much better than forcing them to tab through
content to get to the “close” button.

function modalClose (e) {

if (!e.keyCode || e.keyCode === 27) {

// code to close modal goes here

}

}

83

document.addEventListener('keydown', modalClose);

Moreover, closing a full-screen modal when the overlay is
clicked is conventional. The exception is if you don’t want
to close the modal until the user has performed an action.

Use the following JavaScript to close the modal when
the user clicks on the overlay:

mOverlay.addEventListener('click', function(e)

if (e.target == modal.parentNode)

modalClose(e);

}

}, false);

Additional Accessibility Steps
Beyond the usability steps covered above, ARIA roles,
states and properties68 will add yet more hooks for assis-
tive technologies. For some of these, nothing more is re-
quired than adding the corresponding attribute to your
markup; for others, additional JavaScript is required to
control an element’s state.

ARIA-HIDDENARIA-HIDDEN

Use the aria-hidden attribute. By toggling the value
true and false, the element and any of its children will
be either hidden or visible to screen readers. However, as
with all ARIA attributes, it carries no default style and,

68. http://www.w3.org/TR/wai-aria/

MAKING MODAL WINDOWS BETTER FOR EVERYONE

84

http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/wai-aria/

thus, will not be hidden from sighted users. To hide it,
add the following CSS:

.modal-window[aria-hidden="true"] {

display: none;

}

Notice that the selector is pretty specific here. The reason
is that we might not want all elements with aria-hid-
den="true" to be hidden (as with our earlier example of
the “X” for the “close” button).

ROLE="DIALOG"ROLE="DIALOG"

Add role="dialog" to the element that contains the
modal’s content. This tells assistive technologies that the
content requires the user’s response or confirmation.
Again, couple this with the JavaScript that shifts focus
from the last active element in the document to the
modal or to the first focusable element in the modal.

However, if the modal is more of an error or alert mes-
sage that requires the user to input something before pro-
ceeding, then use role="alertdialog" instead. Again, set
the focus on it automatically with JavaScript, and confine
focus to the modal until action is taken.

ARIA-LABELARIA-LABEL

Use the aria-label or aria-labelledby attribute along
with role="dialog". If your modal window has a head-
ing, you can use the aria-labelledby attribute to point
to it by referencing the heading’s ID. If your modal
doesn’t have a heading for some reason, then you can at

85

least use the aria-label to provide a concise label about
the element that screen readers can parse.

What About HTML5’s Dialog Element?
Chrome 37 beta and Firefox Nightly 34.0a1 support the
dialog element, which provides extra semantic and ac-
cessibility information for modal windows. Once this na-
tive dialog element is established, we won’t need to ap-
ply role="dialog" to non-dialog elements. For now, even
if you’re using a polyfill for the dialog element, also use
role="dialog" so that screen readers know how to han-
dle the element.

The exciting thing about this element is not only that
it serves the semantic function of a dialog, but that it
come with its own methods, which will replace the
JavaScript and CSS that we currently need to write.

For instance, to display or dismiss a dialog, we’d write
this base of JavaScript:

var modal = document.getElementById('myModal'),

openModal = document.getElementById('btnOpen'),

closeModal = document.getElementById('btnClose');

// to show our modal

openModal.addEventListener('click', function(e) {

modal.show();

// or

modal.showModal();

});

MAKING MODAL WINDOWS BETTER FOR EVERYONE

86

// to close our modal

closeModal.addEventListener('click', function(e) {

modal.close();

});

The show() method launches the dialog, while still allow-
ing users to interact with other elements on the page. The
showModal() method launches the dialog and prevents
users from interacting with anything but the modal while
it’s open.

The dialog element also has the open property, set to
true or false, which replaces aria-hidden. And it has its
own ::backdrop pseudo-element, which enables us to
style the modal when it is opened with the showModal()
method.

There’s more to learn about the dialog element than
what’s mentioned here. It might not be ready for prime
time, but once it is, this semantic element will go a long
way to helping us develop usable, accessible experiences.

Where To Go From Here?
Whether you use a jQuery plugin or a homegrown solu-
tion, step back and evaluate your modal’s overall usability
and accessibility. As minor as modals are to the web over-
all, they are common enough that if we all tried to make
them friendlier and more accessible, we’d make the web a
better place.

87

I’ve prepared a demo of a modal window69 that imple-
ments all of the accessibility features covered in this arti-
cle.❧

69. http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2014/
accessible.html

MAKING MODAL WINDOWS BETTER FOR EVERYONE

88

http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2014/accessible.html
http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2014/accessible.html
http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2014/accessible.html
http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2014/accessible.html
http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2014/accessible.html

Notes On Client-Rendered
Accessibility

BY MARCY SUTTONBY MARCY SUTTON ❧❧

As creators of the web, we bring innovative, well-de-
signed interfaces to life. We find satisfaction in improv-
ing our craft with each design or line of code. But this
push to elevate our skills can be self-serving: Does a new
CSS framework or JavaScript abstraction pattern serve
our users or us as developers?

If a framework encourages best practices in develop-
ment while also improving our workflow, it might serve
both our users’ needs and ours as developers. If it encour-
ages best practices in accessibility alongside other areas,
like performance, then it has potential to improve the
state of the web.

Despite our pursuit to do a better job every day, some-
times we forget about accessibility, the practice of design-
ing and developing in a way that’s inclusive of people
with disabilities. We have the power to improve lives
through technology — we should use our passion for the
craft to build a more accessible web.

These days, we build a lot of client-rendered web ap-
plications, also known as single-page apps, JavaScript
MVCs and MV-whatever. AngularJS, React, Ember, Back-
bone.js, Spine: You may have used or seen one of these
JavaScript frameworks in a recent project. Common user
experience-related characteristics include asynchronous
postbacks, animated page transitions, and dynamic UI fil-
tering. With frameworks like these, creating a poor user

89

experience for people with disabilities is, sadly, pretty
easy. Fortunately, we can employ best practices to make
things better.

In this article, we will explore techniques for building
accessible client-rendered web applications, making our
jobs as web creators even more worthwhile.

Semantics
Front-end JavaScript frameworks make it easy for us to
create and consume custom HTML tags like <pizza-but-
ton>, which you’ll see in an example later on. React, An-
gularJS and Ember enable us to attach behavior to made-
up tags with no default semantics, using JavaScript and
CSS. We can even use Web Components70 now, a set of
new standards holding both the promise of extensibility
and a challenge to us as developers. With this much flexi-
bility, it’s critical for users of assistive technologies such
as screen readers that we use semantics to communicate
what’s happening without relying on a visual experience.

Consider a common form control71: A checkbox opting
you out of marketing email is pretty significant to the
user experience. If it isn’t announced as “Subscribe
checked check box” in a screen reader, you might have no
idea you’d need to uncheck it to opt out of the subscrip-
tion. In client-side web apps, it’s possible to construct a
form model from user input and post JSON to a server re-

70. http://www.smashingmagazine.com/2014/03/04/introduction-to-custom-
elements/

71. http://webaim.org/techniques/forms/controls

NOTES ON CLIENT-RENDERED ACCESSIBILITY

90

http://www.smashingmagazine.com/2014/03/04/introduction-to-custom-elements/
http://www.smashingmagazine.com/2014/03/04/introduction-to-custom-elements/
http://www.smashingmagazine.com/2014/03/04/introduction-to-custom-elements/
http://webaim.org/techniques/forms/controls
http://webaim.org/techniques/forms/controls
http://webaim.org/techniques/forms/controls
http://www.smashingmagazine.com/2014/03/04/introduction-to-custom-elements/
http://www.smashingmagazine.com/2014/03/04/introduction-to-custom-elements/
http://webaim.org/techniques/forms/controls
http://webaim.org/techniques/forms/controls

gardless of how we mark it up — possibly even without a
<form> tag. With this freedom, knowing how to create ac-
cessible forms is important.

To keep our friends with screen readers from opting
in to unwanted email, we should:

• use native inputs to easily announce their role (purpose)
and state (checked or unchecked);

• provide an accessible name using a <label>, with id and
for attribute pairing — aria-label on the input or
aria-labelledby pointing to another element’s id.

<form>

<label for="subscribe">

Subscribe

</label>

<input type="checkbox" id="subscribe" checked>

</form>

NATIVE CHECKBOX WITH LABELNATIVE CHECKBOX WITH LABEL

If native inputs can’t be used (with good reason), create
custom checkboxes with role=checkbox, aria-checked,
aria-disabled and aria-required, and wire up key-
board events. See the W3C’s “Using WAI-ARIA in
HTML72.”

72. http://www.w3.org/TR/aria-in-html/

91

http://www.w3.org/TR/aria-in-html/
http://www.w3.org/TR/aria-in-html/
http://www.w3.org/TR/aria-in-html/
http://www.w3.org/TR/aria-in-html/
http://www.w3.org/TR/aria-in-html/
http://www.w3.org/TR/aria-in-html/

CUSTOM CHECKBOX WITH ARIACUSTOM CHECKBOX WITH ARIA

<form>

<some-checkbox role="checkbox" tabindex="0"

aria-labelledby="subscribe"

aria-checked="true">

</some-checkbox>

<some-label id="subscribe">Subscribe</some-label>

</form>

Form inputs are just one example of the use of semantic
HTML73 and ARIA attributes to communicate the purpose
of something — other important considerations include
headings and page structure, buttons, anchors, lists and
more. ARIA74, or Accessible Rich Internet Applications, ex-
ists to fill in gaps where accessibility support for HTML
falls short (in theory, it can also be used for XML or SVG).
As you can see from the checkbox example, ARIA require-
ments quickly pile up when you start writing custom ele-
ments. Native inputs, buttons and other semantic ele-
ments provide keyboard and accessibility support for
free. The moment you create a custom element and bolt
ARIA attributes onto it, you become responsible for man-
aging the role and state of that element.

Although ARIA is great and capable of many things,
understanding and using it is a lot of work. It also doesn’t
have the broadest support. Take Dragon NaturallySpeak-
ing75 — this assistive technology, which people use all the

73. http://webaim.org/techniques/semanticstructure/
74. http://www.w3.org/TR/wai-aria/

NOTES ON CLIENT-RENDERED ACCESSIBILITY

92

http://webaim.org/techniques/semanticstructure/
http://webaim.org/techniques/semanticstructure/
http://webaim.org/techniques/semanticstructure/
http://webaim.org/techniques/semanticstructure/
http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/wai-aria/
http://assistivetechnology.about.com/od/SpeechRecognition/p/Dragon-Naturallyspeaking-As-Assistive-Technology.htm
http://assistivetechnology.about.com/od/SpeechRecognition/p/Dragon-Naturallyspeaking-As-Assistive-Technology.htm
http://assistivetechnology.about.com/od/SpeechRecognition/p/Dragon-Naturallyspeaking-As-Assistive-Technology.htm
http://assistivetechnology.about.com/od/SpeechRecognition/p/Dragon-Naturallyspeaking-As-Assistive-Technology.htm
http://webaim.org/techniques/semanticstructure/
http://webaim.org/techniques/semanticstructure/
http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/wai-aria/

time to make their life easier, is just starting to gain ARIA
support. Were I a browser implementer, I’d focus on na-
tive element support first, too — so it makes sense that
ARIA might be added later. For this reason, use native ele-
ments, and you won’t often need to use ARIA roles or
states (aria-checked, aria-disabled, aria-required,
etc.). If you must create custom controls, read up on ARIA
to learn the expected keyboard behavior76 and how to use
attributes correctly.

Tip: Use Chrome’s Accessibility Developer Tools77 to
audit your code for errors, and you’ll get the bonus “Ac-
cessibility Properties” inspector.

AngularJS material in Chrome with accessibility inspector open.

75. http://assistivetechnology.about.com/od/SpeechRecognition/p/Dragon-
Naturallyspeaking-As-Assistive-Technology.htm

76. http://www.w3.org/WAI/PF/aria-practices/#keyboard
77. https://chrome.google.com/webstore/detail/accessibility-developer-t/

fpkknkljclfencbdbgkenhalefipecmb

93

http://www.w3.org/WAI/PF/aria-practices/#keyboard
http://www.w3.org/WAI/PF/aria-practices/#keyboard
http://www.w3.org/WAI/PF/aria-practices/#keyboard
https://chrome.google.com/webstore/detail/accessibility-developer-t/fpkknkljclfencbdbgkenhalefipecmb
https://chrome.google.com/webstore/detail/accessibility-developer-t/fpkknkljclfencbdbgkenhalefipecmb
https://chrome.google.com/webstore/detail/accessibility-developer-t/fpkknkljclfencbdbgkenhalefipecmb
http://assistivetechnology.about.com/od/SpeechRecognition/p/Dragon-Naturallyspeaking-As-Assistive-Technology.htm
http://assistivetechnology.about.com/od/SpeechRecognition/p/Dragon-Naturallyspeaking-As-Assistive-Technology.htm
http://www.w3.org/WAI/PF/aria-practices/#keyboard
http://www.w3.org/WAI/PF/aria-practices/#keyboard
https://chrome.google.com/webstore/detail/accessibility-developer-t/fpkknkljclfencbdbgkenhalefipecmb
https://chrome.google.com/webstore/detail/accessibility-developer-t/fpkknkljclfencbdbgkenhalefipecmb

WEB COMPONENTS AND ACCESSIBILITYWEB COMPONENTS AND ACCESSIBILITY

An important topic in a discussion on accessibility and se-
mantics is Web Components, a set of new standards land-
ing in browsers that enable us to natively create reusable
HTML widgets. Because Web Components are still so
new, the syntax is majorly in flux. In December 2014,
Mozilla said it wouldn’t support HTML imports78, a
seemingly obvious way to distribute new components; so,
for now that technology is natively available in Chrome
and Opera79 only. Additionally, up for debate is the syntax
for extending native elements (see the discussion about
is="" syntax80), along with how rigid the shadow DOM
boundary should be. Despite these changes, here are
some tips for writing semantic Web Components:

• Small components are more reusable and easier to man-
age for any necessary semantics.

• Use native elements within Web Components to gain be-
havior for free.

• Element IDs within the shadow DOM do not have the
same scope as the host document.

• The same non-Web Component accessibility guidelines
apply.

