
Case studies from the web’s finest products
Curated by Addy Osmani

A
ddy

O
sm

ani

“It's rare to find one resource with this many real-world case studies.
I highly recommend the book for any web developer. A true gem!”

– Ahmad Shadeed, Design Engineer

Provide an inclusive
web experience.

ACCESSIBILITY

Optimize and sustain
high site speeds.

PERFORMANCE
Build reliable, installable,
feature- rich applications.

CAPABILITIES

Create a culture where
people and projects thrive.

DEVELOPER EXPERIENCE

SUCCESS AT SCALE

Addy Osmani is an engineering leader
working on Google Chrome. He leads up
Chrome’s Developer Experience organization,
helping reduce the friction for developers to
build great user experiences.

9 783910 835009

is a curated collection of case studies from

successful large-scale web projects.

Discover practical takeaways and insights to

achieve great results for projects large and small.

SUCCESS AT SCALE

Provide an inclusive
web experience.

ACCESSIBILITY

Optimize and sustain
high site speeds.

PERFORMANCE
Build reliable, installable,
feature- rich applications.

CAPABILITIES

Create a culture where
people and projects thrive.

DEVELOPER EXPERIENCE

Case studies from the web’s finest products

Curated by

Addy Osmani

Published 2024 by Smashing Media AG, Freiburg, Germany.
All rights reserved.
ISBN: 978-910835-00-9

Copyediting: Owen Gregory
Proofreading: Owen Gregory and Geoff Graham
Cover and interior illustration: Espen Brunborg
Book design: Ari Stiles
Ebook production: Cosima Mielke
Typefaces: Elena by Nicole Dotin and Mija by

Miguel Hernández.

Success at Scale was curated by Addy Osmani
Research and editing: Leena Sohoni-Kasture
Case study authors: Nabeel Al-Shamma, Zack Argyle,
Benji Bear, Christopher Chedeau, Gareth Clubb, Glenn Conner,
Eyal Eizenberg, Ilknur Eren, Darren Hebner, Catherine Houle,
Roderick Hsiao, Xuan Huang, Daniel Husar, Renato Iwashima,
Ankit Jain, Tomoki Kiraku, Natasha Kosoglov, Sriram Krishan,
Kiko Lam, Ohad Laufer, Nolan Lawson, Andrew Lee,
Milica Mihajlija, Thomas Nattestad, Addy Osmani, Rob Palmer,
José M. Pérez, Barry Pollard, Aaron Shekey, Shunya Shishido,
Thomas Steiner, Melanie Sumner, Stacey Tay,
Charis Theodoulou, and Oliver Tse.

This book is printed with material from
FSC® certified forests, recycled
material and other controlled sources.

Please send errors to: errata@smashingmagazine.com

Dedicated to the brilliant minds moving the web forward.

You inspire us every day.

Making Instagram.com Faster 20

Interview with Glenn Conner 34

Shopify: Improving UI Performance by

Understanding Your Users 37

Interview with Darren Hebner 48

Improving Third-party Web Performance

at the Telegraph 50

Interview with Gareth Clubb 64

Wix: Trimming the Fat from JavaScript

Bundles with Webpack Bundle Analyze. 70

Interview with Eyal Eizenberg 81

Improving Core Web Vitals, A

Smashing Magazine Case Study 86

Tinder: Sophisticated Adaptive Loading Strategies. . . . 108

Interview with Roderick Hsiao 115

Improving Scrolling Comments in Figma 119

A Netflix Web Performance Case Study 127

Shopping for Speed on eBay.com 137

How CLS Increased Yahoo! JAPAN News’s Page Views . . 147

Instant Domain Search: How We Improved

Our Core Web Vitals 153

Photoshop’s Journey to the Web 177

Building Tinder Online: A PWA 185

Upgrading Ele.me to Be a Progressive Web App 191

Interview with Xuan Huang 206

A Complete Guide to Trusted Web Activities with OYO . . 211

Interview with Ankit Jain 219

A Year into the Pinterest PWA 221

Building Spotify’s New Web Player 229

Interview with José M Pérez 235

Mainline Menswear’s Success Building a PWA. 238

Deprecating Excalidraw for Electron 248

Interview with Christopher Chedeau 258

Making Instagram.com Faster 20

Interview with Glenn Conner 34

Shopify: Improving UI Performance by

Understanding Your Users 37

Interview with Darren Hebner 48

Improving Third-party Web Performance

at the Telegraph 50

Interview with Gareth Clubb 64

Wix: Trimming the Fat from JavaScript

Bundles with Webpack Bundle Analyze. 70

Interview with Eyal Eizenberg 81

Improving Core Web Vitals, A

Smashing Magazine Case Study 86

Tinder: Sophisticated Adaptive Loading Strategies. . . . 108

Interview with Roderick Hsiao 115

Improving Scrolling Comments in Figma 119

A Netflix Web Performance Case Study 127

Shopping for Speed on eBay.com 137

How CLS Increased Yahoo! JAPAN News’s Page Views . . 147

Instant Domain Search: How We Improved

Our Core Web Vitals 153

Photoshop’s Journey to the Web 177

Building Tinder Online: A PWA 185

Upgrading Ele.me to Be a Progressive Web App 191

Interview with Xuan Huang 206

A Complete Guide to Trusted Web Activities with OYO . . 211

Interview with Ankit Jain 219

A Year into the Pinterest PWA 221

Building Spotify’s New Web Player 229

Interview with José M Pérez 235

Mainline Menswear’s Success Building a PWA. 238

Deprecating Excalidraw for Electron 248

Interview with Christopher Chedeau 258

P
E

R
F

O
R

M
A

N
C

E
C

A
P

A
B

IL
IT

IE
S

P
E

R
F

O
R

M
A

N
C

E
C

A
P

A
B

IL
IT

IE
S

The Story of Making WiX Accessible. 276

Interview with Ohad Laufer 286

The Understood: How Our Organization

Improved Web Accessibility 289

Pinafore: What I Learned About Accessibility in SPAs. . . 301

LinkedIn’s Approach to Automated Accessbility Testing . 314

Interview with Oliver Tse & Andrew Lee 324

Building Dark Mode on Stack Overflow 328

How Intercom Approached Messenger Accessibility . . . 343

Shopping Platforms: Accessibility Is

More Than a Technical Problem 360

Improving Accessibility on YouTube Web 373

Apideck: How to Build a Great Developer Experience . . 395

Deploying New Tech for Facebook.com 403

Frontend at Lyft: An Overview 421

Migrating Notion’s Marketing Site to Next.js 430

Bloomberg: 10 Insights to Adopting TypeScript at Scale . 444

Interview with Rob Palmer 464

Zoover: Using Monorepos Is Not That Bad 467

Rebuilding a Featured News Section

with Modern CSS: Vox News 481

Auto Trader: Around the Artifacts of Design Systems . . 509

Wix: When Life Gives You Lemons,

Write Better Error Messages 525

The Story of Making WiX Accessible. 276

Interview with Ohad Laufer 286

The Understood: How Our Organization

Improved Web Accessibility 289

Pinafore: What I Learned About Accessibility in SPAs. . . 301

LinkedIn’s Approach to Automated Accessbility Testing . 314

Interview with Oliver Tse & Andrew Lee 324

Building Dark Mode on Stack Overflow 328

How Intercom Approached Messenger Accessibility . . . 343

Shopping Platforms: Accessibility Is

More Than a Technical Problem 360

Improving Accessibility on YouTube Web 373

Apideck: How to Build a Great Developer Experience . . 395

Deploying New Tech for Facebook.com 403

Frontend at Lyft: An Overview 421

Migrating Notion’s Marketing Site to Next.js 430

Bloomberg: 10 Insights to Adopting TypeScript at Scale . 444

Interview with Rob Palmer 464

Zoover: Using Monorepos Is Not That Bad 467

Rebuilding a Featured News Section

with Modern CSS: Vox News 481

Auto Trader: Around the Artifacts of Design Systems . . 509

Wix: When Life Gives You Lemons,

Write Better Error Messages 525

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
A

C
C

E
S

S
IB

IL
IT

Y
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

A
C

C
E

S
S

IB
IL

IT
Y

Case studies and interviews
with the people who made it happen

CONTENTSCONTENTS

Introduction

The success of a web product or service hinges on several factors
that encompass more than flashy design. Website performance,
capabilities, accessibility, and developer experience ultimately deter-
mine the fate of a web development project. In this series, we look at
why each of four factors are crucial for success and how they play a
critical role in achieving not just functional websites but exceptional
ones. Here’s a very brief definition for each of the four factors.

 Performance is an important factor because a slow-
loading website will frustrate users and lead to high
bounce rates, making it a critical factor for project success.

 Capabilities refers to the app-like features and function-
ality that a website provides.

 Accessibility is the ability of all users to access and use
a website, regardless of their disabilities. This includes
users with visual impairments, hearing impairments,
and motor impairments.

 Developer experience refers to the ease with which
developers can build and maintain a website. A good
developer experience will make it easier for developers
to be productive and to create high-quality websites.

This series of case studies will explore how these four factors
can contribute to the success of a web development project.

Introduction 7Introduction

They will also discuss the challenges that developers face in
ensuring that their websites are performant, capable, accessible,
and developer-friendly.

Join in then, to take a look at these real-world examples, that discuss
the pivotal decisions, challenges, and triumphs that helped to shape
some of the digital experiences we encounter daily. I hope that these
case studies will serve as a roadmap for developers, businesses, and
enthusiasts alike, guiding them towards the path of success in our
user-centric online world.

Success at Scale8

Glossary

A list of common terms and references you will find across the book.

API: Application programming interface, which is a software inter-
mediary that allows two applications to talk to each other and serves
as a contract of service between them.

ARIA: Accessible Rich Internet Applications, a set of roles and
attributes that help to make web content more accessible to people
with disabilities (https://smashed.by/ariadocs).

BundlePhobia: Tool that provides the cost (in MBs) of adding an
npm package to your bundle. (https://bundlephobia.com/).

Chrome user experience report (CrUX): Get user experience met-
rics for how real-world Chrome users experience popular destina-
tions on the web. (https://smashed.by/cruxdocs).
Also see CrUX dashboard (https://smashed.by/cruxlauncher).

CI/CD: Continuous integration/continuous delivery, a modern soft-
ware development practice where frequent code changes are intro-
duced, integrated, and deployed, often using automation.

GraphQL: A query language for apis and a runtime for fulfilling
those queries with your existing data (https://graphql.org/).

Lazy loading: A strategy to load noncritical resources only when
they are actually needed.

9Glossary

Lighthouse: An open-source diagnostic tool from Google Chrome
for improving the performance, quality, and correctness of your web
apps (https://smashed.by/lighthouse).

Next.js: A React framework for creating full-stack web applications
at scale (https://nextjs.org/).

npm: Package manager for Node.js (https://www.npmjs.com/).

Performance tools: Tools such as Lighthouse used to measure the
performance of web sites. Other common tools: WebPageTest, Page-
Speed Insights, Google Search Console.

PWA: Progressive web applications that can provide an app-like
experience on the web (https://smashed.by/pwasguide).

React: Popular library for building web and native user interfaces
(https://reactjs.org/). React Native (https://reactnative.dev/) is used
for developing native applications for Android/iOS devices.

Service workers: Proxy servers that sit between web applications,
the browser, and the network (when available)
(https://smashed.by/serviceworkersprimer).

SPA: Single page app or a web app where most of the interaction takes
place on a single page by dynamically rewriting it with fresh data.

TypeScript: A language that extends JavaScript by adding types to
the language (https://www.typescriptlang.org/).

WCAG: Web Content Accessibility Guidelines 2.2
(https://smashed.by/wcagquickref).

Success at Scale10

Web app manifest: A json file where developers can specify the
behavior for the pwa after it’s installed on a device.

Web vitals: Google’s unified guidance for quality signals that are
essential to delivering a great user experience on the web
(https://web.dev/vitals/). This includes core web vitals such as largest
contentful paint (lcp), first input delay (fid), and cumulative layout
shift (cls). Other important metrics that may be used are time to
first byte (ttfb), first contentful paint (fcp), time to interactive (tti),
total blocking time (tbt), and interaction to next paint (inp).

Workbox: Production-ready service worker libraries and tooling.
(https://smashed.by/workbox).

11Glossary

PE
RF

O
RM

AN
C

E
P

E
R

F
O

R
M

A
N

C
E

P
E

R
F

O
R

M
A

N
C

E

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

20

37

50

70

85

108

1 19

127

137

147

153

166

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Making Instagram.com Faster

Shopify: Improving UI Performance

by Understanding Your Users

Improving Third-party Web Performance

at the TelegraphTelegraph

Wix: Trimming the Fat from JavaScript Bundles

with Webpack Bundle Analyzer

Improving Core Web Vitals,

A Smashing Magazine Case Study

Tinder: Sophisticated Adaptive Loading Strategies

Improving Scrolling Comments in Figma

A Netflix Web Performance Case Study

Shopping for Speed on eBay.com

How CLS Increased

Yahoo! JAPAN News’s Page Views

Instant Domain Search:

How We Improved Our Core Web Vitals

#

Making Instagram.com Faster

Shopify: Improving UI Performance

by Understanding Your Users

Improving Third-party Web Performance

at the TelegraphTelegraph

Wix: Trimming the Fat from JavaScript Bundles

with Webpack Bundle Analyzer

Improving Core Web Vitals,

A Smashing Magazine Case Study

Tinder: Sophisticated Adaptive Loading Strategies

Improving Scrolling Comments in Figma

A Netflix Web Performance Case Study

Shopping for Speed on eBay.com

How CLS Increased

Yahoo! JAPAN News’s Page Views

Instant Domain Search:

How We Improved Our Core Web Vitals

#

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Introduction

Performance is one of the most important factors that affect
the long-term success of a web application. Suboptimal per-
formance results in frustrated users – and frustrated users

are easily tempted to leave. Competing products are available in the
market, and if one is slow, users can readily switch to another.
This is true for all kinds of apps, from news and social media, to
shopping and dating.

Most users lack the patience to wait for pages to load and may even
experience some stress while waiting. Moreover, poor performance
(due to large page sizes) can also add to the usage cost for users who
are accessing the site through a limited data connection. As such,
apps with better performance are more likely to retain their users.1
This automatically translates to better user engagement and result-
ing business gains.

User-Centric Performance Metrics
and Perceived Speed

While fast page loads are crucial, it is important to note that speed
is relative. The perceived speed depends on how the user accesses
the app; that is, their device and network type. Also, a site that loads
progressively may seem faster than one which loads all at once, even
if the total time taken to load is the same for both. A fast initial load
with a slow response to interactions may also result in a lower per-
ceived speed.

To quantify perceived speed, Google’s web vitals initiative aims to
provide unified guidance on performance reporting.2 Metrics like

1 https://smashed.by/retainingusers
2 https://smashed.by/vitals

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

first contentful paint (fcp), largest contentful paint (lcp), time to
interactive (tti), cumulative layout shift (cls), and others are used to
measure how users experience the performance of a web page. Core
web vitals are a subset of these metrics that are essential to capture
three key aspects of user experience – loading measured by the
lcp, interactivity measured by the first input delay (fid), and visual
stability measured by cls. (Note: This is the current list of core web
vitals and may evolve with time.)

As indicated in some of the case studies discussed later, core web
vitals can directly correlate with key business metrics. The science3
and business impact4 of web vitals have also been discussed in detail
on Google and Chrome developers blogs. Optimizing these metrics
guarantees the delivery of a fast and seamless navigation experience
that delights users, thereby turning them into loyal and returning
customers. Thus, they align with the interests of both technical
and business stakeholders.

Measuring Performance

Performance metrics allow us to measure and compare performance
and its effect on user experience. Teams can decide what metrics to
use for measurement based on the user experience they aim to pro-
vide. In some situations, they may even go for custom metrics.

There are various tools available that compute metric values using
data captured during actual page loads. This data can be captured in
a controlled lab environment (lab data) or from the real-life use of
the app (field data). Field data is how fast your real users experience
your site. Lab data is how fast your site could be (often for a user on
a slow to median power device or network). It’s impossible to sim-

3 https://smashed.by/vitalsscience
4 https://smashed.by/vitalsimpact

Success at Scale16

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

ulate every scenario (combinations of browsers, devices, networks,
and operating systems) in a lab environment. Real-user monitoring
(RUM) helps to fill this gap in customer experience visibility.

Lighthouse is the recommended option for testing with lab data.
Given a page, Lighthouse can run audits against it, assess its
performance and generate reports that are easy to understand.
Chrome user experience report (CrUX) is a rum option that can be
used to get metrics based on field data from real-world Chrome us-
ers’ experience.

Budgeting Performance

High performance is rarely a coincidence. Instead, it needs to
be planned for. The ability to measure performance metrics allows
us to set goals correspond-
ing to the desired metrics
for our websites. These
goals can be described using
performance budgets that
are allocated when develop-
ing or re-engineering an
app for high performance. The team will then work within this
budget when choosing image sizes, external JavaScript libraries,
and css and fonts.

A budget should be defined for different types of pages on the site
and the device or connection type. They can be set for milestone tim-
ings like fcp and tti mentioned earlier; for example:

• TTI should be less than 5 seconds for the homepage on
a slow 3G connection.

Apps with better performance are

more likely to retain their users.

This automatically translates

to better user engagement and

resulting business gains.

17Introduction

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Budgets can also be based on the quantity of a resource, like the
maximum size of images or scripts. An example of a quantity-based
budget would be:

• Under 170 KB of critical path resources (compressed/minified)
for the product page on mobile.

Optimizing Performance

Website performance optimization is a vast topic that could
cover multiple books. Here, I would just like to mention that there
is probably a better way to serve every resource on a website. You
just need to find what works best to help you achieve your budget
goals. A summary of optimization techniques used for key resource
types is as follows.

1. Images: Optimize based on image format, compression type,
image size; choose responsive images, lazy-load below the fold
images, and evaluate if using image cdns works.

2. JavaScript: serve minified and compressed scripts, code-split
where applicable, remove unused code, and serve modern
JavaScript to modern browsers.

3. CSS and fonts: Inline critical css and fonts, defer non-critical
css, preload web fonts.

4. Third-party resources: Evaluate the size of resource versus
value-added and check for low-size alternatives. Use async,
defer and preconnect where applicable.

Success at Scale18

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Monitoring Performance

We can test which of our optimizations work within the set budgets
using Lighthouse.5 Once the site is out there with real users, Chrome
UX reports can help to understand the on-field performance of the
site.6 This public dataset aggregates real user-experience data across
millions of websites from users who have opted-in for the tests.

These reports help to gather the field values for metrics like lcp, fid,
time to first byte (ttfb), fcp, and cls. This makes it easy to monitor
what is already working and what needs further optimization and
allows for continuous improvement based on real data.

Building a Performance Culture

A robust performance culture recognizes speed as one of the core
features of the website. Optimization should not be a one-off task
but a continuous commitment, especially in the face of new feature
requests, which may tend to derail performance. Performance issues
should be made known to developers, product managers, and deci-
sion-makers alike so that teams can work together to address them.

Let us now look at some organizations and products that achieved
significant performance improvements by changing the way they
measure, budget, optimize, and monitor performance. These organi-
zations have indeed inculcated a strong performance culture.

5 https://smashed.by/lighthouse
6 https://smashed.by/crux

19Introduction

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Making Instagram.com Faster
by Glenn Conner

In recent years, Instagram.com has seen a lot of changes – we’ve
launched stories, filters, creation tools, notifications, and direct
messaging, as well as myriad other features and enhancements.1

However, as the product grew, one unfortunate side effect was that
our web performance began to suffer. Over the last year, we made a
conscious effort to improve this. Our ongoing efforts have thus far
resulted in almost 50% cumulative improvement to our feed page
load time. This case study will outline some of the work we’ve done
that led to these improvements.

Performance improvements over the last year for feed page display done times
(milliseconds).

Correctly prioritizing resource download and execution, and reduc-
ing browser downtime during the page load is one of the main levers
for improving web application performance. In our case, many of
these types of optimizations proved to be more immediately impact-
ful than code size reductions, which tended to be individually small
and only began to add up after many incremental improvements.

1 The original version of this case study was published in August 2019.
It is the first in a four-part series. Read the entire case study at
https://smashed.by/fasterinstagram1 , https://smashed.by/fasterinstagram2
https://smashed.by/fasterinstagram3 & https://smashed.by/fasterinstagram4

Success at Scale20

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

They were also less disruptive to product development, requiring
less code change and refactoring. So initially we focused our efforts
in this area, beginning with resource prefetching.

JavaScript, XHR, and Image Prefetching
(and How You Need to Be Careful)

As a general principle, we want to inform the browser as early as
possible about what resources are required to load the page. We
often know what resources we are going to need ahead of time,
but the browser might not become aware of those until late in the
page-loading process. These resources mainly include those that are
dynamically fetched by JavaScript (other scripts, images, xhr re-
quests, etc.) since the browser is unable to discover these dependent
resources until it has parsed and executed some other JavaScript first.

Instead of waiting for the browser to discover these resources itself,
we can provide a hint to the browser that it should start working on
fetching those resources immediately. The way we do this is by us-
ing html preload tags. They look something like this:

<link rel="preload" href="my-js-file.js" as="script"
type="text/javascript" />

At Instagram, we use these preload hints for two types of resourc-
es on the critical page-loading path: dynamically loaded JavaScript,
and preloading xhr GraphQL requests for data. Dynamically load-
ed scripts are those that are loaded via import('...') for a par-
ticular client-side route. We maintain a list of mappings between
server-side entry points and client-side route scripts – so when we
receive a page request on the server side, we know which client-side
route scripts will be required for a particular server-side entry point,

21Making Instagram.com Faster

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

and we can add a preload for these route-specific scripts as we ren-
der the initial page html.

For example, for the FeedPage entry point, we know that our client-
side router will eventually make a request for FeedPageContainer.
js, so we can add the following:

<link rel="preload" href="/static/FeedPageContainer.js"
as="script" type="text/javascript" />

Similarly, if we know that a particular GraphQL request is going to
be made for a particular page entry point, then we should preload
that xhr request. This is particularly important as these GraphQL
queries can sometimes take a long time, and the page can’t render
until this data is available. Because of this, we want to get the server
working on generating the response as early as possible in the
page life cycle.

<link rel="preload" href="/graphql/query?id=12345" as="fetch"
type="application/json" />

The changes to the page load behavior are more obvious on slower
connections. With a simulated fast 3G connection (the first water-
fall below – without any preloading), we see that FeedPageContainer.js
and its associated GraphQL query only begin once Consumer.js has
finished loading. However, in the case of preloading, both
FeedPageContainer.js and its GraphQL query can begin loading as
soon as the page html is available. This also reduces the time to load
any non-critical lazy-loaded scripts, which can be seen in the second
waterfall. Here FeedSidebarContainer.js and ActivityFeedBox.js (which
depend on FeedPageContainer.js) begin loading almost immediately
after Consumer.js has completed.

Success at Scale22

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Without preloading.

With preloading.

Benefits of Preload Prioritization

In addition to starting the download of resources sooner, link pre-
loads also have the additional benefit of increasing the network pri-
ority of async script downloads. This becomes important for async
scripts on the critical loading path because the default priority for
these is low. This means that xhr requests and images in the view-
port will have higher network priority, and images outside the view-
port will have the same network priority. This can cause situations
where critical scripts required for rendering the page are blocked or
have to share bandwidth with other resources. (If you’re interested,
see Addy Osmani’s “Preload, Prefetch, and Priorities in Chrome” on
Medium.)2 Careful use (more on that in a minute) of preloads gives
an important level of control over how we want the browser to pri-
oritize content during initial loads in cases where we know which
resources should be prioritized.

2 https://smashed.by/resourcepriorities

23Making Instagram.com Faster

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Problems with Preload Prioritization

The problem with preloads is that with the extra control it provides
comes the extra responsibility of correctly setting the resource pri-
orities. For example, when testing in regions with very slow overall
mobile and Wi-Fi networks and significant packet loss, we noticed
that <link rel="preload" as="script"> network requests for
scripts were being prioritized over the <script /> tags of the Ja-
vaScript bundles on the critical page rendering path, resulting in an
increase in overall page load time.

This stemmed from how we were laying out the preload tags on our
pages. We were only putting preload hints for bundles that were go-
ing to be downloaded asynchronously as part of the current page by
the client-side router.

<!-- preloaded async route bundles -->
<link rel="preload" href="SomeConsumerRoute.js" as="script" />
<link rel="preload" href=""..." as="script" />
...
<!-- critical path scripts to load the initial page -->
<script src="Common.js" type="text/javascript"></script>
<script src="Consumer.js" type="text/javascript"></script>

Preloading just async route JavaScript bundles.

In the example for the logged out page, we were prematurely down-
loading (preloading) SomeConsumerRoute.js before Common.js and
Consumer.js, and since preloaded resources are downloaded with
the highest priority but are not parsed/compiled, they blocked Com-
mon and Consumer from being able to start parsing/compiling. The
Chrome data saver team also found similar issues with preloads and
wrote about their solution.3 In their case, they opted to always put

3 https://smashed.by/relpreload

Success at Scale24

https://medium.com/reloading/a-link-rel-preload-analysis-from-the-chrome-data-saver-team-5edf54b08715

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

preloads for async resources after the script tag of the resource
that requests them. In our case we opted for a slightly different
approach. We decided to have a preload tag for all script resources
and to place them in the order they would be needed. This ensured
that we were able to start preloading all script resources as early as
possible in the page (including synchronous script tags that couldn’t
be rendered into the html until after certain server-side data was
added to the page), and ensured that we could control the ordering
of script resource loading.

<!-- preloaded critical path scripts -->
<link rel="preload" href="Common.js" as="script" />
<link rel="preload" href="Consumer.js" as="script" />
<!-- preloaded async route bundles -->
<link rel="preload" href="SomeConsumerRoute.js" as="script" />
...
<!-- critical path scripts to load the initial page -->
<script src="Common.js" type="text/javascript"></script>
<script src="Consumer.js" type="text/javascript"></script>
<script src="SomeConsumerRoute.js" type="text/javascript"
async></script>

Preloading all JavaScript bundles.

Image Prefetching

One of the main surfaces on instagram.com is the feed, consisting
of an infinite scrolling feed of images and videos. We implement
this by loading an initial batch of posts and then loading additional
batches as the user scrolls down the feed. However, we don’t want
the user to wait every time they get to the bottom of the feed (while
we load a new batch of posts), so it’s very important for the user ex-
perience that we load in new batches before the user hits the end of
their current feed.

25Making Instagram.com Faster

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

This is quite tricky to do in practice for a few reasons:

• We don’t want off-screen batch loading to take cpu and
bandwidth priority away from parts of the feed the user
is currently viewing.

• We don’t want to waste user bandwidth by being over-eager
with preloading posts the user might not ever bother scrolling
down to see; but on the other hand, if we don’t preload enough,
the user will frequently hit the end of feed.

• Instagram.com is designed to work on a variety of screen sizes
and devices, so we display feed images using the img srcset
attribute (which lets the browser decide which image resolution
to use based on the user’s screen size). This means it’s not easy to
determine which image resolution we should preload and risks
preloading images the browser will never use.

The approach we used to solve the problem was to build a prioritized
task abstraction that handles queueing of asynchronous work (in

this case, a prefetch for the
next batch of feed posts). This
prefetch task is initially queued
at an idle priority (using
requestIdleCallback), so it
won’t begin unless the browser
is not doing any other import-
ant work. However, if the user
scrolls close enough to the end
of the current feed, we increase
the priority of this prefetch task
to high by canceling the pending
idle callback and thus firing off
the prefetch immediately.

Types of prefetch priorities.

Success at Scale26

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Once the json data for the next batch of posts arrives, we queue a
sequential background prefetch of all the images in that preload-
ed batch of posts. We prefetch these sequentially in the order the
posts are displayed in the feed rather than in parallel, so that we can
prioritize the download and display of images in posts closest to the
user’s viewport. In order to ensure we actually prefetch the correct
size of the image, we use a hidden media prefetch component whose
dimensions match the current feed. Inside this component is an
 that uses a srcset attribute, the same as for a real feed post.
This means that we can leave the selection of the image to prefetch
up to the browser, ensuring it will use the same logic for selecting
the correct image to display on the media prefetch component as it
does when rendering the real feed post. It also means that we can
prefetch images on other surfaces on the site – such as profile pag-
es – as long as we use a media prefetch component set to the same
dimensions as the target display component.

The combined effect of this was a 25% reduction in time taken to
load photos (i.e. the time between a feed post being added to the
dom and the image in that post actually loading and becoming vis-
ible), as well as a 56% reduction in the amount of time users spent
waiting at the end of their feed for the next page.

Pushing Data Using Early Flushing and
Progressive HTML

We’ve shown how using link preloads allows us to start dynamic
queries earlier in the page load; that is, before the script that will
initiate the request has even loaded. With that said, issuing these re-
quests as a preload still means that the query will not begin until the
html page has begun rendering on the client, which means the que-

27Making Instagram.com Faster

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

ry cannot start until two network round trips have completed (plus
however long it takes to generate the html response on the server).
As we can see below for a preloaded GraphQL query, even though it’s
one of the first things we preload in the html head, it can still be a
significant amount of time before the query actually begins.

Execution of a preloaded GraphQL query.

The theoretical ideal is that we would want a preloaded query to
begin execution as soon as the request for the page hits the server.
But how can you get the browser to request something before it
has even received any html back from the server? The answer is
to push the resource from the server to the browser. While it might
look like http/2 push is the solution here, there is actually a very
old (and often overlooked) technique for doing this that has uni-
versal browser support and doesn’t have any of the infrastructural
complexities of implementing http/2 push. Facebook has been us-
ing this successfully since 2010 (see BigPipe),4 as have other sites in
various forms such as eBay – but this technique seems to be large-
ly ignored or unused by developers of JavaScript spas. It goes by a
few names – early flush, head flushing, progressive html – and it
works by combining two things:

• HTTP chunked transfer encoding

• progressive html rendering in the browser

Chunked transfer encoding5 was added as part of http/1.1, and es-
sentially it allows an http network response to be broken up into
multiple chunks that can be streamed to the browser.

4 https://smashed.by/bigpipe
5 https://smashed.by/chunkedtransferencoding

Success at Scale28

https://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919/
https://en.wikipedia.org/wiki/Chunked_transfer_encoding

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

The browser then stitches these chunks together as they arrive into
a final completed response. While this does involve a fairly signif-
icant change to how pages are rendered on the server side, most
languages and frameworks have support for rendering chunked
responses (in the case of Instagram we use Django on our web front
ends, so we use the StreamingHttpResponse object).6

The reason this is useful is that it allows us to stream the contents
of an html page to the browser as each part of the page completes,
rather than having to wait for the whole response. This means we
can flush the html head to the browser almost immediately (hence
the term “early flush”) as it doesn’t involve much server-side process-
ing. This allows the browser to start downloading scripts and style
sheets while the server is busy generating the dynamic data in the
rest of the page. You can see the effect of this below.

Without early flush: no resources load until the html is fully downloaded.

With early flush: resources start loading as soon as the html tags are flushed
to the browser.

6 https://smashed.by/streaminghttpresponse

29Making Instagram.com Faster

https://docs.djangoproject.com/en/2.2/ref/request-response/#streaminghttpresponse-objects

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Additionally, we can use chunked encoding to send data to the client
as it completes. In the case of server-side rendered applications this
could be in the form of html, but we can push json data to the
browser in the case of single page apps like instagram.com. To see
how this works, let’s look at the simple case of a single page app
starting up. First, the initial html containing the JavaScript required
to render the page is flushed to the browser. Once that script parses
and executes, it will then execute an xhr query which fetches the
initial data needed to bootstrap the page.

A Single page app starting up.

This process involves multiple roundtrips between the server and
client, and introduces periods where both the server and client are
sitting idle. Rather than have the server wait for the client to request
the api response, a more efficient approach would be for the server
to start working on generating the api response immediately after
the html has been generated and to push it to the client. This would
mean that by the time the client has started up, the data would likely
be ready without having to wait for another round trip.

The first step in making this change was to create a json cache to
store the server responses. We implemented this by using a small
inline script block in the page html that acts as a cache and lists the
queries that will be added to this cache by the server (this is shown
in a simplified form on the next page).

Success at Scale30

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

<script type="text/javascript">
 // the server will write out the paths of any API calls it
plans to
 // run server-side so the client knows to wait for the
server, rather
 // than doing its own XHR request for the data
 window.__data = {
 ‘/my/api/path’: {
 waiting: [],
 }
 };
 window.__dataLoaded = function(path, data) {
 const cacheEntry = window.__data[path];
 if (cacheEntry) {
 cacheEntry.data = data;
 for (var i = 0;i < cacheEntry.waiting.length; ++i) {
 cacheEntry.waiting[i].resolve(cacheEntry.data);
 }
 cacheEntry.waiting = [];
 }
 };
</script>

After flushing the html to the browser, the server can execute the
api query itself and when it completes, flush the json data to the
page as a script tag containing the data. When this html response
chunk is received and
parsed by the browser, it
will result in the data be-
ing inserted into the json
cache. A key thing to note
with this approach is that
the browser will render
progressively as it receives
response chunks (that is, they will execute complete script blocks as
they are streamed in). So you could potentially generate lots of data
in parallel on the server and flush each response in its own script

A key thing to note with this

approach is that the browser will

render progressively as it receives

response chunks (that is, they

will execute complete script

blocks as they are streamed in)

31Making Instagram.com Faster

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

block as it becomes ready for immediate execution on the client.
This is the basic idea behind Facebook’s BigPipe system where mul-
tiple independent pagelets are loaded in parallel on the server and
pushed to the client in the order they complete.

When the client script is ready to request its data, instead of issuing
an xhr request, it first checks the json cache. If a response is pres-
ent (or pending) it either responds immediately, or waits for
the pending response.

This has the effect of changing the page load behavior to this:

Facebook’s big pipe system.

Compared to the loading approach discussed previously, the
server and client can now do more work in parallel, reducing idle
periods where the server and client are waiting on each other.
The impact of this was significant: desktop users experienced a 14%
improvement in page display completion time, while mobile users
(with higher network latencies) experienced a more pronounced
23% improvement.

Success at Scale32

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Correct prioritization of resources to reduce browser

downtime during page load is one of the main levers for

improving performance.

With new features being introduced frequently, the Instagram
engineering team soon recognized the side effects on perfor-
mance and took steps to improve it. Some of the key enhance-
ments implemented were related to resource prioritization as
summarized here.

 Use of preloads to inform the browser about resources that
would be required. These were used especially for dynami-
cally loaded JavaScript and xhr GraphQL requests for data.

 Reduce code size before compression as this is what gets
parsed and executed on the user’s device.

 Push critical dependencies early to the browser using http
chunked transfer encoding and progressive html rendering.

 Use a cache-first approach with staging which ensures that
any interactions performed by the user on the cached state
(likes/comments) are applied to the new state from the server.

 Prioritized prefetching of images with higher priority
assigned to the next batch of images on the feed as the user
scrolls to the end of the current view.

 Serve modern JavaScript bundles (ES2017) to
modern browsers.

Instagram Key Takeaways

33Making Instagram.com Faster

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Success at Scale34

Interview

Glenn Conner
Former Front-End Engineer at Instagram

Author of “Making Instagram.com Faster”

What excited you or your team the most about the work in
the case study?

I was really interested in implementing early/progressive flush-
ing of data from the server. I still find it fascinating how this tech-
nique is relatively obscure even today, but that it’s been available
since the http 1.1 days; and with the deprecation of http 2 push
is again basically the only way to effectively push data to the client
during page load.

Were you surprised by the impact your work had on the overall
user experience, business, team, or other metrics?

After a couple of successful performance experiments I started to get
a good sense that there was usually some impact on user metrics,
but it was sometimes surprising which metrics were affected. It
wasn’t the case that every performance optimization would provide
growth or time-spent wins. Optimizing some parts of start-up would
sometimes affect lots of metrics, and other times it would just affect
a few, and it wasn’t always predictable, so the lesson was to test
and measure. We had to spend a lot of time building out the infra-
structure to be able to effectively test the impact of these changes
and A/B test because testing optimizations is surprisingly hard to
do. For example, for transpiling optimizations as you can’t just put
some feature flags in your bundle, you need to be able to build a full

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

35Making Instagram.com Faster

alternate version of the build and then the server-side logic to serve
one set of bundles over another. You also need to take into account
other stuff, like more users will have the control bundle already in
their cache, which will skew results, so you need to include cache
breakers for control group participants, and so on.

If you had a similar project/problem today, do you think your
process/tooling/decisions would be exactly the same? Or, to
put it differently, looking back now, what would you have done
differently if you had a chance to make adjustments?

One big difference would be that I would take server-side render-
ing more seriously. I had kind of given up on it as a concept after
it not delivering on previous projects, but I’ve done a 180 on that
after seeing how it’s been a key part of the architecture in the new
Facebook front end. And the combination of streaming html
along with new React features like selective hydration has been a
game changer for performance.

What do you think was the one critical decision that made the
outcome successful? What brought you to this decision, and
how did you or your entire team make it?

One critical decision was to concentrate on rum-based metrics and
not optimize for synthetic benchmarks like Lighthouse scores or JS
bundle size. It’s certainly easier to test and make optimizations to a
synthetic metric, but they are simplifications and proxies to the real
performance that your users are experiencing. Depending on the
assumptions that go into a synthetic score or metric, if any of those
assumptions don’t hold true for your application, you’re going to be
optimizing for things that make no improvements. Every applica-
tion has its own performance quirks and it’s super important that
you understand the critical path and nature of those quirks in order
to be able to make real improvements.

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Success at Scale36

What came next after the case study was published?

One of the improvements was extracting css into its own static
bundles. Previously the css was inlined into the JavaScript bundles
as a string in each JS module that was then inserted into the page
on module load. This was terrible for performance owing to double
parsing the css first as JS and then as css plus all the dom thrash
from injecting hundreds of style tags. We knew this was a problem
for a long time, but there was some complexity involved in refactor-
ing our build system to support standalone css bundles, as well as
css bundle splitting and loading for dynamically imported JS bun-
dles. We eventually ended up fixing this and it resulted in a decent
reduction in JS bundle size and gave an overall page-load improve-
ment, as well as improving cache hit rates, as css changes wouldn’t
invalidate JS bundle hashes anymore (or vice versa).

Do you have any advice for teams that would like to follow
in your footsteps?

The one piece of optimization I never got to really make progress
on was effective bundle splitting. Instagram still eagerly parses and
loads way too much JS. This is fixable, but would require some pretty
big changes to the build infrastructure as well as the product archi-
tecture. Some of the changes that the Facebook team have shared
about the new FB front end point toward some of the approaches that
are important for optimizing the delivery of a large JS app.

Has the site changed significantly since the case study
was published?

The general architecture is pretty similar, but there’s a lot more
that has been added in terms of functionality to bring the website
up to feature parity with the native apps – things like direct mes-
saging, for example.

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Shopify: Want to Improve
UI Performance? Start by
Understanding Your User.
By Darren Hebner

In 2019,1 my team at Shopify did a deep dive into the perfor-
mance of the Marketing section in the Shopify admin.2 Our
focus was to improve the UI performance. This included a mix

of improvements that affected load time and perceived load time,
as well as any interactions that happen after the merchant has
landed in our section.

It’s important to take the time to ask yourself what the user (in our
case, the merchant) is likely trying to accomplish when they visit
a page. Once you understand this, you can try to unblock them as
quickly as possible. UI developers can look for opportunities to opti-
mize for common flows and interactions the merchant is likely going
to take. This helps us focus on improvements that are user-centric
instead of just trying to make our graphs and metrics look good.

I’ll dive into a few key areas that we found made the biggest impact
on UI performance:

• How to assess your current situation and spot areas that could
be improved.

• Prioritizing the loading of components and data.

• Improving the perceived loading performance by taking a look
at how the design of loading states can influence the way users
experience load time.

1 This case study was originally published in September 2019:
https://smashed.by/shopifyperf

2 https://smashed.by/shopifyadmin

37Shopify: Improving UI Performance by Understanding Your Users

https://engineering.shopify.com/search?q=shopify+admin
https://engineering.shopify.com/search?q=shopify+admin
https://engineering.shopify.com/search?q=shopify+admin

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Our team has always kept performance3 top of mind. We follow
industry best practices like route-based bundle splitting4 and are
careful not to include any large external dependencies. Nevertheless,
it was still clear that we had a lot of room for improvement.

The front end of our application is built using React, GraphQL, and
Apollo.5 The advice in this case study aims to be framework-agnostic,
but there are some references to React-specific tooling.

Assess Your Current Situation

DEVELOP MERCHANT EMPATHY BY TESTING

ON REAL-WORLD DEVICES

In order to understand what needed to be improved, we had to first
put ourselves in the shoes of the merchant. We wanted to understand
exactly what the merchant is experiencing when they use the Mar-
keting section. We should be able to offer merchants a quality experi-
ence no matter what device they access the Shopify admin from.

We think testing using real, low-
end devices is important. Testing
on a low-end device allows us to
ensure that our application
performs well enough for users
who may not have the latest iP-
hone or Macbook Pro.6

We grabbed a Moto G3 and
connected the device to Chrome
developer tools via the remote
devices feature. If you don’t have

3 https://smashed.by/shopifyperf
4 https://smashed.by/bundlesplitting
5 https://www.apollographql.com/
6 https://smashed.by/slightlylate

Moto G3 device.

Success at Scale38

https://engineering.shopify.com/search?q=performance
https://reactjs.org/docs/code-splitting.html#route-based-code-splitting
https://reactjs.org/docs/code-splitting.html#route-based-code-splitting
https://reactjs.org/docs/code-splitting.html#route-based-code-splitting
https://reactjs.org/docs/code-splitting.html#route-based-code-splitting
https://reactjs.org/docs/code-splitting.html#route-based-code-splitting
https://reactjs.org/docs/code-splitting.html#route-based-code-splitting
https://reactjs.org/docs/code-splitting.html#route-based-code-splitting
https://www.apollographql.com/
https://twitter.com/slightlylate/status/1139684093602349056
https://twitter.com/slightlylate/status/1139684093602349056
https://twitter.com/slightlylate/status/1139684093602349056
https://twitter.com/slightlylate/status/1139684093602349056
https://twitter.com/slightlylate/status/1139684093602349056
https://twitter.com/slightlylate/status/1139684093602349056
https://twitter.com/slightlylate/status/1139684093602349056
https://twitter.com/slightlylate/status/1139684093602349056
https://twitter.com/slightlylate/status/1139684093602349056
https://twitter.com/slightlylate/status/1139684093602349056
https://twitter.com/slightlylate/status/1139684093602349056
https://twitter.com/slightlylate/status/1139684093602349056

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

access to a real device to test with, you can make use of
WebPageTest.org to run your application on a real device remotely.