For more information on Web Components and accessi-
bility, have a look at these articles:

78. https://hacks.mozilla.org/2014/12/mozilla-and-web-components/
79. http://caniuse.com/#feat=imports
80. https://lists.w3.org/Archives/Public/public-webapps/2015JanMar/0361.html

NOTES ON CLIENT-RENDERED ACCESSIBILITY

94

https://hacks.mozilla.org/2014/12/mozilla-and-web-components/
https://hacks.mozilla.org/2014/12/mozilla-and-web-components/
https://hacks.mozilla.org/2014/12/mozilla-and-web-components/
http://caniuse.com/#feat=imports
http://caniuse.com/#feat=imports
http://caniuse.com/#feat=imports
http://caniuse.com/#feat=imports
https://lists.w3.org/Archives/Public/public-webapps/2015JanMar/0361.html
https://lists.w3.org/Archives/Public/public-webapps/2015JanMar/0361.html
https://lists.w3.org/Archives/Public/public-webapps/2015JanMar/0361.html
https://lists.w3.org/Archives/Public/public-webapps/2015JanMar/0361.html
https://hacks.mozilla.org/2014/12/mozilla-and-web-components/
https://hacks.mozilla.org/2014/12/mozilla-and-web-components/
http://caniuse.com/#feat=imports
http://caniuse.com/#feat=imports
https://lists.w3.org/Archives/Public/public-webapps/2015JanMar/0361.html
https://lists.w3.org/Archives/Public/public-webapps/2015JanMar/0361.html

• “Polymer and Web Component Accessibility: Best Prac-
tices81,” Dylan Barrell

• “Web Components Punch List82,” Steve Faulkner

• “Accessible Web Components83,” Addy Osmani and Alice
Boxhall, Polymer

Interactivity
Native elements such as buttons and inputs come
prepackaged with events and properties that work easily
with keyboards and assistive technologies. Leveraging
these features means less work for us. However, given
how easy JavaScript frameworks and CSS make it to cre-
ate custom elements, such as <pizza-button>, we might
have to do more work to deliver pizza from the keyboard
if we choose to mark it up as a new element. For keyboard
support, custom HTML tags need:

• tabindex, preferably 0 so that you don’t have to manage
the entire page’s tab order (WebAIM discusses this84);

• a keyboard event such as keypress or keydown to trigger
callback functions.

81. http://unobfuscated.blogspot.com/2015/03/polymer-and-web-component-
accessibility.html

82. http://www.paciellogroup.com/blog/2014/09/web-components-punch-list/
83. https://www.polymer-project.org/0.5/articles/accessible-web-components.html
84. http://webaim.org/techniques/keyboard/tabindex

95

http://unobfuscated.blogspot.com/2015/03/polymer-and-web-component-accessibility.html
http://unobfuscated.blogspot.com/2015/03/polymer-and-web-component-accessibility.html
http://unobfuscated.blogspot.com/2015/03/polymer-and-web-component-accessibility.html
http://unobfuscated.blogspot.com/2015/03/polymer-and-web-component-accessibility.html
http://www.paciellogroup.com/blog/2014/09/web-components-punch-list/
http://www.paciellogroup.com/blog/2014/09/web-components-punch-list/
http://www.paciellogroup.com/blog/2014/09/web-components-punch-list/
https://www.polymer-project.org/0.5/articles/accessible-web-components.html
https://www.polymer-project.org/0.5/articles/accessible-web-components.html
https://www.polymer-project.org/0.5/articles/accessible-web-components.html
http://webaim.org/techniques/keyboard/tabindex
http://webaim.org/techniques/keyboard/tabindex
http://webaim.org/techniques/keyboard/tabindex
http://unobfuscated.blogspot.com/2015/03/polymer-and-web-component-accessibility.html
http://unobfuscated.blogspot.com/2015/03/polymer-and-web-component-accessibility.html
http://www.paciellogroup.com/blog/2014/09/web-components-punch-list/
http://www.paciellogroup.com/blog/2014/09/web-components-punch-list/
https://www.polymer-project.org/0.5/articles/accessible-web-components.html
https://www.polymer-project.org/0.5/articles/accessible-web-components.html
http://webaim.org/techniques/keyboard/tabindex
http://webaim.org/techniques/keyboard/tabindex

Focus Management
Closely related to interactivity but serving a slightly dif-
ferent purpose is focus management. The term “client-
rendered” refers partly to a single-page browsing experi-
ence where routing is handled with JavaScript and there
is no server-side page refresh. Portions of views could up-
date the URL and replace part or all of the DOM, includ-
ing where the user’s keyboard is currently focused. When
this happens, focus is easily lost, creating a pretty unus-
able experience for people who rely on a keyboard or
screen reader.

Imagine sorting a list with your keyboard’s arrow
keys. If the sorting action rebuilds the DOM, then the ele-
ment that you’re using will be rerendered, losing focus in
the process. Unless focus is deliberately sent back to the
element that was in use, you’d lose your place and have to
tab all the way down to the list from the top of the page
again. You might just leave the website at that point. Was
it an app you needed to use for work or to find an apart-
ment? That could be a problem.

In client-rendered frameworks, we are responsible for
ensuring that focus is not lost when rerendering the
DOM. The easy way to test this is to use your keyboard. If
you’re focused on an item and it gets rerendered, do you
bang your keyboard against the desk and start over at the
top of the page or gracefully continue on your way? Here
is one focus-management technique from Distiller85 us-

85. http://drinkdistiller.com

NOTES ON CLIENT-RENDERED ACCESSIBILITY

96

http://drinkdistiller.com
http://drinkdistiller.com
http://drinkdistiller.com
http://drinkdistiller.com
http://drinkdistiller.com

ing Spine, where focus is sent back into relevant content
after rendering:

class App.FocusManager

constructor:

$(‘body’).on ‘focusin’, (e) =>

@oldFocus = e.target

App.bind 'rendered', (e) =>

return unless @oldFocus

if @oldFocus.getAttribute('data-focus-id')

@_focusById()

else

@_focusByNodeEquality()

_focusById: ->

focusId = @oldFocus.getAttribute('data-focus-id')

newFocus = document.querySelector("##{focusId}")

App.focus(newFocus) if newFocus

_focusByNodeEquality: ->

allNodes = $('body *:visible').get()

for node in allNodes

if App.equalNodes(node, @oldFocus)

App.focus(node)

In this helper class, JavaScript (implemented in Coffee-
Script) binds a focusin listener to document.body that
checks anytime an element is focused, using event dele-
gation86, and it stores a reference to that focused element.
The helper class also subscribes to a Spine rendered

97

http://learn.jquery.com/events/event-delegation/
http://learn.jquery.com/events/event-delegation/
http://learn.jquery.com/events/event-delegation/
http://learn.jquery.com/events/event-delegation/

event, tapping into client-side rendering so that it can
gracefully handle focus. If an element was focused before
the rendering happened, it can focus an element in one of
two ways. If the old node is identical to a new one some-
where in the DOM, then focus is automatically sent to it.
If the node isn’t identical but has a data-focus-id attrib-
ute on it, then it looks up that id’s value and sends focus
to it instead. This second method is useful for when ele-
ments aren’t identical anymore because their text has
changed (for example, “item 1 of 5” becoming labeled off
screen as “item 2 of 5”).

Each JavaScript MV-whatever framework will require
a slightly different approach to focus management. Un-
fortunately, most of them won’t handle focus for you, be-
cause it’s hard for a framework to know what should be
focused upon rerendering. By testing rendering transi-
tions with your keyboard and making sure focus is not
dropped, you’ll be empowered to add support to your ap-
plication. If this sounds daunting, inquire in your frame-
work’s support community about how focus manage-
ment is typically handled (see React’s GitHub repo87 for
an example). There are people who can help!

Notifying The User
There is a debate about whether client-side frameworks
are actually good for users88, and plenty of people have an

86. http://learn.jquery.com/events/event-delegation/
87. https://github.com/facebook/react/issues/1791#issuecomment-82987932
88. http://tantek.com/2015/069/t1/js-dr-javascript-required-dead

NOTES ON CLIENT-RENDERED ACCESSIBILITY

98

https://github.com/facebook/react/issues/1791#issuecomment-82987932
https://github.com/facebook/react/issues/1791#issuecomment-82987932
https://github.com/facebook/react/issues/1791#issuecomment-82987932
http://tantek.com/2015/069/t1/js-dr-javascript-required-dead
http://tantek.com/2015/069/t1/js-dr-javascript-required-dead
http://tantek.com/2015/069/t1/js-dr-javascript-required-dead
http://tantek.com/2015/069/t1/js-dr-javascript-required-dead
https://adactio.com/journal/8245
http://learn.jquery.com/events/event-delegation/
http://learn.jquery.com/events/event-delegation/
https://github.com/facebook/react/issues/1791#issuecomment-82987932
https://github.com/facebook/react/issues/1791#issuecomment-82987932
http://tantek.com/2015/069/t1/js-dr-javascript-required-dead
http://tantek.com/2015/069/t1/js-dr-javascript-required-dead

opinion89 on them. Clearly, most client-rendered app
frameworks could improve the user experience by provid-
ing easy asynchronous UI filtering, form validation and
live content updates. To make these dynamic updates
more inclusive, developers should also update users of as-
sistive technologies when something is happening away
from their keyboard focus.

Imagine a scenario: You’re typing in an autocomplete
widget and a list pops up, filtering options as you type.
Pressing the down arrow key cycles through the available
options, one by one. One technique to announce these se-
lections would be to append messages to an ARIA live re-
gion90, a mechanism that screen readers can use to sub-
scribe to changes in the DOM. As long as the live region
exists when the element is rendered, any text appended
to it with JavaScript will be announced (meaning you
can’t add bind aria-live and add the first message at the
same time). This is essentially how Angular Material91’s
autocomplete handles dynamic screen-reader updates:

<md-autocomplete md-selected-item="ctrl.selectedItem"

aria-disabled="false">

<md-autocomplete-wrap role="listbox">

<input type="text" aria-label="{{ariaLabel}}"

aria-owns="ul_001">

</md-autocomplete-wrap>

<ul role="presentation" id="ul_001">

89. https://adactio.com/journal/8245
90. https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/

ARIA_Live_Regions
91. https://material.angularjs.org/

99

https://adactio.com/journal/8245
https://adactio.com/journal/8245
https://adactio.com/journal/8245
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Live_Regions
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Live_Regions
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Live_Regions
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Live_Regions
https://material.angularjs.org/
https://material.angularjs.org/
https://material.angularjs.org/
https://adactio.com/journal/8245
https://adactio.com/journal/8245
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Live_Regions
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Live_Regions
https://material.angularjs.org/
https://material.angularjs.org/

<li ng-repeat="(index, item) in

$mdAutocompleteCtrl.matches" role="option"

tabIndex="0">

<aria-status class="visually-hidden" role="alert">

<p ng-repeat="message in messages">{{message}}</p>

</aria-status>

</md-autocomplete>

In the simplified code above (the full directive92 and relat-
ed controller93 source are on GitHub), when a user types
in the md-autocomplete text input, list items for results
are added to a neighboring unordered list. Another neigh-
boring element, aria-status, gets its aria-live func-
tionality from the alert role. When results appear, a
message is appended to aria-status announcing the
number of items, “There is one match” or “There are four
matches,” depending on the number of options. When a
user arrows through the list, that item’s text is also ap-
pended to aria-status, announcing the currently high-
lighted item without the user having to move focus from
the input. By curating the list of messages sent to an ARIA
live region, we can implement an inclusive design that
goes far beyond the visual. Similar regions can be used to
validate forms.

For more information on accessible client-side valida-
tion, read Marco Zehe’s “Easy ARIA Tip #3: aria-invalid

92. https://github.com/angular/material/blob/master/src/components/
autocomplete/js/autocompleteDirective.js#L43

93. https://github.com/angular/material/blob/master/src/components/
autocomplete/js/autocompleteController.js

NOTES ON CLIENT-RENDERED ACCESSIBILITY

100

https://github.com/angular/material/blob/master/src/components/autocomplete/js/autocompleteDirective.js#L43
https://github.com/angular/material/blob/master/src/components/autocomplete/js/autocompleteDirective.js#L43
https://github.com/angular/material/blob/master/src/components/autocomplete/js/autocompleteDirective.js#L43
https://github.com/angular/material/blob/master/src/components/autocomplete/js/autocompleteController.js
https://github.com/angular/material/blob/master/src/components/autocomplete/js/autocompleteController.js
https://github.com/angular/material/blob/master/src/components/autocomplete/js/autocompleteController.js
https://github.com/angular/material/blob/master/src/components/autocomplete/js/autocompleteController.js
https://www.marcozehe.de/2008/07/16/easy-aria-tip-3-aria-invalid-and-role-alert/
https://github.com/angular/material/blob/master/src/components/autocomplete/js/autocompleteDirective.js#L43
https://github.com/angular/material/blob/master/src/components/autocomplete/js/autocompleteDirective.js#L43
https://github.com/angular/material/blob/master/src/components/autocomplete/js/autocompleteController.js
https://github.com/angular/material/blob/master/src/components/autocomplete/js/autocompleteController.js

and Role alert94” or Deque’s post on accessible forms95.

Conclusion
So far, we’ve talked about accessibility with screen read-
ers and keyboards. Also consider readability: This in-
cludes color contrast, readable fonts and obvious interac-
tions. In client-rendered applications, all of the typical
web accessibility principles96 apply, in addition to the
specific ones outlined above. The resources listed below
will help you incorporate accessibility in your current or
next project.

It is up to us as developers and designers to ensure
that everyone can use our web applications. By knowing
what makes an accessible user experience, we can serve a
lot more people, and possibly even make their lives better.
We need to remember that client-rendered frameworks
aren’t always the right tool for the job. There are plenty of
legitimate use cases for them, hence their popularity.
There are definitely drawbacks to rendering everything
on the client97. However, even as solutions for seamless
server- and client-side rendering improve over time, these
same accessibility principles of focus management, se-
mantics and alerting the user will remain true, and they
will enable more people to use your apps. Isn’t it cool that

94. https://www.marcozehe.de/2008/07/16/easy-aria-tip-3-aria-invalid-and-role-
alert/

95. http://www.deque.com/blog/accessible-client-side-form-validation-html5-wai-
aria/

96. http://webaim.org/intro/
97. http://alistapart.com/article/let-links-be-links

101

https://www.marcozehe.de/2008/07/16/easy-aria-tip-3-aria-invalid-and-role-alert/
https://www.marcozehe.de/2008/07/16/easy-aria-tip-3-aria-invalid-and-role-alert/
https://www.marcozehe.de/2008/07/16/easy-aria-tip-3-aria-invalid-and-role-alert/
http://www.deque.com/blog/accessible-client-side-form-validation-html5-wai-aria/
http://www.deque.com/blog/accessible-client-side-form-validation-html5-wai-aria/
http://www.deque.com/blog/accessible-client-side-form-validation-html5-wai-aria/
http://webaim.org/intro/
http://webaim.org/intro/
http://webaim.org/intro/
http://alistapart.com/article/let-links-be-links
http://alistapart.com/article/let-links-be-links
http://alistapart.com/article/let-links-be-links
http://alistapart.com/article/let-links-be-links
https://www.marcozehe.de/2008/07/16/easy-aria-tip-3-aria-invalid-and-role-alert/
https://www.marcozehe.de/2008/07/16/easy-aria-tip-3-aria-invalid-and-role-alert/
http://www.deque.com/blog/accessible-client-side-form-validation-html5-wai-aria/
http://www.deque.com/blog/accessible-client-side-form-validation-html5-wai-aria/
http://webaim.org/intro/
http://webaim.org/intro/
http://alistapart.com/article/let-links-be-links
http://alistapart.com/article/let-links-be-links

we can use our craft to help people through technology?

Resources

• “Web Accessibility for Designers98,” WebAIM

• Accessibility Developer Tools99,” Chrome plugin

• “Using WAI-ARIA in HTML100,” W3C

• “How I Audit a Website for Accessibility101,” Marcy Sut-
ton, Substantial

• “Using ngAria102,” Marcy Sutton

• “Protractor Accessibility Plugin103,” Marcy Sutton
Protractor is AngularJS’ end-to-end testing framework.❧

Thanks to Heydon Pickering for reviewing this article.

98. http://webaim.org/resources/designers/
99. https://chrome.google.com/webstore/detail/accessibility-developer-t/

fpkknkljclfencbdbgkenhalefipecmb
100. http://www.w3.org/TR/aria-in-html/
101. http://substantial.com/blog/2014/07/22/how-i-audit-a-website-for-accessibility/
102. http://angularjs.blogspot.com/2014/11/using-ngaria.html
103. http://marcysutton.com/angular-protractor-accessibility-plugin/

NOTES ON CLIENT-RENDERED ACCESSIBILITY

102

http://webaim.org/resources/designers/
http://webaim.org/resources/designers/
http://webaim.org/resources/designers/
https://chrome.google.com/webstore/detail/accessibility-developer-t/fpkknkljclfencbdbgkenhalefipecmb
https://chrome.google.com/webstore/detail/accessibility-developer-t/fpkknkljclfencbdbgkenhalefipecmb
https://chrome.google.com/webstore/detail/accessibility-developer-t/fpkknkljclfencbdbgkenhalefipecmb
http://www.w3.org/TR/aria-in-html/
http://www.w3.org/TR/aria-in-html/
http://www.w3.org/TR/aria-in-html/
http://substantial.com/blog/2014/07/22/how-i-audit-a-website-for-accessibility/
http://substantial.com/blog/2014/07/22/how-i-audit-a-website-for-accessibility/
http://substantial.com/blog/2014/07/22/how-i-audit-a-website-for-accessibility/
http://angularjs.blogspot.com/2014/11/using-ngaria.html
http://angularjs.blogspot.com/2014/11/using-ngaria.html
http://angularjs.blogspot.com/2014/11/using-ngaria.html
http://marcysutton.com/angular-protractor-accessibility-plugin/
http://marcysutton.com/angular-protractor-accessibility-plugin/
http://marcysutton.com/angular-protractor-accessibility-plugin/
http://webaim.org/resources/designers/
http://webaim.org/resources/designers/
https://chrome.google.com/webstore/detail/accessibility-developer-t/fpkknkljclfencbdbgkenhalefipecmb
https://chrome.google.com/webstore/detail/accessibility-developer-t/fpkknkljclfencbdbgkenhalefipecmb
http://www.w3.org/TR/aria-in-html/
http://www.w3.org/TR/aria-in-html/
http://substantial.com/blog/2014/07/22/how-i-audit-a-website-for-accessibility/
http://substantial.com/blog/2014/07/22/how-i-audit-a-website-for-accessibility/
http://angularjs.blogspot.com/2014/11/using-ngaria.html
http://angularjs.blogspot.com/2014/11/using-ngaria.html
http://marcysutton.com/angular-protractor-accessibility-plugin/
http://marcysutton.com/angular-protractor-accessibility-plugin/

Design Accessibly,
See Differently: Color
Contrast Tips And Tools

BY CATHY O'CONNORBY CATHY O'CONNOR ❧❧

When you browse your favorite website or check the lat-
est version of your product on your device of choice, take
a moment to look at it differently. Step back from the
screen. Close your eyes slightly so that your vision is a bit
clouded by your eyelashes.

• Can you still see and use the website?

• Are you able to read the labels, fields, buttons, navigation
and small footer text?

• Can you imagine how someone who sees differently
would read and use it?

Web page viewed with NoCoffee low-vision simulation.

103

In this article, I’ll share one aspect of design accessibility:
making sure that the look and feel (the visual design of
the content) are sufficiently inclusive of differently sight-
ed users.

I am a design consultant on PayPal’s accessibility
team. I assess how our product designs measure up to the
Web Content Accessibility Guidelines (WCAG) 2.0, and I
review our company’s design patterns and best practices.

I created our “Designers’ Accessibility Checklist,” and I
will cover one of the most impactful guidelines on the
checklist in this article: making sure that there is suffi-
cient color contrast for all content. I’ll share the strategies,
tips and tools that I use to help our teams deliver designs
that most people can see and use without having to cus-
tomize the experiences.

Our goal is to make sure that all visual designs meet
the minimum color-contrast ratio for normal and large
text on a background, as described in the WCAG 2.0, Level
AA, “Contrast (Minimum): Understanding Success Crite-
rion 1.4.3104.”

Who benefits from designs that have sufficient con-
trast? Quoting from the WCAG’s page:

The 4.5:1 ratio is used in this provision to account for the
loss in contrast that results from moderately low visual
acuity, congenital or acquired color deficiencies, or the
loss of contrast sensitivity that typically accompanies
aging.

104. http://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-
contrast.html

DESIGN ACCESSIBLY,SEE DIFFERENTLY: COLOR CONTRAST TIPS AND
TOOLS

104

http://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
http://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
http://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
http://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
http://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
http://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html

As an accessibility consultant, I’m often asked how many
people with disabilities use our products. Website analyt-
ics do not reveal this information. Let’s estimate how
many people could benefit from designs with sufficient
color contrast by reviewing the statistics:

• 15% of the world’s population have some form of disabili-
ty105, which includes conditions that affect seeing, hear-
ing, motor abilities and cognitive abilities.

• About 4% of the population have low vision, whereas 0.6%
are blind.

• 7 to 12% of men have some form of color-vision deficiency
(color blindness), and less than 1% of women do.

• Low-vision conditions increase with age, and half of peo-
ple over the age of 50 have some degree of low-vision
condition.

• Worldwide, the fastest-growing population is 60 years of
age and older106.

• Over the age of 40, most everyone will find that they need
reading glasses or bifocals to clearly see small objects or
text, a condition caused by the natural aging process,
called presbyopia107.

105. http://www.who.int/mediacentre/factsheets/fs352/en/
106. http://www.un.org/esa/population/publications/worldageing19502050/
107. http://www.mayoclinic.org/diseases-conditions/presbyopia/basics/causes/

con-20032261

105

http://www.who.int/mediacentre/factsheets/fs352/en/
http://www.who.int/mediacentre/factsheets/fs352/en/
http://www.who.int/mediacentre/factsheets/fs352/en/
http://www.who.int/mediacentre/factsheets/fs352/en/
http://www.un.org/esa/population/publications/worldageing19502050/
http://www.un.org/esa/population/publications/worldageing19502050/
http://www.un.org/esa/population/publications/worldageing19502050/
http://www.un.org/esa/population/publications/worldageing19502050/
http://www.mayoclinic.org/diseases-conditions/presbyopia/basics/causes/con-20032261
http://www.mayoclinic.org/diseases-conditions/presbyopia/basics/causes/con-20032261
http://www.mayoclinic.org/diseases-conditions/presbyopia/basics/causes/con-20032261
http://www.who.int/mediacentre/factsheets/fs352/en/
http://www.who.int/mediacentre/factsheets/fs352/en/
http://www.un.org/esa/population/publications/worldageing19502050/
http://www.un.org/esa/population/publications/worldageing19502050/
http://www.mayoclinic.org/diseases-conditions/presbyopia/basics/causes/con-20032261
http://www.mayoclinic.org/diseases-conditions/presbyopia/basics/causes/con-20032261

Let’s estimate that 10% of the world population would
benefit from designs that are easier to see. Multiply that
by the number of customers or potential customers who
use your website or application. For example, out of 2 mil-
lion online customers, 200,000 would benefit.

Some age-related low-vision conditions108 include the
following:

• Macular degeneration
Up to 50% of people are affected by age-related vision
loss.

• Diabetic retinopathy
In people with diabetes, leaking blood vessels in the eyes
can cloud vision and cause blind spots.

• Cataracts
Cataracts clouds the lens of the eye and decreases visual
acuity.

• Retinitis pigmentosa
This inherited condition gradually causes a loss of vision.

All of these conditions reduce sensitivity to contrast, and
in some cases reduce the ability to distinguish colors.

Color-vision deficiencies, also called color-blindness,
are mostly inherited and can be caused by side effects of
medication and age-related low-vision conditions.

108. https://www.nei.nih.gov/healthyeyes/aging_eye.asp

DESIGN ACCESSIBLY,SEE DIFFERENTLY: COLOR CONTRAST TIPS AND
TOOLS

106

https://www.nei.nih.gov/healthyeyes/aging_eye.asp
https://www.nei.nih.gov/healthyeyes/aging_eye.asp
https://www.nei.nih.gov/healthyeyes/aging_eye.asp
https://www.nei.nih.gov/healthyeyes/aging_eye.asp
https://www.nei.nih.gov/healthyeyes/aging_eye.asp

Here are the types of color-vision deficiencies109:

• Deuteranopia
This is the most common and entails a reduced sensitivi-
ty to green light.

• Protanopia
This is a reduced sensitivity to red light.

• Tritanopia
This is a reduced sensitivity to blue light, but not very
common.

• Achromatopsia
People with this condition cannot see color at all, but it is
not very common.

Reds and greens or colors that contain red or green can be
difficult to distinguish for people with deuteranopia or
protanopia.

Experience Seeing Differently
Creating a checklist and asking your designers to use it is
easy, but in practice how do you make sure everyone fol-
lows the guidelines? We’ve found it important for design-
ers not only to intellectually understand the why, but to
experience for themselves what it is like to see different-
ly. I’ve used a couple of strategies: immersing designers
in interactive experiences through our Accessibility

109. http://webaim.org/articles/visual/colorblind

107

http://webaim.org/articles/visual/colorblind
http://webaim.org/articles/visual/colorblind
http://webaim.org/articles/visual/colorblind
http://webaim.org/articles/visual/colorblind
http://webaim.org/articles/visual/colorblind

Showcase, and showing what designs look like using soft-
ware simulations.

In mid-2013, we opened our PayPal Accessibility Show-
case110 (video). Employees get a chance to experience first-
hand what it is like for people with disabilities to use our
products by interacting with web pages using goggles
and/or assistive technology. We require that everyone
who develops products participates in a tour. The user
scenarios for designing with sufficient color contrast in-
clude wearing goggles that simulate conditions of low or
partial vision and color deficiencies. Visitors try out these
experiences on a PC, Mac or tablet. For mobile experi-
ences, visitors wear the goggles and use their own mobile
devices.

Fun fact: One wall in the showcase was painted with
magnetic paint. The wall contains posters, messages and
concepts that we want people to remember. At the end of

Showcase visitors wear goggles that simulate low-vision and color-blind-
ness conditions.

110. https://www.youtube.com/watch?feature=player_embedded&v=7MyHZofcN
nk

DESIGN ACCESSIBLY,SEE DIFFERENTLY: COLOR CONTRAST TIPS AND
TOOLS

108

https://www.youtube.com/watch?feature=player_embedded&v=7MyHZofcNnk
https://www.youtube.com/watch?feature=player_embedded&v=7MyHZofcNnk
https://www.youtube.com/watch?feature=player_embedded&v=7MyHZofcNnk
https://www.youtube.com/watch?feature=player_embedded&v=7MyHZofcNnk
https://www.youtube.com/watch?feature=player_embedded&v=7MyHZofcNnk
https://www.youtube.com/watch?feature=player_embedded&v=7MyHZofcNnk

the tour, I demonstrate vision simulators on our tablet. I
view the message wall with the simulators to emphasize
the importance of sufficient color contrast.

Software Simulators

MOBILE APPSMOBILE APPS

Free mobile apps are available for iOS and Android de-
vices:

• Chromatic Vision Simulator
Kazunori Asada’s app simulates three forms of color defi-
ciencies: protanope (protanopia), deuteranope (deutera-
nopia) and tritanope (tritanopia). You can view and then

Some of the goggles used in the Accessibility Showcase.

109

save simulations using the camera feature, which takes a
screenshot in the app. (Available for iOS111 and Android112.)

• VisionSim
The Braille Institute’s app simulates a variety of low-vi-
sion conditions and provides a list of causes and symp-
toms for each condition. You can view and then save sim-
ulations using the camera feature, which takes a screen-
shot in the app. (Available for iOS113 and Android114.)

CHROMATIC VISION SIMULATORCHROMATIC VISION SIMULATOR

The following photos show orange and green buttons
viewed through the Chromatic Vision Simulator:

Seen through Chromatic Vision Simulator, the green and orange buttons
show normal (C) and protanope (P).