CAPTURE AN INITIAL PROFILE

Our initial performance profile was captured using Chrome DevTools.

After capturing our initial profile using the performance profiler
included in the Chrome developer tools, we needed to break it down.
This profile gives us a detailed timeline of every network request,
JavaScript execution, and event that happens during our recording,
plus much, much more. We wanted to understand exactly what hap-
pens when a merchant interacts with our section.

We ran the audit with React in development mode so we could take
advantage of the user timings they provide. Running the application
with React in production mode would have performed better, but

39Shopify: Improving UI Performance by Understanding Your Users

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

having the user timings made it much easier to identify which com-
ponents we need to investigate.

React profiler from React DevTools.

We also took the time to capture a profile using the profiler provided
by React DevTools. This tool allowed us to see React-specific details,
like how long it took to render a component, or how many times that
component has been updated. The React profiler was particularly
useful when we sorted our components from slowest to fastest.

Get Your Priorities in Order

After reviewing both of these profiles, we were able to take a step
back and gain some perspective. It became clear that our priorities
were out of order.

We found that the components and data most crucial to merchants
were being delayed by components that could have been loaded at a
later time. There was a big opportunity here to rearrange the order
of operations in our favor, with the ultimate goal of making the page
useful as soon as possible.

Success at Scale40

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

We know that the majority of visits to the Marketing section are
incremental. This means that the merchant navigated to the Mar-
keting section from another page in the admin. Because the admin
is a single page app, these incremental navigations are all handled
client-side (in our case using React Router). This means that tradi-
tional performance metrics like time to first byte or first meaningful
paint may not be applicable. We instead make use of the Navigation
Timing api7 to track navigations within the admin.

When a merchant visits the Marketing section, the following
events happen:

• JavaScript required to render the page is fetched.

• A GraphQL query is made for the data required for the page.

• The JavaScript is executed and our view is rendered with our data.

Any optimizations we do will be to improve one of those events. This
could mean fetching less data and JavaScript, or making the execu-
tion of the JavaScript faster.

DEPRIORITIZE NON-ESSENTIAL COMPONENTS

AND CODE EXECUTION

We wanted the browser to do the least amount of work necessary to
render our page. In our case, we were asking the browser to do work
that did not immediately benefit the merchant. This low-priority
work was getting in the way of more important tasks. We took two
approaches to reducing the amount of work that needed to be done:

• Identifying expensive tasks that are being run repeatedly and
memoize (~cache) them.

• Identifying components that are not immediately required
and deferring them.

7 https://smashed.by/navigationtimingapi

41Shopify: Improving UI Performance by Understanding Your Users

https://developer.mozilla.org/en-US/docs/Web/API/Navigation_timing_API
https://developer.mozilla.org/en-US/docs/Web/API/Navigation_timing_API
https://developer.mozilla.org/en-US/docs/Web/API/Navigation_timing_API
https://developer.mozilla.org/en-US/docs/Web/API/Navigation_timing_API
https://developer.mozilla.org/en-US/docs/Web/API/Navigation_timing_API

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

MEMOIZE REPETITIVE AND EXPENSIVE TASKS

One of the first wins here was around date formatting. The React
profiler was able to identify one component that was significantly
slower than the rest of the components on the page.

React profiler identifying <StartEndDates /> component
is significantly slower.

The <StartEndDates /> component stood out. This component
renders a calendar that allows merchants to select start and end
dates. After digging into this component, we discovered that we
were repeating a lot of the same tasks over and over. We found
that we were constructing a new Intl.DateTimeFormat object
every time we needed to format a date. By creating a single
Intl.DateTimeFormat object and referencing it every time we need-
ed to format a date, we were able to reduce the amount of work the
browser needed to do in order to render this component.

<StartEndDates /> after memoization of two other date
formatting utilities.

This, in combination with the memoization of two other date for-
matting utilities, resulted in a drastic improvement in this compo-
nent’s render time, taking it from ~64.7 ms down to ~0.5 ms.

Success at Scale42

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

DEFER NON-ESSENTIAL COMPONENTS

Async loading allows us to load only the minimum amount of JavaS-
cript required to render our view. It is important to keep the JavaS-
cript we load small and fast as it contributes to how quickly we can
render the page on navigation.

One example of a component that we decided to defer was our
<ImagePicker />. This component is a modal that is not visible
until the merchant clicks a Select image button. Since this compo-
nent is not needed on the initial load, it is a perfect candidate
for deferred loading.

By moving the JavaScript required for this component into a sepa-
rate bundle that is loaded asynchronously, we were able to reduce
the size of the bundle that contained the JavaScript that is critical to
rendering our initial view.

GET A HEAD START

Deferring the loading of components is only half the battle. Even
though the component is deferred, it may still be needed later on. If
we have the component and its data ready when the merchant needs
it, we can provide an experience that really feels instant.

Knowing what a merchant is going to need before they explicitly
request it is not an easy task. We do this by looking for hints the
merchant provides along the way. This could be a hover, scrolling an
element into the viewport, or common navigation flows within the
Shopify admin.

In the case of our <ImagePicker /> modal, we do not need the
modal until the Select image button is clicked. If the merchant

43Shopify: Improving UI Performance by Understanding Your Users

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

hovers over the button, it’s a pretty clear hint that they will likely
click. We start prefetching the <ImagePicker /> and its data so
by the time the merchant clicks we have everything we need to
display the modal.

Prefetching the image picker when the merchant hovers over the activator
button makes it feel like the modal instantly loads.

Improve the Loading Experience

In a perfect world, we would never need to show a loading state. In
cases where we are unable to prefetch, or the data hasn’t finished
downloading, we fallback to the best possible loading state by using
a spinner or skeleton content. We typically choose to use a skeleton
if we have an idea what the final content would look like.

USE SKELETONS

Skeleton content has emerged as a best practice for loading states.
When done correctly, skeletons can make the merchant feel like they
have “arrived” at the next state before the page has finished loading.

Skeletons are often not as effective as they could be. We found
that it’s not enough to put up a skeleton and call it a day. By in-

Success at Scale4 4

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

cluding static content that does not rely on data from our api, the
page will feel a lot more stable as data arrives from the server. The
merchant feels like they have arrived instead of being stuck in an
in-between loading state.

These images show how adding headings helps the merchant understand what
content they can expect as the page loads.

Small tweaks like adding headings to the skeleton go a long way.
These changes give the merchant a chance to scan the page and get
a feel for what they can expect once the page finishes loading. They
also have the added benefit of reducing the amount of layout shift
that happens as data arrives.

IMPROVE STABILITY

When navigating between pages, there are often going to be several
loading stages. This may be caused by data being fetched from mul-
tiple sources, or the loading of resources such as images or fonts.

Using a skeleton to help improve stability by matching the height of the skeleton
to the height of the final content as closely as possible.

45Shopify: Improving UI Performance by Understanding Your Users

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

As we move through these loading stages, we want the page to feel
as stable as possible. Drastic changes to page layout are disorienting
and can even cause the user to make mistakes.

MAKE THE PAGE USEFUL AS QUICKLY AS POSSIBLE

In this example, you can see that we are rendering the Create cam-
paign button while we are still in the loading state. We know this
button is always going to be rendered, so there’s no sense in hiding
it while we are waiting for unrelated data to arrive. By showing this
button while still in the loading state, we unblock the merchant.

Rendering the Create campaign button while we are still in the loading state.

No Such Thing as Too Fast

The deep dive helped our team develop best practices that we are
able to apply to our
work going forward.
It also helped us refine
a performance mind-
set that encourages
exploration. As we
develop new features,

we can apply what we’ve learned while always trying to improve

The deep dive helped our team develop

best practices that we are able to apply

to our work going forward.

It also helped us refine a performance

mindset that encourages exploration.

Success at Scale46

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Make the page useful as quickly as possible to enhance

the user experience.

To identify performance gaps in their Marketing section, the
Shopify team decided to determine a user’s perspective: in this
case, their merchants. They developed merchant empathy by
testing the site on real-world devices. This led to the discovery
that crucial components and data were being delayed by compo-
nents that could have been loaded at a later time. They addressed
this issue by:

 Identifying expensive tasks that run repeatedly
and caching them.

 Identifying components that are not immediately required
and deferring them.

 Using skeletons to load content to improve the perceived
loading speed.

 Improving stability between transitions during page load.

These changes helped the Shopify team to improve their overall
user-centric performance metrics.

Shopify Key Takeaways

on these techniques. Our focus on performance has spread to
other disciplines like design and research. We are able to work to-
gether to build up a clearer picture of the merchant’s intent so
we can optimize for this flow.

47Shopify: Improving UI Performance by Understanding Your Users

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Success at Scale48

Interview

Darren Hebner
Senior Front-End Developer at Shopify

Author of “Shopify: Want to improve UI

Performance? Start by Understanding Your User.”

What excited you or your team the most about the work in
the case study?

For me, the exciting thing about web performance, and the UI side
of things in particular, is how so much of it is sleight of hand. You
get to be creative with your solutions. Lazy-loading offscreen con-
tent and preparing for the user’s next interaction by preloading are
examples of this.

If everything goes right, the interface starts to disappear. When a
merchant is using our admin interface, they are trying to focus on
their business. If the merchant is stuck waiting for a page to load or
thrown off by a large visual shift on the page, it’s distracting them
from accomplishing their goal. That’s why it’s so important to focus
on these details.

Were you surprised by the impact your work had on the overall
user experience, business, team, or other metrics?

I was particularly pleased with how this work opened up conversa-
tions with other teams at Shopify. The blog post originally started

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Article Name 49Shopify: Improving UI Performance by Understanding Your Users

as an internal document that was shared with other teams working
in Shopify’s admin. I later recycled some of the content into a short
presentation that I gave at other
Shopify offices.

There were, of course, already
many people at Shopify who cared about the topics I touched
on in the blog post, and this was a great way for us to connect and
amplify the conversation around UI performance.

If you had a similar project/problem today, do you think your
process/tooling/decisions would be exactly the same? Or, to put
it differently, looking back now, what would you have done dif-
ferently if you had a chance to make adjustments?

If I were to do the same project today, I’d have put more focus on
tracking the progress of our UX improvements over time. With UX
changes, we often judged a change by how it felt instead of how
much it affected the metrics.

We did pay attention to metrics that reflected the timing of various
page-load events, but we didn’t have a metric for the visual loading
experience. The cumulative layout shift metric would have been an
excellent way for us to track this. I’m looking forward to using it
on future projects.

If everything goes right, the

interface starts to disappear.

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Improving Third-Party Web
Performance at the TelegraphTelegraph
by Gareth Clubb

A t the Telegraph we’re currently going through a process
of rebuilding our public-facing website.1 This gives us
the opportunity to take learnings from the existing build

but also write some of the code from scratch. You can see our pro-
gress so far on pages such as Gaming2 and Culture.3 We can mon-
itor the impact this has on metrics across usability, performance,
and accessibility.

We’re incredibly passionate about the web, particularly performance,
and regularly attend local meet-ups such as ldnwebperf4 to learn
from others in the industry. We knew web performance was crucial
to the success of our new website, but didn’t know how to introduce
the topic into an organisation with more than 160 years of history
and in excess of 1,000 employees. We recognised that with millions
of visits per month, performance improvements would be of huge
value to our users.

We started slowly, fixing the immediate problems within our tech-
nical control: this brought good results but only accounted for 5%
of the requests. We knew we would have to start working with the
wider business to tackle the rest.

Improving the performance impact of third-party scripts on a web-
site takes time; results won’t come overnight, but by being patient
and chipping away slowly, eventually these efforts will be rewarded.

1 This case study was originally published online in April 2019:
https://smashed.by/telegraphengineering

2 https://smashed.by/gaming
3 https://smashed.by/culture
4 https://ldnwebperf.org/

Success at Scale50

https://www.telegraph.co.uk/gaming/
https://www.telegraph.co.uk/culture/
https://ldnwebperf.org/

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Creating a Performance Culture

The most important and hardest thing to achieve when tackling web
performance at the Telegraph was trying to instill a performance
culture. A lot of the performance challenges we have faced have not
been technical but have been “organizational.” Everyone wants “that
tag” on a page which will make the organisation money, so it was
very important that we get the right individuals in a room to edu-
cate, challenge, and work together.

We set up a web performance working group and invited people
from across the company – covering advertising, marketing, com-
mercial and, of course, technology. The meetings are run fortnightly,
and we use them as an opportunity to review third-party tags, dis-
cuss current challenges, and work as a cross-organizational team to
try to make our web pages as fast as possible.

Akamai’s mPulse showing important front-end metrics for a subset of pages.

Making web performance visible to non-technical teams will keep it
at the forefront of their minds when they consider any additional re-

51Improving Third-Party Web Performance at TelegraphTelegraph

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

quests, so we’re now working to try to build different real user mon-
itoring (rum) dashboards for different teams. For example: one built
around key advertising metrics that is on display in the advertising
area; and one built for marketing so that if any regressions happen
from a third party, we can help show them where that came from.

Breaking Down the Silos (Build a Rapport)

There are a lot of different teams at the Telegraph, some with an entry
level onto the website – through tag managers, embeds, and adver-
tising. As the core technical team, we found it imperative to work
with these teams to show support. We would never dismiss anyone
or anything but simply be on hand to offer best-practice advice.

Over time we built up a good rapport across the organization, and
that gave us very early insight into what was potentially being
added onto the site, when it was being added (so we could keep a
record) and, most importantly, we could offer advice for the benefit
of our end users.

Deferring All JavaScript

The single biggest improvement (and easiest to implement technical-
ly) came from deferring all JavaScript, including our own, by adding
the defer attribute to each script tag.

WebPageTest filmstrip comparing before and after deferred scripts.

Success at Scale52

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Mention you’re going to delay JavaScript execution to any market-
ing, advertising, or analytics team and you may see hesitation and
reluctance in their reply. They worry about lost revenue if adverts
don’t load fast enough, or worry that analytics will be skewed, which
won’t reflect true visitor numbers. Both of which could have an ef-
fect on the entire organization’s income.

We created a deferred JavaScript test on our QA environments
and watched the statistics over a number of days. The results
were promising:

Nearly 100% improvement in Lighthouse performance score (unthrottled)
when scripts were deferred.

Unthrottled Lighthouse performance score
(https://www.telegraph.co.uk/gaming/)

53Improving Third-Party Web Performance at TelegraphTelegraph

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

We’ve made huge strides in the right direction to improve our
overall performance scores, but we’re well aware that there is still
a huge amount to be done, especially around mobile devices and
slower connections.

Using WebPageTest ‘Fast 3G’ simulated connection
(https://www.telegraph.co.uk/gaming/)

The speed index score is high because of a third-party cookie notifi-
cation banner – we’re going to move that into our core codebase as
soon as possible.

WebPageTest filmstrip showing the cookie notification banner.

Time to interactive (tti) and first cpu idle measure how soon the
page might be interactive to a user. The high values shown above
can be attributed to third-party JavaScript. We’re working hard with
teams across the organization to educate, help, and question any
JavaScript that is executed on site. As a team, we know we’ll get there
– it just takes time.

Success at Scale54

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Akamai’s mPulse tracking key performance metrics vs. rage clicks on a
subset of pages.

We can say with confidence though that deferring our JavaScript
hasn’t skewed any existing analytics and it certainly hasn’t delayed
any advertising. By using custom performance marks in the adver-
tising code, deferring JavaScript and reducing bundle sizes, the first
ad loaded metric improved by an average of four seconds.

Custom first ad loaded metric improving by an average of four seconds.

Noticeable improvements have also been recorded in other areas,
particularly where the cpu spends most of its time.

55Improving Third-Party Web Performance at TelegraphTelegraph

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Over 2-second improvement in layout and painting (https://www.telegraph.
co.uk/culture/).

We also saw that by reducing our JavaScript bundle sizes (both
first- and third-party), we would end up with a reduction in time
to interactive.

6-second improvement in tti for Chrome and a 15-second improvement for
iPhone 6 (https://www.telegraph.co.uk/culture/).

Regular Audits of Our Tag Managers

Third-party tags can be added by different teams across the organi-
zation and they are often forgotten about over time. People move on,
contracts expire, or the results are yielded but the teams never get
back in touch to have the scripts removed. That’s why it’s incredibly
important to audit any tag manager and to do so often.

Success at Scale56

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Number of third-party requests gradually declining over time from regular
audits (https://www.telegraph.co.uk/culture/).

1

MB reduction in third-party payload (https://www.telegraph.co.uk/culture/).

At the Telegraph, we review our tag manager entries at least every
quarter. We will reach out to the individual or team that made the
original request (for it to be added) to check if they still require it to
be present on the website.

When we started this process, we had a collection of very old scripts
and couldn’t track the original requester. We removed those on the
premise that, if they were important, people would get back in touch
– no one did.

57Improving Third-Party Web Performance at TelegraphTelegraph

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Testing Each Additional Tag Request

Our main tag manager is currently controlled by our internal technical
support team. Teams must send them a written request for the addi-
tion of any new script. This made it very easy for us to work with the
team to add a performance testing phase to each and every request.

Testing an individual script can be difficult. Scripts have impacts
on other scripts, and when you have in excess of 200 third-party
requests, the fluctuations in readings can make it challenging to get
any meaningful data.

For this reason, we’ve started testing in isolation. We have a blank
page with some dummy text on it and a single, synchronous, tag
manager. We would add the third-party script there and run the page
through WebPageTest after the initial benchmarking.

Some of the key metrics we would try to monitor:

metric target

Number of requests < 3

First contentful paint < 5% increase

Bundle size < 50 KB

Evaluate events < 50 ms

These targets aren’t set in stone and there is a percentage of give and
take. We try to use them as best we can; it really just boils down to
being sensible. If there is a large amount of degradation in any of our
monitored metrics then it’s an obvious rejection with a clear expla-
nation of why.

For larger pieces of work, we would spin them up on a QA environ-
ment and let SpeedCurve monitor it over a few days. Some of the
results weren’t impressive and thus didn’t make the cut.

Success at Scale58

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

This script was added via esi and doubled the html size from 30 KB to 60 KB.

Monitoring

SYNTHETIC

There are a large number of tools on the market to monitor a web-
site’s performance synthetically – many are built around
WebPageTest apis. At the Telegraph we use SpeedCurve5 and have
found it invaluable to help pinpoint potential problems along
the way. The dashboards they offer around JavaScript usage and
third-parties remind us to keep a record of where we’ve come from
and where we need to be.

SpeedCurve can easily highlight offending domains that delay the first cpu idle.

REAL USER MONITORING (RUM)

It goes without saying that synthetic monitoring will only get you so
far, and that is why we’re currently exploring many options when it
comes to real user monitoring. We’ve toyed with the idea of beacon-

5 https://speedcurve.com/

59Improving Third-Party Web Performance at TelegraphTelegraph

https://speedcurve.com/

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

ing and collecting our own data as well as using an external service
like Akamai’s mPulse or SpeedCurve’s lux.

mPulse dashboard showing at which point resources are called for users during
the page’s loading process.

METRICS WE MONITOR

• Lighthouse performance, accessibility and seo scores

• Asset sizes (html, css, JavaScript, images, number
of dom elements)

• First cpu idle

• Custom metrics such as first ad loaded and our definition
of first meaningful paint

Ideas in the Backlog

BUSINESS METRICS

One correlation we haven’t made yet is the one between our core
business metrics and our web performance improvements. As
a team, we would love to tell the business how much it will cost

Success at Scale60

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

when a third-party request comes in . We’re not quite there yet. In
hindsight, we would have prioritized this correlation earlier in the
process as it can be a powerful tool when negotiating performance
improvements with stakeholders and management.

AIM FOR SMALLER BUNDLES AND REDUCE

PARSE/COMPILE TIMES

When we’ve spotted potential problems with third-parties, we al-
ways try to get in touch with them and, more often than not, they’re
willing to listen. We’re now getting to the stage where we can start
to actively try to pursue smaller bundle sizes and dig deeper into
what individual scripts are doing to see if we can offer suggestions
on reducing the time it takes to parse and compile their scripts.

Adobe’s Target (used for A/B testing) takes ~70 ms to be evaluated.

Qubit’s Opentag (tag manager) takes ~75 ms to be evaluated.

One third-party (native advert supplier) is blocking tti by nearly 1,000 ms,
300 ms of which is spent evaluating the two scripts.

61Improving Third-Party Web Performance at TelegraphTelegraph

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

SERVER-SIDE TAG MANAGER OR CDN PROXY

Organizations can often turn to their cdn providers to proxy third-
party requests; however, for some this isn’t an option. The Telegraph
is currently investigating a proxy via Akamai but also potentially
building a server-side tag manager via serverless architecture.

The general idea here is that an html form which contains refer-
ences to the third-party files would post to a Cloud function. This
Cloud function can download the data from those scripts and save
them to Cloud storage.

The references to these files can be included server-side via the
main www domain. The third-parties would have to be called every
x hours/days to get relevant updates.

Architecture: General > Server-side tag manager.

Benefits:

• Removes need for client-side tag manager (excessive JavaScript)

• Efficient cache policy for repeat visits

Success at Scale62

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

• No additional dns lookups or ssl handshakes

• HTTP/2 multiplexing

By following best practice advice for web performance, involving
teams from across the organization, and making our changes visible –
the business and, most importantly, our users can see the real bene-
fits. No matter where a person lives, what device or connection they
use, we should all have the same access to news and information.

We need to try to be as inclusive as possible – web performance
and accessibility is imperative to making that happen. Resolving
third-party issues, our biggest performance challenge to date, will
help us get there.

Audit the tag managers regularly to remove

unwanted tags.

The Telegraph team realized that their performance challenges
were mostly organizational. This was especially applicable to
their tag managers, where third-party tags were indiscriminate-
ly added by different teams over time. The scripts were never
removed.

Now the team reviews tag manager entries with representatives
from different departments every quarter. This helps to get rid of
entries that are no longer required. They also introduced better
control over tag managers so the performance impact of every
new tag request is tested in isolation before it is included.

TelegraphTelegraph Key Takeaways

63Improving Third-Party Web Performance at TelegraphTelegraph

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Success at Scale64

Interview

Gareth Clubb
Former TelegraphTelegraph Principal Software Engineer

Author of “Improving Third-Party Performance

at the Telegraph”Telegraph”

What excited you or your team the most about the work in
the case study?

It’s safe to say I’m quite passionate about web performance and im-
proving a site’s page speed. Why? It comes down to accessibility and
inclusivity. I’m a firm believer in the “open web.” It’s what it was cre-
ated for – to share information. I always strive to make sure that no
matter a user’s device, location, or network speed, they should have
access to news and information – it’s what makes the web great.

The publishing sector often gets a bad reputation for not caring
about the end user and only wanting to make money through
paywalls and advertising, and I wanted that to change. I joined the
industry and that sector in particular to try and make a difference.
I joined the Telegraph towards the start of 2016, after it had gone
through a large replatform from one content management system
to another. It was obvious to me that site speed was never really a
consideration but was a problem – a news article would take nearly
12.5 seconds to show the user its headline when competitors were
doing it in under a second. If loading times are not important to a
business during a rebuild and don’t make the list of non-functional
requirements, you ultimately end up with fantastic tooling and a
great developer experience, but you have fallen short in helping the
end user. That is why we do what we do – we build fantastic experi-
ences for end users.

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

65Improving Third-Party Web Performance at TelegraphTelegraph

Those loading times scared me, but it was also the thing that excited
me the most as I knew the smallest changes could have the biggest
impact. I was really excited to find out my new team was as passion-
ate as I was about site speed but just hadn’t had the opportunity to
try and put things right. This meant we could go on this web perfor-
mance journey together, as trying to tackle something as crucial as
loading times within a medium-to-large organization would have
been an incredibly daunting task to do alone. We could really demon-
strate how important site speed is to the business and sector.

After getting monitoring in place, the biggest challenge we faced
– and the one many still face to this day – was the performance of
third-party code, particularly third-party JavaScript. We knew that if
we could tackle this problem head-on together then we’d better our
own website but also many others through working directly with
third-party providers on improvements. Also, sharing our knowledge
among the web community was an exciting prospect.

If you had a similar project/problem today, do you think your
process/tooling/decisions would be exactly the same? Or, to
put it differently, looking back now, what would you have done
differently if you had a chance to make adjustments?

I’ve changed roles and changed companies since the original case
study went live. I’ve become an engineering lead at PropTech Zoopla
and do you know what? We are facing the exact same challenges I
went through with the Telegraph. I know third-party JavaScript is
renowned for tracking users on the web but it was following me
around in my real-life career, and that highlights how big of an issue
third-party code is for all our websites.

I’m pleased to say that the things my new talented team are trying
are the same things I highlighted in the case study. So to answer the
question, would I do anything differently? I don’t think so. I believe

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Success at Scale66

the approach is the same but the order in which they are done could
be improved. The very first thing we’ve done is spin up a web per-
formance working group. This is a group of like-minded individuals
who care about performance, want to learn more about performance,
and ultimately want to build more performant user experiences. It’s
a group of software engineers, both front-end and back-end; there
are members who care about search engine optimization and those
who are responsible for advertising across our products. This group
of people can really help instill a performance culture across the dif-
ferent engineering and marketing teams, so this is definitely the first
thing I would organize when tackling web performance challenges.

The next most important thing to highlight is monitoring. We did a
lot of work at the Telegraph to improve site speed but we never really
tracked it from the start. This meant we could never demonstrate
to the business or any stakeholders the incredible work that we had
done. At Zoopla we’re trying to learn from those mistakes and gather
the important data up front to make more informed decisions. Make
sure you have the monitoring in place before you go on this journey,
and it needs to be monitoring that non-technical individuals can
easily understand, have access to, and share. Whether it’s running
manual Lighthouse checks in a browser, automating them through
CI/CD pipelines, or setting up real user or synthetic monitoring,
do something and do it from the start. It’s going to make it easier
to demonstrate how important site speed is within your organiza-
tion. One of the hardest parts of web performance is linking site
speed metrics to a business conversion rate, but I would thoroughly
recommend having a go at it to be able to understand what impact a
third-party script or new feature might have on your website.

What do you think was the one critical decision that made the
outcome successful? What brought you to this decision, and
how did you or your entire team make it?

We knew as a team that if we wanted to make serious strides in
improving the performance of the website then we had to get buy-in

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

67Improving Third-Party Web Performance at TelegraphTelegraph

from the leadership team, particularly in a medium-large company.
It would have been naive of us to assume we could tackle the prob-
lems as a small group without proper business backing. This is why
monitoring is so important, because we could show the impact the
site speed was having for our users, and we could show the gains
made from simple improvements. What also helped was competitor
analysis as everyone has a competitive streak.

Getting the Telegraph’s chief technology officer (cto), Toby Wright,
behind us enabled us to confidently work with different teams when
performance was not considered. It enabled us to break down silos
across marketing and advertising teams, and it enabled us to roll out
a performance-first mindset where we could stop any code releases
from happening if there were any degradations in our loading time
metrics. We also managed to work closely with our product manag-
ers and stakeholders to make sure any site speed-related tasks were
prioritized properly and not seen as the small amount of technical
debt we should tackle with each iteration – we managed to make web
performance the next most important thing for the teams to work on.

One individual can make small technical improvements over a
period of time, one cross-functional team can start to make bigger
improvements and enable a web performance culture, but ultimately
one cto can help get an entire organization behind your cause.

What came next after the case study was published?

Not all journeys have to come to an end and that’s true of the Tele-
graph’s web performance journey, even after I left. I’m in touch with
the super smart developers I once worked alongside, and I hear of
the challenges they’re tackling on a daily basis, and web performance
is still not forgotten about. The website now delivers a consistently
faster experience, with first paint being under one second, and it’s
on a par with its competitors in the sector, but there is always room
for improvement. The team is now trying to work out what the next
most important thing is. Server-side third-party tag management?

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Success at Scale68

Caching third parties on their content delivery network (cdn)? A
more performant consent management platform? We will just have
to wait and see!

The one thing I am most proud of on my journey, though, is the cul-
ture and mindset we’ve managed to instill across the company and
within many individuals. Getting people to care is one of the most
important aspects when you want to push for change and make a
difference. Still seeing those people care today makes me realize
we’ve done a job to be proud of.

The people I am lucky enough to work with today at Zoopla are now
starting out on their journey, and I know through experience that it’s
going to be challenging, but it’s going to be fun and it’s going to be
incredibly rewarding once we get to where we need to be.

Do you have any advice for teams that would like to follow in
your footsteps?

Web performance isn’t just a technical problem to solve, it’s most-
ly about people. Find people in your team and your company who
care as much as you do. Surround yourself with those people and
work together to build a web performance culture and mindset in
your peers and your leadership team. Make sure you meet regularly
with a structured agenda or problem to solve and invite people from
across the organization to discuss the problems they are facing.
When the web performance working groups started at the Telegraph
and Zoopla, respectively, one of the first things we spoke about was
trying to define standards, monitoring, performance budgets (the
maximum size or number of assets), and working out how to make
site speed a non-functional requirement for new features.

From a technical point of view, I’ve already called out monitoring,
but I would work out how best to use the monitoring effectively
with performance budgets and alerting. If someone adds a new web

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

69Improving Third-Party Web Performance at TelegraphTelegraph

font, a large JavaScript bundle, or just hasn’t properly optimized
a particular image, then it would be ideal if the engineering team
knew about this sooner rather than later. Early feedback is very
important, so make sure you don’t just monitor what’s happening in
your production or live environments – monitor any development
environment and stop that regression from affecting your users.

If you’re just starting out on a web performance journey at your
company, or maybe you’ve been at this game as long as I have, my
advice would be the same – keep trying, be open to learning new
things, and embrace failure, but ultimately just don’t give up. Your
users and the web are counting on you.

Has the site changed significantly since the case study
was published?

The team have done some great work around improving time to first
byte (ttfb), largest contentful paint (lcp) and fully loaded metrics.
In terms of third parties, it’s in a similar place to when we first
went live. It’s still using a small JavaScript image lazy-loader with
the Intersection Observer api, and I’d love to see this now using the
loading attribute for supported browsers. All of the JavaScript tags
are still deferred, helping that first paint, but again: could it use Java-
Script modules for browsers that support them? Even conditionally
load enhancements as and when they are scrolled into view?

Ultimately, my point here is that yes, the website is as similar as
when it first went live. It even won UK News Website of the Year
2019. But web performance and improving site speed has to be a
continuous journey: it’s not something you do once a year or once
a rebuild. Even though broadband speeds and processing power are
getting faster, not everyone has that privilege. But everyone has the
right to the news and information about the world they’re in, so
make sure you enable web performance as part of your engineering
and organization culture and give everyone that right.

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Wix: Trim the Fat from Your
Bundles Using Webpack Analyzer
and React Lazy/Suspense
by Eyal Eizenberg

As client-side applications become more complex, their bun-
dle sizes become bigger and bigger. Devices and regions
with slower connections suffer the most from increasing

bundle sizes, and it’s just getting worse every day. In this article1 I
will go over a real-world example from my work at Wix where I was
able to trim my bundle size by about 80% using Webpack Bundle
Analyzer and React Lazy/Suspense.

How Early Should I Optimize?

If you are just getting started with your new and shiny web application,
you are probably trying to focus on getting off the ground and making
your product come to life. You are probably not focusing on perfor-
mance or bundle sizes too much. I can relate to this. However, in my ex-
perience, this is something you should think about right from the start.
Good architecture and trying to think about the future of your app will
save you a lot of time and tech debt in the long run. Obviously, it’s hard
to guess everything ahead of time, but you should try to do your best.

There are two great tools which I think you should use right from
the start. These tools will help you recognize problematic npm pack-
ages even before you rely on them in your app.

1 This original version of this case study was published in September 2019:
https://smashed.by/wixengineering

70 Success at Scale

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

BUNDLEPHOBIA

Bundlephobia shows you how much an npm package will increase
your bundle size.2 This is a great tool which might help you make
better choices with regards to picking a third-party package you
might need, or how to design your architecture so your app doesn’t
become bloated. In the screenshot below, I checked the popular
time-parsing library “moment.” You can see that it’s big. Almost
66 KB gzipped.
For a lot of peo-
ple with blazing
internet speeds,
it’s nothing. How-
ever, look how
long the download
time increases for
2G/3G networks:
2.2 s and 1.32 s
respectively, and
that’s just for one
package.

IMPORT COST EXTENSION

This is a very cool extension for various popular editors (1 million+
downloads for VS Code), which shows you how much importing a
package will cost.3 What I really like about this extension is that it
helps identify specific problematic areas on the fly. This following
images (taken from Import Cost’s GitHub page) shows a perfect ex-
ample of how importing the uniqueId property from Lodash brings
in the entire Lodash package (70 KB) as opposed to importing just

2 https://bundlephobia.com/
3 https://smashed.by/vscodeimportcost

Bundlephobia’s result for the “moment” package.

71Wix: Trim the Fat From Your Bundles

https://marketplace.visualstudio.com/items?itemName=wix.vscode-import-cost
https://marketplace.visualstudio.com/items?itemName=wix.vscode-import-cost

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

the uniqueId function directly, which adds just 2 KB. The article
“Get Slim Bundles with the Import Cost Extension” by Yair Haimov-
itch has more information about Import Cost.4

Cost of importing all of Lodash vs just a specific function.

Bloated Bundles: A Case Study

So you’ve built your amazing app. It works great on your high-speed
internet connection and your superpowered, ultra-fast with extra
ram dev computer. Then after a little while, you start getting com-
plaints from your users or from your analytics team that your app’s
load time is not so great. This recently happened to me after we
released a new feature I was working on here at Wix.

To give you some perspective, let’s first look at the new feature. The
feature is a new progress bar at the top of your sidebar. The goal is
to expose various steps you should take in order to have a better
chance of succeeding with your business (connect seo, add shipping
regions, add your first product, etc).

The progress bar updates automatically by connecting to the serv-
er via websockets. When the user completes all the recommended
steps, a tooltip with a “happy moment” is shown in order to cele-

4 https://smashed.by/gitimportcost

Success at Scale72

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

brate your achievement. After the “happy moment” is closed, the
progress bar is hidden and will never be shown again for this site.

So what was happening? Why was I getting complaints from our
analytics team saying that the load time for the page has increased?
Looking at the Network tab in Chrome’s DevTools, it quickly became
apparent that my bundle was big: 190 KB big.

My bundle size according to Chrome’s DevTools.

I thought to myself, why should this small feature have such a (rela-
tively) big bundle?! Why indeed…

FINDING THE PROBLEMATIC AREAS IN YOUR BUNDLE

After realizing the bundle size was too big, it was time to find out
why. A great tool to help find problematic areas in your bundle is
Webpack Bundle Analyzer.5 This tool will open a new tab in your
browser and it will visualize all of your dependencies.

Using the analyzer, I was able to find the culprit. I was using lottie-
web, which added 61.45 KB to my bundle. Lottie is a really cool Ja-
vaScript library that renders After Effects animations natively. In my
specific app, our designer/animator wanted a nice animation when
the “happy moment” appeared. He designed it and gave me a json

5 https://smashed.by/slimbundles

73Wix: Trim the Fat From Your Bundles

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

file, which I passed to the Lottie package and voilà – a great-looking
animation appeared before my eyes. In addition to the lottie-web
package, the json file I had to pass to Lottie was 26 KB. So Lottie +
the json file + additional small dependencies was costing me about
94 KB. Just for that animation in the “happy moment”. This for me,
was actually a sad moment…

REACT LAZY/SUSPENSE TO THE RESCUE

After I dusted myself off, it was time to fix the problem. It was ob-
vious that there is no need to bring in everything that was needed
for the animation right from the start. In fact, there was even a very
good chance that the “happy moment” won’t be shown at all during
the current user’s session. I read up on React Lazy/Suspense which
came out recently, and I thought that this might be a great chance to
test it out.

If you are not familiar with the concept of lazy components, the
idea is that you split your app into smaller pieces and then fetch the
relevant pieces only when you need them. So in my case, I wanted
to break apart the component that was responsible for rendering the
“happy moment” and fetch it only when the user completes all the
recommended steps.

Result of Webpack Bundle Analyzer.

Success at Scale74

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

React 16.6.0 (or higher) provides a simple api which helps render lazy
components called React.lazy and React.Suspense.6 Let’s look at
this simple example:

const OtherComponent = React.lazy(() => import('./
OtherComponent'));

function MyComponent() {
 return (
 <div>
 <React.Suspense fallback={<div>Loading...</div>}>
 <OtherComponent />
 </React.Suspense>
 </div>
);

}

We have a component here which renders a div and in it the
Suspense component, which wraps the OtherComponent. If you look
at line 1 you will see that OtherComponent is not brought directly.
Usually it will look like this: import OtherComponent from
‘./OtherComponent’;

Instead, the import command is used as a function which receives
the path of the file. This works because Webpack has built-in code
splitting, and when used in this specific way returns a promise
which will resolve with the content of the file once it’s fetched. This
import is wrapped in the React.lazy function.

In our render function of MyComponent the OtherComponent is
wrapped in React.Suspense which has a prop called fallback.
This means that only when the render function “gets” to the
OtherComponent (line 7) it will begin fetching it. In the meantime,
it will render whatever is rendered in the fallback prop: in this
example, a div with the text “Loading…” That’s it. It just works…

6 https://reactjs.org/docs/code-splitting.html

75Wix: Trim the Fat From Your Bundles

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

There are two gotchas you should take into consideration:

1. The component which is brought in lazily has to have a
default export and that will be the entry point of your compo-
nent. You can’t use a named export.

2. You have to wrap the React.lazy component with the
React.Suspense component, and you have to provide it
with the fallback prop, otherwise an error will be thrown.
But don’t worry: in case you don’t want to render anything
until the lazy component arrives, you can just pass null as
the fallback prop.

DID IT WORK OUT FOR ME?

It did! Well, kind of… The part that worked marvelously was the code
splitting. Let’s look at the Webpack analysis after splitting the code:

Result of Webpack Bundle Analyzer after splitting.

As you can see in the image above, my bundle has been cut down by
about 50% to 96 KB. Yay!

Success at Scale76

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

So what didn’t work? The positioning of my tooltip was now off:

Misplaced tooltip.

The problem was that I told the tooltip to open by setting a state in
the React component. In the meantime, I rendered null (nothing)
using the React.Suspense component. Once the content arrived
lazily, it was rendered into the dom. However, the positioning of the
tooltip was already done beforehand, and because the props of the
tooltip component did not change, it didn’t know that it needed to
check if it needed to reposition the content. If I changed Chrome’s
window size, the tooltip popped into the right position because the
tooltip was listening to prop changes and window resizes in order to
initiate repositioning.

So what was the solution here? Cut out the middleman.

I needed to first fetch the lazy component and only then set the
state which told the tooltip to open. I was able to do this by using
the same Webpack code-splitting ability but without wrapping
it in React.lazy:

77Wix: Trim the Fat From Your Bundles

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

async loadAndSetHappyMoment() {
const component = await import(
 '../SidebarHappyMoment/SidebarHappyMoment.component'
);
this.SidebarHappyMoment = component.SidebarHappyMoment;
this.setState({
 tooltipLevel: TooltipLevel.happyMoment,
});
}

This function is called after my component gets triggered via web-
sockets that it needs to show the “happy moment”. I am using Web-
pack’s import function (lines 2–4). If you remember what I wrote
earlier, it returns a promise so I can use the async/await syntax.

Once the component arrives, I am setting it to the instance of my
component (line 5) so I will be able to use it in the render function
later. Notice also how I can use named exports now. I am using the
one called SidebarHappyMoment (line 5). Last but not least, I am tell-
ing the tooltip to open by setting the state after I know my compo-
nent is ready (lines 6–8).

My render function now looks like this:

renderTooltip() {
 if (this.state.tooltipLevel === TooltipLevel.happyMoment)
{
 return <this.SidebarHappyMoment />;
 }
 // ...
 }

Notice how in line 3 I am rendering this.SidebarHappyMoment
which I’ve set on my instance earlier. This is now a normal syn-
chronous render function like you’ve used a million times before.

Success at Scale78

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

And now, my “happy moment” tooltip rendered exactly where
it should have because the tooltip was opened only after its
content was ready.

THE PRODUCT DEFINES THE ARCHITECTURE

Wait, what?! Yes, exactly!

The product defines what needs to be visible and interactive when
the component first renders. This will help you as a developer
figure out what you can break apart
and bring in later as needed. I gave my
specific use case more thought and
remembered that once the user com-
pletes the setup steps or if they are not
the site’s admin, we don’t want to render the progress bar at all.
Using this information, I was able to split my bundle even more,
and now it looks like this:

Three-way split of the bundle.

So what was

the solution here?

Cut out the middleman.

79Wix: Trim the Fat From Your Bundles

Trim bloated bundles and redesign to meet

requirements with improved speed.

When the introduction of a new feature led to degradation
in performance, Wix engineer Eyal Eizenberg was able to
pinpoint the root cause of the issue using the webpack bundle
analyzer. He identified that the use of a third-party library
introduced to implement the new feature added significantly
to the bundle size.

The new feature was a “happy moment” tooltip that was only
shown to users when they completed all steps in the set-up pro-
cess. Since it was not required for all users, through intelligent
code-splitting combined with the use of React Lazy/Suspense,
he was able to significantly reduce the bundle size from 190 KB
to 38 KB and improve the load time.

Wix Key Takeaways

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

As you can see, the bundle size is now only 38 KB. Remember we start-
ed with 190 KB? An 80% reduction. I have already recognized more
things I can extract, and I am eager to trim the bundle even more.

Conclusion

Developers tend to stay in their comfort zone and not delve beyond
the code and its functionality. However, using these tools, some
creative thinking, and working closely with your product manager,
you could probably enhance your app’s performance by making your
bundle size much smaller.

Success at Scale80

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

81Wix: Trim the Fat From Your Bundles

Interview

Eyal Eizenberg
Head of R&D, Dashboard Group, Wix

Author of “Wix: Trimming the Fat From

JS Bundles With Webpack Bundle Analyzer”

What excited you or your team the most about the work in
the case study?

My team’s main focus is the dashboard at Wix. This page has a lot
of traffic, and performance is always on our minds. My area of
expertise is front-end development, and when it comes to perfor-
mance I love trying to find new ways of trimming bundle sizes. I use
Webpack Bundle Analyzer all the time to make sure everything is
bundled correctly and I am not bundling things I don’t really need. I
analyzed this specific project and noticed there was a problem. Right
around that time, React Suspense was rolling out. I was excited to
see how I could use React Suspense and webpack lazy loading to fix
the problem I was facing.

What I really loved about this case study was that usually perfor-
mance issues are solved solely by developers. However, in this case
the solution came by working closely with the product manager and
realizing we could lazy-load parts of the application and trim the
bundle size dramatically.

Were you surprised by the impact your work had on the overall
user experience, business, team, or other metrics?

I was very surprised with the results. Usually when analyzing big
JavaScript bundles you are able to make things better by shaving

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Success at Scale82

a few KBs here and there, you switch a third-party library for a
smaller one, or by realizing a project was bundling too many things
erroneously. In this case, not only was I able to reduce
the bundle size by 80%, but I was also able to do it without the
users noticing anything, or replacing libraries. It was just by some
creative thinking and collaborating with the product manager to
better understand the product.

If you had a similar project/problem today, do you think your
process/tooling/decisions would be exactly the same? Or, to
put it differently, looking back now, what would you have done
differently if you had a chance to make adjustments?

The biggest part of the bundle was Lottie and the JSON provided to
it. I am much more aware of it now, and if it is required in a project I
apply the methodologies I learned in this case study. However, since

there are many other
big libraries out there,
I try to use tools such
as Import Cost and
Bundlephobia before
bringing in a new

npm package. And lastly, I work very closely with product manag-
ers in order to really understand the applications I need to develop
before diving in so I could recognize potential optimizations.

What came next after the case study was published?

The case study had a big ripple effect with many developers reach-
ing out to discuss it, blog posts, several related talks at international
conferences, and this book.

In this case, not only was I able to

reduce the bundle size by 80%, but I

was also able to do it without the users

noticing anything, or replacing libraries.

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Article Name 83Wix: Trim the Fat From Your Bundles

Do you have any advice for teams that would like to follow in
your footsteps?

Developers tend to work with the best internet connection available.
However, most of the time our customers don’t have that, whether it
be developing countries, out-of-reach geographical locations, or just
someone using their phone while commuting to work on a train.
Try slowing down your connection in Chrome’s DevTools and ask
yourself: is this acceptable to me? If the answer is no, then you have
to step up your performance game.

Work with your product managers and try to see how you can
break apart your application so the crucial things load first and
quickly, and the less important ones load in the background or if
possible not at all.

Has the site changed significantly since the case study
was published?

We are now in the process of writing the third version of the dash-
board. The motivation for that is not bad performance but, rather,
deep research and the will to understand our customers better, pro-
vide them with the best experience and the most relevant informa-
tion for their specific needs. Naturally, as Wix is growing so rapidly,
making sure our performance is top-notch is crucial.

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Improving Core Web Vitals: A
Smashing Magazine Case Study
by Barry Pollard

Why are my core web vitals failing?” Many developers
have been asking themselves that question lately.1
Sometimes it’s easy enough to find the answer to that

question and the site just needs to invest in performance. Some-
times though, it’s a little trickier and, despite thinking your site was
great on the performance for some reason it still fails. That’s what
happened to our very own smashingmagazine.com and figuring out
and fixing the issue took a bit of digging.

A Cry For Help

It all started with a series of tweets in March 2021 with a cry for help:

Smashing Magazine’s tweet asking for help.

Well, this piqued my interest! I’m a big fan of Smashing Magazine and
am very interested in web performance and the core web vitals. I’ve

1 The original version of this case study was published in December 2021:
https://smashed.by/corewebvitalscasestudy

Success at Scale84

https://twitter.com/smashingmag/status/1367782646332395520?s=20
https://twitter.com/smashingmag/status/1367782646332395520?s=20
https://twitter.com/smashingmag/status/1367782646332395520?s=20
https://twitter.com/smashingmag/status/1367782646332395520?s=20
https://twitter.com/smashingmag/status/1367782646332395520?s=20
https://twitter.com/smashingmag/status/1367782646332395520?s=20
https://twitter.com/smashingmag/status/1367782646332395520?s=20

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

written a few articles here before on core web vitals, and am always in-
terested to see what’s in their annual Web Performance Checklist.2 So,
Smashing Magazine knows about web performance, and if they were
struggling, then this could be an interesting test case to look at!

A few of us made some suggestions on that thread as to what the
problem might be after using some of our favorite web performance
analysis tools like WebPageTest or PageSpeed Insights.

Investigating the LCP Issue

The issue was that lcp was too slow on mobile. lcp, or largest con-
tentful paint, is one of the three core web vitals that you must “pass”
to get the full search ranking boost from Google as part of their Page
Experience Update.3 As its name suggests, lcp aims to measure
when the largest content of the page is drawn (or “painted”) to the
screen. Often this is the hero image or the title text. It is intended to
measure what the site visitor likely came here to see.

Previous metrics measured variations of the first paint to screen (of-
ten this was a header or background color): incidental content that
isn’t really what the user actually wants to get out of the page. The
largest content is often a good indicator of what’s most important.
And the “contentful” part of the name shows this metric is intended
to ignore (e.g. background colors); they might represent the largest
content, but they are not “contentful” so they don't count towards
lcp – instead, the algorithm tries to find something more relevant.

LCP only looks at the initial viewport. As soon as you scroll down or
otherwise interact with the page the lcp element is fixed and we can
calculate how long it took to draw that element from when the page
first started loading – and that’s your lcp!

2 https://smashed.by/performancechecklist
3 https://smashed.by/pageux

85Improving Core Web Vitals: A Smashing Magazine Case Study

https://www.smashingmagazine.com/2021/01/front-end-performance-2021-free-pdf-checklist/
https://www.smashingmagazine.com/2021/01/front-end-performance-2021-free-pdf-checklist/
https://www.smashingmagazine.com/2021/01/front-end-performance-2021-free-pdf-checklist/
https://www.smashingmagazine.com/2021/01/front-end-performance-2021-free-pdf-checklist/
https://www.smashingmagazine.com/2021/01/front-end-performance-2021-free-pdf-checklist/
https://developers.google.com/search/docs/advanced/experience/page-experience
https://developers.google.com/search/docs/advanced/experience/page-experience
https://developers.google.com/search/docs/advanced/experience/page-experience
https://developers.google.com/search/docs/advanced/experience/page-experience
https://developers.google.com/search/docs/advanced/experience/page-experience

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

There are many ways of measuring your core web vitals,4 but the
definitive way – even if it’s not the best way, as we’ll see soon – is in
Google Search Console (gsc).5 From an seo perspective, it doesn’t real-
ly matter what other tools tell you: gsc is what Google Search sees. Of
course, what matters is your users’ experience rather than what some
search engine crawler sees, but one of the great things about the core
web vitals initiative is that it measures real user experience rather
than what Google Bot sees! So, if gsc says you have bad experiences,
then you have bad experiences according to your users.

Search Console told Smashing Magazine that its lcp on mobile for
most pages needed improving – a standard enough output of that
part of gsc and pretty easily addressed: just make your lcp ele-
ment draw faster! This shouldn’t take too long. Certainly not
six months (or so we thought). So, first up is finding out what the
lcp element is.

Running a failing article page through WebPageTest highlighted
the lcp element:

The lcp image of a typical Smashing Magazine article.

4 https://smashed.by/corewebvitalsguide
5 https://smashed.by/gsc

Success at Scale86

https://www.smashingmagazine.com/2021/04/complete-guide-measure-core-web-vitals/
https://www.smashingmagazine.com/2021/04/complete-guide-measure-core-web-vitals/
https://www.smashingmagazine.com/2021/04/complete-guide-measure-core-web-vitals/
https://www.smashingmagazine.com/2021/04/complete-guide-measure-core-web-vitals/
https://www.smashingmagazine.com/2021/04/complete-guide-measure-core-web-vitals/
https://www.smashingmagazine.com/2021/04/complete-guide-measure-core-web-vitals/
https://www.smashingmagazine.com/2021/04/complete-guide-measure-core-web-vitals/
https://www.smashingmagazine.com/2021/04/complete-guide-measure-core-web-vitals/
https://www.smashingmagazine.com/2021/04/complete-guide-measure-core-web-vitals/

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Improving The LCP Image

OK, so the article author photo is the lcp element. The first instinct
is to ask what we could do to make that faster. This involves delv-
ing into waterfalls, seeing when the image is requested, how long it
takes to download, and then deciding how to optimize that. Here,
the image was well optimized in terms of size and format (usually
the first and easiest option for improving the performance of imag-
es!). The image was served from a separate assets domain (often bad
for performance), but it wasn’t going to be possible to change that
in the short term, and Smashing Magazine had already added a
preconnect resource hint to speed that up as best they could.

As I mentioned before, Smashing Magazine knows about web perfor-
mance, had only recently worked on improving their performance,6
and had done everything right here but was still failing. Interesting…

Other suggestions rolled in, including reducing load, delaying the
service worker (to avoid contention), or investigating http/2 priori-
ties, but they didn’t have the necessary impact on the lcp timing. So
we had to reach into our web performance toolbag for all the tips and
tricks to see what else we could do here.

If a resource is critical to the page load, you can inline it so it’s includ-
ed in the html itself. That way, the page includes everything neces-
sary to do the initial paint without delays. For example, Smashing
Magazine already inlined critical css to allow a quick first paint but
did not inline the author’s image. Inlining is a double-edged sword
and must be used with caution. It beefs up the page and means sub-
sequent page views do not benefit from the fact that data is already
downloaded. I’m not a fan of over-inlining7 because of this.

6 https://smashed.by/smashingmagperformance
7 https://smashed.by/inliningcss

87Improving Core Web Vitals: A Smashing Magazine Case Study

https://www.smashingmagazine.com/2021/01/smashingmag-performance-case-study/
https://www.smashingmagazine.com/2021/01/smashingmag-performance-case-study/
https://www.smashingmagazine.com/2021/01/smashingmag-performance-case-study/
https://www.smashingmagazine.com/2021/01/smashingmag-performance-case-study/
https://www.smashingmagazine.com/2021/01/smashingmag-performance-case-study/
https://www.smashingmagazine.com/2021/01/smashingmag-performance-case-study/
https://www.smashingmagazine.com/2021/01/smashingmag-performance-case-study/
https://www.smashingmagazine.com/2021/01/smashingmag-performance-case-study/
https://www.smashingmagazine.com/2021/01/smashingmag-performance-case-study/
https://www.smashingmagazine.com/2021/01/smashingmag-performance-case-study/
https://www.smashingmagazine.com/2021/01/smashingmag-performance-case-study/
https://www.smashingmagazine.com/2021/01/smashingmag-performance-case-study/
https://www.smashingmagazine.com/2021/01/smashingmag-performance-case-study/
https://www.tunetheweb.com/blog/inlining-css-is-not-for-me/
https://www.tunetheweb.com/blog/inlining-css-is-not-for-me/
https://www.tunetheweb.com/blog/inlining-css-is-not-for-me/
https://www.tunetheweb.com/blog/inlining-css-is-not-for-me/
https://www.tunetheweb.com/blog/inlining-css-is-not-for-me/
https://www.tunetheweb.com/blog/inlining-css-is-not-for-me/
https://www.tunetheweb.com/blog/inlining-css-is-not-for-me/
https://www.tunetheweb.com/blog/inlining-css-is-not-for-me/
https://www.tunetheweb.com/blog/inlining-css-is-not-for-me/
https://www.tunetheweb.com/blog/inlining-css-is-not-for-me/
https://www.tunetheweb.com/blog/inlining-css-is-not-for-me/

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

So, it’s not normally recommended to inline images. However,
here the image was causing us real problems, was reasonably
small, and was directly linked to the page. Yes, if you read a lot of
articles by that one author it’s a waste to redownload the same im-
age multiple times instead of downloading the author’s image once
and reusing it, but in all likelihood, you’re here to read different
articles by different authors.

There have been a few advances in image formats recently, but
avif is causing a stir as it’s here already (at least in Chrome and
Firefox), and it has impressive compression results over the old
jpeg formats traditionally used for photographs. Vitaly didn’t want
to inline the jpeg version of the author images, but investigated
whether inlining the avif version would work. Compressing the
author image using avif, and then base64-ing the image into the
html led to a 3 KB increase to the html page weight — which is
tiny and so was acceptable.

Since avif was only supported in Chrome at the time (it came to
Firefox after all this), and since Core Web Vitals is a Google ini-
tiative, it did feel slightly “icky” optimizing for a Google browser
because of a Google edict. Chrome is often at the forefront of new
feature support and that’s to be commended, but it always feels
a little off when those two sides of its business impact each oth-
er. Still, this was a new standard image format rather than some
proprietary Chrome-only format (even if it was only supported in
Chrome initially), and was a progressive enhancement for perfor-
mance (Safari users still get the same content, just not quite as fast),
so with the addition of the avif twist, Smashing took the sugges-
tion and inlined the image and did indeed see impressive results in
lab tools. Problem solved!

Success at Scale88

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

An Alternative LCP

So, we let that bed in and waited the usual 28 days or so8 for the Core
Web Vitals numbers to all turn green… but they didn’t. They flitted
between green and amber so we’d certainly improved things, but
hadn’t solved the issue completely. After staying a long stretch in
the amber “needs improvement” section, Vitaly reached out to see if
there were any other ideas.

The image was drawing quickly. Not quite instantly (it still takes
time to process an image after all) but as near as it could be. To be
honest, I was running out of ideas but took another look with fresh
eyes. And then an alternative idea struck me — were we optimizing
the right lcp element? Authors are important of course, but is that
really what the reader came here to see? Much as our egos would like
to say yes, and that our beautiful shining mugs are much more im-
portant than the content we write, the readers probably don’t think
that (readers, huh — what can you do!).

The reader came for the article, not the author. So the lcp element
should reflect that, which might also solve the lcp image drawing
issue. To do that we just put the headline above the author image,
and increased the font size on mobile a bit.
This may sound like a sneaky trick to fool
the core web vital seo gods at the expense
of the users, but in this case, it helps both!
Although many sites do try to go for the
quick and easy hack or optimize for GoogleBot over real users, this
was not a case of that and we were quite comfortable with the de-
cision here. In fact, further tweaks removed the author image com-
pletely on mobile where there’s limited space, and that article current-
ly looks like this on mobile, with the lcp element highlighted:

8 https://smashed.by/cruxreport

To improve the metrics,

you have to improve

the experience.

89Improving Core Web Vitals: A Smashing Magazine Case Study

https://www.smashingmagazine.com/2021/04/complete-guide-measure-core-web-vitals/#the-chrome-user-experience-report-crux
https://www.smashingmagazine.com/2021/04/complete-guide-measure-core-web-vitals/#the-chrome-user-experience-report-crux
https://www.smashingmagazine.com/2021/04/complete-guide-measure-core-web-vitals/#the-chrome-user-experience-report-crux
https://www.smashingmagazine.com/2021/04/complete-guide-measure-core-web-vitals/#the-chrome-user-experience-report-crux
https://www.smashingmagazine.com/2021/04/complete-guide-measure-core-web-vitals/#the-chrome-user-experience-report-crux
https://www.smashingmagazine.com/2021/04/complete-guide-measure-core-web-vitals/#the-chrome-user-experience-report-crux
https://www.smashingmagazine.com/2021/04/complete-guide-measure-core-web-vitals/#the-chrome-user-experience-report-crux
https://www.smashingmagazine.com/2021/04/complete-guide-measure-core-web-vitals/#the-chrome-user-experience-report-crux
https://www.smashingmagazine.com/2021/04/complete-guide-measure-core-web-vitals/#the-chrome-user-experience-report-crux

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Here we show the title, the key information about the article, and
the start of the summary — much more useful to the user than tak-
ing up all the precious mobile screen space with a big photo!

And that’s one of the main things I like about the core web vitals:
they are measuring user experience.

And NOW we were finally done. Text draws much quicker than im-
ages so that should sort out the lcp issue. Thank you all very much
and good night!

I Hate That CWV Graph in
Google Search Console…

Again we were disappointed. That didn’t solve the issue and it wasn’t
long before the Google Search Console graph returned to amber:

Smashing Magazine
article without author
image and with the
title highlighted as
lcp element.

Success at Scale90

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Core web vitals graph from Google Search Console.

At this point, we should talk a little more about page groupings and
core web vitals. You might have noticed from the above graph that
pretty much the whole graph swings at once. But there was also a
core group of about 1,000 pages that stayed green most of the time.
Why is that?

Well, Google Search Console categorizes pages into page groupings
and measures the Core Web Vitals metrics of those page groupings.
This is an attempt to fill in missing data for those pages that don’t
get enough traffic to have meaningful user experience data. There’s a
number of ways that Google could have tackled this: they could have
just not given any ranking boost to such pages, or maybe assumed
the best and given a full boost to pages without any data. Or they
could have fallen back to origin-level Core Web Vitals data. Instead,
they tried to do something cleverer, which was an attempt to be
helpful but is in many ways also more confusing: page groupings.

Basically, every page is assigned a page grouping. How Google
does this isn’t made clear, but urls and technologies used on the
page have been mentioned before. You also can’t see what group-
ings Google has chosen for each of your pages, or if their algorithm
got it right, which is another frustrating thing for website owners,
though they do give sample urls for each different core web vitals

91Improving Core Web Vitals: A Smashing Magazine Case Study

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

score below the graph in Google Search Console from which the
grouping can sometimes be implied.

Page groupings can work well for sites like Smashing Magazine. For
other sites, page groupings may be less clear, and many sites may
just have one grouping. The Smashing site, however, has several dif-
ferent types of pages: articles, author pages, guides, and so on. If an
article page is slow because the author image is the lcp image, and
it is slow to load, then that will likely be the case for all article pages.
And the fix will likely be the same for all article pages. So grouping
them together there makes sense (assuming Google can accurately
figure out the page groupings).

However, where it can get confusing is when a page does get enough
visitors to get its own core web vitals score and it passes, but it’s
lumped in with a failing group. You can call the CrUX api for all the
pages in your site, see most of them are passing, then be confused
when those same pages are shown as failing in Search Console
because they’ve been lumped in a group with failing urls and most
of the traffic for that group is for failing. I still wonder if Search
Console should use page-level Core Web Vitals data when available,
rather than always using the grouping data.

Anyway, that accounts for the large swings. Basically, all the articles
(of which there are about 3,000) appear to be in the same page group-
ing (not unreasonably!) and that page grouping is either passing or
failing. When it switches, the graph moves dramatically.

You can also get more detailed data on the core web vitals through
the CrUX api. This is available at an origin-level (i.e. for the whole
site), or for individual urls (where enough data exists), but annoy-
ingly not at the page grouping level. I’d been tracking the origin level
lcp using the CrUX api to get a more precise measure of the lcp
and it showed a depressing story too:

Success at Scale92

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Tracking Smashing Magazine mobile origin lcp from CrUX.

We can see we’ve never really “solved” the issue and the amount of
“Good” pages (the green line above) still hovered too close to the 75%
pass rate. Additionally, the p75 lcp score (the dotted line which uses
the right-hand axis) never really moved far enough away from the
2500 milliseconds threshold. It was no wonder the pages passing
and failing were flipping back and forth. A bit of a bad day, with a
few more slow page loads, was enough to flip the whole page group-
ing into the “needs improvement” category. We needed something
more to give us some headroom to be able to absorb these “bad days”.

At this point, it was tempting to optimize further. We know the
article title was the lcp element so what could we do to further
improve that? Well, it uses a font, and fonts have always been a
bane of web performance.

But hold up a minute. Smashing Magazine was a fast site. Web perfor-
mance tools like Lighthouse and WebPageTest showed that — even on
slower network speeds. And it was doing everything right! It was built
as a static site generator so didn’t require any server-side generation
to occur; it inlined everything for the initial paint so there were no

93Improving Core Web Vitals: A Smashing Magazine Case Study

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

resource loading constraints other than the html itself; it was hosted
by Netlify on a cdn so should be near its users.

Sure, we could look at removing the font, but if Smashing Magazine
couldn’t deliver a fast experience given all that, then how could
anyone else? Passing core web vitals shouldn’t be impossible, nor
require you to only be on a plain site with no fonts or images.
Something else was up here and it was time to find out a bit more
about what was going on instead of just blindly attempting another
round of optimizations.

Digging a Little Deeper into the Metrics

Smashing Magazine didn’t have a rum solution, so instead we
delved into the Chrome User Experience Report (CrUX) data that
Google collects for the top 8 million or so websites and then makes
available to query in various forms. It’s this CrUX data that drives
the Google Search Console data and, ultimately, the ranking impact.
We’d already been using the CrUX api but decided to delve into oth-
er CrUX resources.

We used the sitemap and a Google Sheets script to look at all the
CrUX data for the whole site where it was available (Fabian
Krumbholz has since created a much more comprehensive tool9
to make this easier!) and it showed mixed results for pages. Some
pages passed, while others, particularly older pages, were failing.

The CrUX dashboard didn’t really tell us much that we didn’t already
know in this instance: the lcp was borderline, and unfortunately
not trending down:

9 https://smashed.by/webvitalsoptimizer

Success at Scale94

https://fabkrum.github.io/core-web-vitals-optimizer/
https://fabkrum.github.io/core-web-vitals-optimizer/
https://fabkrum.github.io/core-web-vitals-optimizer/
https://fabkrum.github.io/core-web-vitals-optimizer/
https://fabkrum.github.io/core-web-vitals-optimizer/
https://fabkrum.github.io/core-web-vitals-optimizer/
https://fabkrum.github.io/core-web-vitals-optimizer/

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

CrUX Dashboard lcp trend for SmashingMagazine.com.

Digging into the other stats (ttfb, First Paint, Online, DOMCon-
tentLoaded) didn’t give us any hints. There was, however, a notice-
able increase in mobile usage:

CrUX Dashboard device trend for SmashingMagazine.com.

95Improving Core Web Vitals: A Smashing Magazine Case Study

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Was this part of a general trend in mobile adoption? Could that be
what was affecting the mobile lcp despite the improvements we’d
done? We had questions but no answers or solutions.

One thing I wanted to look at was the global distribution of the traf-
fic. We’d noticed in Google Analytics a lot of traffic from India to old
articles — could that be an issue?

The India Connection

Country-level CrUX data isn’t available in the CrUX dashboard but
is available in the BigQuery CrUX dataset, and running a query in
there at the smashingmagazine.com origin level10 shows a wide dis-
parity in lcp values (the sql is included on the second tab of that
link, in case you want to try the same thing on your own domain).
Based on the top 10 countries in Google Analytics we have the
following data:

country mobile p75 lcp value % of traffic

United States 88.34% 23%

India 74.48% 16%

United Kingdom 92.07% 6%

Canada 93.75% 4%

Germany 93.01% 3%

Philippines 57.21% 3%

Australia 85.88% 3%

France 88.53% 2%

Pakistan 56.32% 2%

Russia 77.27% 2%

10 https://smashed.by/smashingmagcrux

Success at Scale96

https://docs.google.com/spreadsheets/d/1apZVYtIzHpDTe1UJi83ETeaUv8Yzw0jJyU8sepQhCpI/edit#gid=1085026550
https://docs.google.com/spreadsheets/d/1apZVYtIzHpDTe1UJi83ETeaUv8Yzw0jJyU8sepQhCpI/edit#gid=1085026550
https://docs.google.com/spreadsheets/d/1apZVYtIzHpDTe1UJi83ETeaUv8Yzw0jJyU8sepQhCpI/edit#gid=1085026550
https://docs.google.com/spreadsheets/d/1apZVYtIzHpDTe1UJi83ETeaUv8Yzw0jJyU8sepQhCpI/edit#gid=1085026550
https://docs.google.com/spreadsheets/d/1apZVYtIzHpDTe1UJi83ETeaUv8Yzw0jJyU8sepQhCpI/edit#gid=1085026550
https://docs.google.com/spreadsheets/d/1apZVYtIzHpDTe1UJi83ETeaUv8Yzw0jJyU8sepQhCpI/edit#gid=1085026550
https://docs.google.com/spreadsheets/d/1apZVYtIzHpDTe1UJi83ETeaUv8Yzw0jJyU8sepQhCpI/edit#gid=1085026550
https://docs.google.com/spreadsheets/d/1apZVYtIzHpDTe1UJi83ETeaUv8Yzw0jJyU8sepQhCpI/edit#gid=1085026550
https://docs.google.com/spreadsheets/d/1apZVYtIzHpDTe1UJi83ETeaUv8Yzw0jJyU8sepQhCpI/edit#gid=1085026550
https://docs.google.com/spreadsheets/d/1apZVYtIzHpDTe1UJi83ETeaUv8Yzw0jJyU8sepQhCpI/edit#gid=1085026550
https://docs.google.com/spreadsheets/d/1apZVYtIzHpDTe1UJi83ETeaUv8Yzw0jJyU8sepQhCpI/edit#gid=1085026550
https://docs.google.com/spreadsheets/d/1apZVYtIzHpDTe1UJi83ETeaUv8Yzw0jJyU8sepQhCpI/edit#gid=1085026550
https://docs.google.com/spreadsheets/d/1apZVYtIzHpDTe1UJi83ETeaUv8Yzw0jJyU8sepQhCpI/edit#gid=1085026550
https://docs.google.com/spreadsheets/d/1apZVYtIzHpDTe1UJi83ETeaUv8Yzw0jJyU8sepQhCpI/edit#gid=1085026550
https://docs.google.com/spreadsheets/d/1apZVYtIzHpDTe1UJi83ETeaUv8Yzw0jJyU8sepQhCpI/edit#gid=1085026550
https://docs.google.com/spreadsheets/d/1apZVYtIzHpDTe1UJi83ETeaUv8Yzw0jJyU8sepQhCpI/edit#gid=1085026550
https://docs.google.com/spreadsheets/d/1apZVYtIzHpDTe1UJi83ETeaUv8Yzw0jJyU8sepQhCpI/edit#gid=1085026550
https://docs.google.com/spreadsheets/d/1apZVYtIzHpDTe1UJi83ETeaUv8Yzw0jJyU8sepQhCpI/edit#gid=1085026550
https://docs.google.com/spreadsheets/d/1apZVYtIzHpDTe1UJi83ETeaUv8Yzw0jJyU8sepQhCpI/edit#gid=1085026550
https://docs.google.com/spreadsheets/d/1apZVYtIzHpDTe1UJi83ETeaUv8Yzw0jJyU8sepQhCpI/edit#gid=1085026550

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

India traffic is a big proportion for Smashing Magazine (16%) and it
is not meeting the target for lcp at an origin level. That could be the
problem and certainly was worth investigating further. There was
also the Philippines and Pakistan data with very bad scores, but that
was a relatively small amount of traffic.

At this point, I had an inkling what might be going on here – and
a potential solution – so got Smashing Magazine to install the
web-vitals11 library to collect rum data and post it back to Google
Analytics for analysis. After a few days of collecting, we used the
Web Vitals Report12 to give us a look at the data in ways we hadn’t
been able to see before, in particular the country-level breakdown:

Web Vitals Report for smashingmagazine.com broken down by country.

And there it was. All the top countries in the analytics did have very
good lcp scores, except one: India. Smashing Magazine uses Netlify,
which is a global cdn, and it does have a Mumbai presence,13 so it
should be as performant as other countries, but some countries are
just slower than others (more on this later).

11 https://smashed.by/webvitalslibrary
12 https://smashed.by/webvitalsreport
13 https://smashed.by/cdnpops

97Improving Core Web Vitals: A Smashing Magazine Case Study

https://github.com/GoogleChrome/web-vitals
https://github.com/GoogleChrome/web-vitals
https://github.com/GoogleChrome/web-vitals
https://github.com/GoogleChromeLabs/web-vitals-report
https://github.com/GoogleChromeLabs/web-vitals-report
https://github.com/GoogleChromeLabs/web-vitals-report
https://github.com/GoogleChromeLabs/web-vitals-report
https://github.com/GoogleChromeLabs/web-vitals-report
https://answers.netlify.com/t/is-there-a-list-of-where-netlifys-cdn-pops-are-located/855
https://answers.netlify.com/t/is-there-a-list-of-where-netlifys-cdn-pops-are-located/855
https://answers.netlify.com/t/is-there-a-list-of-where-netlifys-cdn-pops-are-located/855
https://answers.netlify.com/t/is-there-a-list-of-where-netlifys-cdn-pops-are-located/855
https://answers.netlify.com/t/is-there-a-list-of-where-netlifys-cdn-pops-are-located/855
https://answers.netlify.com/t/is-there-a-list-of-where-netlifys-cdn-pops-are-located/855
https://answers.netlify.com/t/is-there-a-list-of-where-netlifys-cdn-pops-are-located/855
https://answers.netlify.com/t/is-there-a-list-of-where-netlifys-cdn-pops-are-located/855
https://answers.netlify.com/t/is-there-a-list-of-where-netlifys-cdn-pops-are-located/855
https://answers.netlify.com/t/is-there-a-list-of-where-netlifys-cdn-pops-are-located/855
https://answers.netlify.com/t/is-there-a-list-of-where-netlifys-cdn-pops-are-located/855

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

However, the mobile traffic for India was only just outside the 2,500
limit, and it was only the second most visited country. Surely the good
usa scores should have been enough to offset that? Well, the above
two graphs show the countries order by traffic. But CrUX counts
mobile and desktop traffic separately (and tablet btw, but no one ever
seems to care about that!). What happens if we filter the traffic to
just mobile traffic? And one step further – just mobile Chrome traffic
(since only Chrome feeds CrUX and so only Chrome counts towards
CWV)? Well, then we get a much more interesting picture:

country mobile p75 lcp value % of mobile traffic

India 74.48% 31%

United States 88.34% 13%

Philippines 57.21% 8%

United Kingdom 92.07% 4%

Canada 93.75% 3%

Germany 93.01% 3%

Nigeria 37.45% 2%

Pakistan 56.32% 2%

Australia 85.88% 2%

Indonesia 75.34% 2%

India is actually the top mobile Chrome visitor, by quite some way –
nearly triple the next highest visitor (usa)! The Philippines with its
poor score has also shot up there to the number three spot, and Ni-
geria and Pakistan with their poor scores are also registering in the
top 10. Now the bad overall lcp scores on mobile were starting
to make sense.

While mobile has overtaken desktop as the most popular way to
access the internet in the so-called Western world, there still is a fair
mix of mobile and desktop here — often tied to our working hours
when many of us are sat in front of a desktop.14 The next billion

14 https://smashed.by/perfbyregion

Success at Scale98

https://almanac.httparchive.org/en/2021/mobile-web#not-all-days-are-equal
https://almanac.httparchive.org/en/2021/mobile-web#not-all-days-are-equal
https://almanac.httparchive.org/en/2021/mobile-web#not-all-days-are-equal
https://almanac.httparchive.org/en/2021/mobile-web#not-all-days-are-equal
https://almanac.httparchive.org/en/2021/mobile-web#not-all-days-are-equal
https://almanac.httparchive.org/en/2021/mobile-web#not-all-days-are-equal
https://almanac.httparchive.org/en/2021/mobile-web#not-all-days-are-equal
https://almanac.httparchive.org/en/2021/mobile-web#not-all-days-are-equal
https://almanac.httparchive.org/en/2021/mobile-web#not-all-days-are-equal
https://almanac.httparchive.org/en/2021/mobile-web#not-all-days-are-equal
https://almanac.httparchive.org/en/2021/mobile-web#not-all-days-are-equal

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

users may not be the same, and mobile plays a much bigger part in
those countries. The above stats show this is even true for sites like
Smashing Magazine that you might consider would get more traffic
from designers and developers sitting in front of desktops while de-
signing and developing!

Additionally, because CrUX only measures Chrome users, that
means countries with more iPhones (like the usa) will have a much
smaller proportion of their mobile users represented in CrUX and so
in core web vitals, thereby amplifying the effect of those countries.

Core Web Vitals Are Global

Core web vitals don’t have a different threshold per country, and it
doesn’t matter if your site is visited by different countries – it simply
registers all Chrome users the same. Google has confirmed this before,
so Smashing Magazine will not get the ranking boost for the good
USA scores, and not get it for the India users. Instead, all users go into
the melting pot, and if the score for those page groupings does not
meet the threshold, then the ranking signal for all users is affected.

Unfortunately, the world is not an even place. And web performance
varies hugely by country15 and shows a clear divide between richer and
poorer countries. Technology costs money, and many countries are
more focused on getting their populations online at all, rather than on
continually upgrading infrastructure to the latest and greatest tech.

The lack of other browsers (like Firefox or iPhones) in CrUX has
always been known, but we’ve always considered it more of a blind
spot for measuring Firefox or iPhone performance. This example
shows the impact is much bigger, and for sites with global traffic it
skews the results significantly in favor of Chrome users, which often
means poor countries, which often means worse connectivity.

15 https://smashed.by/perfbyregion

99Improving Core Web Vitals: A Smashing Magazine Case Study

https://almanac.httparchive.org/en/2021/performance#by-geographic-region
https://almanac.httparchive.org/en/2021/performance#by-geographic-region
https://almanac.httparchive.org/en/2021/performance#by-geographic-region
https://almanac.httparchive.org/en/2021/performance#by-geographic-region
https://almanac.httparchive.org/en/2021/performance#by-geographic-region
https://almanac.httparchive.org/en/2021/performance#by-geographic-region
https://almanac.httparchive.org/en/2021/performance#by-geographic-region
https://almanac.httparchive.org/en/2021/performance#by-geographic-region
https://almanac.httparchive.org/en/2021/performance#by-geographic-region
https://almanac.httparchive.org/en/2021/performance#by-geographic-region

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Should Core Web Vitals Be Split By Country?

On the one hand, it seems unfair to hold websites to the same stan-
dard if the infrastructure varies so much. Why should Smashing
Magazine be penalized or held to a higher standard than a simi-
lar website that is only read by designers and developers from the
Western world? Should Smashing Magazine block Indian users to
keep the core web vitals happy? (I want to be quite clear here that
this never came up in discussion, so please do take this as the author
making the point and not a slight on Smashing!).

On the other hand, “giving up” on some countries by accepting their
slowness risks permanently relegating them to the lower tier many of
them are in. It’s hardly the average Indian reader of Smashing Maga-
zine’s fault that their infrastructure is slower, and in many ways these
are the people that deserve more highlighting and effort rather than less!

And it’s not just a rich country versus poor country debate. Let’s take
the example of a French website which is aimed at readers in France,
funded by advertising or sales from France, and has a fast website
in that country. However, if the site is read by a lot of French Cana-
dians, but suffers because the company does not use a global cdn,
then should that company suffer in French Google Search because
it’s not as fast for those Canadian users? Should the company be held
to ransom by the threat of core web vitals and have to invest in the
global cdn to keep those Canadian readers, and so Google, happy?

Well, if a significant enough proportion of your viewers are suffer-
ing then that’s exactly what the core web vital’s initiative is supposed
to surface. Still, it’s an interesting moral dilemma which is a side
effect of the core web vitals initiative being linked to seo ranking
boost: money always changes things!

One idea could be to keep the limits the same, but measure them per
country. The French Google Search site could give a ranking boost

Success at Scale100

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

to those users in France (because those users pass cwv for this site),
while Google Search Canada might not (because they fail). That
would level the playing field and measure sites to each country, even
if the targets are the same.

Similarly, Smashing Magazine could rank well in the usa and other
countries where they pass, but be ranked against other Indian sites
(where the fact they are in the “needs improvement” segment might
actually still be better than a lot of sites there, assuming they all suf-
fer the same performance constraints).

Sadly, I think that would have a negative effect, with some countries
again being ignored while sites only justify web performance in-
vestment for more lucrative countries. Plus, as this example already
illustrates, the core web vitals are already complicated enough with-
out bringing nearly 200 additional dimensions into play by having
one for every country in the world!

So How To Fix It?

So we now finally knew why Smashing Magazine was struggling
to pass core web vitals but what, if anything, could be done about it?
The hosting provider (Netlify) already has the Mumbai cdn, which
should therefore provide fast access for Indian users, so was this a
Netlify problem? We had optimized the site as much as possible, so
was this just something Smashing was going to have to live with?
Well, no. Now we now return to our idea from earlier: optimizing the
web fonts a bit more.

We could take the drastic option of not delivering fonts at all.
Or perhaps not delivering fonts to certain locations (though that
would be more complicated, given the ssg nature of Smashing
Magazine’s website). Alternatively, we could wait and load fonts
in the front end, based on certain criteria, but that risked slowing

101Improving Core Web Vitals: A Smashing Magazine Case Study

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

down fonts for others while we assessed that criteria. If only there
was some easy-to-use browser signal for when we should take this
drastic action. Something like the SaveData header, which is in-
tended exactly for this!

Save-Data and prefers-reduced-data

Save-Data is a setting that users can turn on in their browser when
they really want to, well, save data. This can be useful for people on
restricted data plans, for those traveling with expensive roaming
charges, or for those in countries where the infrastructure isn’t quite
as fast as we’d like.

Users can turn on this setting in browsers that support it, and then
websites can then use this information to optimize their sites even
more than usual. Perhaps returning lower quality images (or turning
images off completely), or not using fonts. And the best thing about
this setting is that you are acting upon the user’s request, and not ar-
bitrarily making a decision for them (many Indian users might have
fast access and not want a restricted version of the website!).

The Save Data information is available in two (soon to be three!) ways:

1. A Save-Data header is sent on each http request. This allows
dynamic back ends to change the html returned.

2. The NetworkInformation.saveData JavaScript api. This
allows front-end scripts to check this and act accordingly.

3. The prefers-reduced-data media query, allowing css to set
different options depending on this setting. This is available
behind a flag in Chrome, but not yet on by default while it
finishes standardization.

Success at Scale102

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

So the question is, do many Smashing Magazine readers (and par-
ticularly those in the countries struggling with core web vitals) use
this option, and is this something we can therefore use to serve them
a faster site? Well, when we added the web-vitals script mentioned
above, we also decided to measure that, as well as the effective con-
nection type (ect). You can see the full script here.16 After a bit of time
allowing it to collect, we were able to display the results in a simple
Google Analytics dashboard, along with the Chrome browser version:

Google Analytics Dashboard for India users of smashingmagazine.com.

So, the good news was that a large proportion of mobile Indian us-
ers (about two-thirds) did have this setting. The ect was less useful
with most showing as 4G. I’ve argued before that this api has got-
ten less and less useful as most users are classified under this 4G
setting. Plus using this value effectively for initial loads is fraught
with issues.17

More good news: most users seem to be on an up-to-date Chrome so
would benefit from newer features like the prefers-reduced-data
media query when it becomes fully available.

Ilya from the Smashing team applied the JavaScript api version
to their font-loader script so additional fonts are not loaded for these

16 https://smashed.by/webvitalstracking
17 https://smashed.by/bandwidthqueries

103Improving Core Web Vitals: A Smashing Magazine Case Study

https://www.smashingmagazine.com/js/web-vitals-tracking.js
https://www.smashingmagazine.com/js/web-vitals-tracking.js
https://www.smashingmagazine.com/js/web-vitals-tracking.js
https://www.smashingmagazine.com/js/web-vitals-tracking.js
https://www.smashingmagazine.com/js/web-vitals-tracking.js
https://www.smashingmagazine.com/2013/01/bandwidth-media-queries-we-dont-need-em/
https://www.smashingmagazine.com/2013/01/bandwidth-media-queries-we-dont-need-em/
https://www.smashingmagazine.com/2013/01/bandwidth-media-queries-we-dont-need-em/
https://www.smashingmagazine.com/2013/01/bandwidth-media-queries-we-dont-need-em/
https://www.smashingmagazine.com/2013/01/bandwidth-media-queries-we-dont-need-em/

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

users. The Smashing folks also applied the prefers-reduced-data
media query to their css so fallback fonts are used rather than cus-
tom web fonts for the initial render, but this will not be taking effect
for most users until that setting moves out of the experimental stage.

I Love That Graph in Google Search Console

And did it work? Well, we’ll let Google Search Console tell that story
as it showed us the good news a couple of weeks later:

Core Web Vitals graph going green in Google Search Console.

Additionally, since this was introduced in mid-November, the origi-
nal level lcp score has steadily ticked downwards:

Updated tracking Smashing Magazine mobile origin lcp from CrUX.

Success at Scale104

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

There’s still not nearly enough headroom to make me comfortable,
but I’m hopeful that this will be enough for now, and will only im-
prove when the prefers-reduced-data media query comes into
play – hopefully soon.

Of course, a surge in traffic from mobile users with bad connectivity
could easily be enough to flip the site back into the amber category,
which is why you want that headroom. I’m sure the Smashing team
will be keeping a close eye on their Google Search Console graph for
a bit longer, but I feel we’ve made the best efforts our best effort to
provide a basis to improve the experience of users, so I am hopeful it
will be enough.

Impact of the User Experience Ranking Factor

The user experience ranking factor is supposed to be a small differ-
entiator at the moment, and maybe we worried too much about a
small issue that is, in many ways, outside of our control. If Smash-
ing Magazine is borderline and the impact is small, then maybe the
team should worry about other issues instead of obsessing over this
one. But I can understand that and, as I said, Smashing Magazine
is knowledgeable about performance and so understands why they
wanted to solve – or at the very least understand! – this issue.

Search results graph from Google Search Console.

105Improving Core Web Vitals: A Smashing Magazine Case Study

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Was there any impact? Interestingly, we did see a large uptick
in search impressions in the last week at the same time as it
flipped to green.

It’s since reverted back to normal, so this may have been an unrelat-
ed blip but interesting nonetheless!

Conclusions

So, an interesting case study with a few important points to take away:

• When rum (including CrUX or Google Search Console) tells
you there’s a problem, there probably is! It’s all too easy to try to
compare your experiences and then blame the metric.

• Implementing your own rum solution gives you access to
much more valuable data than the high-level data CrUX is
intended to provide, which can help you drill down into issues,
plus also give you potentially more information about the devic-
es your site visitors are using to visit your site.

• Core web vitals are global, and that causes some interesting
challenges for global sites like Smashing Magazine. This can
make it difficult to understand CrUX numbers unless you have
a rum solution and perhaps Google Search Console or CrUX
could help surface this information more.

• Chrome usage also varies throughout the world, and on mo-
bile is biased towards poorer countries where more expensive
iPhones are less prevalent.

• Core web vitals are getting much better at measuring user
experience. But that doesn’t mean every user has to get the
same user experience – especially if they are telling you (through
things like the Save-Data option) that they would actually prefer
a different experience.