111. https://itunes.apple.com/us/app/chromatic-vision-simulator/id389310222?mt=8
112. https://play.google.com/store/apps/details?id=asada0.android.cvsimulator&

hl=en
113. https://itunes.apple.com/us/app/visionsim-by-braille-institute/

id525114829?mt=8
114. https://play.google.com/store/apps/details?id=com.BrailleIns.VisionSim&hl=en

DESIGN ACCESSIBLY,SEE DIFFERENTLY: COLOR CONTRAST TIPS AND
TOOLS

110

https://itunes.apple.com/us/app/chromatic-vision-simulator/id389310222?mt=8
https://itunes.apple.com/us/app/chromatic-vision-simulator/id389310222?mt=8
https://itunes.apple.com/us/app/chromatic-vision-simulator/id389310222?mt=8
https://play.google.com/store/apps/details?id=asada0.android.cvsimulator&hl=en
https://play.google.com/store/apps/details?id=asada0.android.cvsimulator&hl=en
https://play.google.com/store/apps/details?id=asada0.android.cvsimulator&hl=en
https://itunes.apple.com/us/app/visionsim-by-braille-institute/id525114829?mt=8
https://itunes.apple.com/us/app/visionsim-by-braille-institute/id525114829?mt=8
https://itunes.apple.com/us/app/visionsim-by-braille-institute/id525114829?mt=8
https://play.google.com/store/apps/details?id=com.BrailleIns.VisionSim&hl=en
https://play.google.com/store/apps/details?id=com.BrailleIns.VisionSim&hl=en
https://play.google.com/store/apps/details?id=com.BrailleIns.VisionSim&hl=en
https://itunes.apple.com/us/app/chromatic-vision-simulator/id389310222?mt=8
https://itunes.apple.com/us/app/chromatic-vision-simulator/id389310222?mt=8
https://play.google.com/store/apps/details?id=asada0.android.cvsimulator&hl=en
https://play.google.com/store/apps/details?id=asada0.android.cvsimulator&hl=en
https://itunes.apple.com/us/app/visionsim-by-braille-institute/id525114829?mt=8
https://itunes.apple.com/us/app/visionsim-by-braille-institute/id525114829?mt=8
https://play.google.com/store/apps/details?id=com.BrailleIns.VisionSim&hl=en
https://play.google.com/store/apps/details?id=com.BrailleIns.VisionSim&hl=en

This example highlights the importance of another de-
sign accessibility guideline: Do not use color alone to con-
vey meaning. If these buttons were online icons repre-
senting a system’s status (such as up or down), some peo-
ple would have difficulty understanding it because there
is no visible text and the shapes are the same. In this sce-
nario, include visible text (i.e. text labels), as shown in the
following example:

MOBILE DEVICE SIMULATIONSMOBILE DEVICE SIMULATIONS

Checking for sufficient color contrast becomes even more
important on mobile devices. Viewing mobile applica-

Seen through Chromatic Vision Simulator, the green and orange buttons
show deuteranope (D) and tritanope (T).

The green and orange buttons are viewed in Photoshop with deuteranopia
soft proof and normal (text labels added).

111

tions through VisionSim or Chromatic Vision Simulator
is easy if you have two mobile phones. View the mobile
app that you want to test on the second phone running
the simulator.

If you only have one mobile device, you can do the fol-
lowing:

1. Take screenshots of the mobile app on the device using
the built-in camera.

2. Save the screenshots to a laptop or desktop.

3. Open and view the screenshots on the laptop, and use the
simulators on the mobile device to view and save the sim-
ulations.

HOW’S THE WEATHER IN CUPERTINO?HOW’S THE WEATHER IN CUPERTINO?

The following example highlights the challenges of using
a photograph as a background while making essential in-
formation easy to see. Notice that the large text and bold
text are easier to see than the small text and small icons.

The Weather mobile app, viewed with Chromatic Vision Simulator, shows
normal, deuteranope, protanope and tritanope simulations.

DESIGN ACCESSIBLY,SEE DIFFERENTLY: COLOR CONTRAST TIPS AND
TOOLS

112

LOW-VISION SIMULATIONSLOW-VISION SIMULATIONS

Using the VisionSim app, you can simulate macular de-
generation, diabetic retinopathy, retinitis pigmentosa and
cataracts.

Adobe Photoshop
PayPal’s teams use Adobe Photoshop to design the look
and feel of our user experiences. To date, a color-contrast
ratio checker or tester is not built into Photoshop. But de-
signers can use a couple of helpful features in Photoshop
to check their designs for sufficient color contrast:

• Convert designs to grayscale by going to “Select View” →
“Image” → “Adjustments” → “Grayscale.”

• Simulate color blindness conditions by going to “Select
View” → “Proof Setup” → “Color Blindness” and choosing
protanopia type or deuteranopia type. Adobe provides
soft-proofs for color blindness115.

The Weather mobile app is being viewed with the supported condition
simulations.

113

http://help.adobe.com/en_US/creativesuite/cs/using/WS3F71DA01-0962-4b2e-B7FD-C956F8659BB3.html#WS473A333A-7F61-4aba-8F67-5553208E349C
http://help.adobe.com/en_US/creativesuite/cs/using/WS3F71DA01-0962-4b2e-B7FD-C956F8659BB3.html#WS473A333A-7F61-4aba-8F67-5553208E349C
http://help.adobe.com/en_US/creativesuite/cs/using/WS3F71DA01-0962-4b2e-B7FD-C956F8659BB3.html#WS473A333A-7F61-4aba-8F67-5553208E349C

EXAMPLESEXAMPLES

If you’re designing with gradient backgrounds, verify
that the color-contrast ratio passes for the text color and
background color on both the lightest and darkest part of
the gradient covered by the content or text.

In the following example of buttons, the first button
has white text on a background with an orange gradient,
which does not meet the minimum color-contrast ratio. A
couple of suggested improvements are shown:

• add a drop-shadow color that passes (center button),

• change the text to a color that passes (third button).

Button with gradients: normal view; view in grayscale; and as a proof,
deuteranopia.

115. http://help.adobe.com/en_US/creativesuite/cs/using/WS3F71DA01-0962-4b2e-
B7FD-C956F8659BB3.html#WS473A333A-7F61-4aba-8F67-5553208E349C

DESIGN ACCESSIBLY,SEE DIFFERENTLY: COLOR CONTRAST TIPS AND
TOOLS

114

http://help.adobe.com/en_US/creativesuite/cs/using/WS3F71DA01-0962-4b2e-B7FD-C956F8659BB3.html#WS473A333A-7F61-4aba-8F67-5553208E349C
http://help.adobe.com/en_US/creativesuite/cs/using/WS3F71DA01-0962-4b2e-B7FD-C956F8659BB3.html#WS473A333A-7F61-4aba-8F67-5553208E349C

Checking in Photoshop with the grayscale and deutera-
nopia proof, the modified versions with the drop shadow
and dark text are easier to read than the white text.

If you design in sizes larger than actual production
sizes, make sure to check how the design will appear in
the actual web page or mobile device.

In the following example of a form, the body text and
link text pass the minimum color-contrast ratio for both
the white and the gray background. I advise teams to al-
ways check the color contrast of text and links against all
background colors that are part of the experience.

Even though the “Sign Up” link passes, if we view the
experience in grayscale or with proof deuteranopia, dis-
tinguishing that “Sign Up” is a link might be difficult. To
improve the affordance of “Sign Up” as a link, underline
the link or link the entire phrase, “New to PayPal? Sign
Up.”

Because red and green can be more difficult to distin-
guish for people with conditions such as deuteranopia
and protanopia, should we avoid using them? Not neces-
sarily. In the following example, a red minus sign (“-”) in-

Form example: normal view; in Photoshop, a view in grayscale; and as a
proof, deuteranopia.

115

dicates purchasing or making a payment. Money re-
ceived or refunded is indicated by a green plus sign (“+”).
Viewing the design with proof, deuteranopia, the colors
are not easy to distinguish, but the shapes are legible and
unique. Next to the date, the description describes the
type of payment. Both shape and content provide context
for the information.

Also shown in this example, the rows for purchases
and refunds alternate between white and light-gray back-
grounds. If the same color text is used for both back-
grounds, verify that all of the text colors pass for both
white and gray backgrounds.

In some applications, form fields and/or buttons may be
disabled until information has been entered by the user.

Normal view and as a proof, deuteranopia: Check the text against the al-
ternating background colors.

DESIGN ACCESSIBLY,SEE DIFFERENTLY: COLOR CONTRAST TIPS AND
TOOLS

116

Our design guidance does not require disabled elements
to pass, in accordance with the WCAG 2.0’s “Contrast
(Minimum): Understanding Success Criterion 1.4.3116:

Incidental: Text or images of text that are part of an in-
active user interface component,… have no contrast re-
quirement.

In the above example of a mobile app’s form, the button is
disabled until a phone number and PIN have been en-

Mobile app form showing disabled fields and button (left) and then en-
abled (right).

116. http://www.w3.org/TR/2014/NOTE-UNDERSTANDING-WCAG20-20140311/
visual-audio-contrast-contrast.html

117

http://www.w3.org/TR/2014/NOTE-UNDERSTANDING-WCAG20-20140311/visual-audio-contrast-contrast.html
http://www.w3.org/TR/2014/NOTE-UNDERSTANDING-WCAG20-20140311/visual-audio-contrast-contrast.html
http://www.w3.org/TR/2014/NOTE-UNDERSTANDING-WCAG20-20140311/visual-audio-contrast-contrast.html
http://www.w3.org/TR/2014/NOTE-UNDERSTANDING-WCAG20-20140311/visual-audio-contrast-contrast.html
http://www.w3.org/TR/2014/NOTE-UNDERSTANDING-WCAG20-20140311/visual-audio-contrast-contrast.html
http://www.w3.org/TR/2014/NOTE-UNDERSTANDING-WCAG20-20140311/visual-audio-contrast-contrast.html

tered. The text labels for the fields are a very light gray
over a white background, which does not pass the mini-
mum color-contrast ratio.

If the customer interprets that form elements with
low contrast are disabled, would they assume that the en-
tire form is disabled?

The same mobile app form is shown in a size closer to
what I see on my phone in the following example. At a
minimum, the text color needs to be changed or darkened
to pass the minimum color-contrast ratio for normal body
text and to improve readability.

To help distinguish between labels in fields and user-
entered information, try to explore alternative visual
treatments of form fields. Consider reversing foreground
and background colors or using different font styles for
labels and for user-entered information.

Mobile app form example: normal, grayscale and proof deuteranopia.

DESIGN ACCESSIBLY,SEE DIFFERENTLY: COLOR CONTRAST TIPS AND
TOOLS

118

NoCoffee Vision Simulator for Chrome
NoCoffee Vision Simulator117 can be used to simulate
color-vision deficiencies and low-vision conditions on
any pages that are viewable in the Chrome browser. Us-
ing the “Color Deficiency” setting “achromatopsia,” you
can view web pages in grayscale.

The following example shows the same photograph
(featuring a call to action) viewed with some of the simu-
lations available in NoCoffee.

Simulating achromatopsia (no color), deuteranopia, protanopia using
NoCoffee.

117. https://chrome.google.com/webstore/search/NoCoffee%20Vision%20
Simulator?hl=en&gl=US

119

https://chrome.google.com/webstore/search/NoCoffee%20Vision%20Simulator?hl=en&gl=US
https://chrome.google.com/webstore/search/NoCoffee%20Vision%20Simulator?hl=en&gl=US
https://chrome.google.com/webstore/search/NoCoffee%20Vision%20Simulator?hl=en&gl=US
https://chrome.google.com/webstore/search/NoCoffee%20Vision%20Simulator?hl=en&gl=US
https://chrome.google.com/webstore/search/NoCoffee%20Vision%20Simulator?hl=en&gl=US

The message and call to action are separated from the
background image by a practically opaque black contain-
er. This improves readability of the message and call to
action. Testing the color contrast of the blue color in the
headline against solid black passes for large text. Note
that the link “Mobile” is not as easy to see because the
blue does not pass the color-contrast standard for small
body text. Possible improvements could be to change the
link color to white and underline it, and/or make the en-
tire phrase “Read more about Mobile” a link.

Using Simulators
Simulators are useful tools to visualize how a design
might be viewed by people who are aging, have low-vi-
sion conditions or have color-vision deficiencies.

For design reviews, I use the simulators to mock up a
design in grayscale, and I might use color-blindness fil-
ters to show designers possible problems with color con-
trast. Some of the questions I ask are:

Simulating low visual acuity, diabetic retinopathy, macular degeneration
and low visual acuity plus retinitus pigmentosa, using NoCoffee.

DESIGN ACCESSIBLY,SEE DIFFERENTLY: COLOR CONTRAST TIPS AND
TOOLS

120

• Is anything difficult to read?

• Is the call to action easy to find and read?

• Are links distinguishable from other content?

After learning how to use simulators to build empathy
and to see their designs differently, I ask designers to use
tools to check color contrast to verify that all of their de-
signs meet the minimum color-contrast ratio of the
WCAG 2.0 AA. The checklist includes a couple of tools
they can use to test their designs.

Color-Contrast Ratio Checkers
The tools we cite in the designers’ checklist are these:

• WebAIM Color Contrast Checker118, a browser-based tool,
tests color codes specified in hexadecimal values.

• The Paciello Group’s Colour Contrast Checker119, an appli-
cation available for Macs or PCs, tests color codes speci-
fied in RGB values.

There are many tools to check color contrast, including
ones that check live products. I’ve kept the list short to
make it easy for designers to know what to use and to al-
low for consistent test results.

118. http://webaim.org/resources/contrastchecker
119. http://paciellogroup.com/resources/contrastAnalyser

121

http://webaim.org/resources/contrastchecker
http://webaim.org/resources/contrastchecker
http://webaim.org/resources/contrastchecker
http://paciellogroup.com/resources/contrastAnalyser
http://paciellogroup.com/resources/contrastAnalyser
http://paciellogroup.com/resources/contrastAnalyser
http://webaim.org/resources/contrastchecker
http://webaim.org/resources/contrastchecker
http://paciellogroup.com/resources/contrastAnalyser
http://paciellogroup.com/resources/contrastAnalyser

Our goal is to meet the WCAG 2.0 AA color-contrast ra-
tio, which is 4.5 to 1 for normal text and 3 to 1 for large
text.

What are the minimum sizes for normal text and large
text? The guidance provides recommendations on size ra-
tios in the WCAG’s Contrast (Minimum): Understanding
Success Criterion 1.4.3120 but not a rule for a minimum
size for body text. As noted in the WCAG’s guidance, thin
decorative fonts might need to be larger and/or bold.

TESTING COLOR-CONTRAST RATIOTESTING COLOR-CONTRAST RATIO

You should test:

• early in the design process;

• when creating a visual design specification for any prod-
uct or service (this documents all of the color codes and
the look and feel of the user experience);

• all new designs that are not part of an existing visual de-
sign guideline.