Success at Scale106

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

I hope that this case study helps others in a similar situation who are
struggling to understand their core web vitals. And I hope you can
use the information here to make the experience better for your web-
site visitors. Happy optimizing!

Note: It should be noted that Vitaly, Ilya, and others in the Smashing team
did all the work here, and a lot more performance improvements were not
covered in the above article. I just answered a few queries for them on this
specific problem over the last six months and then suggested this article
might make an interesting case study for other readers to learn from.

Identifying, fixing, and testing performance issues on a

variety of devices and browsers is essential for improving

Core Web Vitals scores.

When faced with recurring performance issues, Smashing Magazine
used Lighthouse to audit their website and identify the areas where
they could improve. They then used a variety of tools and techniques to
fix the bottlenecks, such as optimizing images, reducing the number of
third-party scripts, and using a caching plugin.

One of the challenges they faced was that core web vitals are measured
globally, but Chrome usage varies throughout the world. This meant
that they had to test their changes on a variety of devices and browsers
to make sure that they were improving performance for all users.

Despite the challenges, Smashing Magazine was able to improve its
core web vitals scores significantly. They also gained valuable insights
into how to improve the user experience of their website. For exam-
ple, they found that lazy-loading images and reducing the number of
third-party scripts can have a significant impact on performance.

Smashing Magazine Key Takeaways

107Improving Core Web Vitals: A Smashing Magazine Case Study

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Tinder: Sophisticated Adaptive
Loading Strategies
by Roderick Hsiao

Performance is now one of the core values of modern web
apps.1 Most users shift their web browser experiences from
desktop to mobile. In addition to smaller screens, lower cpu

power and network conditions have become important factors to
make your content accessible to all users.

Video on adaptive loading: https://smashed.by/adaptiveloadingvideo

We want all of our users to enjoy the same experiences globally
regardless of their network conditions (while respecting the user’s
preferences in terms of data consumption).

We use some aggressive prefetch/preload strategies2 to make seam-
less experiences on interactions. However, these loading strategies
rely heavily on predicting the user’s intention to fetch the resources
(JavaScript/css/images, etc.) needed to present the user experiences.

Some strategies we adopted:

1. Route/Link base preload: Similar to Addy Osmani’s quick-
link library,3 we use a combination with React router, React
lazy and intersection observer to preload the next page bundle
when the link component enters the viewport and on idle.4 (I
also suggest you check Minko Gechev’s guess-js,5 which uses a
data-driven approach to loading bundles.)

1 This case study was originally published in November 2019:
https://smashed.by/adaptiveloading

2 https://smashed.by/reactperf
3 https://smashed.by/quicklink
4 https://smashed.by/idlize
5 https://smashed.by/guessjs

Success at Scale108

https://medium.com/@roderickhsiao/react-app-performance-optimization-5e59454983e4
https://medium.com/@roderickhsiao/react-app-performance-optimization-5e59454983e4
https://medium.com/@roderickhsiao/react-app-performance-optimization-5e59454983e4
https://medium.com/@roderickhsiao/react-app-performance-optimization-5e59454983e4
https://medium.com/@roderickhsiao/react-app-performance-optimization-5e59454983e4
https://github.com/GoogleChromeLabs/quicklink
https://github.com/GoogleChromeLabs/quicklink
https://github.com/GoogleChromeLabs/idlize
https://github.com/guess-js
https://github.com/guess-js
https://github.com/guess-js

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

2. Progressive image loading: We create a library to preload
different dimensions of the same image simultaneously via
JavaScript before painting on the page. Users will see the
smallest image first then the main picture without seeing
a blank placeholder.

3. Service worker precache: For critical assets, we use
Workbox to generate a precache manifest and load those as-
sets up front in order to quickly serve bundles when needed.

4. Browser resource priority hint: By using html link
preload prefetch resource priority hint, we are able to make
the first page experience load instantly.

A deep dive of our web app could be found here: “A Tinder Progressive
Web App Performance Case Study” by Addy Osmani6

Network-Aware Loading Strategies
(Adaptive Loading)

Our performance journey doesn’t end there. When testing on real
mobile devices outside of the office, we notice that a lot of the time
the experiences are less than desirable. The web app shows lots of
loading states when entering a spotty network area even though we
have already done a lot to improve the first page load. Data con-
sumption also is one of the critical areas of focus when it comes to
the international market where unlimited data might not be accessi-
ble or affordable to all users.

Thanks to the new browser apis, we can now adaptively change our
loading strategies based on different device/network conditions.

6 https://smashed.by/tinderpwa

109Tinder: Sophisticated Adaptive Loading Strategies

https://medium.com/@addyosmani/a-tinder-progressive-web-app-performance-case-study-78919d98ece0
https://medium.com/@addyosmani/a-tinder-progressive-web-app-performance-case-study-78919d98ece0
https://medium.com/@addyosmani/a-tinder-progressive-web-app-performance-case-study-78919d98ece0
https://medium.com/@addyosmani/a-tinder-progressive-web-app-performance-case-study-78919d98ece0
https://medium.com/@addyosmani/a-tinder-progressive-web-app-performance-case-study-78919d98ece0
https://medium.com/@addyosmani/a-tinder-progressive-web-app-performance-case-study-78919d98ece0
https://medium.com/@addyosmani/a-tinder-progressive-web-app-performance-case-study-78919d98ece0
https://medium.com/@addyosmani/a-tinder-progressive-web-app-performance-case-study-78919d98ece0
https://medium.com/@addyosmani/a-tinder-progressive-web-app-performance-case-study-78919d98ece0
https://medium.com/@addyosmani/a-tinder-progressive-web-app-performance-case-study-78919d98ece0
https://medium.com/@addyosmani/a-tinder-progressive-web-app-performance-case-study-78919d98ece0
https://medium.com/@addyosmani/a-tinder-progressive-web-app-performance-case-study-78919d98ece0
https://medium.com/@addyosmani/a-tinder-progressive-web-app-performance-case-study-78919d98ece0
https://medium.com/@addyosmani/a-tinder-progressive-web-app-performance-case-study-78919d98ece0
https://medium.com/@addyosmani/a-tinder-progressive-web-app-performance-case-study-78919d98ece0

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

NETWORK INFORMATION API

The Network Information api7 provides information about
the system’s connection in terms of general connection type
(e.g., ‘wifi’, ‘cellular’, etc.). This can be used to select high
definition content or low definition content based on the
user’s connection.

The api consists of the NetworkInformation interface and a single
property to the Navigator interface: Navigator.connection.

The current state of browser support for the Network Information api.

Although not fully supported by browser vendors, the api is heavily
used in our web app. (In particular, browser support aligns with our
international user base, where Android dominates the market.) We
regard adaptive loading as progressive enhancement and serve de-
fault behavior for unsupported browsers.

We collect two main pieces of information from the api at Mozilla.

1. NetworkInformation.effectiveType
“Returns the effective type of the connection meaning
one of ‘slow-2g’, ‘2g’, ‘3g’, or ‘4g’. This value is determined

7 https://smashed.by/networkinformationapi

Success at Scale110

https://developer.mozilla.org/en-US/docs/Web/API/Network_Information_API
https://developer.mozilla.org/en-US/docs/Web/API/Network_Information_API
https://developer.mozilla.org/en-US/docs/Web/API/Network_Information_API
https://developer.mozilla.org/en-US/docs/Web/API/Network_Information_API
https://developer.mozilla.org/en-US/docs/Web/API/Network_Information_API

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

using a combination of recently observed round-trip time
and downlink values.”

2. NetworkInformation.saveData
“Returns true if the user has set a reduced data usage option
on the user agent.”

Here are some examples we adopted for network-aware loading
(based on the above prefetch scenario).

ROUTE/LINK BASE PRELOAD

As browsers have limited amounts of parallel download, it is critical
to yield the download quota to high-priority resources. We noticed
that when network condi-
tions are poor, aggressive pre-
loading will cause the main
experiences to be flaky. Some
important resources get de-
ferred and the device’s cpu occupied. We decided to only preload the
next route when the user is in good network conditions.

// isOKConnection: network condition > 2g
const preload = (path: string, cb: () => void): void => {
 if (!isOKConnection() || isDataSavingMode()) {
 // don’t preload if network is very bad
 return;
 }
 requestIdleCallbackManager.addTask(() => {
 routes.preload(path).then(() => cb());
 });

 };

We decided to only preload the

next route when the user is in

good network conditions.

111Tinder: Sophisticated Adaptive Loading Strategies

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

PROGRESSIVE IMAGE LOADING

As mentioned above, we fetch multiple dimensions of the same im-
age to progressively display in the browser. However, in fast network
conditions, images complete loading almost at the same time, and
the logic causes cpu overhead: fetching and swapping images after
each image completes loading. We also honor the user’s data con-
sumption preference to prevent aggressively prefetching resources
if they have the Data Saver turned on.

VIDEOS

We use video to display gif images (much smaller size) and
disable video autoplay for slow networks. (We selectively pass
the poster attribute to the video element, which means browsers
will only download the video resource after user interaction.)

const NetworkAwareVideo = () => {
 const shouldShowPoster = !isOKConnection() /* effectiveType
> 2g */ || isDataSavingMode();
 const autoplayProps = shouldShowPoster ? {
 poster
 }: {
 autoPlay: true
 };
 return (
 <video
 className={className}
 loop
 muted
 onCanPlay={handleCanPlay}
 playsInline
 {...autoplayProps}
 >
 <source src={source} type="video/mp4" />
 </video>
);

 }

Code snippet for adaptive video autoplay.

Success at Scale112

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Autoplay (left) and poster without autoplay (right).

CAROUSEL

To prevent users seeing blank placeholders when navigating to
the second page of the carousel, we used to load the next page
photo together. This causes a janky swipe experience on our
international market.

We changed the behavior to load only the first image under a slow
network, and start prefetching the next page image if the user in-
tends to view more photos for a specific profile (when they view the
next page, or another
interaction indicates
the intention).

By implementing
adaptive loading, we
noticed an improve-
ment in user engage-
ment (more user
interactions such as click or swipe) for emerging markets where
Android is the major device OS and user experiences slow down net-
works frequently.

From our experiences, we used a

heuristic approach to decide one

base strategy that will cover most

browser metrics and devices. Then

we added some enhancements for

modern browsers to handle use

cases in a more sophisticated way.

113Tinder: Sophisticated Adaptive Loading Strategies

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Progressively Increase Optimizations

Adaptive loading provides a new way to
dynamically decide the serving logic to
cover broader real-world scenarios, and
it also opens up a space of creativity in
terms of optimization strategies.

From our experiences, we used a heuris-
tic approach to decide one base strategy
that will cover most browser metrics
and devices. Then we added some en-
hancements for modern browsers to
handle use cases in a more sophisticat-
ed way. This approach also enabled us to maintain code complexity
while adding or removing enhancements.

Tinder Key Takeaways

Adapt prefetch/preload based on network conditions and

user preferences to save data on slower networks.

Most Tinder users access the app on mobile where the user expe-
rience is defined by the type of network used. Aggressive prefetch
and preload are used to create seamless user interactions. However,
aggressive preloads can slow down the main experience on poor
network conditions. In cases where there is a limit on free data, us-
ers may have also set a data consumption preference on the browser
that should be honored by apps.

To address this, the Tinder app preloads the next route only on good
networks. They achieve this by using adaptive loading techniques
that use the NetworkInformation api. The same principles are applied
when prefetching images for progressive loading and image carousel.

Success at Scale114

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

115Tinder: Sophisticated Adaptive Loading Strategies

Interview

Roderick Hsiao
Staff Engineer at Tinder

Author of “Tinder: Sophisticated

Adaptive Loading Strategies”

What excited you or your team the most about the work in
the case study?

NetworkInformation api opens a new chapter for dynamic optimiza-
tion from the traditional heuristic approach.

We had multiple layer optimization strategies at Tinder but not all of
them can reflect real-world experiences under different network or
device conditions. Some optimization even creates less than pre-
ferred user experiences when adopted. Aggressive prefetching, for
example, creates janky a UI experience under slow network condi-
tions or on devices with lower computing power.

Client-side network calculations have been implemented before,
but not all the results are reliable and sometimes even create a
JavaScript overhead. With natively supported network condition
apis, we should be able to provide more sophisticated performance
optimization to more users.

Were you surprised by the impact your work had on the overall
user experience, business, team, or other metrics?

We started to collect and analyze our user device and network infor-
mation and page level performance instrumentation (page transition
time) before adopting optimization.

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Success at Scale116

To our surprise, although we had put a lot of effort into placing
different optimizations for initial load and rendering performance,
the runtime performance was still not ideal, and some key metrics
showed degraded experiences when adopting our previous strategies.

After the new granular approach (divide user experiences in differ-
ent network/device levels and dynamically serve different logic),
we are seeing the metrics start to shift in our desired direction, and
the gap for different user groups starts to align. Some key business
metrics such as user engagement also improved.

If you had a similar project/problem today, do you think your
process/tooling/decisions would be exactly the same? Or, to
put it differently, looking back now, what would you have done
differently if you had a chance to make adjustments?

Our web app architecture – which centralized app-level logic such as
app context, routing, content negotiation information, and more –

enabled us to widely adopt
optimization strategies
for the top level of the
web app easily.

Some optimization, how-
ever, is implemented at
component/feature level,
which makes the code logic

cumbersome and challenging to extend. From a scalable point of
view, it will be better to have an overview of different places imple-
menting adaptive loading strategies and design feature implementa-
tion accordingly.

We will also spend more time designing implementation of instru-
mentation and measurement so experiment results can be presented
in a scalable and reliable way.

After the new granular approach,

we are seeing the metrics start

to shift in our desired direction,

and the gap for different user

groups starts to align. Some key

business metrics such as user

engagement also improved.

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Article Name 117Tinder: Sophisticated Adaptive Loading Strategies

What came next after the case study was published?

As we spent more time developing and investigating low-end devic-
es, we noticed that our web app didn’t really work as smoothly as on
our own devices. We then started to design and optimize some run-
time logic, such as virtualized lists with adaptive loading. There is
much more we can do to make the app scalable. Our page navigation
time on low-end devices improved around 20% after new optimiza-
tion was implemented.

We also spent more effort on tooling to help us better understand
real user experiences, such as utilizing CrUX, which shows a really
different point of view for lab data versus field data.

Do you have any advice for teams that would like to follow in
your footsteps?

Designing how to experiment and collect the result is equally
important as designing adaptive loading strategies. Collecting user
runtime data could be challenging as there are lots of variants that
could make the field data unreliable. The user experience met-
rics could also shift in different directions; for instance, excessive
pre-fetching could help load-time performance, but users might have
a janky experience (or input delay), which might be hard to notice
without comprehensive instrumentation. Spending more time
analyzing the potential impact of each optimization strategy will be
critical to evaluate success.

Find the bottleneck and start something simple. Web applications
can be pretty complicated and lots of reasons could cause the app to
perform unexpectedly, especially across different browsers and de-
vices. Collect user data and dive deep into the code implementation
first to find the bottleneck. Start with something simple but measur-
able, then develop in a more granular way over time.

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Success at Scale118

Set up a good architecture to make the enhancement manageable.
As the implementations could spread throughout your codebase,
adopting optimization while maintaining good code complexity
is also important to develop at scale. A very complex codebase will
eventually prevent the team from enhancing any further.

Review and adjust your strategies. User devices and networks can
improve over time. Regularly reviewing your optimization strategy
will be important to maintain good user experiences.

Use real devices to test. Experience what the end user really feels on
a 5+ year-old device – which is actually used by a good amount of
users. A mindset of making the web app accessible to all users will be
the key determining your app design direction.

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

React at 60 fps: Improving
Scrolling Comments in Figma
by Kiko Lam

Figma enables closer collaboration between designers and
non-designers by tightening the feedback loop.1 By comment-
ing directly on a file or prototype, teammates have important

context, without needing to send files back and forth.

Since we first introduced Figma, we’ve been making consistent
improvements to reach new levels of scale.2 As more users left an
increasing number of comments on their files, we started to observe
performance problems. Knowing that Figma supports teams and
organizations of all sizes, we had to do better. So we kicked off a proj-
ect to improve the speed at which comments respond when users
zoom and pan on the canvas.

React Faster, per Second

Our primary goal was to render the editor at 60 fps. No matter how
our users collaborated, or how many comments and threads they
created, we wanted the editor to perform at a speed that could flex
to support them.

BUT FIRST, INFRASTRUCTURE

Before we dive into performance, it’s important to understand a bit
about Figma’s technology. Figma is built on an unconventional stack
– like our cto Evan shared,3 we essentially made “a browser inside a

1 The original version of this case study was published in August 2020:
https://smashed.by/figmascrolling

2 https://smashed.by/introducingfigma
3 https://smashed.by/buildingfigma

119React at 60 fps: Improving Scrolling Comments in Figma

https://www.figma.com/blog/design-meet-the-internet/
https://www.figma.com/blog/design-meet-the-internet/
https://www.figma.com/blog/design-meet-the-internet/
https://www.figma.com/blog/design-meet-the-internet/
https://www.figma.com/blog/design-meet-the-internet/
https://www.figma.com/blog/design-meet-the-internet/
https://www.figma.com/blog/design-meet-the-internet/
https://www.figma.com/blog/building-a-professional-design-tool-on-the-web/
https://www.figma.com/blog/building-a-professional-design-tool-on-the-web/
https://www.figma.com/blog/building-a-professional-design-tool-on-the-web/
https://www.figma.com/blog/building-a-professional-design-tool-on-the-web/

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

browser.” Our design editor is powered by WebGL and WebAssem-
bly, with some of the user interface implemented in TypeScript and
React.4 Unlike most static interfaces built in React, comments are
dynamic, and they can pan and zoom as part of the canvas. As you
scroll around the canvas, we anchor your comment to something we
call a comment pin, which ensures that your feedback stays exactly
where you want it.

To do so, we need to get constant viewport updates from our editor.
The viewport updates are stored in Redux and retrieved by the com-
ment components. Each comment pin component uses this informa-
tion to calculate where the comment pins should be rendered on the
canvas in relation to the viewport.

Getting to the Bottom of Slow Performance

In order to improve performance on this particular view, we need-
ed to identify what was slowing it down. We used two main tools:
Chrome performance tools and React Profiler.

COMPONENTS CONSTANTLY RE-RENDER

The profile generated from the Chrome performance tools shows
that most of the time was spent on JavaScript (JS). About 68 ms per
frame is spent on JS on a page with 30 comments, and only a small
portion of the computing time per frame is spent on rendering and
painting. Scripting refers to JS events and event handlers; rendering
and painting have to do with the translation of html elements to
displayable onscreen elements. It’s promising that most improve-
ment could be done on the JS and React optimization, but we still
needed to understand more of what was happening under the hood
of rendering the comment components in React.

4 https://smashed.by/webassembly

Success at Scale120

https://www.figma.com/blog/building-a-professional-design-tool-on-the-web/
https://www.figma.com/blog/webassembly-cut-figmas-load-time-by-3x/
https://www.figma.com/blog/webassembly-cut-figmas-load-time-by-3x/

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

We used React Profiler to pinpoint which components were ac-
tually re-rendering. React profile shows that only about 1.8 ms is
spent rendering the comments view. This re-rendering is necessary
because its content is changing. However, from the React Profiler
we observed that a lot of time was consumed rendering many fixed
position components like the left panel, toolbar view, and properties

Chrome’s performance tool showed we spent the majority of time on scripting
and rendered the comments view at 19 fps with 30 comment threads.

React Profiler shows the left panel, toolbar view, properties panel, comments list,
and comments view re-rendered with every viewport change.

121React at 60 fps: Improving Scrolling Comments in Figma

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

panel. But intuitively, only the comment should care about the view-
port change, not these fixed components. The biggest inefficiency
that creeps in as React applications grow is needlessly re-rendering
components, which is exactly what we observed. This was a red flag,
and we needed to address it.

How different components are structured in the Figma editor.

We started investigating why the other components were re-
rendering when viewport information in the Redux store changed.
We found that Redux runs every single middleware and loops

through and runs
mapStateToProps
for every connect-
ed component, each
time an action is
dispatched. It then
passes all of the data

down through multiple layers to the comments view. But in our case,
the only thing that should need this is the comments view. We had
instances where we were passing in anonymous functions to force
the components to render over and over again.

The biggest inefficiency that creeps in

as React applications grow is needlessly

re-rendering components, which is

exactly what we observed. This was a

red flag, and we needed to address it.

Success at Scale122

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Our Approach

To fix the unnecessary re-rendering, we decided to remove view-
port information from our Redux store and instead implemented
our own event emitter5 in our React codebase to broadcast this
piece of information. We switched over from old components to
functional components and, using React Hooks – which enabled us
to memorize expensive computation – we now only do them when
information changes. By avoiding dispatching an action to update
viewport information in Redux, we successfully stopped running
mapStateToProps for every connected component and avoided
passing all of the data down through multiple layers to the com-
ments view. As a result, we essentially prevented other components
that don’t need ViewportInfo from re-rendering.

BETTER, BUT NOT QUITE THERE

At this point, we ran the Chrome performance tool and React Profil-
er again. We saw that the constant re-rendering had stopped and the
frame rate of the comment view had significantly improved from 15
fps to 50 fps with 50 comment pins. However, we still weren’t quite
at our goal of 60 fps. We also observed that performance linearly de-
grades with an increasing number of comment pins. So, we still had
work ahead of us.

0(nn) OPERATION ON EVERY VIEWPORT CHANGE

TJ Pavlu, an engineer on my team, worked with me on further
improvements. By observing how the comment pins move on the
document level, we noticed that every comment pin performs a
transform action when the viewport moves. Each of the comment
pin components was recomputing its pin position and performing
a transform-style action with each viewport change (which you’ll
see below). In turn, comments view triggers an 0(n) operation, where

5 https://smashed.by/eventemitters

123React at 60 fps: Improving Scrolling Comments in Figma

https://css-tricks.com/understanding-event-emitters/
https://css-tricks.com/understanding-event-emitters/
https://css-tricks.com/understanding-event-emitters/

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

n is the number of comment threads as we pan and zoom. This
might seem trivial for files with just a few comments, but the more
comments there are, the slower the operation.

With every viewport change, each of the comment pin components recomputed
its pin position and performed a transform-style action.

We came up with the solution to create an overlay container on
the canvas and then to position the comment pins statically on this
container. From there, we repositioned the overlay container (one
computation) using css translate instead of doing so with each
comment pin (n computations) as the viewport moves (illustrated in
the second screen recording). Now, every viewport change triggers
an 0(1) operation instead of 0(n) operation.

Only the overlay parent component recomposes its position
on viewport changes.

Success at Scale124

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

We created this overlay
container by creating a box
around the most top-left pin
and the most bottom-right
pin. This means every time a
new comment is added, we
have to recompute this top-
left/bottom-right boundary
box. This trade-off is worth
it because: a) comments are
added less often than panning
around the canvas; and b) this
boundary box calculation happens when the canvas isn’t moving.

Better Performance, Not Perfection

Based on how we scoped the project – achieving 60 fps for files with
up to 150 comments – it was a success. You can see from the screen
recording below that the interaction is much smoother and delivers
a better user experience.

Now, we maintain 60fps rendering, no matter how many comments there
are on a file.

Panning is much smoother now..

125React at 60 fps: Improving Scrolling Comments in Figma

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

But with performance, the work is never truly done. Moving for-
ward, it’ll be an ongoing process of setting new goals and identifying
potential bottlenecks.

Beyond performance, we improved our React codebase and moved
from old components to a new functional components system, while
also taking advantage of React hooks. We’ll continue to revisit our
systems to ensure that Figma is built for scale.

Figma Key Takeaways
Optimizing the frame rate on a dynamic canvas for a

smooth editing experience.

Figma allows for extensive collaboration between app designers and
stakeholders through its intricate comments system. The Figma
team realized that when the number of comments on a canvas
increased, the frame rate of the editor measured in frames per
second would go down. They analyzed the situation using Chrome
performance tools and the React profiler, and realized that viewport
updates received from the editor would cause not just the comments
view to reload but also the other fixed position components.

Once they understood this, they were able to change their architec-
ture to only re-render the comments view relative to a fixed canvas
whenever viewport updates were received from the editor. After this
change, they were able to achieve a framerate of 60 fps for files with
up to 150 comments.

Success at Scale126

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

A Netflix Web Performance
Case Study
by Addy Osmani

There are no silver bullets to web performance.1 Simple static
pages benefit from being server-rendered with minimal
JavaScript. Libraries can provide great value for complex

pages when used with care.

Netflix is one of the most popular video streaming services. Since
launching globally in 2016, the company has found that many new
users are not only signing up on mobile devices but are also using
less-than-ideal connections to do so.

By refining the JavaScript used for Netflix.com’s sign-up process and
using prefetching techniques, the developer team was able to pro-
vide a better user experience for both mobile and desktop users and
offer several improvements.

• Loading and time to interactive (tti) decreased by 50% (for the
logged-out desktop homepage at Netflix.com)

• JavaScript bundle size reduced by 200 KB by switching from
React and other client-side libraries to vanilla JavaScript. React
was still used server-side.

• Prefetching html, css, and JavaScript (React) reduced tti by
30% for future navigations.

1 The original version of this case study was published in November 2018:
https://smashed.by/netflixperf

127A Netflix Web Performance Case Study

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Reducing Time to Interactive by Shipping
Less JavaScript

The area optimized for performance by the Netflix developers was the
logged-out homepage, where users come to sign up or sign in to the site.

The Netflix.com homepage for new and logged-out members.

This page initially contained 300 KB of JavaScript, some of which was
React and other client-side code (such as utility libraries like Lodash),
and some of which was context data required to hydrate React’s state.

Homepage tabs are an example of a component initially written using React.

Success at Scale128

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

All of Netflix’s web pages are served by server-side rendered
React, serving the generated html and then serving the client-
side application, so it was important to keep the structure of the
newly optimized homepage similar to maintain a consistent
developer experience.

Using Chrome’s DevTools and Lighthouse to simulate the logged-out
homepage page being loaded on a 3G connection showed that the
logged-out homepage took 7 seconds to load, far too long for just a
simple landing page, so the potential for improvement was inves-
tigated. With some performance auditing, Netflix discovered their
client-side JS had a high cost.

Network throttling for the unoptimized Netflix.com in Chrome DevTools.

By turning off JavaScript in the browser and observing which
elements of the site still functioned, the developer team could
determine if React was truly necessary for the logged-out
homepage to function.

Since most of the elements on the page were basic html, remaining
elements such as JavaScript click handling and class adding could
be replaced with plain JavaScript, and the page’s language switcher,
originally built using React, was rebuilt in vanilla JavaScript using
less than 300 lines of code.

129A Netflix Web Performance Case Study

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Components ported to vanilla JavaScript were:

• basic interactions (tabs halfway down the homepage)

• language switcher

• cookie banner (for non-US visitors)

• client-side logging for analytics

• performance measurement and logging

• ad attribution pixel bootstrap code (which are sandboxed in
an iframe for security)

Even though React’s initial footprint was just 45 KB, removing React,
several libraries, and the corresponding app code from the client-side

Payload comparison before and after removing client-
side React, Lodash, and other libraries.

Success at Scale130

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

reduced the total amount of JavaScript by over 200 KB, causing an
over 50% reduction in Netflix’s tti for the logged-out homepage.

In a lab2 environment using Lighthouse, we can validate that users
can now interact with the Netflix homepage quickly. Desktop tti is
less than 3.5 seconds.

Lighthouse report after the time to interactive optimizations were made.

What about metrics from the field? Using the Chrome User Expe-
rience Report we can see first input delay (fid) – the time between
a user’s first interaction with your site and when the browser is
actually able to respond – is fast for 97% of Netflix users on desk-
top.3 This is great.

First input delay measures the delay users experience when interacting
with the page.

Prefetching React for Subsequent Pages

To further improve performance when navigating their logged-out
homepage, Netflix utilized the time spent by users on the landing page
to prefetch resources for the next page users were likely to land on.

2 https://smashed.by/firstinputdelay
3 https://smashed.by/netflixquery

131A Netflix Web Performance Case Study

https://developers.google.com/web/fundamentals/performance/speed-tools/#lab_data
https://bigquery.cloud.google.com/savedquery/920398604589:1692b8e0bdc94d4883437d8712cbb83a

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

This was achieved by using two techniques: the built-in <link
rel=prefetch>4 browser api, and xhr prefetching.

The built-in browser api consists of a simple link tag within the
head tag of the page. It suggests to the browser that the resource (e.g.
html, JS, css, images) can be prefetched, though it doesn’t guarantee
that the browser actually will prefetch the resource, and it hasn’t yet
been fully adopted by all browsers.5

Comparison of prefetching techniques.

XHR prefetching, on the other hand, has been a browser standard for
many years and produced a 95% success rate when the Netflix team
prompted the browser to cache a resource. While xhr prefetching
cannot be used to prefetch html documents, it was used by Netflix
to prefetch the JavaScript and css bundle for subsequent pages.

Note: Netflix’s http response header configuration is preventing
html caching with xhr (they do no-cache on the second page’s
html). Link prefetch is otherwise working as expected because it
will work on html even if no-cache is present up to a certain point.

4 https://smashed.by/linkprefetching
5 https://smashed.by/linkprefetchsupport

Success at Scale132

https://developer.mozilla.org/en-US/docs/Web/HTTP/Link_prefetching_FAQ
https://developer.mozilla.org/en-US/docs/Web/HTTP/Link_prefetching_FAQ
https://caniuse.com/?search=link%20rel%3Dprefetch

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

// create a new XHR request
const xhrRequest = new XMLHttpRequest();
// open the request for the resource to “prefetch"
xhrRequest.open(‘GET’, ‘../bundle.js’, true);
// fire!
xhrRequest.send();

By using both the built-in browser api and xhr to prefetch html,
css, and JS, the tti was reduced by 30%. This implementation also
required no JavaScript to be rewritten and didn’t negatively impact
the performance of the logged-out homepage, and hence offered a
valuable tool for improving page performance at a very low risk.

After prefetching was implemented, the Netflix developers observed
improvements by analyzing reductions in the tti metric on the
page, as well as using Chrome’s developer tools to directly measure
cache hits of resources.

133A Netflix Web Performance Case Study

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Netflix Logged-Out Homepage:
Optimization Summary

By prefetching resources and optimizing the client-side code on Net-
flix’s logged-out homepage, Netflix was able to greatly improve its
tti metrics during the sign-up process. By prefetching future pages
using the built-in browser api and xhr prefetching, Netflix was able
to reduce tti by 30%. This was for the second-page loading, which
contained the bootstrapping code for single-page app sign-up flow.

The code optimizations carried out by the Netflix team showed that
while React is a useful library, it may not provide an adequate solu-

tion to every problem.
By removing React
from the client-side
code on the first land-
ing page for sign-up,
the tti was improved
by over 50%. Reducing
tti on the client-side
also caused users to

click the sign-up button at a greater rate, showing that code optimi-
zation can lead to a greater user experience overall.

While Netflix didn’t use React for the homepage, they prefetched it
for subsequent pages. This allowed them to leverage client-side React
throughout the rest of the single-page application sign-up process.

For more details on these optimizations, see “Building Performance
Signup Flows in React” by Tony Edwards.6

6 https://smashed.by/tonyedwards

The code optimizations carried out by

the Netflix team showed that while React

is a useful library, it may not provide an

adequate solution to every problem.

By removing React from the client-side

code on the first landing page for sign-

up, the tti was improved by over 50%.

Success at Scale134

https://youtu.be/V8oTJ8OZ5S0

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Conclusion

Netflix discovered opportunities to improve its tti by keeping a
close eye on the cost of JavaScript. To discover if your site has oppor-
tunities to do better here, consult your performance tools.7

The trade-off Netflix decided to make is to server-render the landing
page using React, but also prefetch React and the code for the rest of
the sign-up flow while on the landing page. This optimizes first-load
performance, but also optimizes the time to load for the rest of the
sign-up flow, which has a much larger JS bundle size to download
since it’s a single-page app.

Consider if leveraging vanilla JavaScript is an option for flows in
your site. If you absolutely need to use libraries, try to only ship
down code your users will need. Techniques like prefetching can
help improve page load times for future page navigations.

Additional Notes

Netflix considered using Preact;8 however, for a simple page flow
with low interactivity, using vanilla JavaScript was a simpler choice
for their stack.

Netflix experimented with service workers for static resource
caching. At the time, Safari didn’t support the api (it now does) but
Netflix is exploring them again now. The Netflix sign-up flow needs
greater legacy browser support than the member experience. Many
users will sign-up on an older browser, but watch Netflix on their
native mobile app or a TV device.

7 https://smashed.by/speedtools
8 https://preactjs.com/

135A Netflix Web Performance Case Study

https://developers.google.com/web/fundamentals/performance/speed-tools/
https://preactjs.com/

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

The Netflix landing page is quite dynamic. It’s the most heavily A/B
tested page in the sign-up flow, with machine-learning models used
to customize messaging and imagery depending on location, device
type, and many other factors. With almost 200 countries supported,
there are different localization, legal, and value messaging challeng-
es for each derivative. For more on A/B testing, see “Testing into a
Better User Experience” by Ryan Burgess.9

9 https://smashed.by/testingux

Netflix Key Takeaways

Replacing client-side React and Lodash with vanilla

JavaScript improved time to interactive by 50%.

The logged-out or new user homepage for the Netflix app had
initially contained 300 KB of JavaScript. This included React and
Lodash code, including that required for hydration, and took 7
seconds to load on a 3G connection. The time was too high for a
sign-up or sign-in page.

Most of the page was static, containing basic html. The remaining
dynamic elements could be easily rebuilt using 300 lines of plain
JavaScript code. This reduced the total amount of JavaScript by over
200 KB, thereby improving the time to interactive for the page. The
use of xhr prefetching to fetch the next page users were likely to
land on further improved the performance.

Success at Scale136

https://www.youtube.com/watch?v=TmhJN6rdm28
https://www.youtube.com/watch?v=TmhJN6rdm28

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Shopping for Speed on eBay.com
by Addy Osmani & Senthil Padmanabhan

Speed” was an aptly named company-wide initiative for eBay
in 2019, with many teams determined to make the site and
apps as fast as possible for users.1 In fact, for every 100 milli-

seconds improvement in search page loading time, eBay saw a 0.5%
increase in “Add to Cart” count.

Through the adoption of performance budgets2 (derived after doing
a competitive study with the Chrome User Experience Report) and
a focus on key user-centric performance metrics, eBay was able to
make significant improvements to site speed.

eBay’s speed improvements.

Ebay’s Chrome User Experience Report data highlights these im-
provements too.

Chrome User Experience Report data for first contentful paint and first input
delay for the eBay.com origin.

1 The original versions of these case studies were published in 2020:
https://smashed.by/shoppingforspeed & https://smashed.by/thousandcuts

2 https://smashed.by/perfbudgets

137Shopping for Speed on eBay.com

https://tech.ebayinc.com/engineering/speed-by-a-thousand-cuts/
https://tech.ebayinc.com/engineering/speed-by-a-thousand-cuts/
https://tech.ebayinc.com/engineering/speed-by-a-thousand-cuts/
https://tech.ebayinc.com/engineering/speed-by-a-thousand-cuts/
https://tech.ebayinc.com/engineering/speed-by-a-thousand-cuts/
https://web.dev/performance-budgets-101/
https://web.dev/performance-budgets-101/
https://web.dev/performance-budgets-101/
https://web.dev/fcp/
https://web.dev/fcp/
https://web.dev/fcp/
https://web.dev/fcp/
https://web.dev/fcp/
https://web.dev/fid/
https://web.dev/fid/
https://web.dev/fid/
https://web.dev/fid/
https://web.dev/fid/

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

There’s still more work ahead but here are eBay’s findings so far.

Web Performance “Cuts”

The improvements eBay made were possible due to the reduction
or “cuts” in the size and time of various factors that influence
a user’s journey.

REDUCE PAYLOAD ACROSS ALL TEXT RESOURCES

One way to make sites fast is to simply load less code. eBay reduced
its text payloads by trimming all the unused and unnecessary bytes3
of JavaScript, css, html, and json responses served to users. Previ-
ously, with every new feature, eBay kept increasing the payload of
their responses, without cleaning up what was unused. This added
up over time and became a performance bottleneck. Teams usually
procrastinated on this clean-up activity, but you’d be surprised by
how much eBay saved.

The “cut” here was the wasted bytes in the response payload.

CRITICAL PATH OPTIMIZATION FOR ABOVE-THE-FOLD CONTENT

Not every pixel on the screen is equally important. The content
above the fold is more critical than something below the fold (and
may require consideration per responsive viewport).4 iOS/Android/
desktop and web apps are aware of this, but what about services?
eBay’s service architecture has a layer called experience services,
which the front ends (platform-specific apps and web servers) talk
to.5 This layer is specifically designed to be view- or device-based,
rather than entity-based, like item, user, or order. eBay then intro-
duced the concept of the critical path for experience services. When

3 https://smashed.by/unusedcode
4 https://smashed.by/abovethefold
5 https://smashed.by/experienceservices

Success at Scale138

https://web.dev/remove-unused-code/
https://web.dev/remove-unused-code/
https://web.dev/remove-unused-code/
https://web.dev/remove-unused-code/
https://web.dev/remove-unused-code/
https://web.dev/remove-unused-code/
https://web.dev/remove-unused-code/
https://www.optimizely.com/optimization-glossary/above-the-fold/
https://www.optimizely.com/optimization-glossary/above-the-fold/
https://www.optimizely.com/optimization-glossary/above-the-fold/
https://www.optimizely.com/optimization-glossary/above-the-fold/
https://www.optimizely.com/optimization-glossary/above-the-fold/
https://tech.ebayinc.com/engineering/experience-services-ebays-solution-to-multi-screen-application-development/
https://tech.ebayinc.com/engineering/experience-services-ebays-solution-to-multi-screen-application-development/
https://tech.ebayinc.com/engineering/experience-services-ebays-solution-to-multi-screen-application-development/

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

a request comes to these services, they work on getting the data
for above-the-fold content immediately, by calling other upstream
services in parallel. Once data is ready, it is instantly flushed. The
below-the-fold data is sent in a later chunk or lazy-loaded. The out-
come: users get to see above-the-fold content quicker.

The “cut” here was the time spent by services to display
relevant content.

IMAGE OPTIMIZATIONS

Images are one of the largest contributors to page bloat. Even small
optimizations go a long way. eBay did two optimizations for images.

First, eBay standardized on the WebP image format for search re-
sults across all platforms, including iOS, Android, and sup-
ported browsers.6 The search results page is the most image-
heavy page at eBay, and they were already using WebP, but not
in a consistent pattern.

WebP images being served to supported browsers on eBay.com.

6 https://smashed.by/webpimages

139Shopping for Speed on eBay.com

https://web.dev/serve-images-webp/
https://web.dev/serve-images-webp/
https://web.dev/serve-images-webp/
https://web.dev/serve-images-webp/
https://web.dev/serve-images-webp/

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Second, although eBay’s listing images are heavily optimized (in
both size and format), the same rigor did not apply for curated im-
ages (for example, the top module on the homepage). eBay has a lot
of hand-curated images, which are uploaded through various tools.
Previously the optimizations were up to the uploader, but now eBay
enforces the rules within the tools, so all images uploaded will be
optimized appropriately.

The “cut” here was the wasted image bytes sent to users.

PREDICTIVE PREFETCH OF STATIC ASSETS

A user session on eBay is not just one page: it is a flow. The flow can
be a navigation, for example, from the homepage to a search page

to an item page. So
why don’t pages in the
flow help one anoth-
er? That is the idea of
predictive prefetch,7
where one page
prefetches the static
assets required for the
next likely page.

With predictive
prefetch, when a user
navigates to the pre-
dicted page, the assets
are already in the
browser cache. This is
done for css and
JavaScript assets,

7 https://smashed.by/predictiveprefetch

Predictive Asset Prefetching: Home prefetches
assets for Search and Search prefetches them
for the item page.

Success at Scale140

https://web.dev/predictive-prefetching/
https://web.dev/predictive-prefetching/
https://web.dev/predictive-prefetching/

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

where the URLs can be retrieved ahead of time. One thing to note here
is that it helps only on first-time navigations. On subsequent naviga-
tions, the static assets will already be in the cache.

The “cut” here was the network time for css and JavaScript static
assets on the first navigation.

PREFETCHING TOP SEARCH RESULTS

When a user searches eBay, eBay’s analytics data suggests it is high-
ly likely that the user will navigate to an item in the top ten of the
search results. So eBay now prefetches the items from search and
keeps them ready for when the user navigates. The prefetching hap-
pens at two levels.

The first level happens server-side, where the item service caches the
top ten items in search results. When the user goes to one of those
items, eBay now saves server processing time. Server-side caching is
leveraged by platform-specific apps and is rolled out globally.

Prefetch the top
10 items in Search
results pages for fast
subsequent loads using
requestIdleCallback()

141Shopping for Speed on eBay.com

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

The other level happens in the browser cache, which is available
in Australia. Item prefetch was an advanced optimization due to
the dynamic nature of items. There are also many nuances to it:
page impressions, capacity, auction items, and so on. You can learn
more about it in LinkedIn’s Performance Engineering Meetup
presentation, or stay tuned for a detailed blog post on the topic
from eBay’s engineers.8

The “cut” here could either be server processing time or network
time, depending on where the item is cached.

EAGER DOWNLOADING OF SEARCH IMAGES

In the search results page, when a query is issued at a high level,
two things happen. One is the recall/ranking step, where the most
relevant items matching the query are returned. The second step is
augmenting the recalled items with additional user context-related
information, such as shipping costs. eBay now immediately sends
the first ten item images to the browser in a chunk along with the
header, so the downloads can start before the rest of the markup ar-
rives. As a result, the images will now appear quicker. This change is
rolled out globally for the web platform.

The “cut” here was the download start time for search result images.

EDGE CACHING FOR AUTOSUGGESTION DATA

When users type in letters in the search box, suggestions pop up.
These suggestions do not change for letter combinations for at least
a day. They are ideal candidates to be cached and served from a cdn
(content delivery network - for a maximum of 24 hours) instead of
requests going all the way to a data center. International markets
especially benefit from cdn caching.