TEST HEXADECIMAL COLOR CODES FOR WEBTEST HEXADECIMAL COLOR CODES FOR WEB
DESIGNSDESIGNS

Let’s use the WebAIM Color Contrast Checker121 to test
sample body-text colors on a white background
(#FFFFFF):

120. http://www.w3.org/TR/2014/NOTE-UNDERSTANDING-WCAG20-20140311/
visual-audio-contrast-contrast.html

121. http://webaim.org/resources/contrastchecker

DESIGN ACCESSIBLY,SEE DIFFERENTLY: COLOR CONTRAST TIPS AND
TOOLS

122

http://www.w3.org/TR/2014/NOTE-UNDERSTANDING-WCAG20-20140311/visual-audio-contrast-contrast.html
http://www.w3.org/TR/2014/NOTE-UNDERSTANDING-WCAG20-20140311/visual-audio-contrast-contrast.html
http://www.w3.org/TR/2014/NOTE-UNDERSTANDING-WCAG20-20140311/visual-audio-contrast-contrast.html
http://www.w3.org/TR/2014/NOTE-UNDERSTANDING-WCAG20-20140311/visual-audio-contrast-contrast.html
http://webaim.org/resources/contrastchecker
http://webaim.org/resources/contrastchecker
http://webaim.org/resources/contrastchecker
http://www.w3.org/TR/2014/NOTE-UNDERSTANDING-WCAG20-20140311/visual-audio-contrast-contrast.html
http://www.w3.org/TR/2014/NOTE-UNDERSTANDING-WCAG20-20140311/visual-audio-contrast-contrast.html
http://webaim.org/resources/contrastchecker
http://webaim.org/resources/contrastchecker

• dark-gray text (#333333).

• medium-gray text (#666666).

• light-gray text (#999999).

We want to make sure that body and normal text passes
the WCAG 2.0 AA. Note that light gray (#999999) does not
pass on a white background (#FFFFFF).

In the tool, you can modify the light gray (#999999) to
find a color that does pass the AA. Select the “Darken” op-
tion to slightly change the color until it passes. By click-
ing the color field, you will have more options, and you
can change color and luminosity, as shown in the second
part of this example.

Test dark-gray, medium-gray and light-gray using the WebAim Color
Contrast Checker.

123

Tabular information may be designed with alternating
white and gray backgrounds to improve readability. Let’s
test medium-gray text (#666666) and light-gray text
(#757575) on a gray background (#E6E6E6).

Note that with the same background, the medium text
passes, but the lighter gray passes only for large text. In
this case, use medium gray for body text instead of white
or gray backgrounds. Use the lighter gray only for large
text, such as headings on white and gray backgrounds.

In the WebAim Color Contrast Checker, modify the light gray using the
“Darken” option, or use the color palette to find a color that passes.

Test light-gray and medium-gray text on a gray background.

DESIGN ACCESSIBLY,SEE DIFFERENTLY: COLOR CONTRAST TIPS AND
TOOLS

124

TEST RGB COLOR CODESTEST RGB COLOR CODES

For mobile applications, designers might use RGB color
codes to specify visual designs for engineering. You can
use the TPG Colour Contrast Checker122. you will need to
install either the PC or Mac version and run it side by side
with Photoshop.

Let’s use the Colour Contrast Checker to test medium-
gray text (102 102 102 in RGB and #666666 in hexadeci-
mal) and light-gray text (#757575 in hexadecimal) on a
gray background (230 230 230 in RGB and #E6E6E6 in
hexadecimal).

1. Open the Colour Contrast Checker application.

2. Select “Options” → “Displayed Color Values” → “RGB.”

3. Under “Algorithm,” select “Luminosity.”

4. Enter the foreground and background colors in RGB: 102
102 102 for foreground and 230 230 230 for background.
Mouse click or tab past the fields to view the results. Note
that this combination passes for both text and large text
(AA).

5. Select “Show details” to view the hexadecimal color val-
ues and information about both AA and AAA require-
ments.

122. http://paciellogroup.com/resources/contrastAnalyser

125

http://paciellogroup.com/resources/contrastAnalyser
http://paciellogroup.com/resources/contrastAnalyser
http://paciellogroup.com/resources/contrastAnalyser
http://paciellogroup.com/resources/contrastAnalyser
http://paciellogroup.com/resources/contrastAnalyser

In our example, light-gray text (117 117 117 in RGB) on a
gray background (230 230 230 in RGB) does not meet the
minimum AA contrast ratio for body text. To modify the
colors, view the color wheels by clicking in the “Color” se-
lect box to modify the foreground or background. Or you
can select “Options” → “Show Color Sliders,” as shown in
the example.

Colour Contrast Analyser, and color wheel to modify colors.

DESIGN ACCESSIBLY,SEE DIFFERENTLY: COLOR CONTRAST TIPS AND
TOOLS

126

In most cases, minor adjustments to colors will meet the
minimum contrast ratio, and comparisons before and af-
ter will show how better contrast enables most people to
see and read more easily.

Colour Contrast Analyser, with RGB codes. Show color sliders to modify
any color that does not meet minimum AA guidelines.

127

Best Practices
Test for color-contrast ratio, and document the styles and
color codes used for all design elements. Create a visual
design specification that includes the following:

• typography for all textual elements, including headings,
text links, body text and formatted text;

• icons and glyphs and text equivalents;

• form elements, buttons, validation and system error mes-
saging;

• background color and container styles (making sure text
on these backgrounds all pass);

• the visual treatments for disabled links, form elements
and buttons (which do not need to pass a minimum color-
contrast ratio).

Documenting visual guidelines for developers brings sev-
eral benefits:

• Developers don’t have to guess what the designers want.

• Designs can be verified against the visual design specifi-
cation during quality testing cycles, by engineers and de-
signers.

• A reference point that meets design accessibility guide-
lines for color contrast can be shared and leveraged by
other teams.

DESIGN ACCESSIBLY,SEE DIFFERENTLY: COLOR CONTRAST TIPS AND
TOOLS

128

Summary
If you are a designer, try out the simulators and tools on
your next design project. Take time to see differently.
One of the stellar designers who reviewed my checklist
told me a story about using Photoshop’s color-blindness
proofs. On his own, he used the proofs to refine the colors
used in a design for his company’s product. When the re-
designed product was released, his CEO thanked him be-
cause it was the first time he was able to see the design.
The CEO shared that he was color-blind. In many cases,
you may be unaware that your colleague, leader or cus-
tomers have moderate low-vision or color-vision deficien-
cies. If meeting the minimum color-contrast ratio for a
particular design element is difficult, take the challenge
of thinking beyond color. Can you innovate so that most
people can pick up and use your application without hav-
ing to customize it?

If you are responsible for encouraging teams to build
more accessible web or mobile experiences, be prepared
to use multiple strategies:

• Use immersive experiences to engage design teams and
gain empathy for people who see differently.

• Show designers how their designs might look using sim-
ulators.

• Test designs that have low contrast, and show how slight
modifications to colors can make a difference.

• Encourage designers to test, and document visual specifi-
cations early and often.

129

• Incorporate accessible design practices into reusable pat-
terns and templates both in the code and the design.

Priorities and deadlines make it challenging for teams to
deliver on all requests from multiple stakeholders. Be pa-
tient and persistent, and continue to engage with teams
to find strategies to deliver user experiences that are easi-
er to see and use by more people out of the box.

References

• “Contrast (Minimum): Understanding Success Criterion
1.4.3123” and the note124, Web Content Accessibility Guide-
lines 2.0, Level AA

• “Get a Sneak Peek Into PayPal Accessibility Showcase125,”
Victor Tsaran and Cathy O’Connor, PayPal Engineering

• “Adobe Photoshop126” Accessibility, Adobe

• “Soft-Proof for Color Blindness (Photoshop and Illustra-
tor)127,” Adobe

• Web Accessibility in Mind128 (WebAIM)

123. http://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-
contrast.html

124. http://www.w3.org/TR/2014/NOTE-UNDERSTANDING-WCAG20-20140311/
visual-audio-contrast-contrast.html

125. https://www.paypal-engineering.com/2014/03/13/get-a-sneak-peek-into-paypal-
accessibility-showcase/

126. http://www.adobe.com/accessibility/products/photoshop.html
127. http://help.adobe.com/en_US/creativesuite/cs/using/WS3F71DA01-0962-4b2e-

B7FD-C956F8659BB3.html#WS473A333A-7F61-4aba-8F67-5553208E349C
128. http://webaim.org

DESIGN ACCESSIBLY,SEE DIFFERENTLY: COLOR CONTRAST TIPS AND
TOOLS

130

http://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
http://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
http://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
http://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
http://www.w3.org/TR/2014/NOTE-UNDERSTANDING-WCAG20-20140311/visual-audio-contrast-contrast.html
http://www.w3.org/TR/2014/NOTE-UNDERSTANDING-WCAG20-20140311/visual-audio-contrast-contrast.html
http://www.w3.org/TR/2014/NOTE-UNDERSTANDING-WCAG20-20140311/visual-audio-contrast-contrast.html
https://www.paypal-engineering.com/2014/03/13/get-a-sneak-peek-into-paypal-accessibility-showcase/
https://www.paypal-engineering.com/2014/03/13/get-a-sneak-peek-into-paypal-accessibility-showcase/
https://www.paypal-engineering.com/2014/03/13/get-a-sneak-peek-into-paypal-accessibility-showcase/
http://www.adobe.com/accessibility/products/photoshop.html
http://www.adobe.com/accessibility/products/photoshop.html
http://www.adobe.com/accessibility/products/photoshop.html
http://help.adobe.com/en_US/creativesuite/cs/using/WS3F71DA01-0962-4b2e-B7FD-C956F8659BB3.html#WS473A333A-7F61-4aba-8F67-5553208E349C
http://help.adobe.com/en_US/creativesuite/cs/using/WS3F71DA01-0962-4b2e-B7FD-C956F8659BB3.html#WS473A333A-7F61-4aba-8F67-5553208E349C
http://help.adobe.com/en_US/creativesuite/cs/using/WS3F71DA01-0962-4b2e-B7FD-C956F8659BB3.html#WS473A333A-7F61-4aba-8F67-5553208E349C
http://help.adobe.com/en_US/creativesuite/cs/using/WS3F71DA01-0962-4b2e-B7FD-C956F8659BB3.html#WS473A333A-7F61-4aba-8F67-5553208E349C
http://webaim.org
http://webaim.org
http://webaim.org
http://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
http://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
http://www.w3.org/TR/2014/NOTE-UNDERSTANDING-WCAG20-20140311/visual-audio-contrast-contrast.html
http://www.w3.org/TR/2014/NOTE-UNDERSTANDING-WCAG20-20140311/visual-audio-contrast-contrast.html
https://www.paypal-engineering.com/2014/03/13/get-a-sneak-peek-into-paypal-accessibility-showcase/
https://www.paypal-engineering.com/2014/03/13/get-a-sneak-peek-into-paypal-accessibility-showcase/
http://www.adobe.com/accessibility/products/photoshop.html
http://www.adobe.com/accessibility/products/photoshop.html
http://help.adobe.com/en_US/creativesuite/cs/using/WS3F71DA01-0962-4b2e-B7FD-C956F8659BB3.html#WS473A333A-7F61-4aba-8F67-5553208E349C
http://help.adobe.com/en_US/creativesuite/cs/using/WS3F71DA01-0962-4b2e-B7FD-C956F8659BB3.html#WS473A333A-7F61-4aba-8F67-5553208E349C
http://webaim.org
http://webaim.org

◦ Web-based Color Contrast Checker129 (web-based)

◦ Web Accessibility Evaluation Tool130 (WAVE)

◦ “Visual Disabilities: Color-Blindness131”

• TPG Colour Contrast Analyser132 (for Mac and PC), The
Paciello Group

• Color Vision Simulator for iOS133 and Android134,
Kazunori Asada

• VisionSim for iOS135 and Android136, The Braille Institute

• “NoCoffee Vision Simulator137, Aaron Leventhal (also see
Levanthal’s blog post about it138)

• “Age-Related Eye Diseases139,” National Eye Institute

• “Disability and Health140,” World Health Organization

• “Presbyopia141,” Mayo Clinic

129. http://webaim.org/resources/contrastchecker/
130. http://wave.webaim.org
131. http://webaim.org/articles/visual/colorblind
132. http://www.paciellogroup.com/resources/contrastAnalyser/
133. https://itunes.apple.com/us/app/chromatic-vision-simulator/id389310222?mt=8
134. https://play.google.com/store/apps/details?id=asada0.android.cvsimulator&

hl=en
135. https://itunes.apple.com/us/app/visionsim-by-braille-institute/

id525114829?mt=8
136. https://play.google.com/store/apps/details?id=com.BrailleIns.VisionSim&hl=en
137. https://chrome.google.com/webstore/search/NoCoffee%20Vision%20

Simulator?hl=en&gl=US
138. http://accessgarage.wordpress.com/2013/02/09/458/
139. https://www.nei.nih.gov/healthyeyes/aging_eye.asp
140. http://www.who.int/mediacentre/factsheets/fs352/en/