8 https://smashed.by/linkedinperf

Success at Scale142

https://www.youtube.com/watch?v=ogEhUnQdQiU&t=984s
https://www.youtube.com/watch?v=ogEhUnQdQiU&t=984s
https://www.youtube.com/watch?v=ogEhUnQdQiU&t=984s
https://www.youtube.com/watch?v=ogEhUnQdQiU&t=984s
https://www.youtube.com/watch?v=ogEhUnQdQiU&t=984s
https://www.youtube.com/watch?v=ogEhUnQdQiU&t=984s
https://www.youtube.com/watch?v=ogEhUnQdQiU&t=984s
https://www.youtube.com/watch?v=ogEhUnQdQiU&t=984s
https://www.youtube.com/watch?v=ogEhUnQdQiU&t=984s
https://www.youtube.com/watch?v=ogEhUnQdQiU&t=984s
https://www.youtube.com/watch?v=ogEhUnQdQiU&t=984s

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

CDN Caching of search suggestions.

There was a catch, though. eBay had some elements of personaliza-
tion in the suggestions pop-up, which couldn’t be cached efficiently.
Fortunately, it was not an issue in the platform-specific apps, as the
user interfaces for personalization and suggestions could be separat-
ed. For the web, in international markets, latency was more important
than the small benefit of personalization. With that out of the way,
eBay now has autosuggestions served from a cdn cache globally for
platform-specific apps and non-US markets for eBay.com.

The “cut” here was the network latency and server processing time
for autosuggestions.

EDGE CACHING FOR UNRECOGNIZED HOMEPAGE USERS

For the web platform, the homepage content for unrecognized users
is the same for a particular region. These are users who are either
using eBay for the first time or starting a fresh session, hence no
personalization. Though the components on the homepage keep
changing frequently there is still room for caching.

eBay decided to cache the unrecognized user content (html) on
their edge network (points of presence9) for a short period. First-

9 https://smashed.by/pointofpresence

143Shopping for Speed on eBay.com

https://en.wikipedia.org/wiki/Point_of_presence
https://en.wikipedia.org/wiki/Point_of_presence
https://en.wikipedia.org/wiki/Point_of_presence
https://en.wikipedia.org/wiki/Point_of_presence
https://en.wikipedia.org/wiki/Point_of_presence

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

time users can now get homepage content served from a server
near them, instead of from a faraway data center. eBay is still ex-
perimenting with this in international markets, where it will have
a bigger impact.

The “cut” here is again both network latency and server processing
time for unrecognized users.

OPTIMIZATIONS FOR OTHER PLATFORMS

iOS/Android App Parsing Improvements

iOS/Android apps talk to back-end services whose response format is
typically json. These json payloads can be large. Instead of parsing
the whole json to render something on the screen, eBay introduced

an efficient parsing algorithm that
optimizes for content that needs to
be displayed immediately.

Users can now see the content
quicker. In addition, for the An-
droid app, eBay starts initializing

the search view controllers as soon as the user starts typing in the
search box (iOS already had this optimization). Previously this hap-
pened only after users pressed the search button. Now users can get
to their search results faster.

The “cut” here was the time spent by devices to display relevant content.

Android App Start-Up Time Improvements

This applies to cold start time optimizations for Android apps.10
When an app is cold-started, a lot of initialization happens both at
the OS level and application level. Reducing the initialization time at

10 https://smashed.by/coldstart

Performance is a feature and

a competitive advantage.

Optimized experiences lead

to higher user engagement,

conversions, and roiroi.

Success at Scale14 4

https://developer.android.com/topic/performance/vitals/launch-time#cold
https://developer.android.com/topic/performance/vitals/launch-time#cold
https://developer.android.com/topic/performance/vitals/launch-time#cold

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

the application level helps users see the home screen quicker. eBay
did some profiling and noticed that not all initializations are required
to display content and that some can be done lazily.

More importantly, eBay observed that there was a blocking third-par-
ty analytics call that delayed the rendering on the screen. Removing
the blocking call and making it async further helped cold start times.

The “cut” here was the unnecessary start-up time for Android apps.

Conclusions

All the performance “cuts” eBay made contributed collectively to-
wards moving the needle, and it happened over a period of time.
The releases were phased in throughout the year, with each release
shaving off tens of milliseconds, ultimately reaching the point where
eBay is now:

The impact of eBay’s speed efforts on their field metrics over time, as illustrated
by the Chrome UX Report Dashboard.

145Shopping for Speed on eBay.com

https://g.co/chromeuxdash
https://g.co/chromeuxdash
https://g.co/chromeuxdash
https://g.co/chromeuxdash
https://g.co/chromeuxdash
https://g.co/chromeuxdash
https://g.co/chromeuxdash

Ebay Key Takeaways

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Performance is a feature and a competitive advantage. Optimized ex-
periences lead to higher user engagement, conversions, and roi. In
eBay’s case, these optimizations varied from things that were low-ef-
fort to a few that were advanced.

Introducing cuts across the board to meet performance

budgets and improve speed.

eBay launched its “Speed” initiative in 2019 to focus on improving
the performance of critical eBay pages across all platforms. They
analyzed the Chrome user experience reports with a focus on
user-centric metrics to define their desired performance budgets.
The next step was to introduce cuts and optimizations for each en-
tity to meet the performance budgets of the whole. Some of the key
cuts introduced were as follows:

 Trim unused and unnecessary bytes for JavaScript, css, html,
and json responses served to users.

 Optimization for above-the-fold content to be fetched and
delivered instantly to cut the time spent on rendering
critical content.

 Standardize the use of WebP images for all platforms and
optimize curated images during upload.

 Cut down on time to load the next page by using predictive
prefetch to prefetch static content for the next page likely
to be requested.

 Cut search time by prefetching the top search results.

Success at Scale146

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

How CLS Optimizations Increased
Yahoo! JAPAN News’s Page Views
by Shunya Shishido, Tomoki Kiraku, & Milica Mihajlija

Yahoo! JAPAN is one of the largest media companies in Japan,
providing over 79 billion page views per month.1 Their news
platform, Yahoo! JAPAN News has more than 22 billion page

views per month and an engineering team dedicated to improving
the user experience.

By continuously monitoring core web vitals (cwv), they correlated
the site’s improved cumulative layout shift (cls) score with a 15% in-
crease in page views per session and 13% increase in session duration.
Cumulative layout shift measures how visually stable a website is – it
helps quantify how often users experience unexpected layout shifts.

Page content moving around unexpectedly often causes accidental
clicks, disorientation on the page, and, ultimately, user frustration.
Frustrated users tend
not to stick around for
long. To keep users
happy, the page lay-
out should stay stable
through the entire life cycle of the user journey. For Yahoo! JAPAN
News this improvement had a significant positive impact on busi-
ness critical engagement metrics.

For technical details on how they improved the cls, read the Yahoo!
JAPAN News engineering team’s post.2

1 The original version of this article was published in March 2021:
https://smashed.by/japannews

2 https://smashed.by/yahootech

To keep users happy, the page layout

should stay stable through the

entire life cycle of the user journey.

147How CLS Optimizations Increased Yahoo! JAPAN News’s Page Views

https://www.yahoo.co.jp/
https://www.yahoo.co.jp/
https://www.yahoo.co.jp/
https://www.yahoo.co.jp/
https://news.yahoo.co.jp/
https://news.yahoo.co.jp/
https://news.yahoo.co.jp/
https://news.yahoo.co.jp/
https://news.yahoo.co.jp/
https://techblog.yahoo.co.jp/entry/2021022230076263/
https://techblog.yahoo.co.jp/entry/2021022230076263/
https://techblog.yahoo.co.jp/entry/2021022230076263/
https://techblog.yahoo.co.jp/entry/2021022230076263/
https://techblog.yahoo.co.jp/entry/2021022230076263/
https://techblog.yahoo.co.jp/entry/2021022230076263/
https://techblog.yahoo.co.jp/entry/2021022230076263/
https://techblog.yahoo.co.jp/entry/2021022230076263/
https://techblog.yahoo.co.jp/entry/2021022230076263/
https://techblog.yahoo.co.jp/entry/2021022230076263/
https://techblog.yahoo.co.jp/entry/2021022230076263/
https://techblog.yahoo.co.jp/entry/2021022230076263/
https://techblog.yahoo.co.jp/entry/2021022230076263/

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Identifying the Issue

Monitoring core web vitals, including cls, is crucial in catching
issues and identifying where they’re coming from. CWV tools3 were
used at Yahoo! JAPAN News for monitoring. Search Console provided
a great overview of groups of pages with performance issues, and
Lighthouse helped identify per-page opportunities to improve page
experience. Using these tools, they discovered that the article detail
page had poor cls.

Google Search Console Core Web Vitals report.

Lighthouse’s “Avoid large layout shifts” audit shows which elements are
contributing to CLS score and how much.

3 https://smashed.by/vitalstools

Success at Scale148

https://web.dev/vitals-tools/
https://web.dev/vitals-tools/
https://web.dev/vitals-tools/

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

It’s important to keep in mind the cu-
mulative part of the cumulative layout
shift – the score is captured through the
entire page life cycle. In the real world,
the score can include shifts that happen
as a result of user interactions, such as
scrolling a page or tapping a button.
To collect cls scores from the field
data, the team integrated web-vitals
JavaScript library reporting.4

As a part of a performance monitoring
strategy, they’re also working on build-
ing an internal tool with Lighthouse CI to continuously audit perfor-
mance across businesses in the company.5

The team used Chrome DevTools to identify which elements were
making layout shifts on the page. Layout Shift Regions in DevTools
visualizes elements that contribute to cls by highlighting them
with a blue rectangle whenever a layout shift happens.6

They figured out that a layout shift occurred after the hero image at
the top of the article was loaded for the first view.

Layout shift on the article detail page.

4 https://smashed.by/chromewebvitals
5 https://smashed.by/lighthouseci
6 https://smashed.by/shiftregions

Visualized layout shifts.

149How CLS Optimizations Increased Yahoo! JAPAN News’s Page Views

https://github.com/GoogleChrome/web-vitals/
https://github.com/GoogleChrome/web-vitals/
https://github.com/GoogleChrome/web-vitals/
https://web.dev/lighthouse-ci/
https://web.dev/lighthouse-ci/
https://web.dev/lighthouse-ci/
https://web.dev/debug-layout-shifts/
https://web.dev/debug-layout-shifts/
https://web.dev/debug-layout-shifts/
https://web.dev/debug-layout-shifts/
https://web.dev/debug-layout-shifts/

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

In these examples, when the image finishes loading, the text gets
pushed down (the position change is indicated with the red line).

Improving CLS for Images

For fixed-size images, layout shifts can be prevented by specifying
the width and height attributes in the img element and using
the css aspect-ratio property available in modern browsers.
However, Yahoo! JAPAN News needed to support not only modern
browsers, but also browsers installed in relatively old operating
systems such as iOS 9.

They used aspect ratio boxes – a method that uses markup to reserve
the space on the page before the image is loaded.7 This method re-
quires knowing the aspect ratio of the image in advance, which they
were able to get from the back-end api.

Left: Reserved blank space for the image at the top of the page;
Right: The hero image loaded in the reserved space without layout shifts.

7 https://smashed.by/aspectratioboxes

Success at Scale150

https://web.dev/aspect-ratio
https://web.dev/aspect-ratio
https://web.dev/aspect-ratio
https://css-tricks.com/aspect-ratio-boxes/
https://css-tricks.com/aspect-ratio-boxes/
https://css-tricks.com/aspect-ratio-boxes/
https://css-tricks.com/aspect-ratio-boxes/
https://css-tricks.com/aspect-ratio-boxes/

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Results

The number of urls with poor performance in Search Console de-
creased by 98%, and cls in lab data decreased from about 0.2 to 0.
More importantly, there were several correlated improvements in
business metrics.8

Search Console after improvements.

Search Console does not reflect improvements in real-time.

When Yahoo! JAPAN News compared user engagement metrics be-
fore and after cls optimization, they saw multiple improvements:

• 15.1% more page views per session

• 13.3% longer session duration

• 1.72 percentage points lower bounce rate

8 https://smashed.by/layoutshift

151How CLS Optimizations Increased Yahoo! JAPAN News’s Page Views

https://nicj.net/cumulative-layout-shift-in-the-real-world/
https://nicj.net/cumulative-layout-shift-in-the-real-world/
https://nicj.net/cumulative-layout-shift-in-the-real-world/
https://nicj.net/cumulative-layout-shift-in-the-real-world/
https://nicj.net/cumulative-layout-shift-in-the-real-world/
https://nicj.net/cumulative-layout-shift-in-the-real-world/
https://nicj.net/cumulative-layout-shift-in-the-real-world/
https://nicj.net/cumulative-layout-shift-in-the-real-world/
https://nicj.net/cumulative-layout-shift-in-the-real-world/

Yahoo! Japan Key Takeaways

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

By improving cls and other core
web vitals metrics, Yahoo! JAPAN
News also got the “Fast page” label
in the context menu of Chrome
Android.9

Layout shifts are frustrating and
discourage users from reading
more pages, but that can be im-
proved by using the appropriate
tools, identifying issues, and apply-
ing best practices. Improving cls is
a chance to improve your business.

9 https://smashed.by/fastpage

“Fast page” label in Chrome on Android.

Improving CLS for images led to a 15.1% increase in page

views per session and 13.3% longer session durations.

Yahoo! Japan News gets 22 billion page views per month. Due to the
availability of high-end phones and a decent network, speed may not
be a core performance issue in Japan. However, page content that
moves around unexpectedly can lead to accidental clicks, disorienta-
tion, and ultimately user frustration. Yahoo! Japan News’s engineer-
ing team realized that this was the issue with their article details
page and as a result, it had poor cls.

Through tests, they realized that there was a layout shift after the
hero image at the top of the article was loaded for the first view.
They used aspect ratio boxes to reserve space for the image before it
is loaded. This change alone was enough to get rid of the cls com-
pletely, bringing it down to zero from 0.2. This directly resulted in a
significant improvement in user engagement metrics for the site.

Success at Scale152

https://blog.chromium.org/2020/08/highlighting-great-user-experiences-on.html
https://blog.chromium.org/2020/08/highlighting-great-user-experiences-on.html
https://blog.chromium.org/2020/08/highlighting-great-user-experiences-on.html
https://blog.chromium.org/2020/08/highlighting-great-user-experiences-on.html
https://blog.chromium.org/2020/08/highlighting-great-user-experiences-on.html
https://blog.chromium.org/2020/08/highlighting-great-user-experiences-on.html

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Instant Domain Search: How We
Improved Our Core Web Vitals
by Beau Hartshorne

Last year,1 Google started emphasizing the importance of core
web vitals and how they reflect a person’s real experience
when visiting sites around the web.2 Performance is a core

feature of our company, Instant Domain Search3 — it’s in the name.
Imagine our surprise when we found that our vitals scores were not
great for a lot of people. Our fast computers and fiber internet masked
the experience real people have on our site. It wasn’t long before a sea
of red “poor” and yellow “needs improvement” notices in our Google
Search Console needed our attention. Entropy had won, and we had
to figure out how to clean up the jank — and make our site faster.

This is a screenshot from our mobile core web vitals report in Google Search
Console. We still have a lot of work to do!

I founded Instant Domain Search in 2005 and kept it as a side-
hustle while I worked on a Y Combinator company (Snipshot, W06),
before working as a software engineer at Facebook. We’ve recently
grown to a small group based mostly in Victoria, Canada, and we are

1 The original version of this case study was published in May 2021:
https://smashed.by/instantdomainsearch

2 https://smashed.by/evaluatingpageux
3 https://instantdomainsearch.com/

153Instant Domain Search: How We Improved Our Core Web Vitals

https://developers.google.com/search/blog/2020/05/evaluating-page-experience
https://developers.google.com/search/blog/2020/05/evaluating-page-experience
https://developers.google.com/search/blog/2020/05/evaluating-page-experience
https://instantdomainsearch.com/
https://instantdomainsearch.com/
https://instantdomainsearch.com/
https://instantdomainsearch.com/
https://instantdomainsearch.com/

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

working through a long backlog of new features and performance
improvements. Our poor web vitals scores, and the looming Google
update, brought our focus to finding and fixing these issues.4

When the first version of the site was launched, I’d built it with php,
MySQL, and XMLHttpRequest. Internet Explorer 6 was fully sup-
ported, Firefox was gaining share, and Chrome was still years from
launch. Over time, we’ve evolved through a variety of static-site gen-
erators, JavaScript frameworks, and server technologies. Our current
front-end stack is React served with Next.js and a back-end service
built in Rust to answer our domain name searches. We try to follow
best practice by serving as much as we can over a cdn, avoiding as
many third-party scripts as possible, and using simple svg graphics
instead of bitmap pngs. It wasn’t enough.

Next.js lets us build our pages and components in React and Type-
Script. When paired with VS Code, the development experience is
amazing. Next.js generally works by transforming React compo-
nents into static html and css. This way, the initial content can be
served from a cdn, and then Next can “hydrate” the page to make
elements dynamic. Once the page is hydrated, our site turns into a
single page app where people can search for and generate domain
names. We do not rely on Next.js to do much server-side work; the
majority of our content is statically exported as html, css, and Ja-
vaScript to be served from a cdn.5

When someone starts searching for a domain name, we replace
the page content with search results. To make the searches as fast
as possible, the front end directly queries our Rust back end, which
is heavily optimized for domain lookups and suggestions. Many
queries we can answer instantly, but for some tlds we need to do
slower dns queries, which can take a second or two to resolve. When
some of these slower queries resolve, we will update the UI with

4 https://smashed.by/pageexperiencedetails
5 https://smashed.by/statichtmlexport

Success at Scale154

https://developers.google.com/search/blog/2021/04/more-details-page-experience
https://developers.google.com/search/blog/2021/04/more-details-page-experience
https://developers.google.com/search/blog/2021/04/more-details-page-experience
https://developers.google.com/search/blog/2021/04/more-details-page-experience
https://developers.google.com/search/blog/2021/04/more-details-page-experience
https://nextjs.org/docs/advanced-features/static-html-export
https://nextjs.org/docs/advanced-features/static-html-export
https://nextjs.org/docs/advanced-features/static-html-export

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

whatever new information comes in. The results pages are different
for everyone, and it can be hard for us to predict exactly how each
person experiences the site.

The Chrome DevTools are excellent, and a good place to start when
chasing performance issues. The Performance view shows exactly
when http requests go out, where the browser spends time evaluat-
ing JavaScript, and more:

Screenshot of the Performance pane in Chrome DevTools. We have enabled web
vitals which lets us see which element caused the lcp.

There are three core web vitals metrics that Google will use to help
rank sites in their upcoming search algorithm update. Google puts
experiences into “Good”, “Needs Improvement”, and “Poor” based on
the lcp, fid, and cls scores real people have on the site:

• LCP, or largest contentful paint, defines the time it takes for the
largest content element to become visible.

• FID, or first input delay, relates to a site’s responsiveness to
interaction — the time between a tap, click, or keypress in the
interface and the response from the page.

• CLS, or cumulative layout shift, tracks how elements move or
shift on the page absent of actions like a keyboard or click event.

155Instant Domain Search: How We Improved Our Core Web Vitals

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

A summary of lcp, fid and cls. (Image credit: Web Vitals by Philip Walton6)

Chrome is set up to track these metrics across all logged-in Chrome
users, and sends anonymous statistics summarizing a customer’s
experience on a site back to Google for evaluation. These scores are
accessible via the Chrome User Experience Report, and are shown
when you inspect a url with the PageSpeed Insights tool. The scores
represent the 75th percentile experience for people visiting that url
over the previous 28 days. This is the number they will use to help
rank sites in the update.

The median, also known as the 50th percentile or p50, is shown in green. The
75th percentile, or p75, is shown here in yellow. In this illustration, we show 20
sessions. The 15th worst session is the 75th percentile, and what Google will use
to score this site’s experience.

A 75th percentile (p75) metric strikes a reasonable balance7 for per-
formance goals. Taking an average,8 for example, would hide a lot of
bad experiences people have. The median,9 or 50th percentile (p50),
would mean that half of the people using our product were having

6 https://smashed.by/webvitals
7 https://smashed.by/choiceofpercentile
8 https://smashed.by/average
9 https://smashed.by/median

Success at Scale156

https://web.dev/vitals/#core-web-vitals
https://web.dev/vitals/#core-web-vitals
https://web.dev/vitals/#core-web-vitals
https://web.dev/vitals/#core-web-vitals
https://web.dev/vitals/#core-web-vitals
https://web.dev/vitals/#core-web-vitals
https://web.dev/vitals/#core-web-vitals
https://web.dev/vitals/#core-web-vitals
https://web.dev/vitals/#core-web-vitals
https://web.dev/defining-core-web-vitals-thresholds/#choice-of-percentile
https://web.dev/defining-core-web-vitals-thresholds/#choice-of-percentile
https://web.dev/defining-core-web-vitals-thresholds/#choice-of-percentile
https://web.dev/defining-core-web-vitals-thresholds/#choice-of-percentile
https://web.dev/defining-core-web-vitals-thresholds/#choice-of-percentile
https://web.dev/defining-core-web-vitals-thresholds/#choice-of-percentile
https://web.dev/defining-core-web-vitals-thresholds/#choice-of-percentile
https://en.wikipedia.org/wiki/Average
https://en.wikipedia.org/wiki/Median

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

a worse experience. The 95th percentile (p95), on the other hand,
is hard to build for as it captures too many extreme outliers on old
devices with spotty connections. We feel that scoring based on the
75th percentile is a fair standard to meet.

To get our scores under control, we first turned to Lighthouse for
some excellent tooling built into Chrome and hosted at
web.dev/measure/, and at PageSpeed Insights. These tools helped us
find some broad technical issues with our site. We saw that the way
Next.js was bundling our css and slowed our initial rendering time
which affected our fid. The first easy win came from an experimen-
tal Next.js feature, optimizeCss,10 which helped improve our general
performance score significantly.

Lighthouse also caught a cache misconfiguration that prevent-
ed some of our static assets from being served from our cdn. We
are hosted on Google Cloud Platform, and the Google Cloud cdn
requires that the Cache-Control header contains “public”.11 Next.js
does not allow you to configure all of the headers12 it emits, so we
had to override them by placing the Next.js server behind Caddy,13 a
lightweight http proxy server implemented in Go. We also took the
opportunity to make sure we were serving what we could with the
relatively new stale-while-revalidate support in modern brows-
ers which allows the cdn to fetch content from the origin (our Next.
js server) asynchronously in the background.

It’s easy — maybe too easy — to add almost anything you need to
your product from npm. It doesn’t take long for bundle sizes to
grow. Big bundles take longer to download on slow networks, and
the 75th percentile mobile phone will spend a lot of time blocking
the main UI thread while it tries to make sense of all the code it just
downloaded. We liked BundlePhobia which is a free tool that shows
how many dependencies and bytes an npm package will add to your

10 https://smashed.by/optimizecss
11 https://smashed.by/cacheability
12 https://smashed.by/cachecontrolpublic
13 https://caddyserver.com/

157Instant Domain Search: How We Improved Our Core Web Vitals

https://twitter.com/hdjirdeh/status/1369709676271726599?s=20
https://cloud.google.com/cdn/docs/caching#cacheability
https://cloud.google.com/cdn/docs/caching#cacheability
https://cloud.google.com/cdn/docs/caching#cacheability
https://cloud.google.com/cdn/docs/caching#cacheability
https://cloud.google.com/cdn/docs/caching#cacheability
https://cloud.google.com/cdn/docs/caching#cacheability
https://cloud.google.com/cdn/docs/caching#cacheability
https://cloud.google.com/cdn/docs/caching#cacheability
https://cloud.google.com/cdn/docs/caching#cacheability
https://cloud.google.com/cdn/docs/caching#cacheability
https://github.com/vercel/next.js/pull/22420
https://github.com/vercel/next.js/pull/22420
https://github.com/vercel/next.js/pull/22420
https://github.com/vercel/next.js/pull/22420
https://github.com/vercel/next.js/pull/22420
https://github.com/vercel/next.js/pull/22420
https://github.com/vercel/next.js/pull/22420
https://github.com/vercel/next.js/pull/22420
https://github.com/vercel/next.js/pull/22420
https://caddyserver.com/

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

bundle. This led us to eliminate or replace a number of react-spring
powered animations with simpler css transitions.

We used BundlePhobia to help track down big dependencies that
we could live without.

Through the use of BundlePhobia and Lighthouse, we found that
third-party error logging and analytics software contributed signifi-
cantly to our bundle size and load time. We removed and replaced
these tools with our own client-side logging that take advantage of
modern browser apis like sendBeacon and ping. We send logging
and analytics to our own Google BigQuery infrastructure where we
can answer the questions we care about in more detail than any of
the off-the-shelf tools could provide. This also eliminates a number
of third-party cookies and gives us far more control over how and
when we send logging data from clients.

Our cls score still had the most room for improvement. The way
Google calculates cls is complicated — you’re given a maximum
“session window” with a 1-second gap, capped at 5 seconds from the
initial page load, or from a keyboard or click interaction, to finish

Success at Scale158

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

moving things around the site. If you’re interested in reading more
deeply into this, here’s a great guide on the topic at the link in the
footnote.14 This penalizes many types of overlays and pop-ups that
appear just after you land on a site: for instance, ads that shift con-
tent around, or upsells that might appear when you start scrolling
past ads to reach content. A web.dev article by Milica Mihajlija and
Philip Walton provides an excellent explanation.15

We are fundamentally opposed to this kind of digital clutter, so we
were surprised to see how much improvement Google insisted we
make. Chrome has a built-in Web Vitals overlay16 that you can access
by using the Command Menu17 to “Show Core Web Vitals overlay”.
To see exactly which elements Chrome considers in its cls calcula-
tion, we found the Chrome Web Vitals extension’s “Console Logging”
option in settings more helpful. Once enabled, this plugin shows
your lcp, fid, and cls scores for the current page. From the console,
you can see exactly which elements on the page are connected to
these scores. Our cls scores had the most room for improvement.

The Chrome Web Vitals extension shows how Chrome scores the current page on
their web vitals metrics. Some of this functionality will be built into Chrome 90.

Of the three metrics, cls is the only one that accumulates as you
interact with a page. The Web Vitals extension has a logging op-

14 https://smashed.by/completecls
15 https://web.dev/cls/
16 https://smashed.by/cwv
17 https://smashed.by/commandmenu

159Instant Domain Search: How We Improved Our Core Web Vitals

https://jessbpeck.com/posts/completecls/
https://jessbpeck.com/posts/completecls/
https://jessbpeck.com/posts/completecls/
https://developer.chrome.com/blog/new-in-devtools-90/#cwv
https://developer.chrome.com/blog/new-in-devtools-90/#cwv
https://developer.chrome.com/blog/new-in-devtools-90/#cwv
https://developer.chrome.com/blog/new-in-devtools-90/#cwv
https://developer.chrome.com/blog/new-in-devtools-90/#cwv
https://developer.chrome.com/docs/devtools/command-menu/
https://developer.chrome.com/docs/devtools/command-menu/
https://developer.chrome.com/docs/devtools/command-menu/

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

tion that will show exactly which elements cause cls while you are
interacting with a product. Watch how the cls metrics add when we
scroll on Smashing Magazine’s home page.18

Google will continue to adjust how it calculates cls over time, so it’s
important to stay informed by following Google’s web development
blog. When using tools like the Chrome Web Vitals extension, it’s
important to enable cpu and network throttling to get a more realis-
tic experience. You can do that with the developer tools by simulat-
ing a mobile cpu.19

It’s important to simulate a slower cpu and network connection when looking
for web vitals issues on your site.

The best way to track progress from one deploy to the next is to
measure page experiences the same way Google does. If you have
Google Analytics set up, an easy way to do this is to install Google’s
web-vitals module and hook it up to Google Analytics. This provides
a rough measure of your progress and makes it visible in a Google
Analytics dashboard.

Google Analytics can show an average value of your web vitals scores.

18 https://smashed.by/smashingscrolling
19 https://smashed.by/mobilecpu

Success at Scale160

https://vimeo.com/541816201
https://vimeo.com/541816201
https://vimeo.com/541816201
https://vimeo.com/541816201
https://vimeo.com/541816201
https://vimeo.com/541816201
https://vimeo.com/541816201
https://vimeo.com/541816201
https://vimeo.com/541816201
https://vimeo.com/541816201
https://vimeo.com/541816201
https://vimeo.com/541816201
https://vimeo.com/541816201
https://vimeo.com/541816201
https://vimeo.com/541816201
https://vimeo.com/541816201
https://vimeo.com/541816201
https://vimeo.com/541816201
https://vimeo.com/541816201
https://vimeo.com/541816201
https://vimeo.com/541816201
https://vimeo.com/541816201
https://vimeo.com/541816201
https://vimeo.com/541816201
https://vimeo.com/541816201
https://vimeo.com/541816201
https://vimeo.com/541816201
https://vimeo.com/541816201
https://vimeo.com/541816201
https://developer.chrome.com/docs/devtools/evaluate-performance/#simulate_a_mobile_cpu
https://developer.chrome.com/docs/devtools/evaluate-performance/#simulate_a_mobile_cpu
https://developer.chrome.com/docs/devtools/evaluate-performance/#simulate_a_mobile_cpu
https://developer.chrome.com/docs/devtools/evaluate-performance/#simulate_a_mobile_cpu
https://developer.chrome.com/docs/devtools/evaluate-performance/#simulate_a_mobile_cpu
https://developer.chrome.com/docs/devtools/evaluate-performance/#simulate_a_mobile_cpu
https://developer.chrome.com/docs/devtools/evaluate-performance/#simulate_a_mobile_cpu

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

This is where we hit a wall. We could see our cls score, and while
we’d improved it significantly, we still had work to do. Our cls
score was roughly 0.23 and we needed to get this below 0.1 — and
preferably down to zero. At this point, though, we couldn’t find
something that told us exactly which components on which pages
were still affecting the score. We could see that Chrome exposed a
lot of detail in its core web vitals tools, but that the logging aggre-
gators threw away the most important part: exactly which page
element caused the problem.

This shows exactly which elements contribute to your cls score.

To capture all of the detail we need, we built a serverless function to
capture web vitals data from browsers. Since we don’t need to run
real-time queries on the data, we stream it into Google BigQuery’s
streaming api for storage.20 This architecture means we can inex-
pensively capture about as many data points as we can generate.

After learning some lessons while working with web vitals and
BigQuery, we decided to bundle up this functionality and release
these tools as open-source at vitals.dev.

20 https://smashed.by/streamingapi

161Instant Domain Search: How We Improved Our Core Web Vitals

https://cloud.google.com/bigquery/streaming-data-into-bigquery
https://cloud.google.com/bigquery/streaming-data-into-bigquery
https://cloud.google.com/bigquery/streaming-data-into-bigquery

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

Using Instant Vitals is a quick way to get started tracking your web
vitals scores in BigQuery. Here’s an example of a BigQuery table
schema that we create:

Integrating with Instant Vitals is easy. You can get started by
integrating with the client library to send data to your back-end
or serverless function:

Unset

import { init } from "@instantdomain/vitals-client";
init({ endpoint: "/api/web-vitals" });

Then, on your server you can integrate with the server library to
complete the circuit:

Unset

import fs from "fs";

One of our
BigQuery
schemas.

Success at Scale162

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

import { init, streamVitals } from "@instantdomain/vitals-
server";
// Google libraries require service key as path to file
const GOOGLE_SERVICE_KEY = process.env.GOOGLE_SERVICE_KEY;
process.env.GOOGLE_APPLICATION_CREDENTIALS = "/tmp/goog_
creds";
fs.writeFileSync(
 process.env.GOOGLE_APPLICATION_CREDENTIALS,
 GOOGLE_SERVICE_KEY
);
const DATASET_ID = "web_vitals";
init({ datasetId: DATASET_ID }).then().catch(console.error);
// Request handler
export default async (req, res) => {
 const body = JSON.parse(req.body);
 await streamVitals(body, body.name);
 res.status(200).end();
};

Simply call streamVitals with the body of the request and the name
of the metric to send the metric to BigQuery. The library will handle
creating the dataset and tables for you.

After collecting a day’s worth of data, we ran a query like this one:

Unset

SELECT
 '<project_name>.web_vitals.CLS'.Value,
 Node
FROM
 '<project_name>.web_vitals.CLS'
JOIN
 UNNEST(Entries) AS Entry
JOIN
 UNNEST(Entry.Sources)
WHERE
 Node != ""
ORDER BY
 value
LIMIT
 10

163Instant Domain Search: How We Improved Our Core Web Vitals

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

This query produces results like this:

value node

4.6045324800736724E-4 /html/body/div[1]/main/div/div/
div[2]/div/div/blockquote

7.183070668914928E-4 /html/body/div[1]/header/div/div/
header/div

0.031002668277977697 /html/body/div[1]/footer

0.035830703317463526 /html/body/div[1]/main/div/div/
div[2]

0.035830703317463526 /html/body/div[1]/footer

0.035830703317463526 /html/body/div[1]/main/div/div/div[2]

0.035830703317463526 /html/body/div[1]/main/div/div/div[2]

0.035830703317463526 /html/body/div[1]/footer

0.035830703317463526 /html/body/div[1]/footer

0.03988482067913317 /html/body/div[1]/footer

This shows us which elements on which pages have the most im-
pact on cls. It created a punch list for our team to investigate and
fix. On Instant Domain Search, it turns out that slow or bad mobile
connections will take more than 500ms to load some of our search
results. One of the worst contributors to cls for these users was
actually our footer.

The layout shift score is calculated as a function of the size of the
element moving, and how far it goes. In our search results view, if a
device takes more than a certain amount of time to receive and ren-
der search results, the results view would collapse to a zero-height,
bringing the footer into view. When the results come in, they
push the footer back to the bottom of the page. A big dom element
moving this far added a lot to our cls score. To work through this
properly, we needed to restructure the way the search results are

Success at Scale164

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

collected and rendered. We decided to just remove the footer in the
search results view as a quick hack that would stop it from bounc-
ing around on slow connections.

We now review this report regularly to track how we are improving
— and use it to fight declining results as we move forward. We have
witnessed the value of extra attention to newly launched features
and products on our site and have operationalized consistent checks
to be sure core vitals are acting in favor of our ranking. We hope that
by sharing Instant Vitals we can help other developers tackle their
core web vitals scores too.21

Google provides excellent performance tools built into Chrome,
and we used them to find and fix a number of performance issues.

Google PageSpeed Insights shows that we now pass the core web vitals
assessment.

We learned that the field data provided by Google offered a good
summary of our p75 progress, but did not have actionable detail. We

21 https://smashed.by/instantvitals

165Instant Domain Search: How We Improved Our Core Web Vitals

https://github.com/InstantDomainSearch/instant-vitals
https://github.com/InstantDomainSearch/instant-vitals
https://github.com/InstantDomainSearch/instant-vitals

P
E

R
F

O
R

M
A

N
C

E
P

E
R

F
O

R
M

A
N

C
E

needed to find out exactly which dom elements were causing layout
shifts and input delays. Once we started collecting our own field
data — with XPath queries — we were able to identify specific op-
portunities to improve everyone’s experience on our site. With some
effort, we brought our real-world core web vitals field scores down
into an acceptable range in preparation for June’s page experience
update. We’re happy to see these numbers go down and to the right!

Instant Domain Search Key Takeaways
Use the right tools to track your progress and to identify

specific areas for improvement.

Despite performance being a core feature of the company, Instant Do-
main Search discovered that their core web vital scores were not good
for a lot of people. To rectify this issue, they started by tracking their
core web vitals scores over time. This helped them to identify which
areas of their website needed improvement. They then used a variety
of tools to identify which elements on their page were causing cls and
fid issues.

Once they had identified the problem areas, they were able to take steps
to fix them. For example, they optimized their images, reduced the
number of third-party scripts, and used a caching plugin.

As a result of the efforts, Instant Domain Search was able to improve
their core web vitals scores significantly, gaining worthwhile insights
into improving the website’s user experience.

Success at Scale166

C
AP

AB
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

C
A

P
A

B
IL

IT
IE

S

0000

0000

0000

0000

0000

0000

0000

0000

0000

177

185

19 1

2 1 1

22 1

229

238

248

262

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

Photoshop’s Journey to the Web

Building Tinder Online: A PWA

Upgrading Ele.me to Be a

Progressive Web App

A Complete Guide to

Trusted Web Activities with OYO

A Year into the Pinterest PWA

Building Spotify’s New Web Player

Mainline Menswear’s Success

Building a PWA

Deprecating Excalidraw for Electron

#

Photoshop’s Journey to the Web

Building Tinder Online: A PWA

Upgrading Ele.me to Be a

Progressive Web App

A Complete Guide to

Trusted Web Activities with OYO

A Year into the Pinterest PWA

Building Spotify’s New Web Player

Mainline Menswear’s Success

Building a PWA

Deprecating Excalidraw for Electron

#

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

Introduction

For many years, the powerful capabilities that enabled devel-
opers to build great user experiences on mobile devices were
restricted to native applications. This meant the features

mobile developers needed, such as offline functionality, installability,
and notifications just weren’t available on the web. This forced devel-
opers to invest in building native apps even if their teams would
have preferred to just extend their existing web experience.

Bridging the gap between native capabilities and the modern web is
made possible through a combination of progressive web application
(pwa) technologies and apis that can access device and operating
system features more readily. In this section, we will discuss pwas
and device apis and then look at some case studies where adding
these capabilities helped businesses.1

Web Apps, Native Apps, and PWAs

Browser vendors have been working to bridge the native–web gap
for some time now, allowing businesses to enjoy the universality of
the web with many of the features that were once only available to
native platforms.. The web app manifest enables offering an “in-
stalled” experience via the web. Service workers allow the delivery
of a reliable offline experience that users expect from an installed ex-
perience. WebAssembly can get you closer to the metal for complex
code. There are plenty more.

A more complete list of features that were earlier out of reach for
web apps but have become accessible are as follows:

1 https://smashed.by/deviceapis

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

1. You can access the camera and microphone on your device
through your web app, capture or record audio and video,2 use
them for real-time communication3 or shape detection.4

2. Web apps can detect your location using gps to serve you
location-specific results or redirect to a country-specific
website. Apps are also able to detect the position and motion
of the device.

3. Web apps support different types of input like touch gestures
and clipboard input, and can even analyze them for speech or
music recognition5

4. Web apps support native app behaviors like web push noti-
fications, similar to push notifications sent by native apps
but available via desktop or mobile web. This feature brings
the benefit of real-time, personalized communication to web
apps. Additionally, native app functions like task scheduling
(calendar access) and permissions for features like gps, cam-
era, and microphone are also supported by web apps.

5. Web apps can be built as progressive web apps installed and
accessed like a native app. They are capable of providing a
seamless experience and integrating with device features.

Furthermore, it is still as easy to start using a new web app as it was
earlier. You can use web apps without going through the download,
install, set up, and upgrade process. Thus, web apps provide better
reach to businesses that use them.

Native apps are still preferred by users, especially on mobile phones,
as they sync with the device ecosystem. They can be easily searched

2 https://www.awesomescreenshot.com/
3 https://zoom.us/
4 https://lens.google/
5 https://www.shazam.com/

Success at Scale170

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

and accessed on the device and pinned to a specific location like a
taskbar, dock, or home screen. Native apps can access system re-
sources like file systems, contacts, location, and Bluetooth with man-
ageable permissions. They can also work offline and usually have an
inbuilt mechanism to sync data when online. However, native apps
need to be downloaded and installed from a specific app store, which
can be daunting if you are not going to use the app frequently and
tend to forget your app store password easily.

PROGRESSIVE WEB APPLICATIONS (PWAS)

Mobile web has generated more traffic than desktop web over the last
few years.6 Web apps built for the desktop do not respond well to mo-
bile device constraints. Introduced by Google in 2016, progressive web
applications (pwas) try to combine the capabilities of native apps with
the reach of web apps, thus enabling a best-of-both-worlds experience,
especially on mobile. For a web app to be progressive, we enhance it
with modern apis to make it more capable, reliable, and installable.

Pwas are an attractive option for both app developers and users, and
have the potential to replace native apps in the future because:

1. Easy distribution: They offer easier distribution options. You
don’t go through the native app store review and release pro-
cess and can fully control the release and update cycle for the
app. The same pwa can be used by all web users, irrespective
of the mobile or desktop device that they are on.

2. Ease of use: Users can open and start using it immediately
without going through the app store’s search, download, in-
stall, and open process. The level of loyalty and commitment
expected from the user is higher in the case of native apps.

6 https://smashed.by/trafficstats

171Introduction

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

3. Native app behavior: pwas can emulate native app behavior by
allowing for offline browsing and the ability to be accessed from
the home screen. You can combine this with better performance
through caching and predictive prefetching of resources.

4. Smaller footprint: They have a smaller footprint on device
storage as they are mostly served online. The caching mech-
anism can be designed to balance offline capabilities, data
consumption, and storage requirements.

5. Device access: Depending on the platform support, pwas
can support features like web push notifications, file system
access, media controls, app badging, full clipboard, and so on.
Many of these features are already available through modern
apis (discussed later), while others are under construction.

PWAs can drive business success because they put the user first by
providing a fast, installable, reliable, and engaging (fire) experience.7
PWAs can result in users spending more time on the app, reduced
bounce rates, and more returning visitors, thereby yielding a higher

conversion rate. Thus,
adding pwa capabili-
ties also allows busi-
nesses to tap into the
growing smartphone
market. One of the

greatest success stories of pwa’s has been the Twitter Lite pwa.8 Twit-
ter saw a reduction in data consumption as well as time-to-interactive
with the pwa. With all Twitter mobile web users migrating to pwa in
2017, there was a substantial increase in usage and engagement.

Note that there are use cases where native applications are and will
still be most suitable and preferred. While distributing native apps

7 https://smashed.by/businesssuccess
8 https://smashed.by/twitterlitepwa

PWAs can result in users spending more

time on the app, reduced bounce rates,

and more returning visitors, thereby

yielding a higher conversion rate.

Success at Scale172

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

through app stores may be cumbersome, it does allow you to mone-
tize the app through the app store. Native apps are especially suitable
for high fidelity games, which come with in-app purchase options
and may have “close-to-the-metal” requirements from the device.
pwa’s are also not ideal for functions that need access to api’s not yet
supported by web apps.

PWAS: IMPLEMENTATION GUIDELINES

The initial set of requirements to make a web app installable9 as a pwa:

1. Should include a web app manifest, a json file that tells the
browser about your pwa and how it should behave when
installed on the user’s desktop or mobile device. For example,
app name, icons, colors, shortcuts used by the pwa are all
defined in the web app manifest.

2. Should register a service worker to allow the app to work
offline or under poor network conditions. This improves the
reliability of the web application and ensures smooth and
steady user interactions.

3. Should be served over https for security.

PWA support is not uniform across browsers and platforms. Here
are some critical differences in how different platforms support
progressive features.

1. WebAPK’s: Available mainly through Chrome and Samsung
browsers on Android devices, WebAPK’s10 are Android apks
(Android Packages) corresponding to a pwa installed on the
device. Chrome automatically generates and installs the
WebAPK for the pwa.

9 https://smashed.by/installableexperience
10 https://smashed.by/appmanifest

173Introduction

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

2. Trusted Web Activities: Available through the Play Store on
Android devices, twas11 provide a new way of accessing web
app (including pwa) content on your Android app using a
protocol based on Chrome Custom Tabs.12 You can also launch
a pwa from a twa if you have an excellent pwa and wish to
bring the same user experience to your Android app.

3. WKWebView: This is the iOS/macOS equivalent of twa
available through the Apple Appstore. WKWebView is a “plat-
form-native view that you use to incorporate web content
seamlessly into your app’s UI.”13 They allow you to reuse parts
of your website inside your app.

Additionally, pwas are accessible through other platforms/browser
combinations, but support for different capabilities may vary. Apple/
iOS devices especially have some limitations when it comes to pwa’s.
Noteworthy among these are

• Install prompt is not automatically available through any brows-
er on iOS, but instead, users can use the Add to Home Screen
option available through Safari.

• Web push notifications are not supported. You can include
native push notifications through the use of hybrid
platforms like Cordova.14

• iOS pwas may not be able to preserve state when switching
between apps. The pwa is reloaded every time and may show a
blank image. One can prevent the blank screen by linking splash
startup images for all resolutions.

Despite the few limitations discussed, pwa’s provide the base for
introducing web app capabilities that are at par with native apps. Let
us now look at these capabilities and the efforts to bring them to web
apps, including pwa’s.

11 https://smashed.by/twa
12 https://smashed.by/customtabs
13 https://smashed.by/wkwebview
14 https://cordova.apache.org/

Success at Scale174

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

Accessing Hardware Devices with Device APIs

Modern web apps are getting increasingly sophisticated when it
comes to accessing device-level hardware and software. Device apis
make such access possible. Device apis are browser-supported apis
that allow us to access a wide range of devices directly through our
web apps without a third-party library. Thus, access to features like
barcode and QR code scanners, phone contacts, Bluetooth, gps, etc.,
is now available to web apps. Therefore, device apis allow us to build
faster solutions for many different use cases within our web apps.

Following are some compelling examples for using device apis to
build native app capabilities in web apps.

• Shape-detection api allows apps to use the highly optimized
shape detection features already available in Android, iOS, and
macOS.15 It currently supports face detection and barcode
detection. Everyday use cases include face tagging in social
networking apps and QR code recognition for social distan-
cing/mobile payment apps.

• Web nfc brings near field communication (nfc) technology to
Chrome on Android.16 nfc is the technology that powers Apple
Pay and Android Pay on phones by allowing interaction with
nfc tags. Web nfc enables this communication through web
apps. Currently, you can use Web nfc in situations where nfc
Data Exchange Format (ndef) is supported.

• Contact picker api provides access to the contacts list on the
mobile device.17 WhatsApp is probably the best example of
how access to phone contacts contributed to the app’s success.
Contact picker api allows web apps to access limited details
of selected entries from the contact list. This feature would be
helpful to web apps that provide communication and social
networking functions.

15 https://smashed.by/shapedetection
16 https://smashed.by/nfc
17 https://smashed.by/contactpicker

175Introduction

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

The Capabilities Project: Fugu

We have described a few device apis in the previous section, but
they are just the tip of the iceberg. The need for new and enhanced
apis keeps growing as we try to enable web apps to do anything that
native apps can do.

Project Fugu, a Chromium project, aims to achieve this by providing
developers a way to identify opportunities for enhancement and
then discuss, develop and introduce them on the open web.18 The
project’s mission is to “enable new experiences on the web while
preserving the web’s core benefits of security, low-friction, and
cross-platform delivery.”

The project is open to all Chromium contributors and organizations,
including Microsoft, Intel, Samsung, and Google. The Fugu api
tracker maintains the complete list of capabilities that are part of
this project with the current status, description, and other details,
including browser support:19

With this background on capabilities, we can move on to some case
studies of organizations that have enriched their web applications
with additional capabilities and the benefits gained.

18 https://smashed.by/fugus
19 https://fugu-tracker.web.app/

Success at Scale176

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

Photoshop’s Journey to the Web
By Nabeel Al-Shamma & Thomas Nattestad

Over the last three years, Chrome has been working to
empower web applications that want to push the bound-
aries of what’s possible in the browser. One such web

application has been Photoshop. The idea of running software as
complex as Photoshop directly in the browser would have been hard
to imagine even just a few years ago. However, by using various
new web technologies, Adobe has now brought a public beta of
Photoshop to the web.1

In this write-up, we’d like to share for the first time the details of
how our collaboration with Chrome is extending Photoshop to the
web. You can use all the apis Adobe used and more in your own apps
as well. Be sure to check out our web capabilities related blog posts2
for inspiration and watch our api tracker3 for the latest and greatest
we’re working on.

1 The original version of this case study was published in October 2021:
https://smashed.by/psweb

2 https://smashed.by/capabilities
3 https://smashed.by/fugus

177Photoshop’s Journey to the Web

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

Why Photoshop Came to the Web

As the web has evolved, one thing that hasn’t changed are the core
advantages that websites and web apps offer over platform-specific
applications. These advantages include many unique capabilities
such as being linkable, ephemeral, and universal, but they boil down
to enabling simple access, easy sharing, and great collaboration.

The simple power of a url is that anyone can click it and instantly
access it. All you need is a browser. There is no need to install an
application or worry about what operating system you are running
on. For web applications, that means users can have access to the
application and their documents and comments. This makes the web
the ideal collaboration platform, something that is becoming more
and more essential to creative and marketing teams.

Google Docs was a pioneer of this simplified access. Most of us
know how easy it is to start a document, send the link to someone,
and immediately jump into not only the application, but the specific
document or comment as well. Since then, a plethora of amazing ap-
plications, such as those we’ve shown off in the past,4 have adopted
this model, and now Photoshop too will benefit.

How Photoshop Came to the Web

The web started out as a platform only suited for documents, but
has grown dramatically throughout its history. Early apps like
Gmail showed that more complex interactivity and applications
were at least possible. Since then, we’ve seen impressive codevelop-
ment where web apps push the boundaries of what’s possible, and

4 https://smashed.by/adobespark

Success at Scale178

https://www.youtube.com/watch?v=Nrm5G9A_dfs
https://www.youtube.com/watch?v=Nrm5G9A_dfs
https://www.youtube.com/watch?v=Nrm5G9A_dfs
https://www.youtube.com/watch?v=Nrm5G9A_dfs
https://www.youtube.com/watch?v=Nrm5G9A_dfs
https://www.youtube.com/watch?v=Nrm5G9A_dfs
https://www.youtube.com/watch?v=Nrm5G9A_dfs
https://www.youtube.com/watch?v=Nrm5G9A_dfs
https://www.youtube.com/watch?v=Nrm5G9A_dfs
https://www.youtube.com/watch?v=Nrm5G9A_dfs
https://www.youtube.com/watch?v=Nrm5G9A_dfs
https://www.youtube.com/watch?v=Nrm5G9A_dfs
https://www.youtube.com/watch?v=Nrm5G9A_dfs
https://www.youtube.com/watch?v=Nrm5G9A_dfs
https://www.youtube.com/watch?v=Nrm5G9A_dfs

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

browser vendors respond by further expanding web capabilities.
The latest iteration of this virtuous loop is what has enabled
Photoshop on the web.

Adobe previously brought Spark5 and Lightroom6 to the web and
had been interested in bringing Photoshop to the web for many
years. However, they were blocked by the performance limitations
of JavaScript, the absence of a good compilation target for their code,
and the lack of web capabilities. Read on to learn what Chrome built
in the browser to solve these problems.

WebAssembly Porting with Emscripten

WebAssembly and its C++ toolchain Emscripten7 have been the key
to unlocking Photoshop’s ability to come to the web, as it meant that
Adobe would not have to start from scratch, but could leverage its
existing Photoshop codebase. WebAssembly (Wasm) is a portable
binary instruction set shipping in all browsers that was designed as
a compilation target for programming languages. This means that
applications such as Photoshop that are written in C++ can be ported
directly to the web without requiring a rewrite in JavaScript. To get
started porting yourself, check out the full Emscripten documenta-
tion,8 or follow this guided example of how to port a library.9

Emscripten is a fully featured toolchain that not only helps you com-
pile your C++ to Wasm, but provides a translation layer that turns
posix api calls into web api calls and even converts OpenGL into
WebGL. For example, you can port applications that reference the
local filesystem and Emscripten will provide an emulated file system
to maintain functionality.10

5 https://smashed.by/spark
6 https://smashed.by/lightroom
7 https://emscripten.org/
8 https://smashed.by/emscriptendocs
9 https://smashed.by/emscripting
10 https://smashed.by/emscripten

179Photoshop’s Journey to the Web

https://web.dev/emscripting-a-c-library/
https://web.dev/emscripting-a-c-library/
https://web.dev/emscripting-a-c-library/
https://web.dev/emscripting-a-c-library/
https://web.dev/emscripting-a-c-library/
https://web.dev/emscripting-a-c-library/
https://web.dev/emscripting-a-c-library/
https://web.dev/emscripting-a-c-library/
https://web.dev/emscripting-a-c-library/
https://web.dev/emscripting-a-c-library/
https://web.dev/emscripting-a-c-library/
https://web.dev/emscripting-a-c-library/
https://web.dev/emscripting-a-c-library/
https://web.dev/emscripting-a-c-library/
https://web.dev/emscripting-a-c-library/
https://emscripten.org/docs/porting/files/file_systems_overview.html#file-system-overview
https://emscripten.org/docs/porting/files/file_systems_overview.html#file-system-overview
https://emscripten.org/docs/porting/files/file_systems_overview.html#file-system-overview
https://emscripten.org/docs/porting/files/file_systems_overview.html#file-system-overview
https://emscripten.org/docs/porting/files/file_systems_overview.html#file-system-overview
https://emscripten.org/docs/porting/files/file_systems_overview.html#file-system-overview
https://emscripten.org/docs/porting/files/file_systems_overview.html#file-system-overview
https://emscripten.org/docs/porting/files/file_systems_overview.html#file-system-overview
https://emscripten.org/docs/porting/files/file_systems_overview.html#file-system-overview
https://emscripten.org/docs/porting/files/file_systems_overview.html#file-system-overview
https://emscripten.org/docs/porting/files/file_systems_overview.html#file-system-overview
https://emscripten.org/docs/porting/files/file_systems_overview.html#file-system-overview
https://emscripten.org/docs/porting/files/file_systems_overview.html#file-system-overview

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

Emscripten has been capable of bringing most parts of Photoshop to
the web for a while, but it wasn’t fast enough. We have continually
worked with Adobe to figure out where bottlenecks are and improve
Emscripten. Photoshop depends on multithreading. Bringing dy-
namic multithreading11 to WebAssembly was a critical requirement

Also, exception-based error handling is very common in C++, but
wasn’t well supported in Emscripten and WebAssembly. We have
worked with the WebAssembly Community Group in12 the W3C to
improve the WebAssembly standard and the tooling around it to
bring C++ exceptions to WebAssembly.

Emscripten doesn’t just work on large applications but also lets
you port libraries or smaller projects! For example, you can see
how you can compile the popular OpenCV library13 to the web
through Emscripten.

Lastly, WebAssembly offers advanced performance primitives such
as SIMD instructions,14 which dramatically improve your web app
performance. For example, Halide is essential to Adobe’s perfor-
mance, and here SIMD provides a 3–4× speed-up on average and in
some cases an 80–160× speedup.15

WebAssembly Debugging

No large project can be successfully completed without the appropri-
ate tools for the job, and it’s for this reason that the Chrome team de-
veloped full-featured WebAssembly debugging support. It provides
support for stepping through the source code, setting breakpoints
and pausing on exceptions, variable inspection with rich type sup-
port, and even basic support for evaluation in the DevTools console!

11 https://smashed.by/pthreads
12 https://smashed.by/w3webassembly
13 https://smashed.by/opencv
14 https://smashed.by/simd
15 https://halide-lang.org/

Success at Scale180

https://emscripten.org/docs/porting/pthreads.html
https://docs.opencv.org/3.4/d4/da1/tutorial_js_setup.html
https://docs.opencv.org/3.4/d4/da1/tutorial_js_setup.html
https://docs.opencv.org/3.4/d4/da1/tutorial_js_setup.html
https://docs.opencv.org/3.4/d4/da1/tutorial_js_setup.html
https://docs.opencv.org/3.4/d4/da1/tutorial_js_setup.html
https://docs.opencv.org/3.4/d4/da1/tutorial_js_setup.html
https://docs.opencv.org/3.4/d4/da1/tutorial_js_setup.html
https://docs.opencv.org/3.4/d4/da1/tutorial_js_setup.html
https://docs.opencv.org/3.4/d4/da1/tutorial_js_setup.html
https://docs.opencv.org/3.4/d4/da1/tutorial_js_setup.html
https://docs.opencv.org/3.4/d4/da1/tutorial_js_setup.html
https://docs.opencv.org/3.4/d4/da1/tutorial_js_setup.html
https://docs.opencv.org/3.4/d4/da1/tutorial_js_setup.html
https://docs.opencv.org/3.4/d4/da1/tutorial_js_setup.html
https://docs.opencv.org/3.4/d4/da1/tutorial_js_setup.html
https://emscripten.org/docs/porting/simd.html
https://emscripten.org/docs/porting/simd.html
https://emscripten.org/docs/porting/simd.html

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

Be sure to check out the authoritative guide on how to utilize
WebAssembly Debugging.16

High-Performance Storage

Given how large Photoshop documents can be, a critical need for Pho-
toshop is the ability to dynamically move data from on-disk to in-mem-
ory as the user pans around. On other platforms, this is accomplished
usually through memory mapping via mmap,17 but this hasn’t been
performantly possible on the web – that is until origin private file sys-
tem access handles were developed and implemented as an origin trial.
You can read how to leverage this new api in the documentation.18

P3 Color Space for Canvas

Historically, colors on the web have been specified in the sRGB color
space,19 which is a standard from the mid-1990s, based on the capa-
bilities of cathode-ray tube monitors. Cameras and monitors have
come a long way in the intervening quarter-century, and many larger
and more capable color spaces have been standardized. One of the
most popular modern color spaces is Display P3.20 Photoshop uses a

16 https://smashed.by/wasmdebugging
17 https://smashed.by/mmap
18 https://smashed.by/accessingfiles
19 https://smashed.by/srgb
20 https://smashed.by/dcip3

181Photoshop’s Journey to the Web

https://developer.chrome.com/blog/wasm-debugging-2020/
https://developer.chrome.com/blog/wasm-debugging-2020/
https://developer.chrome.com/blog/wasm-debugging-2020/
https://developer.chrome.com/blog/wasm-debugging-2020/
https://developer.chrome.com/blog/wasm-debugging-2020/
https://developer.chrome.com/blog/wasm-debugging-2020/
https://developer.chrome.com/blog/wasm-debugging-2020/
https://developer.chrome.com/blog/wasm-debugging-2020/
https://developer.chrome.com/blog/wasm-debugging-2020/
https://developer.chrome.com/blog/wasm-debugging-2020/
https://developer.chrome.com/blog/wasm-debugging-2020/
https://developer.chrome.com/blog/wasm-debugging-2020/
https://developer.chrome.com/blog/wasm-debugging-2020/
https://developer.chrome.com/blog/wasm-debugging-2020/
https://developer.chrome.com/blog/wasm-debugging-2020/
https://web.dev/file-system-access/#accessing-files-optimized-for-performance-from-the-origin-private-file-system
https://web.dev/file-system-access/#accessing-files-optimized-for-performance-from-the-origin-private-file-system
https://web.dev/file-system-access/#accessing-files-optimized-for-performance-from-the-origin-private-file-system
https://web.dev/file-system-access/#accessing-files-optimized-for-performance-from-the-origin-private-file-system
https://web.dev/file-system-access/#accessing-files-optimized-for-performance-from-the-origin-private-file-system

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

Display P3 Canvas21 to display images more accurately in the brows-
er. In particular, images with bright whites, bright colors, and details
in shadows will display as best as possible on modern displays that
support Display P3 data. The Display P3 Canvas api is being further
built on to enable high dynamic range22 displays.

Web Components and Lit

Photoshop is a famously large and feature-rich application, with
hundreds of UI elements supporting dozens of workflows. The app
is built by multiple teams using a variety of tools and development
practices, but its disparate parts need to come together into a cohe-
sive, high-performing whole.

To meet this challenge, Adobe turned to Web Components23 and the
Lit library.24 Photoshop’s UI elements come from Adobe’s Spectrum
Web Components25 library, a lightweight, performant implementa-
tion of the Adobe design system that works with any framework, or
no framework at all.

What’s more, the entire Photoshop app is built using Lit-based Web
Components. Leaning on the browser’s built-in component model and
Shadow dom encapsulation, the team found it easy to cleanly inte-
grate a few “islands” of React code provided by other Adobe teams.

Service Worker Caching with Workbox

Service workers act as a programmable local proxy, intercepting
network requests and responding with data from the network, long-
lived caches, or a mixture of both.

21 https://smashed.by/displayp3
22 https://smashed.by/hdrcanvas
23 https://smashed.by/components
24 https://lit.dev/
25 https://smashed.by/spectrum

Success at Scale182

https://github.com/WICG/canvas-color-space/blob/main/CanvasColorSpaceProposal.md
https://github.com/WICG/canvas-color-space/blob/main/CanvasColorSpaceProposal.md
https://github.com/WICG/canvas-color-space/blob/main/CanvasColorSpaceProposal.md
https://github.com/WICG/canvas-color-space/blob/main/CanvasColorSpaceProposal.md
https://github.com/WICG/canvas-color-space/blob/main/CanvasColorSpaceProposal.md
https://github.com/w3c/ColorWeb-CG/blob/master/hdr_html_canvas_element.md
https://github.com/w3c/ColorWeb-CG/blob/master/hdr_html_canvas_element.md
https://github.com/w3c/ColorWeb-CG/blob/master/hdr_html_canvas_element.md
https://github.com/w3c/ColorWeb-CG/blob/master/hdr_html_canvas_element.md
https://github.com/w3c/ColorWeb-CG/blob/master/hdr_html_canvas_element.md

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

As part of the V826 team’s efforts to improve performance, the first
time a service worker responds with a cached WebAssembly re-
sponse, Chrome generates and stores an optimized version of the
code – even for multi-megabyte WebAssembly scripts, which are
common in the Photoshop codebase. A similar precompilation takes
place when JavaScript is cached27 by a service worker during its
install step.28 In both cases, Chrome is able to load and execute the
optimized versions of cached scripts with minimal runtime overhead.

Photoshop on the web takes advantage of this by deploying a service
worker that pre-caches many of its JavaScript and WebAssembly
scripts. Because the urls for these scripts are generated at build time,
and because the logic of keeping caches up to date can be complex,
they turned to a set of libraries maintained by Google called
Workbox29 to generate their service worker as part of their build pro-
cess.

A Workbox-based service worker along with the V8 engine’s script
caching led to measurable performance improvements. The specific
numbers vary based on the device executing the code, but the team
estimates these optimizations decreased the time spent on code
initialization by 75%.

What’s Next for Adobe on the Web

The launch of the Photoshop beta is just the beginning, and we’ve
got several performance and feature improvements already under-
way as Photoshop tracks towards full launch after this beta. Adobe
isn’t stopping with Photoshop and plans to aggressively expand
Creative Cloud30 to the web, making it a primary platform for both
creative content creation and collaboration. This will enable

26 https://v8.dev/
27 https://smashed.by/swcaches
28 https://smashed.by/installsw
29 https://smashed.by/workbox
30 https://smashed.by/cc

183Photoshop’s Journey to the Web

https://v8.dev/blog/code-caching-for-devs#use-service-worker-caches
https://v8.dev/blog/code-caching-for-devs#use-service-worker-caches
https://v8.dev/blog/code-caching-for-devs#use-service-worker-caches
https://v8.dev/blog/code-caching-for-devs#use-service-worker-caches
https://v8.dev/blog/code-caching-for-devs#use-service-worker-caches
https://web.dev/service-worker-lifecycle/#install
https://web.dev/service-worker-lifecycle/#install
https://web.dev/service-worker-lifecycle/#install

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

millions of first-time creators to tell their story and benefit from
innovative workflows on the web.

As Adobe continues to push the boundaries of what’s possible,
the Chrome team will continue our collaboration to drive the web
forward for Adobe and the vibrant web developer ecosystem in
general. As other browsers also catch up on these modern browser
capabilities, we’re excited to see Adobe make its products available
there as well. Stay tuned for future updates as we continue to push
the web forward!

You can learn more about accessing Photoshop on the web (beta) in
the Adobe Help Center.31

31 https://smashed.by/adobehelp

Photoshop Key Takeaways

Complex software such as Photoshop can be made avail-

able on the web using the latest web technologies.

Bringing Adobe Photoshop to the web is a major milestone in the
world of creative software, and it opens up new possibilities for col-
laboration and creativity. To port a complex application like Photo-
shop to the web was no easy task. Adobe had to overcome a number
of challenges, including the need to create a high-performance ren-
dering engine and to support a wide range of devices and browsers.

WebAssembly and Emscripten were key to making Photoshop on
the web possible. The Chrome team also made significant contri-
butions to WebAssembly debugging and performance. This work
helped to ensure that Photoshop on the web would be a smooth and

Success at Scale184

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

Building Tinder Online / Tinder PWA
by Roderick Hsiao & Addy Osmani

Tinder, one of the most popular online dating services,
is also available on the web platform worldwide.1 We
started this journey when the company had already

invested heavily in its native app experience and advanced
machine learning technology.

We realize that not all users have the latest mobile devices with
big storage and ultra-high network speed to run our native client.
The web platform, then, serves a very good purpose – to run
mostly anywhere with relatively light required resources.

Tinder Online

Our web team is relatively small, but we started with a great mis-
sion: to deliver a performant and smooth web experience using
cutting-edge web technology.

1 The original version of this case study was published in February 2018:
https://smashed.by/tinderroderick & https://smashed.by/tinderaddy

185Building Tinder Online

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

Architecture

Tinder Online is built using a React–Redux stack.

To build a highly performant and scalable web app, we created
our entire user interface using React, with a focus on building
reusable components that are then composed within view con-
tainers. This flexible composability facilitates rapid iteration and
a maintainable codebase.

We use a Redux store to persist our application state. Our state is
constructed via ImmutableJS2 and Normalizr,3 which allows us to
carry out efficient and performant state operations. Memorized
selectors make our store access highly performant.

When we first rolled out the experience to target markets, we used a
serverless solution. We deployed static assets to Amazon S3 and exe-
cuted the full app logic client-side. We then moved to an isomorphic
Node app to serve more complicated use cases.

We construct the initial application state (feature flags and inter-
nationalization) server-side using a simple NodeJS/Express server,
and render a highly cacheable app shell with a dehydrated state
client-side. The full application logic and data fetching flow is then
initialized after rehydrating the application state.

Side effects and asynchronous operations like api requests are
handled using Redux Sagas.4 We persist parts of our state, such as
user settings, location, and application settings, with IndexDB5 in
supported browsers, and fall back to localStorage6 when necessary.
The persistent store greatly improves the app startup performance
and user experience.

2 https://smashed.by/immutablejs
3 https://smashed.by/normalizr
4 https://smashed.by/reduxsaga
5 https://smashed.by/indexdb
6 https://smashed.by/localstorage

Success at Scale186

https://dev.to/codeofrelevancy/what-is-your-favorite-react-stack-4p#:~:text=React Redux is a popular stack for building web apps using JavaScript.
https://dev.to/codeofrelevancy/what-is-your-favorite-react-stack-4p#:~:text=React Redux is a popular stack for building web apps using JavaScript.
https://dev.to/codeofrelevancy/what-is-your-favorite-react-stack-4p#:~:text=React Redux is a popular stack for building web apps using JavaScript.
https://facebook.github.io/immutable-js/
https://github.com/paularmstrong/normalizr
https://github.com/redux-saga/redux-saga
https://github.com/redux-saga/redux-saga
https://github.com/redux-saga/redux-saga
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

The app rendering logic and route settings are centralized and
configured on the top level. This abstraction allows us to separate
page-level logic from component-level logic, and makes it easy to
handle route-level code splitting and various page transition effects.
We also develop a proxy React component to implement dynamic
JavaScript loading and resource preload for the next route.

The core swiping experience and animation is built on top of React
Motion.7 Internationalization is handled by React Intl.8 We use React
I13n9 to separate instrumentation logic from UI logic by creating
pluggable listeners for different tracking systems.

Performance

Our goal is to provide a seamless experience similar to our native
clients for most of our users regardless of network conditions or de-
vice hardware restrictions. Therefore, performance is the top priority
for us when building features. We focus on two main areas: network
performance, and render performance.

NETWORK PERFORMANCE

To support users on slower networks, the web app is optimized to
limit network load, document parsing time, and render time. In
general, we want to load the critical assets early and fast, and defer
the optional resources.

We are able to greatly improve the initial load time by assigning
individual resources priorities using link preload and prefetch along
with code splitting. We ship minimal resources to the client by
implementing code splitting, pre-cache chunks via a service worker,

7 https://smashed.by/reactmotion
8 https://smashed.by/reactintl
9 https://smashed.by/reacti13n

187Building Tinder Online

https://github.com/chenglou/react-motion
https://github.com/chenglou/react-motion
https://github.com/chenglou/react-motion
https://github.com/yahoo/react-intl
https://github.com/yahoo/react-intl
https://github.com/yahoo/react-intl
https://github.com/yahoo/react-i13n
https://github.com/yahoo/react-i13n
https://github.com/yahoo/react-i13n
https://github.com/yahoo/react-i13n
https://github.com/yahoo/react-i13n

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

and preload assets for the next anticipated route efficiently. We are
using Workbox10 to control high-level service worker caching strate-
gies for different resources.

The critical render path is optimized by inlining most of our com-
mon css. We are using Atomic css11 to create highly reusable and
compressible style sheets. With Atomic css, UI theming and display
logic are controlled by React props, making our code easy to share
and maintain. Our core css, which includes theming, spacing, and
responsive styling, is about 10 KB (gzip) for the whole site.

To prevent our bundle size increasing when adding new features,
we set performance budgets for all of our resources. The sizes of
our JavaScript and css bundles are audited on each commit. Setting
a good performance bundle forces us to build highly shareable com-
ponents. We also measure and track performance with tools such
as Lighthouse and css stats12 prior to each release. Real-time user
monitoring metrics such as load time13 and paint time
(PerformancePaintTiming)14 are collected client-side.

Our source code is compiled and polyfilled by Babel.15 and gener-
ated by Webpack.16 By exercising bundle analysis, we were able to
identify several opportunities for performance optimization strat-
egies, such as code splitting, tree shaking, or selecting alternative
libraries. We also use @babel/preset-env to include only the subset
of polyfills targeting our supported browsers. The total resources
needed for the web app is around 3 MB, which is great for users
who have limited device storage.

10 https://smashed.by/reacti13n
11 https://acss.io/
12 https://smashed.by/cssstats
13 https://smashed.by/mdnperf
14 https://smashed.by/performancepainttiming
15 https://babeljs.io/
16 https://webpack.github.io/

Success at Scale188

https://github.com/cssstats/cssstats
https://github.com/cssstats/cssstats
https://github.com/cssstats/cssstats
https://developer.mozilla.org/en-US/docs/Web/API/Performance
https://developer.mozilla.org/en-US/docs/Web/API/Performance
https://developer.mozilla.org/en-US/docs/Web/API/Performance
https://developer.mozilla.org/en-US/docs/Web/API/PerformancePaintTiming

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

RENDER PERFORMANCE

We optimize rendering and animation performance by prioritizing
JavaScript tasks using requestIdleCallback. Non-critical tasks
such as instrumentation will be scheduled at idle time. We also
ensure that our html and css are highly optimized and lazy-load
offscreen assets via Interaction Observer17 for fast rendering and
smooth performance, even on slower devices.

We use Chrome DevTools and React developer tools heavily to iden-
tify performance bottlenecks, such as browser repaint, React reren-
der or high cost JavaScript operations.

What’s Next

Product-wise we are seeing very positive user engagement on
the web platform. In terms of technology, there are several areas we
would like to focus on:

• Experiment with different approaches for code splitting, such as
deferring the registration of Redux reducers and saga handlers.

• Utilize our service worker runtime caching more widely for a
better offline experience.

• Offload expensive tasks, such as parsing frequently consumed
api responses, to web workers.

• Improve performance among modern browsers by experi-
menting with new browser primitives such as the network
information api.

17 https://smashed.by/reactinviewport

189Building Tinder Online

https://github.com/roderickhsiao/react-in-viewport
https://github.com/roderickhsiao/react-in-viewport
https://github.com/roderickhsiao/react-in-viewport

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

• Experiment with deploying ES module to supported browsers.

• Re-architect Redux store structure to enhance state
management.

Tinder Key Takeaways
Tinder can reach more users after building a PWA in addi-

tion to the native app.

Tinder had invested heavily in their native app but realized that all
users who wished to use their app did not have the latest mobile
device and high-speed network required to run it. This drove their
decision to build a web app that could run on any mobile device,
including those with fewer resources.

Tinder built its pwa on a React/Redux stack. The pwa uses service
workers to pre-cache chunks to ensure better network performance
of the app. The app also supports push notifications to provide a more
native app-like experience. The resultant Tinder pwa at an initial
size of 2.8 MB is much lighter than its Android native app, which is
10 MB. A higher rate of swiping and messaging and longer sessions
were observed with the pwa when compared to the native app.

Success at Scale190

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

Upgrading Ele.me to
Progressive Web App
by Xuan Huang

Since the very first experiments that @Vue.js tweeted, we at Ele.me
(the biggest food ordering and delivering company in China) have
been working on upgrading our mobile website to a progressive web
app (pwa).1 We’re proud to ship the world’s first pwa exclusively for
the Chinese market, but even prouder to collaborate with Google, UC
browser and Tencent to push the boundary of web experience and
browser support in China.

Multi-page, Vue.js, PWA?

There is a prevailing opinion that only structuring a web app as a
single page app (spa) can we build pwas that deliver app-like user
experience. Popular reference examples such as the following use
the spa model:

1. Twitter Lite: https://smashed.by/twitterlite

2. Flipkart Lite: https://smashed.by/flipkartlite

3. Housing Go: https://smashed.by/housinggo

4. Polymer Shop: https://smashed.by/polymer

However, at Ele.me we’ve come to appreciate the many advantages
of a multi-page app model, and we decided more than a year ago
to refactor the mobile site from an AngularJS spa to a multi-page

1 The original version of this case study was published in May 2017:
https://smashed.by/eleme

191Upgrading Ele.me to Progressive Web App

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

app (mpa). The most important advantage we see is the isolation
and decoupling between pages, which allows us to build different
parts of the mobile site as microservices. These services can then be
independently iterated, embedded into third-party apps, and even
maintained by different teams.

Meanwhile, we also leverage Vue.js2 to boost our productivity. You
may have heard of Vue.js as a rival of React or Angular, but Vue.js’s
light weight and performance make it also a perfect replacement for
a traditional jQuery/Zepto + template engine stack when engineer-
ing a multi-page app. We built every component as a single-file com-
ponent so they can be easily shareable between pages. The declara-
tive-ness plus reactivity Vue.js offered helped us manage both code
and data flow. Oh, did I mention that Vue.js is progressive? So things
like Vuex or Vue-Router can be incrementally adopted if our site’s
complexity scales up, like… migrating to spa again? (Who knows…)

In 2017, pwas seemed to be all the rage, so we embarked on exploring
how far our Vue.js-based multi-page pwas could actually go.

Implementing PRPL with mpa

I love the prpl pattern (preload/render/precache/lazy load) because
it gives you a high-level abstraction of how to structure and design
your own pwa systems. Since we were not rebuilding everything
from scratch, we decided to implement prpl as our migration goal.

1. PUSH/PRELOAD CRITICAL RESOURCES FOR INITIAL ROUTE

The key of pushing/preloading is to prioritize resources hidden in deep
dependency graphs and make the browser’s network stack busy as soon
as possible. Let’s say you have an spa with code splitting by route, you
can push/preload chunks for the current route before the entry chunks

2 http://vuejs.org/

Success at Scale192

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

(e.g. Webpack manifest, Router) finish downloading and evaluating. So
when the actual fetches happen, they might already be in caches.

Routes in mpas naturally fetch code for that route only, and tend to
have a flattening dependency graph. Most scripts depended by Ele.
me are just <script> elements, so they can be found and fetched by
the good old browser preloader3 in the early parsing phase without
explicit <link rel="preload">.

With or without explicit <link rel="preload">.

To take advantage of http2 multiplexing, we currently serve all
critical resources under a single domain (no more domain sharding),
and we are also experimenting on server push.

2. RENDER INITIAL ROUTE AND GET IT INTERACTIVE ASAP

This one is essentially free in mpa since there’s only one route at one
time. A straightforward rendering is critical for metrics such as first
meaningful paint and time to interactive. mpas gain it for free owing
to the simplicity of the traditional html navigation they used.

3 https://smashed.by/preloader

193Upgrading Ele.me to Progressive Web App

https://calendar.perfplanet.com/2013/big-bad-preloader/

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

3. PRECACHE REMAINING ROUTES USING SERVICE WORKERS

This is the part where service workers came to join the show.
Service workers are known as a client-side proxy enabling developers
to intercept requests and serve responses from the cache, but it can
also initiate a fetch to prefetch then precache future resources.

Prefetching and precaching future routes.

We already used Webpack4 in the build process to do .vue compila-
tion and asset versioning, so we created a Webpack plugin to help us
collect dependencies into a precache manifest and generate a new
service worker file after each build. This is pretty much like how
SW-Precache works.5

In fact, we only collect dependencies of routes we flagged as being
critical routes. You can think of them as the app shell or installation
package of our app. Once they are cached/installed successfully,
our web app can boot up directly from cache and be available of-
fline. Routes that are not critical would be incrementally cached
at runtime during the first visit. Thanks to the least recently used

4 https://webpack.github.io/
5 https://smashed.by/swprecache

Success at Scale194

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

(lru) cache policies and time-to-live (ttl) invalidation mechanisms
provided by SW-Toolbox,6 we have no worries of hitting the quota in
the long run.

4. LAZY-LOAD AND INSTANTIATE REMAINING ROUTES

ON DEMAND

Lazy loading and lazily instantiating the remaining parts of the app
are relatively challenging for an spa to achieve. It requires both code
splitting and async importing. Fortunately, this is also a built-in fea-
ture of the mpa model, in which routes are naturally separated.

Note that the lazy loading can be done instantly if the requested
route is already precached in the service worker cache, no matter
whether an spa or mpa is used. #ServiceWorkerAwesomeness

The Result

Surprisingly, we found that a multi-page pwa is kinda naturally prpl!
The mpa has already provided built-in support for P, R, and L, and the
second P involving service workers can be easily fulfilled in any pwa.

So what about the end result?

In Lighthouse benchmarking, we made time to interactive (tti)
around 2 seconds, and this was benchmarked on our http1 server.

6 https://smashed.by/swtoolbox

195Upgrading Ele.me to Progressive Web App

https://googlechrome.github.io/sw-toolbox/

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

The first visit is fast. The repeat visit with service workers is even
faster. You can check out this video to see the huge difference be-
tween with or without service workers: https://smashed.by/elemesw

The video is recorded on desktop but with a highly latent server
to make the gap even more apparent. Did you see that? No, I mean
the annoying blank screen. Even with the service worker, the blank
screen is still conspicuous during navigating. How can that be?

Multi-Page Pitfall: Redo Everything!

Unlike spas, changing routes in mpas means actual browser navi-
gation happens: the previous page is discarded completely and the
browser needs to redo everything for the next route: download re-
sources, parse html, evaluate JavaScript, decode image data, layout
the page, and paint the screen, even if many of them could be shared
across routes. All of this work combined requires significant com-
puting power and time.

Profile of entry page (before optimization).

So here is the profile (2× slower cpu simulated) of our entry page
(the heaviest one). Even if we can make tti around 1 second in

Success at Scale196

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

repeat visits, that might still feel too slow to our users for just
switching a tab.

HUGE JAVASCRIPT RE-STARTUP COST

According to the profile, most of the time (900 ms) before hitting
the first paint is spent on evaluating JavaScript. Half is on depen-
dencies including Vue.js runtime, components, libraries, and so on.
The other half is on Vue.js starting up and mounting. Because all UI
rendering is dependent on JavaScript/Vue.js, all of the critical scripts
remain guiltily parser-blocking. I’m by no means blaming JavaScript
or Vue.js overheads here. It’s just a trade-off when we need this layer
of abstraction in engineering.

As an spa, JavaScript start-up cost is amortized during the whole
life cycle. Parsing/compiling for each script happens only once, and
much heavy executing can be done only once. The big JavaScript
objects, like Vue.js’s ViewModels and virtual dom can be kept in
memory and reused as much as you want. This is not the case with
mpas, however.

COULD BROWSER CACHES HELP?

Yes and no.

Google’s V8 introduced code caching, a way to store a local copy of
compiled code so fetching, parsing, and compilation could all be
skipped next time. As Addy Osmani mentioned in “JavaScript Start-
up Performance,” scripts stored in cache storage via service workers
could trigger code caching in just the first execution.

Another browser cache you might hear of is back/forward cache,
or bfcache. The name varies, like Opera’s fast history navigation or
WebKit’s page cache. The idea is that browsers can keep the previous

197Upgrading Ele.me to Progressive Web App

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

page live in memory (i.e. dom/JS states) instead of destroying every-
thing. In fact, this idea works very well for mpas. You can try every
traditional multi-page website in iOS Safari and observe instan-
taneously loading when moving back or forward. (There’s a slight
difference, though, with browser UI/gesture or hyperlinks.)

Unfortunately, Chrome does not currently have this kind of in-
memory bfcache, concerning memory consumption and its
multi-process architecture. It just leverages http disk cache to sim-
plify the loading pipeline; almost everything still needs to be redone.
More details and discussions can be read in “Faster Back/Forward
Navigation in Chrome”7 by Kinuko Yasuda.

Striving for Perceived Performance

Although the reality is dark, we don’t want to give up so easily. One
optimization we try to do is to render dom nodes/create virtual dom
nodes as little as possible to improve the time to interactive, while
another opportunity we see is to play tricks on perceived performance.

Owen Campbell-Moore has written a great post, “Reactive Web
Design: The secret to building web apps that feel amazing,”8 covering
both “instant loads with skeleton screens” and “stable loads via pre-
defined sizes on elements” to improve perceived performance and
user experience. Yes, we actually used both.

How about showing the end result after these optimizations first,
before entering technical nitty gritty? Here is a video:
https://smashed.by/elmepwa

So fast that you can not see the pulsing skeleton screen clearly?
Here is a video showing how it looks under a 10 times slower cpu:
https://smashed.by/elmecpu

7 https://smashed.by/chromenav
8 https://smashed.by/reactivedesign

Success at Scale198

https://docs.google.com/document/d/1o8KImLPrJQcMNqvd_a-1V8fEVgtVeEJww453ZQ1hGuo/edit#
https://docs.google.com/document/d/1o8KImLPrJQcMNqvd_a-1V8fEVgtVeEJww453ZQ1hGuo/edit#
https://medium.com/@owencm/reactive-web-design-the-secret-to-building-web-apps-that-feel-amazing-b5cbfe9b7c50
https://medium.com/@owencm/reactive-web-design-the-secret-to-building-web-apps-that-feel-amazing-b5cbfe9b7c50

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

This is a much better UX, right? Even if we have slow navigation in
slow devices, at least the UI is stable, consistent, and always re-
sponding. So how did we get there?

PRE-RENDERING SKELETON SCREEN WITH VUE.JS

AT BUILD TIME

As you might have guessed, the skeleton screen that consists of
markup, styles, and images is inlined into *.html of each route, so
they can be cached by a service worker, be loaded instantly, and be
rendered independently with any JavaScript.

We don’t want to manually craft each skeleton screen for each route.
It’s a tedious job and we have to manually sync every change be-
tween skeleton screens and the actual UI components (yes, we treat
every route as just a Vue.js component). But think about it, a skeleton
screen is just a blank version of a page into which information is
gradually loaded.9 What if we bake the skeleton screen into the actu-
al UI component as just a loading state so we can render the skeleton
screen out directly from it without the issue of syncing?

Thanks to the versatility of Vue.js, we can actually realize it with Vue.
js server-side rendering.10 Instead of using it on a real server, we use
it at build time to pre-render Vue.js components to strings and inject
them into html templates. You should write code that is “universal”
to make Vue.js components that can be executed in Node. But for
routes that depend heavily on some dom/bom-specific third-party
modules, we have to make a separated *.shell.vue to temporarily
work around it.

FAST SKELETON PAINTING

Having markups in *.html doesn’t mean that they will be painted
fast – you have to make sure the critical rendering path is optimized

9 https://smashed.by/skeletonscreen
10 https://ssr.vuejs.org/en/

199Upgrading Ele.me to Progressive Web App

https://www.lukew.com/ff/entry.asp?1797
https://www.lukew.com/ff/entry.asp?1797
https://www.lukew.com/ff/entry.asp?1797

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

for that. Many developers believed that putting script tags in the end
of the body is sufficient for getting content painted before executing
scripts. This might be true for browsers supporting rendering an
incomplete dom tree (e.g. streaming render), but browsers might not
do that in mobile concerning slower hardwares, battery, and heat.
Although we are told that script tags with async or defer are not
parser-blocking, it doesn’t mean we can get content painted before
executing scripts in reality.

Parse, fetch, and execute for scripts with different attributes

First I want to clarify it a little bit. According to the scripting
section of html11 (whatwg living standard, the W3C’s same here),
async scripts would be evaluated as soon as they are available, and
thus could potentially block parsing. Only defer (and not inlined)
is specified to never block parsing. That’s why Steve Souders posted
“Prefer DEFER Over ASYNC.”12 (defer has its own issues and we
will cover that later.)