131

http://webaim.org/resources/contrastchecker/
http://webaim.org/resources/contrastchecker/
http://webaim.org/resources/contrastchecker/
http://wave.webaim.org
http://wave.webaim.org
http://wave.webaim.org
http://webaim.org/articles/visual/colorblind
http://webaim.org/articles/visual/colorblind
http://webaim.org/articles/visual/colorblind
http://www.paciellogroup.com/resources/contrastAnalyser/
http://www.paciellogroup.com/resources/contrastAnalyser/
http://www.paciellogroup.com/resources/contrastAnalyser/
https://itunes.apple.com/us/app/chromatic-vision-simulator/id389310222?mt=8
https://itunes.apple.com/us/app/chromatic-vision-simulator/id389310222?mt=8
https://itunes.apple.com/us/app/chromatic-vision-simulator/id389310222?mt=8
https://play.google.com/store/apps/details?id=asada0.android.cvsimulator&hl=en
https://play.google.com/store/apps/details?id=asada0.android.cvsimulator&hl=en
https://play.google.com/store/apps/details?id=asada0.android.cvsimulator&hl=en
https://itunes.apple.com/us/app/visionsim-by-braille-institute/id525114829?mt=8
https://itunes.apple.com/us/app/visionsim-by-braille-institute/id525114829?mt=8
https://itunes.apple.com/us/app/visionsim-by-braille-institute/id525114829?mt=8
https://play.google.com/store/apps/details?id=com.BrailleIns.VisionSim&hl=en
https://play.google.com/store/apps/details?id=com.BrailleIns.VisionSim&hl=en
https://play.google.com/store/apps/details?id=com.BrailleIns.VisionSim&hl=en
https://chrome.google.com/webstore/search/NoCoffee%20Vision%20Simulator?hl=en&gl=US
https://chrome.google.com/webstore/search/NoCoffee%20Vision%20Simulator?hl=en&gl=US
https://chrome.google.com/webstore/search/NoCoffee%20Vision%20Simulator?hl=en&gl=US
http://accessgarage.wordpress.com/2013/02/09/458/
http://accessgarage.wordpress.com/2013/02/09/458/
http://accessgarage.wordpress.com/2013/02/09/458/
https://www.nei.nih.gov/healthyeyes/aging_eye.asp
https://www.nei.nih.gov/healthyeyes/aging_eye.asp
https://www.nei.nih.gov/healthyeyes/aging_eye.asp
http://www.who.int/mediacentre/factsheets/fs352/en/
http://www.who.int/mediacentre/factsheets/fs352/en/
http://www.who.int/mediacentre/factsheets/fs352/en/
http://www.mayoclinic.org/diseases-conditions/presbyopia/basics/causes/con-20032261
http://www.mayoclinic.org/diseases-conditions/presbyopia/basics/causes/con-20032261
http://www.mayoclinic.org/diseases-conditions/presbyopia/basics/causes/con-20032261
http://webaim.org/resources/contrastchecker/
http://webaim.org/resources/contrastchecker/
http://wave.webaim.org
http://wave.webaim.org
http://webaim.org/articles/visual/colorblind
http://webaim.org/articles/visual/colorblind
http://www.paciellogroup.com/resources/contrastAnalyser/
http://www.paciellogroup.com/resources/contrastAnalyser/
https://itunes.apple.com/us/app/chromatic-vision-simulator/id389310222?mt=8
https://itunes.apple.com/us/app/chromatic-vision-simulator/id389310222?mt=8
https://play.google.com/store/apps/details?id=asada0.android.cvsimulator&hl=en
https://play.google.com/store/apps/details?id=asada0.android.cvsimulator&hl=en
https://itunes.apple.com/us/app/visionsim-by-braille-institute/id525114829?mt=8
https://itunes.apple.com/us/app/visionsim-by-braille-institute/id525114829?mt=8
https://play.google.com/store/apps/details?id=com.BrailleIns.VisionSim&hl=en
https://play.google.com/store/apps/details?id=com.BrailleIns.VisionSim&hl=en
https://chrome.google.com/webstore/search/NoCoffee%20Vision%20Simulator?hl=en&gl=US
https://chrome.google.com/webstore/search/NoCoffee%20Vision%20Simulator?hl=en&gl=US
http://accessgarage.wordpress.com/2013/02/09/458/
http://accessgarage.wordpress.com/2013/02/09/458/
https://www.nei.nih.gov/healthyeyes/aging_eye.asp
https://www.nei.nih.gov/healthyeyes/aging_eye.asp
http://www.who.int/mediacentre/factsheets/fs352/en/
http://www.who.int/mediacentre/factsheets/fs352/en/

• “World Population Ageing: 1950–2050142,” UN Depart-
ment of Economic and Social Affairs

LOW-VISION GOGGLES AND RESOURCESLOW-VISION GOGGLES AND RESOURCES

• Zimmerman Low Vision Simulation Kit143

• Low Vision Simulators144, Fork In the Road❧

141. http://www.mayoclinic.org/diseases-conditions/presbyopia/basics/causes/
con-20032261

142. http://www.un.org/esa/population/publications/worldageing19502050/
143. http://www.lowvisionsimulationkit.com
144. http://www.lowvisionsimulators.com/find-the-right-low-vision-simulator

DESIGN ACCESSIBLY,SEE DIFFERENTLY: COLOR CONTRAST TIPS AND
TOOLS

132

http://www.un.org/esa/population/publications/worldageing19502050/
http://www.un.org/esa/population/publications/worldageing19502050/
http://www.un.org/esa/population/publications/worldageing19502050/
http://www.lowvisionsimulationkit.com
http://www.lowvisionsimulationkit.com
http://www.lowvisionsimulationkit.com
http://www.lowvisionsimulators.com/find-the-right-low-vision-simulator
http://www.lowvisionsimulators.com/find-the-right-low-vision-simulator
http://www.lowvisionsimulators.com/find-the-right-low-vision-simulator
http://www.mayoclinic.org/diseases-conditions/presbyopia/basics/causes/con-20032261
http://www.mayoclinic.org/diseases-conditions/presbyopia/basics/causes/con-20032261
http://www.un.org/esa/population/publications/worldageing19502050/
http://www.un.org/esa/population/publications/worldageing19502050/
http://www.lowvisionsimulationkit.com
http://www.lowvisionsimulationkit.com
http://www.lowvisionsimulators.com/find-the-right-low-vision-simulator
http://www.lowvisionsimulators.com/find-the-right-low-vision-simulator

Designing For The Elderly:
Ways Older People Use
Digital Technology
Differently

BY OLLIE CAMPBELLBY OLLIE CAMPBELL ❧❧

If you work in the tech industry, it’s easy to forget that
older people exist. Most tech workers are really young145,
so it’s easy to see why most technology is designed for
young people. But consider this: By 2030, around 19% of
people in the US will be over 65146. Doesn’t sound like a
lot? Well it happens to be about the same number of peo-
ple in the US who own an iPhone today. Which of these
two groups do you think Silicon Valley spends more time
thinking about?

This seems unfortunate when you consider all of the
things technology has to offer older people. A great exam-
ple is Speaking Exchange147, an initiative that connects re-
tirees in the US with kids who are learning English in
Brazil. Check out the video below, but beware — it’s a
tear-jerker.

145. http://bits.blogs.nytimes.com/2013/07/05/technology-workers-are-young-really-
young/

146. http://www.aoa.gov/Aging_Statistics/
147. http://www.cna.com.br/speakingexchange/

133

http://bits.blogs.nytimes.com/2013/07/05/technology-workers-are-young-really-young/
http://bits.blogs.nytimes.com/2013/07/05/technology-workers-are-young-really-young/
http://bits.blogs.nytimes.com/2013/07/05/technology-workers-are-young-really-young/
http://www.aoa.gov/Aging_Statistics/
http://www.aoa.gov/Aging_Statistics/
http://www.aoa.gov/Aging_Statistics/
http://www.aoa.gov/Aging_Statistics/
http://www.cna.com.br/speakingexchange/
http://www.cna.com.br/speakingexchange/
http://www.cna.com.br/speakingexchange/
http://bits.blogs.nytimes.com/2013/07/05/technology-workers-are-young-really-young/
http://bits.blogs.nytimes.com/2013/07/05/technology-workers-are-young-really-young/
http://www.aoa.gov/Aging_Statistics/
http://www.aoa.gov/Aging_Statistics/
http://www.cna.com.br/speakingexchange/
http://www.cna.com.br/speakingexchange/

While the ageing process is different for everyone, we all
go through some fundamental changes. Not all of them
are what you’d expect. For example, despite declining
health, older people tend to be significantly happier149

and better at appreciating what they have150.
But ageing makes some things harder as well, and one

of those things is using technology. If you’re designing
technology for older people, below are seven key things
you need to know.

(How old is old? It depends. While I’ve deliberately
avoided trying to define such an amorphous group using
chronological boundaries, it’s safe to assume that each of
the following issues becomes increasingly significant af-
ter 65 years of age.)

CNA – Speaking Exchange. (Watch the video on YouTube148)

148. https://youtu.be/-S-5EfwpFOk
149. http://www.economist.com/node/17722567
150. http://newoldage.blogs.nytimes.com/2014/02/11/what-makes-older-people-

happy/

DESIGNING FOR THE ELDERLY: WAYS OLDER PEOPLE USE DIGITAL
TECHNOLOGY DIFFERENTLY

134

https://youtu.be/-S-5EfwpFOk
https://youtu.be/-S-5EfwpFOk
https://youtu.be/-S-5EfwpFOk
https://youtu.be/-S-5EfwpFOk
http://www.economist.com/node/17722567
http://www.economist.com/node/17722567
http://www.economist.com/node/17722567
http://newoldage.blogs.nytimes.com/2014/02/11/what-makes-older-people-happy/
http://newoldage.blogs.nytimes.com/2014/02/11/what-makes-older-people-happy/
http://newoldage.blogs.nytimes.com/2014/02/11/what-makes-older-people-happy/
https://youtu.be/-S-5EfwpFOk
https://youtu.be/-S-5EfwpFOk
http://www.economist.com/node/17722567
http://www.economist.com/node/17722567
http://newoldage.blogs.nytimes.com/2014/02/11/what-makes-older-people-happy/
http://newoldage.blogs.nytimes.com/2014/02/11/what-makes-older-people-happy/

Vision And Hearing
From the age of about 40, the lens of the eye begins to
harden, causing a condition called “presbyopia.” This is a
normal part of ageing that makes it increasingly difficult
to read text that is small and close.

Color vision also declines with age, and we become worse
at distinguishing between similar colors. In particular,
shades of blue appear to be faded or desaturated.

Hearing also declines in predictable ways, and a large
proportion of people over 65 have some form of hearing
loss152. While audio is seldom fundamental to interaction
with a product, there are obvious implications for certain
types of content.

Here’s a 75-year-old with his Kindle. Take a look at the font size he picks
when he’s in control. Now compare it to the average font size on an

iPhone. (Image: Navy Design151.)

151. http://www.navydesign.com.au
152. http://www.nidcd.nih.gov/health/hearing/Pages/Age-Related-Hearing-

Loss.aspx

135

http://www.navydesign.com.au
http://www.navydesign.com.au
http://www.navydesign.com.au
http://www.nidcd.nih.gov/health/hearing/Pages/Age-Related-Hearing-Loss.aspx
http://www.nidcd.nih.gov/health/hearing/Pages/Age-Related-Hearing-Loss.aspx
http://www.nidcd.nih.gov/health/hearing/Pages/Age-Related-Hearing-Loss.aspx
http://www.nidcd.nih.gov/health/hearing/Pages/Age-Related-Hearing-Loss.aspx
http://www.navydesign.com.au
http://www.navydesign.com.au
http://www.nidcd.nih.gov/health/hearing/Pages/Age-Related-Hearing-Loss.aspx
http://www.nidcd.nih.gov/health/hearing/Pages/Age-Related-Hearing-Loss.aspx

Key lessons:

• Avoid font sizes smaller than 16 pixels (depending of
course on device, viewing distance, line height etc.).

• Let people adjust text size themselves.

• Pay particular attention to contrast ratios153 with text.

• Avoid blue for important interface elements.

• Always test your product using screen readers154.

• Provide subtitles when video or audio content is funda-
mental to the user experience.

Motor Control
Our motor skills decline with age, which makes it harder
to use computers in various ways. For example, during
some user testing at a retirement village, we saw an
80-year-old who always uses the mouse with two hands.
Like many older people, she had a lot of trouble hitting in-
terface targets and moving from one thing to the next.

In the general population, a mouse is more accurate155

than a finger. But in our user testing, we’ve seen older
people perform better using touch interfaces. This is con-
sistent with research that shows that finger tapping de-
clines later156 than some other motor skills.

153. http://webaim.org/resources/contrastchecker/
154. http://www.afb.org/prodBrowseCatResults.asp?CatID=49
155. http://www.yorku.ca/mack/hfes2009.html

DESIGNING FOR THE ELDERLY: WAYS OLDER PEOPLE USE DIGITAL
TECHNOLOGY DIFFERENTLY

136

http://webaim.org/resources/contrastchecker/
http://webaim.org/resources/contrastchecker/
http://webaim.org/resources/contrastchecker/
http://www.afb.org/prodBrowseCatResults.asp?CatID=49
http://www.afb.org/prodBrowseCatResults.asp?CatID=49
http://www.afb.org/prodBrowseCatResults.asp?CatID=49
http://www.yorku.ca/mack/hfes2009.html
http://www.yorku.ca/mack/hfes2009.html
http://www.yorku.ca/mack/hfes2009.html
http://www.medicaldaily.com/finger-tapping-test-shows-no-motor-skill-decline-until-after-middle-age-244927
http://www.medicaldaily.com/finger-tapping-test-shows-no-motor-skill-decline-until-after-middle-age-244927
http://www.medicaldaily.com/finger-tapping-test-shows-no-motor-skill-decline-until-after-middle-age-244927
http://www.medicaldaily.com/finger-tapping-test-shows-no-motor-skill-decline-until-after-middle-age-244927
http://webaim.org/resources/contrastchecker/
http://webaim.org/resources/contrastchecker/
http://www.afb.org/prodBrowseCatResults.asp?CatID=49
http://www.afb.org/prodBrowseCatResults.asp?CatID=49
http://www.yorku.ca/mack/hfes2009.html
http://www.yorku.ca/mack/hfes2009.html

Key lessons:

• Reduce the distance between interface elements that are
likely to be used in sequence (such as form fields), but
make sure they’re at least 2 millimeters apart.

• Buttons on touch interfaces should be at least 9.6 mil-
limeters diagonally157 (for example, 44 × 44 pixels on an
iPad) for ages up to 70, and larger for older people.

• Interface elements to be clicked with a mouse (such as
forms and buttons) should be at least 11 millimeters diag-
onally.

• Pay attention to sizing in human interface guidelines
(Luke Wroblewski has a good roundup of guidelines158

for different platforms).