More importantly, a script not blocking parsing could still block
painting nonetheless. So here is a reduced test I wrote named
“minimal multi-page pwa” (mmpwa), which basically renders 1,000
list items within an async (and truly not parser-blocking) script
to see if we can get a skeleton screen painted before scripts are
executed. The profile below (over usb debugging on my real Nexus
5) shows my ignorance:

Yes, keep your mouth open. The first paint is blocked. I was sur-
prised too. The reason, I guess, is that if we touch the dom so quickly

11 https://smashed.by/scripting
12 https://smashed.by/defer

Success at Scale200

https://html.spec.whatwg.org/multipage/scripting.html
https://html.spec.whatwg.org/multipage/scripting.html

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
Sthat the browser has still not finished the previous painting job,

our dear browser has to abort every pixel it has drawn, and has to
wait until the current dom manipulation task finishes and redo the
rendering pipeline again. And this more often happens with a mobile
device with a slower cpu/gpu.

FAST SKELETON PAINTING WITH SETTIMEOUT HACK

We indeed encountered this problem when testing our new beauti-
ful skeleton screen. Perhaps Vue finishes its job and starts to mount
nodes too fast ;). But anyway we have to make it slower or, rather,
lazier. So we tried putting dom manipulation things inside
setTimeout(callback, 0), and it works like a charm! ******

You may be curious about how this change performs in the wild, so
I have refined MMPWA by rendering 5,000 list items rather than
1,000 to make the differences more obvious, and by designing it in
an A/B testing manner. The code is on GitHub and the demo is live
on https://smashed.by/mmpwademo. Here is a link to the video:
https://smashed.by/mmpwatesting

This famous setTimeout hack (aka zero delays) looks quite magic,
but it is science™. If you are familiar with the event loop, it just

First paint blocked for scripts to execute.

201Upgrading Ele.me to Progressive Web App

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

prevents this code from executing in the current loop by putting ev-
erything into the task queues with the timer callback, so the browser
could breathe (update the rendering) in the main thread.

So we applied what we learned from mmpwa by putting new Vue()
inside setTimeout and BOOM! We have a skeleton screen painted
consistently after every navigation! Here is the profile after all
these optimizations.

Profile of entry page (after optimization).

Huge improvements, right? This time we hit first paint (skeleton
screen paint) at 400 ms and tti at 600 ms. You should really go back
to have a before–after comparison in detail.

First paint unblocked for skeleton painting.

Success at Scale202

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

ONE MORE THING THAT I DEFERRED

But wait, why is there still a bunch of guiltily parser-blocking
scripts? Are they all async? OK, OK. For historical reasons, we do
keep some parser-blocking scripts, like lib-flexible13 – we couldn’t get
rid of it without huge refactoring. But most of these blocking scripts
are in fact deferred. We expected that they could be executed after
parsing and in order; however, the profile kinda slapped my face.

Possible Chrome bug.

Remember I said I would talk about one issue of defer previously?
Yes, that’s it. I have had a conversation14 with Jake Archibald and it
turns out it might be a bug of Chrome when the deferred scripts
are fully cached.

Similar improvements can be seen from Lighthouse (under the same
network environment but from an http2 server). Pro tip: Always use
Lighthouse in a variable-controlling approach.

Performance in the Real World

Alex Russell gave a very insightful talk15 on mobile web perfor-
mance at Chrome Dev Summit 2016, talking about how hard it
can be to build performant web applications on mobile devices.
Highly recommended.

13 https://smashed.by/libflexible
14 https://smashed.by/huxprotwitter
15 https://smashed.by/progressiveperf

203Upgrading Ele.me to Progressive Web App

https://github.com/amfe/lib-flexible
https://twitter.com/Huxpro/status/859842124849827841
https://youtu.be/4bZvq3nodf4?list=PLNYkxOF6rcIBTs2KPy1E6tIYaWoFcG3uj
https://youtu.be/4bZvq3nodf4?list=PLNYkxOF6rcIBTs2KPy1E6tIYaWoFcG3uj

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

Chinese users tend to have pretty powerful phones. The Xiaomi Mi4
is shipped with the Snapdragon 801 processor (slightly outperform-
ing the Nexus 5) but only costs $100. It’s affordable by at least 80% of
our users so we take it as a baseline.

I made a recording16 on my Nexus 5 showing switching between four
tabs. The performance varies between tabs due to their variant scale.
The heaviest one, the entry page, takes around 1 s to hit real time to
interactive. This is surprisingly comparable to what I get from
Chrome Simulation with 2× cpu throttling. With 5× throttling,
this can take 2–3 seconds to get tti, horribly. (To be honest, I found
that even under the same throttling, the results can vary drastically
depending on my Macbook’s “mood”.)

Final Thoughts

This case study is much longer than I expected. I really appreciate
you getting here. So what can we learn from it?

MPA STILL HAS SOME WAY TO GO

Jake Archibald even said that “pwa !== spa” at Chrome Dev Sum-
mit 2016. But the sad truth is that even though we have taken
advantage of bleeding-edge technologies such as the prpl pattern,
service workers, app shell, and skeleton screens, there is still a dis-
tance between us and many single page pwas just because we are
multi-page structured.

The web is extremely versatile. Static blogs, e-commerce websites,
desktop-level software, all of those different scaling things should
all be first-class citizens of the web family. mpas might have things
like bfcache api and navigation transitions to catch up to spas in the
future, but it is not today certainly.

16 https://smashed.by/elemerecording

Success at Scale204

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

Ele.me Key Takeaways

PWA IS AWESOME NO MATTER WHAT

Hey, I am not overblowing it. Even as a multi-page pwa, Ele.me
couldn’t be as stunning and app-like as many single page pwas
are. The idea and technologies behind pwas still help us deliver
a much better experience to our users on the web that hasn’t
been possible before.

What our pwa is trying to solve are some fundamental problems of
the current web application model, such as its hard dependencies to
network and browser UIs. That’s why a pwa can always be beneficial
no matter what architecture or framework you actually use.

A multi-page PWA helped to deliver a much better

experience to web users.

PWA’s usually tend to be single-page apps. However, when Ele.me,
China’s biggest food order and delivery app, decided to convert their
mobile website to a pwa, they wanted to use a multi-page structure.
This would allow them to build different parts of the mobile website
as microservices.

The team chose the Vue.js platform for implementation as it is both
lightweight and progressive. Additionally, the team leveraged the
prpl pattern to preload critical resources, render initial routes, pre-
cache with service workers, and lazy-load remaining routes. They
then used skeleton screens to improve the perceived performance of
the app. A combination of multiple technologies resulted in a perfor-
mant pwa for a multi-page app which otherwise seemed difficult.
The pwa helped to deliver a better experience to their web app users.

205Upgrading Ele.me to Progressive Web App

Success at Scale206

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

Interview

Xuan Huang
Former Front-end Engineer at Ele.me

Author of “Upgrading Ele.me to be a PWA”

What excited you or your team the most about the work in
the case study?

1. “Performance performance” and new technologies.

Performance optimization is always attractive to any large-scale
website. But due to their scale, it usually only happens in small
and independent steps and evolves rather slowly.

Adopting technologies and patterns under the pwa umbrella,
however, gave us a great opportunity to do or revisit a lot of such
optimizations that we’ve heard about and wanted or planned to
do, all together at once and also with a more systematic approach.
In particular, we implement the prpl pattern and new pre-cach-
ing capability provided by service workers.

2. Perceived performance and UX

We always want to make our website more “appy,” which you
could easily tell from how much our UI design is influenced by
native apps (bottom navigation, for instance).

PWAs as a broader concept provide not only technologies but also
advice on designs that are particularly applicable to the web. “Skel-
eton screen” and “stable load” are two of the examples that we im-
plemented, finding that they greatly improve the user experience.

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

207Upgrading Ele.me to Progressive Web App

Although we were working at a time when not many users knew
how to add to home screen, we’re so happy and proud that it
became the little thing that every one of us always does to show
off to other devs.

Were you surprised by the impact your work had on the overall
user experience, business, team, or other metrics?

If we look at the data (from the developer.google.com case study), the
number might not be as dramatic as many would imagine. But if we
consider the scale of our user base and the browser support distribu-
tion – it was very satisfying.

There is another impact I’m very surprised about. Our work of ship-
ping this world-first pwa for the Chinese market made a significant
impact on boosting the awareness of pwa technologies on the Chi-
nese developer community, as well as browser vendors (like Tencent
and UC), and we believed that helped push the boundaries of web
experience and browser support in China.

If you had a similar project/problem today, do you think your
process/tooling/decisions would be exactly the same? Or, to
put it differently, looking back now, what would you have done
differently if you had a chance to make adjustments?

Technology- and support-wise, pwas have grown more mature and
users are more aware of them as well.

But speaking for the Chinese market, this question might not be
answered as you expect. The use of web technologies in general has
gone down significantly such that most Chinese products have been
transitioned to the “mini app” space.

Success at Scale208

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

(N.B. This is more of an objective observation of the marketplace
rather than my subjective preference.)

What do you think was the one critical decision that made the
outcome successful? What brought you to this decision, and
how did you or your entire team make it?

I’d say it’s investigating pwa technologies while maintaining the ex-
isting multipage app architectures, despite the fact that a single-page
app was the prevailing way of doing pwa in the community.

First, we might not have been able to complete the pwa if we had
to restructure the entire website. It would be too much of an obsta-
cle to overcome.

Second, we were able to maintain the strengths of the mpa already
appreciated by the company and team (with the reasons detailed in
the two case study writings).

Finally, we came to be one of the earliest pioneers exploring the
domain of integrating the prpl pattern into mpa, which ended up
being valuable to the wider community. The most applauded re-
sponse under the Medium post is “We have an mpa architecture too.
Really inspiring to see what you’ve achieved.”

I’m personally really happy that our exploration can help more peo-
ple on board with pwa despite how their websites are structured.

Oh, did I forget to mention the bfcache? Chrome has implemented it!

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

209Upgrading Ele.me to Progressive Web App

What came next after the case study was published?

In parallel with our efforts launching the Ele.me pwa, another rival
technology was rising in China at the same time (2017): the so-called
“mini-app”

• Wechat Mini Program1

• Alipay Mini Program2

This is essentially an enhanced and customized semi-web environ-
ment provided by some of the biggest monopoly apps that allows
small businesses (“long tail”) to integrate and develop their service on.

While I personally prefer and advocate the spirit of the open web,
these kinds of walled gardens have been rapidly growing since 2017,
and have become extremely successful, dominating the long-tail
market from 2020. Many web front-end engineers are hired to exclu-
sively develop such “mini programs.”

Ele.me is not an exception participating in this trend. After rough-
ly a year or so, the company realized the majority of its web users
have been transitioned to the Ele.me mini app (“installed” in either
Wechat or Alipay) and reduced to less than 1%.

Hence, unfortunately, any new development for the website is
paused and reduced to minimal complexity, only maintaining status.

Do you have any advice for teams that would like to follow
in your footsteps?

Yeah. I’d say “progressive enhancement, graceful degradation” is still
the king of web development philosophies.

1 https://smashed.by/wechatmini
2 https://smashed.by/alipaymini

Success at Scale210

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

Although we faced some challenges on upgrading an mpa to a pwa,
it would have not been done if we had to do everything from scratch.

Most pwa technologies can be gradually adopted as a progressive
enhancement, and they are designed with degradability in mind.
Therefore, do not hesitate to try them! There are many low-hanging
fruits like adding a web manifest, as well as new capabilities provid-
ed by new apis such as service workers.

The web is always evolving as a whole without losing its heritage.
We all know there are bad things about it, but the good sides are
such that even the oldest web technologies can collaborate and bene-
fit from the newest web technologies.

Together, let us bring this next-generation web application model
and experience to our users to demonstrate its new power.

Has the site changed significantly since the case study
was published?

Yes and no.

The improvements on perceived performance and UX have been
preserved. You can still find some of the skeleton screens, and the UI
is really stable. The web manifest has been kept as well.

However, the service worker has been dropped owing to its added
complexity, which conflicts with the goal to slim down the site so it’s
easier to maintain.

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

Trusted Web Activities (or TWA)
— A Complete Implementation
Guide to OYO Lite
by Ankit Jain

We all know that users like to keep only those apps they
use on a regular basis.1 The primary reason for unin-
stalls is the size of the app. With the help of trusted

web activities (twa), users will enjoy the native app experience with-
out having to compromise on the storage factor. OYO Lite2 gave us
three times more conversion than our mobile web (progressive web
app) similar to that of the native OYO app, and three times higher
logged in user percentage.

In this case study we’ll talk about how someone can use their exist-
ing web app to build an Android app with the help of twa. Let’s first
see what you are signing up for:3

1 The original version of this case study was published in November 2019:
https://smashed.by/oyotech

2 https://smashed.by/oyolite
3 https://smashed.by/oyoliteapp

OYO Lite App.

211A Complete Implementation Guide to OYO Lite

https://play.google.com/store/apps/details?id=com.oyo.consumerlite

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

What the Heck Is TWA?

Trusted web activities (twa) are a new way to integrate your web
app content with your Android app using a protocol based on Cus-
tom Tabs.4 Although Android apps routinely include web content
using a Chrome Custom Tab (with url bar) or WebView, twa runs
your app fullscreen in the default browser (after the recent changes,
twa will open Chrome even if it is not the default) and hence can
leverage the features and performance optimizations of the browser.

Note: twa shares the browser data, like cookies and localStorage,
inside the app, so if you are logged in inside a browser then you’ll
automatically be logged in the twa app as well.

Why You Should Care about TWA

Generally speaking, the native app has better conversion, a more
loyal user base than the web app, but it has some drawbacks also as
mentioned below. twa tries to reduce the gap between web and na-
tive experience, and it can solve problems such as updating content
on the fly, while solving the storage problem for your end users.

OYO Lite5 (our twa app) is ~850 KB (7% compared to our main app), so
it doesn’t have storage issues and can be used to target low-end devices.

CAPABILITIES AVAILABLE IN TWA SIMILAR TO A NATIVE APP

• Available at the tap of a button: Since a twa app will be treat-
ed similar to any other app in the Android system, it’ll also have
a launcher icon.

• Works offline: With the help of service worker caching, the
app will work in offline mode also.

4 https://smashed.by/customtabs
5 https://smashed.by/oyolite

Success at Scale212

https://developer.chrome.com/multidevice/android/customtabs
https://developer.chrome.com/multidevice/android/customtabs
https://play.google.com/store/apps/details?id=com.oyo.consumerlite

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

• Fast loading: Native apps come with all the assets bundled in
them; the web app can cache its assets (JS, css, etc.) in the browser
or service worker cache. In general, a web app’s time to interactive
(tti) should be around 5 seconds for a great loading experience.

• Keep users engaged: Apps use push notifications for re-engage-
ment; the same can be achieved by web apps with service work-
ers. Native push notifications support is also planned for twa.

• Deep linking: Any of your domain links can be opened in your
twa app by digital asset links6 pairing and an intent filter in
your manifest file.

• Run fullscreen: twa apps can also run fullscreen with the help
of digital assets link verification. The app and the site it opens
are expected to come from the same developer.

CAPABILITIES IN TWA BETTER THAN NATIVE APPS

• Can update on the fly: If buggy code is shipped in a native app,
you can’t do anything but wait for your users to update the app.
This is not the case with twa apps since they are just the web
app wrapped inside an app, so the code can be updated anytime
just like the web.

• Backward compatibility is not a problem: There are no ver-
sion checks in apis built for twa apps as they all will be running
the same code.

• Size: Since native apps ship with all the machinery needed
to run, their size usually reaches a few megabytes. twa apps
internally run a browser and request for a webpage, no code
is shipped with the Android package kit (apk), and hence the
whole app size gets reduced to a few hundred KB.

In conclusion, twa is giving the best of both worlds, isn’t it? Now
let’s try to see what it takes to build one.

6 https://smashed.by/assetlinks

213A Complete Implementation Guide to OYO Lite

https://developers.google.com/digital-asset-links/v1/getting-started

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

Criteria for a Web App to Be Turned into
a TWA App

There are currently no qualifications for content opened in the pre-
view of trusted web activities. It means any web app can be used to
build a twa app, but users won’t like your app if it shows a url bar
inside an app, displays a “not connected to internet” message when
offline, takes too much time to load, or transitions between pages
are not smooth like a native app. So to make a decent twa app, bare
minimum qualifications should be:

• To be accessible and operable even when offline.

• To have digital asset links set up.

• To work as a reliable, fast, and engaging standalone component
within the launching app’s flow.

If the web app is already a progressive web app (pwa) with a good
score on Lighthouse, then you just have to set up digital asset links.

A Very Basic TWA

To build a basic twa app, we followed the steps mentioned in
the official Google documentation.7 Our project underwent
the following changes:

1. Created an Android manifest file containing the DEFAULT_URL
(i.e https://www.oyorooms.com), and intent filters to define
that this activity is the launcher, and an intent filter that says
that this app can handle oyorooms urls.

2. The url bar was removed with the help of digital
asset links verification.

7 https://smashed.by/usingtwa

Success at Scale214

https://developers.google.com/web/updates/2019/02/using-twa

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

3. Launch icon was created.

There is a long white screen between launching the app and getting
anything on the screen. This is the time when the browser is getting
initialized and your web app is getting the html document. We can’t
avoid it completely but we can serve something which the user is
familiar with: a splash screen.

Adding the Splash Screen: The Right Way

A splash screen is the screen that generally every native app shows
till it loads so that users understand that the app is starting up.

Starting on Chrome 75, trusted web activities have support for
splash screens and we just have to provide background color and an
image. This is sufficient, but it won’t suffice for all users as:

• Some users will be using browsers other than Chrome.

• All users won’t have Chrome 75 or newer.

So we went with the splash screen provided by twa and also wrote
our own custom splash activity, which handled the use cases dis-
cussed above.

First, we created another activity and made it the launcher, which
means this activity will be started on clicking the app icon.

AndroidManifest.xml:

<activity
 android:name=".SplashActivity"
 android:theme="@style/AppTheme.NoActionBar">

215A Complete Implementation Guide to OYO Lite

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER"
/>
 </intent-filter>

 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.DEFAULT"
/>
 <category android:name="android.intent.category.BROWSABLE"
/>
 <data
 android:host="@string/website_host"
 android:scheme="@string/website_scheme"
 />
 </intent-filter>

</activity>
<activity android:name="android.support.customtabs.trusted.
LauncherActivity"
android:theme="@style/AppTheme.NoActionBar">
.
.
<meta-data
android:name="android.support.customtabs.trusted.STATUS_BAR_
COLOR"
android:resource="@color/colorPrimary" />
<meta-data
 android:name="android.support.customtabs.trusted.SPLASH_
IMAGE_DRAWABLE"
android:resource="@drawable/ic_oyo_lite_white" />
<meta-data android:name="android.support.customtabs.trusted.
SPLASH_SCREEN_BACKGROUND_COLOR"
android:resource="@color/colorPrimary"/>
<meta-data
 android:name="android.support.customtabs.trusted.SPLASH_
SCREEN_FADE_OUT_DURATION"
android:value="500" />
<meta-data
 android:name="android.support.customtabs.trusted.FILE_
PROVIDER_AUTHORITY"
android:value="oyo.consumerlite.authority" />
</activity>

Success at Scale216

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

Now the newly created SplashActivity should do the following tasks:

1. Check if the splash screen is supported or not. This can be
achieved by comparing the installed Chrome version with the
Chrome 75 version.

2. If the splash screen is supported, just launch the trusted
launcher activity with the url. TWA will handle the splash
screen. Metadata about the splash screen is provided to twa
in the Android manifest.

3. If splash screen is not supported, then show the custom splash
screen layout for some time (somewhere around 400 ms
seems decent) and then launch the trusted launcher activity.

In this way, users having old or newer Chrome versions will get the
splash screen. Although the handling of splash screens by twa is
much better than custom handling as in the latter, we are putting
a delay in launching the activity, whereas twa shows the splash
screen till the page is rendered behind the scenes and then fades
it out, which gives a nice experience.

Let’s Talk Numbers

• Conversion: 3× of pwa

• Play Store rating: 4.1

• Logged-in %: 3× of pwa

• Realization: 1.5× of pwa

Apart from the above stats, twa helps in product building/marketing:

• Multiple presence on play store, leading to a higher opportunity
for user acquisition.

217A Complete Implementation Guide to OYO Lite

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

• Higher retention rates and stickiness.

• Useful in markets with low internet penetration, especially
helpful for OYO, which has a presence across 80 countries.

• Helpful in personalized marketing (to push the most relevant
product for the right audience).

• Provides a better platform for customer relationship
management activities as compared to normal mobile web.

• No incremental releases required around this – easier
incremental changes.

OYO Lite Key Takeaways
Three times more conversions than PWA and three times

higher logged in user percentage achieved by converting

to TWA.

Users tend to delete the apps they don’t use regularly. Companies
like OYO, a hotel booking service, found that OYOLite, their web app
which combines native app features, is more beneficial from a user
engagement perspective. They used trusted web activities (twa) to
create the OYOLite app.

TWA provides a new way of integrating web app content to your An-
droid app using a protocol based on Chrome Custom Tabs. TWA tries
to bridge the gap between the web and native experience as they can
be accessed like a native app and open full screen but are fast and small
in size like a web app. They also allow native app features like splash
screens, deep links, and android shortcuts. In the case of OYO, their
twa helped them to achieve better user conversions and logged-in user
percentage and also reach users in areas with low internet access.

Success at Scale218

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

219A Complete Implementation Guide to OYO Lite

Interview

Ankit Jain
Former SDE-3 at OYO

Author of “A Complete guide to Trusted Web

Activities with OYO”

What excited you or your team the most about the work in the
case study?

They say web is available for everybody, but native apps have a ded-
icated user base who like to access our product in a single tap. But
they also uninstall it after their usage to save memory. We wanted to
solve these problems, and twa gave us the best of both worlds. We
are continuing working on it to target the correct user base.

Were you surprised by the impact your work had on the overall
user experience, business, team, or other metrics?

Yes, it gave us a three-times better conversion than our mobile web
(progressive web app) and one-and-a-half times better realization.

If you had a similar project/problem today, do you think your
process/tooling/decisions would be exactly the same? Or, to
put it differently, looking back now, what would you have done
differently if you had a chance to make adjustments?

We can still think of putting a nudge on the main app page in Play
Store that says that the Lite version is available. It will help us reduce
cannibalization and the choice will be for users completely.

Success at Scale220

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

What do you think was the one critical decision that made
the outcome successful? What brought you to this decision,
and how did you or your entire team make it?

When we built it, there was very little support for splash screen,
webview as a fallback, etc. If we had chosen to ignore these features
in OYO Lite, then users wouldn’t have felt the app-like experience
and we didn’t want that. So we handled all these necessary features
and shipped them in OYO Lite.

What came next after the case study was published?

We want to grow OYO Lite more, and for that we are working on
targeting the correct user base and flows.

Do you have any advice for teams that would like to follow
in your footsteps?

Lite apps built with twa are way smaller than their native alterna-
tives (OYO Lite is only 7% of its native app). So if our pwa is perfor-
mant, then we should really try to explore the twa world.

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

A Year into the Pinterest PWA
by Zack Argyle

The idea of building a progressive web app (pwa) is not new,1
but its definition has changed with the emergence of key
technologies like service workers. Now it’s finally possible to

build great experiences in a mobile browser. Being an early adopter
can be scary, so we’d like to share a brief overview of our experience
building one of the world’s largest progressive web apps.

Three years ago we looked at the state of our website on mobile brows-
ers and groaned at the obvious deficiencies. Metrics pointed to an 80%
higher engagement rate in our native apps, so the decision was made
to go all-in on our apps for iOS and Android. Despite increasing our
app downloads substantially, there were some obvious downsides.

1 The original version of this case study was published in July 2018:
https://smashed.by/pinterestpwa

221A Year Into the Pinterest PWA

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

Emily. Owen. We would like to take this moment to offer an apology.
You were right. It was terrible.

In July 2017 we brought a team together to rewrite our mobile
website from scratch as a pwa. This was the culmination of several
years of conversation, months of metrics investigation, and one large
hypothesis: mobile web can be as good as a native app. The results
are quite… pinteresting.

Why Did We Do It?

There were two main reasons why we reinvested so heavily in our
mobile web. The first was our users. Our mobile web experience for
people in low-bandwidth environments and limited data plans was
not good. With more than half of all Pinners based outside the Unit-
ed States, building a first-class mobile website was an opportunity to
make Pinterest more accessible globally and, ultimately, improve the
experience for everyone.

The second reason was data-driven. Because the experience wasn’t
great, a very small percentage of the unauthenticated users that
landed on our mobile web site either installed the app, signed up or
logged in. It was not a good funnel. Even if we weigh the native app
users more heavily for higher engagement than mobile web users,
it’s not the type of conversion rate anyone strives for. We thought we
could do better.

Success at Scale222

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

How Did We Do It?

In July 2017 we formed a team that combined engineers from our
web platform and growth teams. Internally, we called it “Project
Duplo,” inspired by simplicity and accessibility. At the time, the
mobile website accounted for less than 10% of our total sign-ups (for
context, the desktop website drove five times that).

TIMELINE

• July 2017: Begin “Project Duplo”

• August 2017: Launch new mobile site for percentage
of logged-in users

• September 2017: Ship new mobile site for logged-in users

• January 2018: Launch new mobile site for percentage
of logged-out users

• February 2018: Ship new mobile site for logged-out users

Part of the reason we were able to create and ship a full-featured
rewrite in three months was thanks to our open-source UI library,

In addition to Gestalt, we also used React, React Router 4, Redux, Redux
Thunk, React Redux, Normalizr, Reselect, Flow, and Prettier.

223A Year Into the Pinterest PWA

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

Gestalt. At Pinterest, we use React 16 for all web development.
Gestalt’s suite of components are built to encompass our design
language, which makes it very easy to create consistently beautiful
pages without worrying about css. We created a suite of mobile
web-specific layout components for creating consistently spaced
pages throughout the site. FullWidth breaks out of the default
boundaries of PageContainer, which breaks out of the boundaries of
a FixedHeader. This kind of compositional layout led to fast, bug-
free UI development.

How We Made It Fast!

Performance was baked into the goals and process because of how
tightly correlated it is to engagement, and how sensitive it is on a
mobile connection. In fact, our home page JavaScript payload went
from about 490 KB to around 190 KB. This was achieved through
code-splitting at the route level by default, encouraging use of
a <Loader> component for component-level code-splitting. An
easy-to-use route preloading system was built into our client-side
router, which creates a fast experience for initial page load as well as
client-side route changes. For more details on how we made it fast,
check out the performance case study we did with Addy Osmani.2

After one year, there are about 600 JavaScript files in our mobile
web codebase, and all it takes is one ill-chosen import to bloat your
bundle. It’s really hard to maintain performance! We share code
extensively across subsites for *.pinterest.com, and so we have certain
measures set up to ensure that mobile web’s dependencies stay
clean. First is a set of graphs reporting build sizes with alerts for
when bundles exceed permitted growth rates. Second is a custom
ESLint rule that disallows importing from files and directories we

2 https://smashed.by/pwaretrospective

Success at Scale224

https://medium.com/dev-channel/a-pinterest-progressive-web-app-performance-case-study-3bd6ed2e6154

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

know are dependency-heavy and will bloat the bundle. For example,
mobile web cannot import from the desktop web codebase, but we
have a directory of “safe” packages that can be shared across both.
There’s still work to do, but we’re proud of where we are:

While the case study deals mostly with page load, we also cared
deeply about a fast, native-like experience while browsing. The
biggest driver of client-side performance was our normalized Redux
store which allows for near-instant route changes. By having a single
source of truth for models, like a Pin or user, it makes it trivial to
show the information you have while waiting for more to load. For
example, if you browse a feed of Pins, we have information about
each Pin. When you tap on one, it takes you to a detailed view.
Because the Pin data is normalized, we can easily show the limited
details we have from the feed view until the full details finish being
fetched from the server. When you click on a user avatar, we show
that user’s profile with the information we have while we fetch the
full user details. If you’re interested in the structure of our state or
the flow of our actions, the Redux devtools extension is enabled in
production for our mobile web site.

At the heart of the new site was our attempt at building a truly
progressive web app. We support an app shell, add to homescreen,
push notifications, and asset caching. The service worker caches a
server-rendered, user-specific app shell that’s used for subsequent
page loads and creates near-instant page refreshes. We’re excited
that Apple is building support for service workers in Safari so that all
users can have the best “native-like” experience.

225A Year Into the Pinterest PWA

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

The Verdict

Now for the part you’ve all been waiting for: the numbers. Week-
ly active users on mobile web have increased 103% year-over-year
overall, with a 156% increase in Brazil and 312% increase in India. On
the engagement side, session length increased by 296%, the number
of Pins seen increased by 401%, and people were 295% more likely to
save a Pin to a board.

Those are amazing in and of themselves, but the growth front is
where things really shone. Logins increased by 370% and new sign-

And what kind
of “native”
experience
would it be
without a
“night mode”?

Success at Scale226

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

Pinterest Key Takeaways

ups increased by 843% year-over-year. Since we shipped the new ex-
perience, mobile web has become the top platform for new signups.
And for fun, in less than 6 months since fully shipping, we already
have 800,000 weekly users using our pwa like a native app (from
their home screen).

Looking back over one full year since we started rebuilding our
mobile web, we’re so proud of the experience we’ve created for our
users. Not only is it significantly faster, it’s also our first platform
to support right-to-left languages and “night mode.” Investing in
a full-featured pwa has exceeded our expectations. And we’re just
getting started.

An overhaul of the web app to improve performance and make

it progressive leads to an 843% increase in new sign-ups.

The Pinterest web app in 2017 was very different from what it is now.
Users found the experience very poor, and as a result visiting users
did not end up signing up or downloading the app. The app was
especially slow for around 50% of its users who accessed it from low
bandwidth regions. Pinterest decided to fix the issues and revamp
the app in mid-2017, and the new web app launched early in 2018.

Besides addressing the performance issues, the app was converted
to a pwa with capabilities like an app shell, add to the home screen,
push notifications, and asset caching. The pwa improved the user
experience as the number of active users year-on-year increased by
103%, with a 312% increase in India. The biggest gain seen was for
new sign-ups, which increased by 843% year-on-year.

227A Year Into the Pinterest PWA

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

Building Spotify’s New Web Player
By José M. Pérez

The purpose of this case study is to tell the story of the new
Spotify web player: how and why it came to be.1 We will
focus on what the steps were that led to a complete rewrite,

and how the lessons learned influenced the experience and the tech
decisions of the new web player for desktop browsers.2

Using the Web to Implement Spotify
Applications at Spotify

Spotify has been using web technologies for a long time. Before tools
like Electron3 became a reality for building hybrid applications, Spo-
tify started using Chromium Embedded Framework (CEF)4 in 2011 to
embed web views on the desktop application. This made it easier to
build and iterate on different parts of the application without having
to perform full releases. It was also the foundation used to integrate
a myriad of third-party apps built using web technologies, what we
called Spotify Apps.

Spotify’s web player was released in 2012 and complemented the
experience on desktop devices. It made it possible for users to play
music from Spotify as quickly as possible, without needing to down-
load and install any application.

The architecture of the web player followed the same approach as
the desktop application. The views were isolated from each other

1 The original version of this case study was published in March 2019:
https://smashed.by/spotifyengineering

2 https://open.spotify.com/
3 https://electronjs.org/
4 https://smashed.by/cef

Success at Scale228

https://open.spotify.com/
https://open.spotify.com/
https://open.spotify.com/
https://open.spotify.com/
https://open.spotify.com/
https://open.spotify.com/
https://open.spotify.com/
https://open.spotify.com/
https://open.spotify.com/
https://open.spotify.com/
https://open.spotify.com/
https://electronjs.org/
https://bitbucket.org/chromiumembedded/cef
https://bitbucket.org/chromiumembedded/cef
https://bitbucket.org/chromiumembedded/cef
https://bitbucket.org/chromiumembedded/cef
https://bitbucket.org/chromiumembedded/cef
https://bitbucket.org/chromiumembedded/cef
https://bitbucket.org/chromiumembedded/cef
https://bitbucket.org/chromiumembedded/cef

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

using iframes, and this allowed the teams to iterate on and release
them without interfering with the rest of the application.

In addition, the code for the views was identical on both desktop
and web player. Thus, the team working on the playlist view would
implement a new feature and make it available on the desktop
application and the web player without having to care about the
underlying infrastructure.

The architecture of the web player was ideal for consistency between
platforms, and fit how the company was organized in feature teams.
It also had its drawbacks.

Having iframes for every feature and having that feature load its
own JavaScript and css might have worked well for the desktop
application, which the user downloads bundled with all the resourc-
es that it needs. The web player, on the other hand, had to download
many resources every time the user navigated between views, which
resulted in long load times, which impacted user experience.

An early
version of
Spotify’s
web
player.

229Building Spotify’s New Web Player

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

Considering a New Web Player

Over the years, we got better at prioritizing a core set of features.
With the rise of smartphones, we learned how to strive for removing
clutter, to properly A/B test features, and to better understand what
was really needed to deliver a good user experience.

In the summer of 2016 we decided to improve the web player. We re-
alized that the architecture of isolated views was difficult to maintain
and was preventing us from building a better product. We wanted
to go back to basics and support a set of core features (e.g. playback,
library management, and search) and work our way from there.

We found inspiration in the Spotify application for TV and video
consoles.5 This application is a web-based single page application,
and uses the Spotify Web api,6 which combines the access to lots of
micro services to create a unified interface to manipulate Spotify
data. It represented a good example of a light client being built by a
single team leveraging existing libraries at Spotify. We researched
the feasibility of upgrading the web player, rewriting it view by view.
In parallel, we started working on a prototype following a similar ar-
chitecture to the TV application. After considering the two approach-
es, we decided on the latter.

5 https://smashed.by/spotifytv
6 https://smashed.by/spotifyapi

Spotify
for TV.

Success at Scale230

https://www.spotify.com/tv/
https://www.spotify.com/tv/
https://www.spotify.com/tv/
https://www.spotify.com/tv/
https://www.spotify.com/tv/
https://www.spotify.com/tv/
https://www.spotify.com/tv/
https://www.spotify.com/tv/
https://www.spotify.com/tv/
https://www.spotify.com/tv/
https://www.spotify.com/tv/
https://www.spotify.com/tv/
https://www.spotify.com/tv/
https://developer.spotify.com/documentation/web-api/
https://developer.spotify.com/documentation/web-api/
https://developer.spotify.com/documentation/web-api/
https://developer.spotify.com/documentation/web-api/
https://developer.spotify.com/documentation/web-api/

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

As a company we usually try to improve existing systems iteratively
instead of completely replacing systems with new ones. There were
a few key points behind the decision to rewrite the new web player
from scratch versus improving the existing one:

• The system to deliver the code for the views, which worked in
isolation from one another, wasn’t used by the desktop applica-
tion anymore, and it was too complex for the web player use case.

• The web player was based on lots of libraries and frameworks
that were quite outdated. Giving every team an isolated en-
vironment to run their code also resulted in them choosing
different client-side stacks to build their views.

• The web player was built by multiple teams with over 40 de-
velopers but now would be maintained by a dedicated team
of five developers.

• It was very slow to iterate on and experiment, especially when
it came to making changes across multiple views, like updating
the visual style.

The Birth of a New Web Player

We decided not to repeat the mistakes of the past, so before decid-
ing the feature set that the new web player should have, we ran A/B
tests on the existing web player. For some users we removed certain
features and we measured their impact in user engagement. After get-
ting the results, we decided on the bare minimum feature set that we
would feel comfortable with releasing and that our users would enjoy.

We built a minimum viable product (mvp) in a few weeks, using our
new infrastructure based on Spotify’s Web api. During the following
months, we carried out extensive user testing and improved the pro-

231Building Spotify’s New Web Player

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

totype based on the feedback. Once we felt comfortable, we released
it to a small percentage of users side-by-side with the existing web
player, and checked the performance among them closely.

Our hypothesis was proved. The simpler and faster web player out-
performed the old web player in all key metrics.

The Tech Architecture

The new web player is in line with the overall Spotify look and feel,
and is built on html5 standards. It drops Flash in favor of encrypted
media extensions (eme)7 for music playback, which is supported na-
tively by most modern browsers. It is fast, even on spotty connections,
and responsive, and we have focused on making it enjoyable to use.

The architecture is based on React + Redux, which has made it easier
for us to share components between the views, to have a clear data
flow, and to improve debuggability and testability. Although the
components are not shared with other Spotify clients, we see a trend
in other Spotify web development teams who are also embracing a
similar approach to building web experiences.

Making the decision to embrace well-known open source solutions
and avoiding using Spotify custom libraries allowed us to onboard

7 https://smashed.by/eme

The new web player.

Success at Scale232

https://developers.google.com/web/fundamentals/media/eme
https://developers.google.com/web/fundamentals/media/eme
https://developers.google.com/web/fundamentals/media/eme
https://developers.google.com/web/fundamentals/media/eme
https://developers.google.com/web/fundamentals/media/eme
https://developers.google.com/web/fundamentals/media/eme
https://developers.google.com/web/fundamentals/media/eme

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

new developers quickly. This has led to numerous contributions
from web developers from all over the company.

Having a simpler architecture allowed us to experiment faster and
add features that didn’t exist in the old web player, like daily mixes,
video and audio podcasts, and Connect.8 On top of that, we were also
able to build fast ci/cd pipelines. Now with every commit the latest
version of the web player is reaching our users immediately. Finally,
we have a web player leveraging today’s technologies. As an example,
we added support for progressive web apps on Chrome OS,9 so the
web player is installed and run as a regular desktop application.

8 https://smashed.by/connect
9 https://smashed.by/pwachrome

Spotify Key Takeaways

A simpler and faster web player for desktop users using

modern technology and based on user preferences outper-

forms the old web player.

Spotify had released a web app for desktop users to complement its
desktop app as early as 2012. However, this web player reused most
of the code and features of the desktop app by loading similar con-
tent to iframes on the web app. Over the years, Spotify realized that
the architecture had become challenging to maintain and decided to
build a simpler app based on their single-page apps for TV and video
consoles using Spotify Web API.

Spotify built the new web player by considering user preferences
after performing A/B testing. It was built on the HTML5 standard
and uses Encrypted Media Extensions for music playback instead
of Flash. The new design and architecture make it fast, responsive,
and enjoyable to users and allow developers to release new features
quickly. The web player can also run as a PWA on Chrome OS.

233Building Spotify’s New Web Player

https://www.spotify.com/connect/
https://www.youtube.com/watch?v=EiGDj9wSfb8
https://www.youtube.com/watch?v=EiGDj9wSfb8
https://www.youtube.com/watch?v=EiGDj9wSfb8
https://www.youtube.com/watch?v=EiGDj9wSfb8
https://www.youtube.com/watch?v=EiGDj9wSfb8
https://www.youtube.com/watch?v=EiGDj9wSfb8
https://www.youtube.com/watch?v=EiGDj9wSfb8
https://www.youtube.com/watch?v=EiGDj9wSfb8
https://www.youtube.com/watch?v=EiGDj9wSfb8
https://www.youtube.com/watch?v=EiGDj9wSfb8
https://www.youtube.com/watch?v=EiGDj9wSfb8

Success at Scale234

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

Interview

José M. Pérez
Former Engineering Manager at Spotify

Author of “Building Spotify’s New Web Player”

What excited you or your team the most about the work in
the case study?

The new Spotify web player was born out of necessity. The previous
version mimicked Spotify’s organization, where many feature teams
could deploy mini sites run within iframes. With the change of focus
towards mobile and a native desktop application, the web player had
become slow and challenging to maintain. We wanted to build a
product that was cohesive and delightful, and that could work well
on any device and network condition.

We decided to build a single page application (spa) with a shared
data store. Navigating between pages was instantaneous. We would
render a skeleton page with the header in its final state, and render
the rest of the page through additional data fetching.

We also included lazy loading for images through IntersectionOb-
server, which reduced the data consumption without penalizing the
user experience.

Were you surprised by the impact your work had on the overall
user experience, business, team, or other metrics?

After the release of the new web player we soon started seeing an in-
crease in traffic from countries with slower network connections. Us-

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

235Building Spotify’s New Web Player

age from devices like Chromebooks rocketed, as the web player didn’t
require installing any application and it offered a similar experience.

Spotify had traditionally considered the web player as a gateway to
drive desktop app installs, since users who had downloaded the app
were more engaged. This proved to be wrong, and we saw a consider-
able increase in users and retention soon after releasing the new player.

It’s important to be present where the user is and give them choices.
With features like push notifications, service workers, picture-in-pic-
ture, or File api, the web doesn’t have to envy native applications.

If you had a similar project/problem today, do you think your
process/tooling/decisions would be exactly the same?
Or, to put it differently, looking back now, what would you
have done differently if you had a chance to make adjustments?

I think today I would have taken a similar approach, but be even
more metric-driven. I’ve grown to think that metrics are important
and “data wins arguments.” Metrics remove part of the bias, and are
especially important when proposing rebuilding a product. Lots of
stakeholders will think these decisions are made by developers be-
cause they want to have fun and play with new technology. The data
that proved that building from scratch was the best way forward pre-
vented many discussions and gave a clear path towards execution.

I learned that you need to make sure to spend the right amount of
time analyzing the problem and wondering – from the very begin-
ning – how you are going to prove that the project is successful.
This lets you monitor the right metrics and be more analytical and
less sentimental.

Success at Scale236

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

What do you think was the one critical decision that made
the outcome successful? What brought you to this decision,
and how did you or your entire team make it?

I liked that we had constraints and we wanted to focus on
building a product in a few months’ time. Having a timeline with
planned milestones and deliverables makes everyone involved
focus on the outcome, avoiding bikeshedding on technical details
that are insignificant.

What came next after the case study was published?

The technical approach we followed, using lazy loading and shared
data stores to improve the site speed, were showcased at Google IO
2018 and 2019. This was accompanied by the post published on Spo-
tify’s engineering blog, explaining the history of the project and why
we had made some decisions.

The feedback we got was really positive and gave the team more
confidence to share our thinking process with the world. It also

paved the way for
other projects that
adopted a similar
tech stack and
ideas around data
fetching, loading
of assets, and
navigation.

We learned that
many companies,
small or large, have

similar challenges. Being open about what worked and what didn’t
can be seen as a weakness, but it’s quite the opposite. You help other

We think we can create the definitive

product with a stack that will remain

forever. However, we make decisions

based on the current state of the

technology and business insights.