Device Use

If you want to predict the future, just look at what
middle-class American teens are doing. Right now,
they’re using their mobile phones for everything.
– Dustin Curtis159

It’s safe to assume Dustin has never watched a 75-year-
old use a mobile phone. Eventually, changes in vision and

156. http://www.medicaldaily.com/finger-tapping-test-shows-no-motor-skill-
decline-until-after-middle-age-244927

157. http://dl.acm.org/citation.cfm?id=1152260
158. http://www.lukew.com/ff/entry.asp?1085
159. http://dcurt.is/the-death-of-the-tablet

137

http://dl.acm.org/citation.cfm?id=1152260
http://dl.acm.org/citation.cfm?id=1152260
http://dl.acm.org/citation.cfm?id=1152260
http://dl.acm.org/citation.cfm?id=1152260
http://www.lukew.com/ff/entry.asp?1085
http://www.lukew.com/ff/entry.asp?1085
http://www.lukew.com/ff/entry.asp?1085
http://dcurt.is/the-death-of-the-tablet
http://dcurt.is/the-death-of-the-tablet
http://dcurt.is/the-death-of-the-tablet
http://www.medicaldaily.com/finger-tapping-test-shows-no-motor-skill-decline-until-after-middle-age-244927
http://www.medicaldaily.com/finger-tapping-test-shows-no-motor-skill-decline-until-after-middle-age-244927
http://dl.acm.org/citation.cfm?id=1152260
http://dl.acm.org/citation.cfm?id=1152260
http://www.lukew.com/ff/entry.asp?1085
http://www.lukew.com/ff/entry.asp?1085
http://dcurt.is/the-death-of-the-tablet
http://dcurt.is/the-death-of-the-tablet

motor control make small screens impractical for every-
one. Smartphones are a young person’s tool160, and not
even the coolest teenager can escape their biological des-
tiny.

In our research, older people consistently described
phones as “annoying” and “fiddly.” Those who own them
seldom use them, often not touching them for days at a
time. They often ignore SMS’ entirely.

But older people aren’t afraid to try new technology when
they see a clear benefit. For example, older people are the

Examples of technology used by the elderly (Image: Navy Design161)

160. http://www2.deloitte.com/content/dam/Deloitte/global/Documents/
Technology-Media-Telecommunications/gx-tmt-2014prediction-
smartphone.pdf

161. http://www.navydesign.com.au

DESIGNING FOR THE ELDERLY: WAYS OLDER PEOPLE USE DIGITAL
TECHNOLOGY DIFFERENTLY

138

http://www2.deloitte.com/content/dam/Deloitte/global/Documents/Technology-Media-Telecommunications/gx-tmt-2014prediction-smartphone.pdf
http://www2.deloitte.com/content/dam/Deloitte/global/Documents/Technology-Media-Telecommunications/gx-tmt-2014prediction-smartphone.pdf
http://www2.deloitte.com/content/dam/Deloitte/global/Documents/Technology-Media-Telecommunications/gx-tmt-2014prediction-smartphone.pdf
http://www.navydesign.com.au
http://www.navydesign.com.au
http://www.navydesign.com.au
http://www2.deloitte.com/content/dam/Deloitte/global/Documents/Technology-Media-Telecommunications/gx-tmt-2014prediction-smartphone.pdf
http://www2.deloitte.com/content/dam/Deloitte/global/Documents/Technology-Media-Telecommunications/gx-tmt-2014prediction-smartphone.pdf
http://www.navydesign.com.au
http://www.navydesign.com.au

largest users of tablets162. This makes sense when you
consider the defining difference between a tablet and a
phone: screen size. The recent slump in tablet sales163 also
makes sense if you accept that older people have longer
upgrade cycles than younger people.

Key lessons:

• Avoid small-screen devices (i.e. phones).

• Don’t rely on SMS to convey important information.

Relationships
Older people have different relationships than young
people, at least partly because they’ve had more time to
cultivate them. For example, we conducted some research
into how older people interact with health care profes-
sionals. In many cases, they’ve seen the same doctors for
decades, leading to a very high degree of trust.

I regard it like going to see old pals.… I feel I could tell my
GP almost anything.
– George, 73, on visiting his medical team

But due to health and mobility issues, the world available
to the elderly is often smaller — both physically and so-
cially. Digital technology has an obvious role to play here,

162. http://dcurt.is/the-death-of-the-tablet
163. http://recode.net/2014/08/26/in-defense-of-tablets/

139

http://dcurt.is/the-death-of-the-tablet
http://dcurt.is/the-death-of-the-tablet
http://dcurt.is/the-death-of-the-tablet
http://recode.net/2014/08/26/in-defense-of-tablets/
http://recode.net/2014/08/26/in-defense-of-tablets/
http://recode.net/2014/08/26/in-defense-of-tablets/
http://dcurt.is/the-death-of-the-tablet
http://dcurt.is/the-death-of-the-tablet
http://recode.net/2014/08/26/in-defense-of-tablets/
http://recode.net/2014/08/26/in-defense-of-tablets/

by connecting people virtually when being in the same
room is hard.

Key lessons:

• Enable connection with a smaller, more important group
of people (not a big, undifferentiated social network).

• Don’t overemphasize security and privacy controls when
trusted people are involved.

• Be sensitive to issues of isolation.

Life Stage
During a user testing session, I sat with a 66-year-old as
she signed up for an Apple ID. She was asked to complete
a series of security questions. She read the first question
out loud. “What was the model of your first car?” She
laughed. “I have no idea! What car did I have in 1968?
What a stupid question!”

It’s natural for a 30-year-old programmer to assume
that this question has meaning for everyone, but it con-
tains an implicit assumption about which life stage the
user is at. Don’t make the same mistake in your design.

Key lessons:

• Beware of content or functionality that implicitly as-
sumes someone is young or at a certain stage in life.

DESIGNING FOR THE ELDERLY: WAYS OLDER PEOPLE USE DIGITAL
TECHNOLOGY DIFFERENTLY

140

Experience With Technology
I once sat with a man in his 80s as he used a library inter-
face. “I know there are things down there that I want to
read” he said, gesturing to the bottom of the screen, “but I
can’t figure out how to get to them.” After I taught him
how to use a scrollbar, his experience changed complete-
ly. In another session, two of the older participants told
me that they’d never used a search field before.

Generally when you’re designing interfaces, you’re
working within a certain kind of scaffolding. And it’s easy
to assume that everyone knows how that scaffolding
works. But people who didn’t grow up with computers
might have never used the interface elements we take for
granted. Is a scrollbar a good design for moving content
up and down? Is its function self-evident? These aren’t
questions most designers often ask. But the success of
your design might depend on a thousand parts of the in-
terface that you can’t control and probably aren’t even
aware of.

Key lessons:

• Don’t make assumptions about prior knowledge.

• Interrogate all parts of your design for usability, even the
parts you didn’t create.

Cognition
The science of cognition is a huge topic, and ageing
changes how we think in unpredictable ways. Some peo-

141

ple are razor-sharp in their 80s, while others decline as
early as in their 60s.

Despite this variability, three areas are particularly rel-
evant to designing for the elderly: memory, attention and
decision-making. (For a more comprehensive view of cog-
nitive change with age, chapter 1 of Brain Aging: Models,
Methods, and Mechanisms164 is a great place to start.)

MEMORYMEMORY

There are different kinds of memory, and they’re affected
differently by the ageing process. For example, procedur-
al memory (that is, remembering how to do things) is
generally unaffected. People of all ages are able to learn
new skills and reproduce them over time.

But other types of memory suffer as we age. Short-
term memory and episodic memory are particularly vul-
nerable. And, although the causes are unclear, older peo-
ple often have difficulty manipulating the contents of
their working memory165. This means that they may have
trouble understanding how to combine complex new
concepts in a product or interface.

Prospective memory (remembering to do something
in the future) also suffers166. This is particularly relevant
for habitual tasks, like remembering to take medication at
the right time every day.

164. http://www.ncbi.nlm.nih.gov/books/NBK3885/
165. http://www.psych.utoronto.ca/users/hasher/abstracts/hasher_zacks_88.htm
166. http://www.oxfordscholarship.com/view/10.1093/acprof:oso/

9780195156744.001.0001/acprof-9780195156744-chapter-10

DESIGNING FOR THE ELDERLY: WAYS OLDER PEOPLE USE DIGITAL
TECHNOLOGY DIFFERENTLY

142

http://www.ncbi.nlm.nih.gov/books/NBK3885/
http://www.ncbi.nlm.nih.gov/books/NBK3885/
http://www.ncbi.nlm.nih.gov/books/NBK3885/
http://www.ncbi.nlm.nih.gov/books/NBK3885/
http://www.psych.utoronto.ca/users/hasher/abstracts/hasher_zacks_88.htm
http://www.psych.utoronto.ca/users/hasher/abstracts/hasher_zacks_88.htm
http://www.psych.utoronto.ca/users/hasher/abstracts/hasher_zacks_88.htm
http://www.psych.utoronto.ca/users/hasher/abstracts/hasher_zacks_88.htm
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780195156744.001.0001/acprof-9780195156744-chapter-10
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780195156744.001.0001/acprof-9780195156744-chapter-10
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780195156744.001.0001/acprof-9780195156744-chapter-10
http://www.ncbi.nlm.nih.gov/books/NBK3885/
http://www.ncbi.nlm.nih.gov/books/NBK3885/
http://www.psych.utoronto.ca/users/hasher/abstracts/hasher_zacks_88.htm
http://www.psych.utoronto.ca/users/hasher/abstracts/hasher_zacks_88.htm
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780195156744.001.0001/acprof-9780195156744-chapter-10
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780195156744.001.0001/acprof-9780195156744-chapter-10

How do people manage this decline? In our research,
we’ve found that paper is king. Older people almost exclu-
sively use calendars and diaries to supplement their
memory. But well-designed technology has great poten-
tial to provide cues for these important actions.

Key lessons:

• Introduce product features gradually over time to prevent
cognitive overload.

• Avoid splitting tasks across multiple screens if they re-
quire memory of previous actions.

For older people, paper is king. (Image: Navy Design167)

167. http://www.navydesign.com.au

143

http://www.navydesign.com.au
http://www.navydesign.com.au
http://www.navydesign.com.au
http://www.navydesign.com.au
http://www.navydesign.com.au

• During longer tasks, give clear feedback on progress and
reminders of goals.

• Provide reminders and alerts as cues for habitual actions.

ATTENTIONATTENTION

It’s easy to view ageing as a decline, but it’s not all bad
news. In our research, we’ve observed one big advantage:
Elderly people consistently excel in attention span, persis-
tence and thoroughness. Jakob Nielsen has observed sim-
ilar things, finding that 95% of seniors are “methodical”168

in their behaviors. This is significant in a world where the
average person’s attention span has actually dropped be-
low the level of a goldfish169.

It can be a great feeling to watch an older user really
take the time to explore your design during a testing ses-
sion. And it means that older people often find things that
younger people skip right over. I often find myself admir-
ing this way of interacting with the world. But the obvi-
ous downside of a slower pace is increased time to com-
plete tasks.

Older people are also less adept at dividing their atten-
tion170 between multiple tasks. In a world obsessed with
multitasking, this can seem like a handicap. But because
multi-tasking is probably a bad idea171 in the first place,

168. http://www.nngroup.com/articles/usability-for-senior-citizens/
169. http://www.statisticbrain.com/attention-span-statistics/
170. http://www.era.lib.ed.ac.uk/handle/1842/8572
171. http://news.stanford.edu/news/2009/august24/multitask-research-

study-082409.html

DESIGNING FOR THE ELDERLY: WAYS OLDER PEOPLE USE DIGITAL
TECHNOLOGY DIFFERENTLY

144

http://www.nngroup.com/articles/usability-for-senior-citizens/
http://www.nngroup.com/articles/usability-for-senior-citizens/
http://www.nngroup.com/articles/usability-for-senior-citizens/
http://www.statisticbrain.com/attention-span-statistics/
http://www.statisticbrain.com/attention-span-statistics/
http://www.statisticbrain.com/attention-span-statistics/
http://www.statisticbrain.com/attention-span-statistics/
http://www.era.lib.ed.ac.uk/handle/1842/8572
http://www.era.lib.ed.ac.uk/handle/1842/8572
http://www.era.lib.ed.ac.uk/handle/1842/8572
http://www.era.lib.ed.ac.uk/handle/1842/8572
http://news.stanford.edu/news/2009/august24/multitask-research-study-082409.html
http://news.stanford.edu/news/2009/august24/multitask-research-study-082409.html
http://news.stanford.edu/news/2009/august24/multitask-research-study-082409.html
http://www.nngroup.com/articles/usability-for-senior-citizens/
http://www.nngroup.com/articles/usability-for-senior-citizens/
http://www.statisticbrain.com/attention-span-statistics/
http://www.statisticbrain.com/attention-span-statistics/
http://www.era.lib.ed.ac.uk/handle/1842/8572
http://www.era.lib.ed.ac.uk/handle/1842/8572
http://news.stanford.edu/news/2009/august24/multitask-research-study-082409.html
http://news.stanford.edu/news/2009/august24/multitask-research-study-082409.html

designing products that help people to focus on one thing
at a time can have benefits for all age groups.

Key lessons:

• Don’t be afraid of long-form text and deep content.

• Allow for greater time intervals in interactions (for exam-
ple, server timeouts, inactivity warnings).

• Avoid dividing users’ attention between multiple tasks or
parts of the screen.

DECISION-MAKINGDECISION-MAKING

Young people tend to weigh a lot of options before set-
tling on one. Older people make decisions a bit different-
ly. They tend to emphasize prior knowledge172 (perhaps
because they’ve had more time to accumulate it). And
they give more weight to the opinions of experts (for ex-
ample, their doctor for medical decisions).

The exact reason for this is unclear, but it may be due
to other cognitive limitations that make comparing new
options more difficult.

Key lessons:

• Prioritize shortcuts to previous choices ahead of new al-
ternatives.

172. http://psycnet.apa.org/index.cfm?fa=search.displayRecord&uid=2000-07430-
014

145

http://psycnet.apa.org/index.cfm?fa=search.displayRecord&uid=2000-07430-014
http://psycnet.apa.org/index.cfm?fa=search.displayRecord&uid=2000-07430-014
http://psycnet.apa.org/index.cfm?fa=search.displayRecord&uid=2000-07430-014
http://psycnet.apa.org/index.cfm?fa=search.displayRecord&uid=2000-07430-014
http://psycnet.apa.org/index.cfm?fa=search.displayRecord&uid=2000-07430-014

• Information framed as expert opinion may be more per-
suasive (but don’t abuse this bias).

Conclusion
A lot of people in the tech industry talk about “changing
the world” and “making people’s lives better.” But bad de-
sign is excluding whole sections of the population from
the benefits of technology. If you’re a designer, you can
help change that. By following some simple principles,
you can create more inclusive products that work better
for everyone, especially the people who need them the
most.❧

Payment for this article was donated to Alzheimer’s Australia173.

173. https://fightdementia.org.au

DESIGNING FOR THE ELDERLY: WAYS OLDER PEOPLE USE DIGITAL
TECHNOLOGY DIFFERENTLY

146

https://fightdementia.org.au
https://fightdementia.org.au
https://fightdementia.org.au
https://fightdementia.org.au
https://fightdementia.org.au

About The Authors

Cathy O’Connor
Cathy O’Connor has worked as a senior web application
designer for fifteen years in large and small companies.
She relishes the challenge of incorporating complex and
sometimes conflicting requirements such as compliance,
security, globalization, and accessibility to distill and de-
liver useful, appealing, end-to-end experiences for cus-
tomers. For the past six years she has been working with
product teams to make sure PayPal products can be used
by as many people as possible as an accessibility subject
matter expert and now program manager. She enjoys
coming up with new techniques and strategies to keep ac-
cessibility top of mind as product teams rapidly deliver
new products in a constantly changing environment. She
has spoken on some of these strategies at the California
State University Northridge International Technology
and persons with disabilities Conferences (CSUN): Web
Accessibility Training for Product teams, with Jared
Smith, WebAIM, and Color Contrast Tips and Tools for
Designers174 at CSUN 2014. Outside of work, Cathy is a
part-time Zumba Fitness instructor, and enjoys designing
in the physical world: crafting handmade toys, decor, and
accessories for her family. Twitter: @cagocon175.

174. http://www.csun.edu/cod/conference/2014/sessions/index.php/public/
presentations/view/280

175. http://www.twitter.com/cagocon

147

http://www.csun.edu/cod/conference/2014/sessions/index.php/public/presentations/view/280
http://www.csun.edu/cod/conference/2014/sessions/index.php/public/presentations/view/280
http://www.csun.edu/cod/conference/2014/sessions/index.php/public/presentations/view/280
http://www.csun.edu/cod/conference/2014/sessions/index.php/public/presentations/view/280
http://www.twitter.com/cagocon
http://www.twitter.com/cagocon
http://www.twitter.com/cagocon
http://www.csun.edu/cod/conference/2014/sessions/index.php/public/presentations/view/280
http://www.csun.edu/cod/conference/2014/sessions/index.php/public/presentations/view/280
http://www.twitter.com/cagocon
http://www.twitter.com/cagocon

Chaals McCathie Nevile
Chaals McCathie Nevile has over 30 years of professional
experience with hypertext systems, for the last two
decades focused on the web. He currently works in the
CTO group of Russian internet giant Yandex, primarily
focused on web standards and accessibility. Chaals was
previously Head of Standards and a member of the board
of directors at Opera, after working at the W3C specialis-
ing in the Semantic Web and accessibility. Chaals is still
closely involved with the W3C, as co-chair of the Web
Apps working group, and HTML Accessibility task force,
and a long-standing member of the Advisory Board. He is
interested in many different things, but current areas of
focus there include SVG accessibility, the interaction
model of the web, and Web Components. He also works
on schema.org as part of his role at Yandex. Twitter:
@chaals176.

Henny Swan
In her capacity as User Experience and Design Lead at the
Paciello Group (TPG) Henny Swan looks at ways of inte-
grating the principles of inclusive design early on in pro-
jects. She joined TPG in 2014 having previously worked at
BBC, Opera Software and Royal National Institute of
Blind People. Henny has a particular focus on mobile and
multimedia bringing her experience to bear on products
delivered on multiple platforms. Previous work has in-

176. https://twitter.com/chaals

ABOUT THE AUTHORS

148

https://twitter.com/chaals
https://twitter.com/chaals
https://twitter.com/chaals
https://twitter.com/chaals
https://twitter.com/chaals

cluded BBC iPlayer (web, iOS and Android), BBC
Olympics, BBC Sport and the BBC cross platform Stan-
dard Media Player. Twitter: @iheni177.

Léonie Watson
Léonie Watson is a Senior Accessibility Engineer with
The Paciello Group (TPG) and owner of LJ Watson Con-
sulting. Amongst other things she is a director of the
British Computer Association of the Blind, a member of
the W3C HTML and SVG working groups, and HTML Ac-
cessibility Task Force. In her spare time Léonie blogs on
tink.uk178, talks on the AccessTalk podcast179, and loves
cooking, dancing and drinking tequila (although not nec-
essarily in that order). Twitter: @leoniewatson180.

Marcy Sutton
Marcy Sutton is an international public speaker, Angular
core team member and accessibility engineer at Adobe.
She is a primary contributor to ngAria, Angular’s accessi-
bility module, as well as the author of an accessibility
plug-in for Protractor, the end-to-end testing framework.
Recently Marcy launched Accessibility Wins181, a Tumblr
highlighting successes in web accessibility. She loves rid-

177. http://www.twitter.com/iheni
178. http://accesstalk.co.uk/
179. http://accesstalk.co.uk/
180. https://twitter.com/leoniewatson
181. http://a11ywins.tumblr.com/

149

http://www.twitter.com/iheni
http://www.twitter.com/iheni
http://www.twitter.com/iheni
http://accesstalk.co.uk/
http://accesstalk.co.uk/
http://accesstalk.co.uk/
http://accesstalk.co.uk/
http://accesstalk.co.uk/
http://accesstalk.co.uk/
https://twitter.com/leoniewatson
https://twitter.com/leoniewatson
https://twitter.com/leoniewatson
http://http://a11ywins.tumblr.com/
http://http://a11ywins.tumblr.com/
http://http://a11ywins.tumblr.com/
http://www.twitter.com/iheni
http://www.twitter.com/iheni
http://accesstalk.co.uk/
http://accesstalk.co.uk/
http://accesstalk.co.uk/
http://accesstalk.co.uk/
https://twitter.com/leoniewatson
https://twitter.com/leoniewatson
http://http://a11ywins.tumblr.com/
http://http://a11ywins.tumblr.com/

ing bicycles and throwing the frisbee for her dog, Wally.
Twitter: @marcysutton182.

Ollie Campbell
Ollie is one of four co-founders at Navy Design183, a de-
sign consultancy which specializes in digital products.
He’s interested in how good design can make people
healthier, happier and safer. He writes about design on
Medium184 and occasionally contributes to publications
such as Smashing Magazine185 and UXMatters186 and
Creative Review187. His most recent speaking engage-
ment was at the Medical Software Industry Association
in Sydney. Ollie has a degree in computer science and is
currently completing a postgraduate diploma in psychol-
ogy. Twitter: @oliebol188.

Scott O’Hara
Scott O’Hara is a UX designer and developer based out of
Boston, Massachusetts. He loves pushing the limits of
CSS, designing usable experiences for everyone, writing
about what he knows and what he’s learning. Website:
scottohara.me189. Twitter: @scottohara190.

182. http://www.twitter.com/marcysutton
183. http://www.navydesign.com.au
184. https://medium.com/@oliebol
185. http://www.smashingmagazine.com
186. http://www.uxmatters.com
187. http://www.creativereview.co.uk/
188. http://www.twitter.com/oliebol
189. http://www.scottohara.me

ABOUT THE AUTHORS

150

http://www.twitter.com/marcysutton
http://www.twitter.com/marcysutton
http://www.twitter.com/marcysutton
http://www.navydesign.com.au
http://www.navydesign.com.au
http://www.navydesign.com.au
https://medium.com/@oliebol
https://medium.com/@oliebol
https://medium.com/@oliebol
http://www.smashingmagazine.com
http://www.smashingmagazine.com
http://www.smashingmagazine.com
http://www.uxmatters.com
http://www.uxmatters.com
http://www.uxmatters.com
http://www.creativereview.co.uk/
http://www.creativereview.co.uk/
http://www.creativereview.co.uk/
http://www.twitter.com/oliebol
http://www.twitter.com/oliebol
http://www.twitter.com/oliebol
http://www.scottohara.me
http://www.scottohara.me
http://www.scottohara.me
http://www.twitter.com/scottohara
http://www.twitter.com/scottohara
http://www.twitter.com/scottohara
http://www.twitter.com/marcysutton
http://www.twitter.com/marcysutton
http://www.navydesign.com.au
http://www.navydesign.com.au
https://medium.com/@oliebol
https://medium.com/@oliebol
http://www.smashingmagazine.com
http://www.smashingmagazine.com
http://www.uxmatters.com
http://www.uxmatters.com
http://www.creativereview.co.uk/
http://www.creativereview.co.uk/
http://www.twitter.com/oliebol
http://www.twitter.com/oliebol
http://www.scottohara.me
http://www.scottohara.me

TJ VanToll
TJ VanToll is a senior developer advocate for Telerik, a
jQuery team member191, and the author of jQuery UI in Ac-
tion192. He has over a decade of web development experi-
ence — specializing in performance and the mobile web.
TJ speaks about his research and experiences at confer-
ences around the world, and has written for publications
such as Smashing Magazine, HTML5 Rocks, and MSDN
Magazine. TJ is @tjvantoll193 on Twitter and tjvantoll194

on GitHub.

190. http://www.twitter.com/scottohara
191. https://jquery.org/team/
192. http://tjvantoll.com/jquery-ui-in-action.html
193. http://www.twitter.com/tjvantoll
194. https://github.com/tjvantoll/

151

https://jquery.org/team/
https://jquery.org/team/
https://jquery.org/team/
http://tjvantoll.com/jquery-ui-in-action.html
http://tjvantoll.com/jquery-ui-in-action.html
http://tjvantoll.com/jquery-ui-in-action.html
http://tjvantoll.com/jquery-ui-in-action.html
http://www.twitter.com/tjvantoll
http://www.twitter.com/tjvantoll
http://www.twitter.com/tjvantoll
https://github.com/tjvantoll/
https://github.com/tjvantoll/
https://github.com/tjvantoll/
http://www.twitter.com/scottohara
http://www.twitter.com/scottohara
https://jquery.org/team/
https://jquery.org/team/
http://tjvantoll.com/jquery-ui-in-action.html
http://tjvantoll.com/jquery-ui-in-action.html
http://www.twitter.com/tjvantoll
http://www.twitter.com/tjvantoll
https://github.com/tjvantoll/
https://github.com/tjvantoll/

About Smashing Magazine
Smashing Magazine195 is an online magazine dedicated to
Web designers and developers worldwide. Its rigorous
quality control and thorough editorial work has gathered
a devoted community exceeding half a million sub-
scribers, followers and fans. Each and every published ar-
ticle is carefully prepared, edited, reviewed and curated
according to the high quality standards set in Smashing
Magazine’s own publishing policy196.

Smashing Magazine publishes articles on a daily basis
with topics ranging from business, visual design, typog-
raphy, front-end as well as back-end development, all the
way to usability and user experience design. The maga-
zine is — and always has been — a professional and inde-
pendent online publication neither controlled nor influ-
enced by any third parties, delivering content in the best
interest of its readers. These guidelines are continually
revised and updated to assure that the quality of the pub-
lished content is never compromised. Since its emergence
back in 2006 Smashing Magazine has proven to be a
trustworthy online source.

195. http://www.smashingmagazine.com
196. http://www.smashingmagazine.com/publishing-policy/

ABOUT THE AUTHORS

152

http://www.smashingmagazine.com
http://www.smashingmagazine.com
http://www.smashingmagazine.com
http://www.smashingmagazine.com/publishing-policy/
http://www.smashingmagazine.com/publishing-policy/
http://www.smashingmagazine.com/publishing-policy/
http://www.smashingmagazine.com
http://www.smashingmagazine.com
http://www.smashingmagazine.com/publishing-policy/
http://www.smashingmagazine.com/publishing-policy/

	Imprint
	About This Book
	Table of Contents

	Accessibility APIs: A Key To Web Accessibility
	Reading The Screen
	A World of Text
	Getting Graphic
	Off-Screen Models

	Accessibility APIs
	Accessibility APIs Go Mainstream
	Modern Accessibility APIs

	From The Web To The Accessibility API
	Roles
	Names

	Conclusion

	Accessibility Originates With UX: A BBC iPlayer Case Study
	The Challenge
	UX Principles
	Give Users Choice
	Put Users in Control
	Design With Familiarity in Mind
	Prioritize Features That Add Value

	Guidelines
	The New iPlayer
	Annotated UX
	Summary

	Mobile And Accessibility: Why You Should Care And What You Can Do About It
	1. Make Sure Everything Works With The Keyboard
	Not Using the Correct Element for the Task
	Writing Your Own Complex Widgets

	2. Mark Up Forms Semantically
	Associating Labels With Inputs
	Handling the “Enter” Key

	3. Provide Plenty Of Contrast
	Calculating Contrast Ratio

	4. Ensure That Screen Readers Know What Your Controls Do
	Case Study: The Big Three Automakers

	5. Test Your Website On An Actual Screen Reader
	Using VoiceOver on iOS
	Using TalkBack on Android

	Wrapping Up
	Resources

	Making Modal Windows Better For Everyone
	Better Semantics Lead To Better Usability And Accessibility
	Making Modals More Usable And Accessible
	Including Focus States
	Saving Last Active Element
	Shifting Focus
	Going Full Screen
	Dismissing

	Additional Accessibility Steps
	aria-hidden
	role="dialog"
	aria-label

	What About HTML5’s Dialog Element?
	Where To Go From Here?

	Notes On Client-Rendered Accessibility
	Semantics
	Native Checkbox With Label
	Custom Checkbox With ARIA
	Web Components and Accessibility

	Interactivity
	Focus Management
	Notifying The User
	Conclusion
	Resources

	Design Accessibly,See Differently: Color Contrast Tips And Tools
	Experience Seeing Differently
	Software Simulators
	Mobile Apps
	Chromatic Vision Simulator
	Mobile Device Simulations
	How’s the Weather in Cupertino?
	Low-Vision Simulations

	Adobe Photoshop
	Examples

	NoCoffee Vision Simulator for Chrome
	Using Simulators
	Color-Contrast Ratio Checkers
	Testing Color-Contrast Ratio
	Test Hexadecimal Color Codes for Web Designs
	Test RGB Color Codes

	Best Practices
	Summary
	References
	Low-Vision Goggles and Resources

	Designing For The Elderly: Ways Older People Use Digital Technology Differently
	Vision And Hearing
	Motor Control
	Device Use
	Relationships
	Life Stage
	Experience With Technology
	Cognition
	Memory
	Attention
	Decision-Making

	Conclusion

	About The Authors
	Cathy O’Connor
	Chaals McCathie Nevile
	Henny Swan
	Léonie Watson
	Marcy Sutton
	Ollie Campbell
	Scott O’Hara
	TJ VanToll
	About Smashing Magazine