Those will change over time, and a good

architecture makes it possible to introduce

changes over time, replacing parts of it

with better alternatives and removing

sections that are not needed anymore.

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

237Building Spotify’s New Web Player

teams going through a similar journey, and they share ideas back
with you. The whole community benefits.

Do you have any advice for teams that would like to follow
in your footsteps?

Measure. When working on performance optimization it is easy to
find two extremes: those who don’t do anything about it, and those
who do too much. Find a sweet spot, where you make sure you are
delivering a good experience and are aware when you are reaching
diminishing returns.

Finally, write code that is easy to remove. We think we can create the
definitive product with a stack that will remain forever. However,
we make decisions based on the current state of the technology and
business insights. Those will change over time, and a good archi-
tecture makes it possible to introduce changes over time, replacing
parts of it with better alternatives and removing sections that are
not needed anymore.

Has the site changed significantly since the case study
was published?

The web player received new features without incurring additional
data usage. It became a pwa and could be installed on Chrome-
books providing a more app-like experience. For a long time, we had
maintained another set of pages with a similar content and design,
built in a different stack. These pages were server-side rendered and
optimized for seo. The new web player made it possible to merge both
projects, simplifying the codebase and removing lots of custom logic
to decide what version should be rendered.

In summary, it helped reduce duplication and made the engineering
team move faster.

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

Mainline Menswear’s
Success Building a PWA
By Charis Theodoulou, Natasha Kosoglov, & Thomas Steiner

Mainline is an online clothing retailer that offers the
biggest designer brand names in fashion.1 The UK-based
company entrusts its team of in-house experts, blended

strategically with key partners, to provide a frictionless shopping
experience for all. With market presence in over 100 countries via
seven custom-built territorial websites and an app, Mainline will con-
tinue to ensure the ecommerce offering is rivaling the competition.

Challenge

Mainline Menswear’s goal was to complement the current mobile-
optimized website with progressive features that would adhere to its
“mobile first” vision, focusing on mobile-friendly design and func-
tionality with a growing smartphone market in mind.

Solution

The objective was to build and launch a pwa that complemented the
original mobile-friendly version of the Mainline Menswear website,2
and then compare the stats to their hybrid mobile app, which is cur-
rently available on Android and iOS.

Once the app launched and was being used by a small section of
Mainline Menswear users, they were able to determine the differ-
ence in key stats between pwa, app, and web.

1 The original version of this article was published in April 2021:
https://smashed.by/mainline

2 https://www.mainlinemenswear.co.uk/

Success at Scale238

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

The approach Mainline took when converting its website to a pwa
was to make sure that the framework they selected for their website
(Nuxt.js, utilizing Vue.js) would be future-proof and enable them to
take advantage of fast moving web technology.

Results

139%

More pages per ses-
sion in pwa vs. web.

161%

Longer session dura-
tions in pwa vs. web.

10%

Lower bounce rate in
pwa vs. web

12.5%

Higher average order
value in pwa vs. web

55%

Higher conversion
rate in pwa vs. web.

243%

Higher revenue per
session in pwa vs. web.

Technical Deep Dive

Mainline Menswear is using the Nuxt.js framework3 to bundle and
render its site, which is a single page application (spa).

GENERATING A SERVICE WORKER FILE

For generating the service worker, Mainline Menswear added
configuration through a custom implementation of the nuxt/pwa
Workbox module.4

The reason they forked the nuxt/pwa module was to allow the team
to add more customizations to the service worker file that they
weren’t able to or had issues with when using the standard version.
One such optimization was around the offline functionality5 of the
site; for example, serving a default offline page and gathering analy-
tics while offline.

3 https://nuxtjs.org/
4 https://smashed.by/nuxtpwa
5 https://smashed.by/nuxtpwa

239Mainline Menswear’s Success Building a PWA

https://www.mainlinemenswear.co.uk/
https://www.mainlinemenswear.co.uk/
https://www.mainlinemenswear.co.uk/
https://nuxtjs.org/
https://nuxtjs.org/
https://nuxtjs.org/
https://nuxtjs.org/
https://nuxtjs.org/
https://pwa.nuxtjs.org/workbox
https://pwa.nuxtjs.org/workbox
https://pwa.nuxtjs.org/workbox
https://pwa.nuxtjs.org/workbox
https://pwa.nuxtjs.org/workbox
https://pwa.nuxtjs.org/workbox
https://pwa.nuxtjs.org/workbox
https://web.dev/mainline-mensware/#providing-offline-functionality
https://web.dev/mainline-mensware/#providing-offline-functionality
https://web.dev/mainline-mensware/#providing-offline-functionality

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

ANATOMY OF THE WEB APP MANIFEST

The team generated a manifest with icons for different mobile app
icon sizes and other web app details like name, description and
theme_color:

{

 "name": "Mainline Menswear",
 "short_name": "MMW",
 "description": "Shop mens designer clothes with Mainline
Menswear. Famous brands including Hugo Boss, Adidas, and
Emporio Armani.",
 "icons": [
 {
 "src": "/_nuxt/icons/icon_512.c2336e.png",
 "sizes": "512x512",
 "type": "image/png"
 }
],
 "theme_color": "#107cbb"
 }

The web app, once installed, can be launched from the home screen
without the browser getting in the way. This is achieved by adding
the display parameter in the web app manifest file:

{
 "display": "standalone"
}

Last but not least, the company is now able to easily track how many us-
ers are visiting the web app from the home screen by simply appending
a utm_source parameter in the start_url field of the manifest:

{
 "start_url": "/?utm_source=pwa"
}

Success at Scale240

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

See “Add a web app manifest”6 for a more in-depth explanation of all
the web app manifest fields.

Runtime Caching for Faster Navigations

Caching for web apps is a must for page speed optimization and for
providing a better user experience for returning users.

For caching on the web, there are quite a few different approaches.7
The team is using a mix of the http cache and the Cache api for
caching assets on the client side.

The Cache api gives Mainline Menswear finer control over the
cached assets, allowing them to
apply complex strategies to each
file type. While all this sounds
complicated and hard to set up
and maintain, Workbox provides
the team with an easy way of de-
claring such complex strategies and eases the pain of maintenance.

CACHING CSS AND JS

For css and JS files, the team chose to cache them and serve them
over the cache using the StaleWhileRevalidate Workbox strategy.
This strategy allows them to serve all Nuxt css and JS files fast,
which significantly increases the site’s performance. At the same
time, the files are being updated in the background to the latest
version for the next visit:

/* sw.js */
workbox.routing.registerRoute(

6 https://smashed.by/addmanifest
7 https://smashed.by/cachingapproaches

Workbox provides the team

with an easy way of declaring

complex strategies and eases

the pain of maintenance.

241Mainline Menswear’s Success Building a PWA

https://web.dev/add-manifest/
https://web.dev/add-manifest/
https://web.dev/add-manifest/
https://web.dev/add-manifest/
https://web.dev/add-manifest/
https://web.dev/add-manifest/
https://web.dev/add-manifest/
https://web.dev/add-manifest/
https://web.dev/add-manifest/
https://dev.to/jonchen/service-worker-caching-and-http-caching-p82
https://dev.to/jonchen/service-worker-caching-and-http-caching-p82
https://dev.to/jonchen/service-worker-caching-and-http-caching-p82

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

 /\/_nuxt\/.*(?:js|css)$/,
 new workbox.strategies.StaleWhileRevalidate({
 cacheName: 'css_js',
 }),
 'GET',
);

CACHING GOOGLE FONTS

The strategy for caching Google fonts depends on two file types:

• The style sheet that contains the @font-face declarations.

• The underlying font files (requested within the style sheet
mentioned above).

// Cache the Google Fonts stylesheets with a stale-while-
revalidate strategy.
workbox.routing.registerRoute(
 /https:\/\/fonts\.googleapis\.com\/*/,
 new workbox.strategies.StaleWhileRevalidate({
 cacheName: 'google_fonts_stylesheets',
 }),
 'GET',
);

 // Cache the underlying font files with a cache-first
strategy for 1 year.
 workbox.routing.registerRoute(
 /https:\/\/fonts\.gstatic\.com\/*/,
 new workbox.strategies.CacheFirst({
 cacheName: 'google_fonts_webfonts',
 plugins: [
 new workbox.cacheableResponse.CacheableResponsePlugin({
 statuses: [0, 200],
 }),
 new workbox.expiration.ExpirationPlugin({

Success at Scale242

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

 maxAgeSeconds: 60 * 60 * 24 * 365, // 1 year
 maxEntries: 30,
 }),
],
 }),
 'GET',
);

A full example of the common Google fonts strategy can be found in
the Workbox Docs.

CACHING IMAGES

For images, Mainline Menswear decided to go with two strategies.
The first strategy applies to all images coming from its CDN, which
are usually product images. Their pages are image-heavy so the team
is conscious of not taking too much of users’ device storage.

So through Workbox, they added a strategy that is caching images
coming only from the cdn with a maximum of 60 images using the
ExpirationPlugin.8

The sixty-first (newest) image requested replaces the first (oldest)
image so that no more than sixty product images are cached at any
point in time.

workbox.routing.registerRoute(
 ({ url, request }) =>
 url.origin === 'https://mainline-menswear-res.cloudinary.
com' &&
 request.destination === 'image',
 new workbox.strategies.StaleWhileRevalidate({

8 https://smashed.by/expirationplugin

243Mainline Menswear’s Success Building a PWA

https://developers.google.com/web/tools/workbox/reference-docs/latest/module-workbox-expiration.ExpirationPlugin

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

 cacheName: 'product_images',
 plugins: [
 new workbox.expiration.ExpirationPlugin({
 // Only cache 60 images.
 maxEntries: 60,
 purgeOnQuotaError: true,
 }),
],
 }),
);

The second image strategy handles the rest of the images being
requested by the origin. These images tend to be very few and small
across the whole origin, but to be on the safe side, the number of
these cached images is also limited to sixty.

workbox.routing.registerRoute(
 /\.(?:png|gif|jpg|jpeg|svg|webp)$/,
 new workbox.strategies.StaleWhileRevalidate({
 cacheName: 'images',
 plugins: [

 new workbox.expiration.ExpirationPlugin({
 // Only cache 60 images.
 maxEntries: 60,
 purgeOnQuotaError: true,
 }),
],
 }),
);

Objective
Even though the caching strategy is exactly the same
as the previous one, by splitting images into two
caches (product_images and images), it allows for
more flexible updates to the strategies or caches.

Success at Scale24 4

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

Providing Offline Functionality

The offline page is precached right after the service worker is
installed and activated. They do this by creating a list of all offline
dependencies: the offline html file, and an offline svg icon.

const OFFLINE_HTML = '/offline/offline.html';
const PRECACHE = [
{ url: OFFLINE_HTML, revision:
'70f044fda3e9647a98f084763ae2c32a' },

{ url: '/offline/offline.svg', revision:
'efe016c546d7ba9f20aefc0afa9fc74a' },
];

The precache list is then fed into Workbox, which takes care of all
the heavy lifting of adding the urls to the cache, checking for any
revision mismatch, updating, and serving the precached files with a
CacheFirst strategy.

workbox.precaching.precacheAndRoute(PRECACHE);

HANDLING OFFLINE NAVIGATIONS

Once the service worker activates and the offline page is pre-
cached, it is then used to respond to offline navigation requests by
the user. While Mainline Menswear’s web app is an spa, the offline
page shows only after the page reloads, the user closes and reopens
the browser tab, or when the web app is launched from the home
screen while offline.

To achieve this, Mainline Menswear provided a fallback to failed
NavigationRoute9 requests with the precached offline page:

9 https://smashed.by/navigationroute

245Mainline Menswear’s Success Building a PWA

https://developers.google.com/web/tools/workbox/reference-docs/latest/module-workbox-routing.NavigationRoute

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

const htmlHandler = new workbox.strategies.NetworkOnly();
const navigationRoute = new workbox.routing.NavigationRoute(({
event }) => {
 const request = event.request;
 // A NavigationRoute matches navigation requests in the
browser, i.e. requests for html
 return htmlHandler.handle({ event, request }).catch(() =>
caches.match(OFFLINE_HTML, {
 ignoreSearch: true
 }));
});
workbox.routing.registerRoute(navigationRoute);

Results

Offline page example as seen on www.mainlinemenswear.co.uk.

REPORTING SUCCESSFUL INSTALLS

Apart from the home screen launch tracking (with "start_url":
"/?utm_source=pwa" in the web application manifest), the web app

Success at Scale246

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

Mainline Menswear Key Takeaways

also reports successful app installs by listening to the appinstalled
event on window:

window.addEventListener('appinstalled', (evt) => {
 ga('send', 'event', 'Install', 'Success');
 });

Andy Hoyle, head of development, said: “Adding pwa capabilities to
your website will further enhance your customers’ experience of
shopping with you, and will be quicker to market than a platform-
specific app.”

Adding PWA capabilities to the website helped to enhance

customer experience and boost revenue per session by 243%.

Mainline is a UK-based online clothing retailer with a market pres-
ence in over 100 countries. Mainline wanted to add progressive fea-
tures to their menswear website while focusing on a mobile-friendly
design. They launched the pwa app to a small section of their users
and noticed a vast improvement in key stats due to the improved
customer experience provided by the pwa. Some of the key technical
enhancements in the pwa were as follows.

 Implemented in Nuxt.js + Vue.js framework to take advantage
of the latest technology available to them at the time.

 A service worker file helps to make the app available offline.

 The web app manifest provides the ability to launch from the
home screen.

 HTTP Cache and Cache api provide client-side caching of css, JS,
fonts, and images.

247Mainline Menswear’s Success Building a PWA

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

Deprecating Excalidraw for Electron
By Thomas Steiner

On the Excalidraw project,1 we have decided to deprecate
Excalidraw Desktop, an Electron2 wrapper for Excalidraw,
in favor of the web version that you can – and always could

– find at excalidraw.com. After a careful analysis, we have decided
that a progressive web app (pwa) is the future we want to build on.
Read on to learn why.

How Excalidraw Desktop Came into Being

Soon after Christopher Chedeau created the initial version of
Excalidraw in January 2020 and blogged about it,3 he proposed the
following in Issue #561:

Would be great to wrap Excalidraw within Electron (or
equivalent) and publish it as a [platform-specific] application
to the various app stores.

The immediate reaction by Guillermo Peralta Scura was to suggest:

What about making it a pwa instead? Android currently
supports adding them to the Play Store as Trusted Web
Activities and hopefully iOS will do the same soon. On Desktop,
Chrome lets you download a desktop shortcut to a pwa.

The decision that Chedeau took in the end was simple:

We should do both :)

1 https://excalidraw.com/
2 https://www.electronjs.org/
3 https://smashed.by/excalidrawblog

Success at Scale248

https://github.com/excalidraw
https://github.com/excalidraw
https://github.com/excalidraw
https://blog.excalidraw.com/reflections-on-excalidraw/
https://blog.excalidraw.com/reflections-on-excalidraw/
https://blog.excalidraw.com/reflections-on-excalidraw/
https://blog.excalidraw.com/reflections-on-excalidraw/
https://blog.excalidraw.com/reflections-on-excalidraw/
https://github.com/excalidraw/excalidraw/issues/561#issue-555138343
https://github.com/excalidraw/excalidraw/issues/561#issue-555138343

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

While work on converting the version of Excalidraw into a pwa was
started by Scura and later others, Panayiotis Lipiridis went ahead
independently and created a separate repo4 for Excalidraw Desktop.

To this day, the initial goal set by Chedeau – that is, to submit
Excalidraw to the various app stores – has not yet been reached.
Honestly, no one has even started the submission process to any
of the stores. But why is that? Before I answer, let’s look at
Electron, the platform.

What Is Electron?

The unique selling point of Electron is that it allows you to “build
cross-platform desktop apps with JavaScript, html, and css.” Apps
built with Electron are “compatible with Mac, Windows, and Linux”;
that is, “Electron apps build and run on three platforms.” According
to the homepage, the hard parts that Electron makes easy are auto-
matic updates, system-level menus and notifications, crash report-
ing, debugging and profiling, and Windows installers. Turns out,
some of the promised features need a detailed look at the small print.

• For example, automatic updates “are [currently] only [support-
ed] on macOS and Windows. There is no built-in support for
auto-updater on Linux, so it is recommended to use the distribu-
tion’s package manager to update your app.”

• Developers can create system-level menus by calling
Menu.setApplicationMenu(menu). On Windows and Linux, the
menu will be set as each window’s top menu, while on macOS
there are many system-defined standard menus, like the Services5
menu. To make menus standard menus, developers should set
their menu’s role accordingly, and Electron will recognize them
and make them become standard menus. This means that a lot

4 https://smashed.by/excalidrawdesktop
5 https://smashed.by/servicesmenu

249Deprecating Excalidraw for Electron

https://github.com/excalidraw/excalidraw-desktop
https://github.com/excalidraw/excalidraw-desktop
https://github.com/excalidraw/excalidraw-desktop
https://developer.apple.com/documentation/appkit/nsapplication/1428608-servicesmenu?language=objc

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

of menu-related code will use the following platform check:
const isMac = process.platform === ‘darwin’.

• Windows installers can be made with windows-installer.6 The
readme of the project highlights that “for a production app you
need to sign your application. Internet Explorer’s SmartScreen
filter will block your app from being downloaded, and many
anti-virus vendors will consider your app as malware unless you
obtain a valid certificate.”

Looking at just these three examples, it is clear that Electron is far
from “write once, run everywhere.” Distributing an app on app
stores requires code signing, a security technology for certifying app
ownership. Packaging an app requires using tools like electron-forge
and thinking about where to host packages for app updates. It gets
complex relatively quickly, especially when the objective truly is
cross-platform support. I want to note that it is absolutely possible
to create stunning Electron apps with enough effort and dedication.
For Excalidraw Desktop, we were not there.

Where Excalidraw Desktop Left Off

Excalidraw Desktop is almost indistinguishable from the web version.

6 https://smashed.by/windowsinstaller

Success at Scale250

https://github.com/electron/windows-installer
https://github.com/electron/windows-installer
https://github.com/electron/windows-installer

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

Excalidraw Desktop so far is basically the Excalidraw web app bun-
dled as an .asar file with an added About Excalidraw window. The
look and feel of the application is almost identical to the web version.

The About Excalidraw menu providing insights into the versions.

On macOS, there is now a system-level menu at the top of the
application, but since none of the menu actions – apart from Close
Window and About Excalidraw – are hooked up to anything, the
menu is, in its current state, pretty useless. Meanwhile, all actions
can, of course, be performed via the regular Excalidraw toolbars and
the context menu.

The menu bar of Excalidraw Desktop on macOS.

We use electron-builder, which supports file type associations. By
double-clicking an .excalidraw file, ideally the Excalidraw Desktop
app should open. The relevant excerpt of our electron-builder.json file
looks like this:

 {
 "fileAssociations": [

251Deprecating Excalidraw for Electron

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

 {
 "ext": "excalidraw",
 "name": "Excalidraw",
 "description": "Excalidraw file",
 "role": "Editor",
 "mimeType": "application/json"
 }
]
 }

Unfortunately, in practice this does not always work as intended,
since, depending on the installation type (for the current user, for all
users), apps on Windows 10 do not have the rights to associate a file
type to themselves.

These shortcomings and the pending work to make the experience
truly app-like on all platforms (which, again, with enough effort
is possible) were a strong argument for us to reconsider our in-
vestment in Excalidraw Desktop. The way bigger argument for us,
though, was that we foresee that for our use case, we do not need
all the features Electron offers. The grown and still growing set of
capabilities of the web serves us equally well, if not better.

How the Web Serves Us Today
and In the Future

Even in 2020, jQuery7 is still incredibly popular. For many developers
it has become a habit to use it, despite the fact that today they might
not need jQuery.8 There is a similar resource for Electron, aptly called
You Might Not Need Electron.9 Let me outline why we think we do
not need Electron.

7 https://jquery.com/
8 http://youmightnotneedjquery.com/
9 https://youmightnotneedelectron.com/

Success at Scale252

http://youmightnotneedjquery.com/
http://youmightnotneedjquery.com/
http://youmightnotneedjquery.com/
http://youmightnotneedjquery.com/
http://youmightnotneedjquery.com/
http://youmightnotneedjquery.com/
http://youmightnotneedjquery.com/
https://youmightnotneedelectron.com/
https://youmightnotneedelectron.com/
https://youmightnotneedelectron.com/
https://youmightnotneedelectron.com/
https://youmightnotneedelectron.com/
https://youmightnotneedelectron.com/
https://youmightnotneedelectron.com/
https://youmightnotneedelectron.com/
https://youmightnotneedelectron.com/

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

INSTALLABLE PROGRESSIVE WEB APP

Excalidraw today is an installable progressive web app with a service
worker and a web app manifest. It caches all its resources in two cach-
es, one for fonts and font-related css, and one for everything else.

Excalidraw’s cache contents.

This means the application is fully offline-capable and can run
without a network connection. Chromium-based browsers on both
desktop and mobile prompt the user to install the app. You can see
the installation prompt in the screenshot below.

The Excalidraw install dialog in Chrome.

253Deprecating Excalidraw for Electron

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

Excalidraw is configured to run as a standalone application, so when
you install it you get an app that runs in its own window. It is fully
integrated in the operating system’s multitasking UI and gets its
own app icon on the home screen, dock, or taskbar, depending on the
platform where you install it.

The Excalidraw pwa in a standalone window.

The Excalidraw icon on the macOS dock.

FILE SYSTEM ACCESS

Excalidraw uses browser-fs-access10 for accessing the file system of
the operating system. On supporting browsers, this allows for a true
Open > Edit > Save workflow and actual over-saving and Save As ...

10 https://smashed.by/browserfsaccess

Success at Scale254

https://github.com/GoogleChromeLabs/browser-fs-access
https://github.com/GoogleChromeLabs/browser-fs-access
https://github.com/GoogleChromeLabs/browser-fs-access
https://github.com/GoogleChromeLabs/browser-fs-access
https://github.com/GoogleChromeLabs/browser-fs-access

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

with a transparent fallback for other browsers. You can learn more
about this feature in my blog post “Reading and writing files and
directories with the browser-fs-access library.”11

DRAG-AND-DROP SUPPORT

Files can be dragged and dropped onto the Excalidraw window just
as in platform-specific applications. On a browser that supports the
File System Access api, a dropped file can be immediately edited and
the modifications saved to the original file. This is so intuitive that
you sometimes forget you are dealing with a web app.

CLIPBOARD ACCESS

Excalidraw works well with the operating system’s clipboard. Entire
Excalidraw drawings or also just individual objects can be copied
and pasted in image/png and image/svg+xml formats, allowing for an
easy integration with other platform-specific tools like Inkscape,12 or
web-based tools like SVGOMG.13

11 https://smashed.by/fsaccesslibrary
12 https://inkscape.org/
13 https://smashed.by/svgomg

The Excalidraw
context menu
offering
clipboard
actions.

255Deprecating Excalidraw for Electron

https://web.dev/browser-fs-access/
https://web.dev/browser-fs-access/
https://web.dev/browser-fs-access/
https://web.dev/browser-fs-access/
https://web.dev/browser-fs-access/
https://web.dev/browser-fs-access/
https://web.dev/browser-fs-access/
https://web.dev/browser-fs-access/
https://web.dev/browser-fs-access/
https://web.dev/browser-fs-access/
https://web.dev/browser-fs-access/
https://web.dev/browser-fs-access/
https://web.dev/browser-fs-access/
https://web.dev/browser-fs-access/
https://web.dev/browser-fs-access/
https://web.dev/browser-fs-access/
https://web.dev/browser-fs-access/
https://web.dev/browser-fs-access/
https://web.dev/browser-fs-access/
https://web.dev/browser-fs-access/
https://web.dev/browser-fs-access/
https://web.dev/browser-fs-access/
https://web.dev/browser-fs-access/

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

FILE HANDLING

Excalidraw already supports the experimental File Handling api,
which means .excalidraw files can be double-clicked in the operating
system’s file manager and opened directly in the Excalidraw app,
since Excalidraw registers as a file handler for .excalidraw files in
the operating system.

DECLARATIVE LINK CAPTURING

Excalidraw drawings can be shared by link. Here is an example:
https://smashed.by/excalidrawsharing

In the future, if people have Excalidraw installed as a pwa, such
links will not open
in a browser tab,
but launch a new
standalone window.
Pending imple-
mentation, this will

work thanks to declarative link capturing,14 a bleeding-edge proposal
for a new web platform feature (at the time of writing).

Conclusion

The web has come a long way, with more and more features landing
in browsers that only a couple of years or even months ago were un-
thinkable on the web and exclusive to platform-specific applications.
Excalidraw is at the forefront of what is possible in the browser, all
while acknowledging that not all browsers on all platforms support

14 https://smashed.by/declarativecapturing

Excalidraw is at the forefront of what

is possible in the browser, all while

acknowledging that not all browsers on all

platforms support each feature we use.

Success at Scale256

https://github.com/WICG/sw-launch/blob/master/declarative_link_capturing.md
https://github.com/WICG/sw-launch/blob/master/declarative_link_capturing.md
https://github.com/WICG/sw-launch/blob/master/declarative_link_capturing.md
https://github.com/WICG/sw-launch/blob/master/declarative_link_capturing.md
https://github.com/WICG/sw-launch/blob/master/declarative_link_capturing.md

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

Excalidraw Key Takeaways

each feature we use. By betting on a progressive enhancement strat-
egy, we enjoy the latest and greatest wherever possible, but without
leaving anyone behind. Best viewed in any browser.

Electron has served us well, but in 2020 and beyond, we can live
without it. Oh, and for that objective of @vjeux: since the Android
Play Store now accepts pwas in a container format called trusted
web activity and since the Microsoft Store supports pwas too,
you can expect Excalidraw in these stores in the not too distant
future. Meanwhile, you can always use and install Excalidraw in
and from the browser.

A desktop PWA instead of a platform-specific app that

leaves no one behind and is best viewed in any browser.

The team decided to release the Excalidraw desktop app by wrapping
the web app using an electron wrapper so that it may be released to
different app stores. Another team simultaneously went to work on a
pwa. However, the desktop app did not take off and was soon depre-
cated in favor of the pwa as it was easier to maintain.

The Excalidraw pwa comes with a service worker and web app man-
ifest that allows caching and makes it installable through
Chromium-based browsers on both desktop and mobile. It supports
various native app features like stand-alone application mode,
launch from the home screen, dock, or taskbar, file-system access
through browser-fs-access, clipboard access, and many more. Each
feature is available to users based on browser and platform support.

257Deprecating Excalidraw for Electron

Success at Scale258

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

Interview

Christopher Chedeau
Creator, Excalidraw

Author of “Deprecating Excalidraw for Electron”

What excited you or your team the most about the work in the
case study?

What’s amazing about the browser environment nowadays is that
it provides all the apis to build a product that would have needed a
desktop app environment in the past. This enabled Excalidraw, a vir-
tual whiteboard, to be one url away from being used by hundreds of
thousands of people.

The full list is probably too long for this answer but the highlights are:

• the file system api for interacting with the actual file system
on the machine

• the web crypto api for enabling the product to be
end-to-end encrypted

• the canvas api for high performance rendering of the diagrams

• the web socket api to be able to implement real time
collaboration

• the progressive web app api to be able to install it locally…

I’ve worked in the space long enough to have seen each of those apis
come to life, and it feels like cheating to have access to all of them.

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

259Deprecating Excalidraw for Electron

Were you surprised by the mpact your work had on the overall
user experience, business, team, or other metrics?

This project started as a way to procrastinate from writing peer feed-
back; it wasn’t meant to actually turn into a real product. But after
hacking on this for a few days in the open on GitHub and Twitter,
many people started contributing and it was starting to be useful.

In retrospect, two product decisions that were made were key to the
early success:

1. There’s no login flow: you pop in the website and are able to
start drawing instantly.

2. We used Rough.js and the Virgil font for a hand-drawn effect
to give the drawings a very distinctive look that begs people to
ask how it was made.

What really changed the trajectory was that three months after the
inception, Covid hit. Everyone was sent home and many people
started looking for a virtual whiteboard – and they found excalidraw.
The team scrambled to implement real-time collaboration during
that weekend and the growth continued till today.

I had absolutely no idea that this would end up being used by hun-
dreds of thousands of people and being the full-time job of multiple
people. This is pretty incredible: the time we live in where this kind
of thing can happen!

If you had a similar project/problem today, do you think your
process/tooling/decisions would be exactly the same? Or, to

Success at Scale260

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

put it differently, looking back now, what would you have done
differently if you had a chance to make adjustments?

Weirdly enough, all the technical decisions that were made on
excalidraw.com really stood the test of time. The codebase is in a
healthy state and the product is very good. I still use it daily for a
wide variety of tasks!

The one thing I wish I had done differently is start the work on
the SaaS product sooner. I used to think that having a paid product
would degrade the open source experience, but it was actually the
opposite that happened.

Because Excalidraw is dealing with very private and confidential
information, even though the open source product is local first and
– when collaboration is active – end-to-end encrypted (meaning that
the team and hosting providers don’t have access to any of the draw-
ings), many companies were not comfortable having their employees
use it. They wanted to have a real company backing the product and
pay for it instead.

The SaaS product offering fills a specific need that the open source
product could not and is used to pay actual people to work on the
open source project full-time. This is one of those situations where
every party is winning! It took us more than a year to eventually
convince ourselves to do it and could have happened way sooner.

What do you think was the one critical decision that made the
outcome successful? What brought you to this decision, and
how did you or your entire team make it?

Quality over features. Excalidraw has a relatively small number of
features and customization compared to the hundreds of projects

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

261Deprecating Excalidraw for Electron

that have been in the space over the years, but we obsess over all
the small interaction details and pride ourselves for having zero
production exceptions.

Let me give you four examples out of hundreds of small details that
are really important for the user experience:

1. If you select a really small object on screen, we’re going
to remove the middle handles so that the click target
is not confusing.

2. We update the selected elements when you drag in real
time so that you are not surprised by what you select.

3. We have visible hotkeys on every action you can make
so you can minimize your mouse movement.

4. When you zoom, we wait until you stop zooming to properly
redraw the scene and give you a fast resize of the existing
details in the meantime so that you’re not dropping frames.

This has been a value that I’ve learned through my career working at
Meta and its open source projects. As I built the initial team that is
now running Excalidraw, this is something I kept pushing for and is
now in the dna of the company.

Do you have any advice for teams that would like to follow in
your footsteps?

Excalidraw was really made possible thanks to open source. It start-
ed as a hack on which dozens of people implemented significant
pieces. The most incredible part is that everyone who contributed
brought their unique skills and talent to the table.

Success at Scale262

C
A

P
A

B
IL

IT
IE

S
C

A
P

A
B

IL
IT

IE
S

There isn’t any single person who would have been able to do all the
following things that made Excalidraw successful:

• Someone was able to get the product translated into many
languages, rallying many translators together.

• Someone implemented an end-to-end encrypted live
collaboration setup.

• Someone implemented deep integration with the browser
to be able to interact with the device file system.

• Someone implemented an intuitive way to attach arrows
to shapes.

And the list goes on. When you are starting up a project, having
access to so many talented people really makes a difference and open
source makes it possible!

Has the site changed significantly since the case
study was published?

It did significantly change as we improved the experience in
hundreds of small ways. It’s hard to see the effect on excalidraw.com
since we ship them continuously to users but we were able to see it
“by accident” within Meta.

We did a one time import of the Excalidraw source code to make it
available to Meta employees and integrate it with internal tooling.
A year later we updated it to use the npm package designed for in-
tegrations like this one, not thinking twice about it since there were
no new big features. The usage ramped up a lot faster after that. It’s a
testament that all the small things do add up.

AC
C

ES
SI

BI
LI

TY
A

C
C

E
S

S
IB

IL
IT

Y
A

C
C

E
S

S
IB

IL
IT

Y

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

276

289

30 1

3 14

328

343

360

373

38 1
A

C
C

E
S

S
IB

IL
IT

Y
A

C
C

E
S

S
IB

IL
IT

Y

The Story of Making WiX Accessible

The Understood: How Our Organization

Improved Web Accessibility

Pinafore: What I Learned

About Accessibility in SPAs

LinkedIn’s Approach to

Automated Accessbility Testing

Building Dark Mode on Stack Overflow

How Intercom Approached

Messenger Accessibility

Shopping Platforms: Accessibility Is

More Than a Technical Problem

Improving Accessibility on YouTube Web

#

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

Introduction

A ccessibility is a critical quality of products as it directly
impacts how users with disabilities can perceive, under-
stand, navigate, and interact with them equally without

barriers. For a website, it means that the site’s content and function-
ality are readily available to all who land on it.

Accessibility (sometimes abbreviated to a11y) refers to the experience
of users who might be outside the narrow range of the “typical” user
and who might access or interact with things differently than you
expect. Accessibility addresses the experience for users with some
impairment or disability – the disability might be non-physical or
temporary. For example, not being able to read something on the
screen in bright daylight is a temporary disability. Although we tend
to center our discussion of accessibility on users with physical im-
pairments, we can all relate to the experience of using an interface
that is not accessible to us for other reasons.

Accessibility in web apps makes them viable for diverse users, in-
cluding people with temporary or permanent disabilities. Accessible
web apps are built with an inclusive mindset and are considerate of
users who may be using their computers or mobile devices different-
ly. When using computers and phones, people with visual, auditory,
physical, or cognitive impairments may rely on assistive technolo-
gies such as screen readers, captions, or eye-tracking software. By
following accessibility standards, websites can ensure support for
commonly used devices.

This section discusses how addressing accessibility issues in a
broader and more general sense almost always improves the user
experience for everyone. We will discuss standard practices that help

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

you develop accessible web apps and present case studies on how
different apps built accessibility into their solutions.

Why Accessibility Is Important

The web is an important resource that lets us connect and helps
businesses, governments, and other organizations reach people
with diverse skills, abilities, and needs. Web applications should be
accessible to all, irrespective of their physical or social abilities. Ac-
cessibility should be built-in as part of the user experience. Accessi-
bility provides equal access and opportunities to people with diverse
abilities, and supports the social inclusion of people with temporary
or permanent disabilities, and older people. There is also a strong
business case for accessibility.1

1. Designing for accessibility improves the overall user expe-
rience and customer satisfaction in a variety of situations,
across different devices, and for older users. There is an
overlap between mobile web best practices2 and Web Con-
tent Accessibility Guidelines.3 Thus, designing to meet these
guidelines helps make web apps more accessible to everyone
regardless of their situation, environment, or device.

2. Accessible solutions can enhance brand value and extend
market reach.

3. Web accessibility is often required by law,4 and implementing
it can reduce potential legal risk.

Many aspects of accessibility are pretty easy to understand and
implement. Some accessibility solutions are more complex and take
more knowledge to implement.

1 https://smashed.by/businesscase
2 https://smashed.by/mobilebp
3 https://smashed.by/wcag
4 https://smashed.by/waipolicies

Success at Scale266

https://www.w3.org/WAI/business-case/
https://www.w3.org/WAI/business-case/
https://www.w3.org/WAI/business-case/
https://www.w3.org/WAI/business-case/
https://www.w3.org/WAI/business-case/
https://www.w3.org/WAI/business-case/
https://www.w3.org/WAI/business-case/
https://www.w3.org/WAI/business-case/
https://www.w3.org/WAI/business-case/
https://www.w3.org/WAI/business-case/
https://www.w3.org/TR/mobile-bp/
https://www.w3.org/TR/mobile-bp/
https://www.w3.org/TR/mobile-bp/
https://www.w3.org/TR/mobile-bp/
https://www.w3.org/TR/mobile-bp/
https://www.w3.org/TR/mobile-bp/
https://www.w3.org/TR/mobile-bp/
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/WAI/policies/
https://www.w3.org/WAI/policies/
https://www.w3.org/WAI/policies/
https://www.w3.org/WAI/policies/
https://www.w3.org/WAI/policies/

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

It is most efficient and effective to incorporate accessibility from the
very beginning of projects, so you don’t need to go back and rework.

Barriers to Accessibility

An accessibility barrier is anything that restricts you from access-
ing web content. The barrier could be permanent (blindness, for
example), temporary (such as an inability to use your hands after an
accident), or momentary (like difficulty typing in a packed com-
muter train). These barriers can be categorized based on the type of
function affected.

• Vision impairments: These can range from low vision to
complete blindness. Tools and techniques used by this group of
people to access web content include screen magnification, text-
to-speech, high-contrast themes, screen readers, braille displays,
and so on.

• Motor/dexterity impairments: These can affect users’ ability
to use keyboards, mouse, touchscreens, and other regular input
devices. They may rely on voice access, head or eye-tracking
software, or switch devices to communicate with web apps.

• Auditory impairments: These are hearing impairments where
users may rely on captions as an alternative to speech and
sound on the web application interface.

• Cognitive impairments: These could include adhd, dyslexia,
and autism. Generally, users in this group would prefer minimal
distractions and avoid websites with flashy content, animations,
or layout shifts.

Understanding the limitations and needs of each of the above cat-
egories helps design solutions that eliminate accessibility barriers.

267Introduction

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

With this background, let us see how you can make your website
accessible for some key input and output devices.

How Do I Make My UI Components
Accessible?

When designing accessible components for your website, keep the
following questions in mind and ensure that you can confidently
answer them with a “Yes.”

• Can I use this component without sight or sound?

• Is the user experience good, even with impairments; for example,
are buttons large enough to click without fine motor control?

• If I rely on keyboard actions, are they standard? If not, are they
documented?

• Generally, you will want to avoid creating custom shortcuts,
as many screen readers have their own shortcuts, and yours
might disrupt those.

• Have I ensured that generic events exposed from my compo-
nents do not affect its accessibility?

• For example, a section in a tree view should fire a collapse/
expand event, rather than bubbling up the click, to ensure
that the user of your component does not forget to handle
collapse/expand using arrow keys.

There are a lot of subtleties involved in getting accessibility right,
so do not hesitate to reach out to an expert. For a few specific
answers to the above questions, let us see how you can make your
website accessible for some key input and output devices.

Success at Scale268

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

Enabling Accessibility for Devices

Accessibility for different devices is relevant to various groups
of people. This section discusses a few pointers that would
allow comfortable access to websites through commonly
used devices.

KEYBOARDS

Users may rely exclusively on keyboards due to motor impairments
or find keyboard shortcuts more efficient than mouse inputs. To
make keyboard access easier for everyone, you can:

1. Arrange elements on the screen logically from left to right
and top to bottom based on how the user would need them.
Doing this allows users to press the Tab key and focus on
every element they need to access in the correct sequence
without using a mouse to get to it. You can use tabindex5 to
insert or remove an element from the natural tab order.

2. Ensure that hidden elements that only become visible because
of some user action do not receive focus.6 You can use one of
the following css properties for this:

• display: none;
• visibility: hidden;

3. Use the correct semantic html element for the desired func-
tion to improve accessibility as they have built-in support for
tabindex, interactions on mobile, and support for specific
actions. For example, using a div or link to implement the
button functionality is a common accessibility anti-pattern.
The div element does not support7 synthetic click activation
(click on Enter or space) by itself, while screen readers an-

5 https://smashed.by/controlfocus
6 https://smashed.by/offscreenvisibility
7 https://smashed.by/buttonvsdiv

269Introduction

https://web.dev/use-semantic-html/#links-versus-buttons
https://web.dev/use-semantic-html/#links-versus-buttons
https://web.dev/use-semantic-html/#links-versus-buttons
https://web.dev/control-focus-with-tabindex/
https://web.dev/control-focus-with-tabindex/
https://web.dev/control-focus-with-tabindex/
https://web.dev/keyboard-access/#correctly-set-the-visibility-of-offscreen-content
https://web.dev/keyboard-access/#correctly-set-the-visibility-of-offscreen-content
https://web.dev/keyboard-access/#correctly-set-the-visibility-of-offscreen-content
https://web.dev/keyboard-access/#correctly-set-the-visibility-of-offscreen-content
https://web.dev/keyboard-access/#correctly-set-the-visibility-of-offscreen-content
https://web.dev/keyboard-access/#correctly-set-the-visibility-of-offscreen-content
https://web.dev/keyboard-access/#correctly-set-the-visibility-of-offscreen-content
https://web.dev/use-semantic-html/#use-button-instead-of-div
https://web.dev/use-semantic-html/#use-button-instead-of-div
https://web.dev/use-semantic-html/#use-button-instead-of-div
https://web.dev/use-semantic-html/#use-button-instead-of-div
https://web.dev/use-semantic-html/#use-button-instead-of-div
https://web.dev/use-semantic-html/#use-button-instead-of-div
https://web.dev/use-semantic-html/#use-button-instead-of-div
https://web.dev/use-semantic-html/#use-button-instead-of-div
https://web.dev/use-semantic-html/#use-button-instead-of-div

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

nounce the link element differently. Extra effort is required to
make buttons using these elements accessible.

4. Use a focus indicator to highlight the currently active element
to the user. This helps users who do not have a mouse pointer.
Defining a style for :focus in the css for different elements
helps create a focus indicator, as shown for a textbox here:

SCREEN READERS

Screen readers can provide an alternative UI if developers have used
semantically-rich html to create pages. Browsers create the acces-
sibility tree for the page based on the semantic html contained in
it. For example, the following figure shows the accessibility details
available for the “Search by voice” button on the Google search home
page, as seen in the DevTools/Elements tab.

ARIA attributes available for the “Search by voice” button.

Success at Scale270

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

The screen reader would typically read the name and role of this
element: in this case, “Search by voice button.” On the other hand,
if you have used a div for displaying a button, the semantics would
be different, and the screen reader would only read the text inside
the div: “Search by voice.” Here are a few steps that can help to make
web pages accessible to screen readers.

1. Use headings to outline the page so that the user can form a
mental picture as the screen reader navigates the headings.
Also, ensure that you do not skip heading levels to rely on
browsers default styles for different levels of headings.
Missing levels break the outline, which the screen reader
requires for navigation.

2. Use html5 landmark elements such as main, section, and nav
to demarcate special sections of the page, to which the screen
readers can jump during navigation. You can also use skip links
to allow readers to jump to specific sections of the page:

 Skip to
main
 [Some content]
 <main id="main">
 [Main content]
 </main>

3. Elements should have accessible names and text alternatives
so that the screen reader can read them out. In the previous
example for Google search, the icon button “Search by voice”
got its name because the aria-label attribute was included.
Similarly, you can specify accessible names or text for all
html elements.8

8 https://smashed.by/missingnames

271Introduction

https://www.w3.org/TR/2017/NOTE-wai-aria-practices-1.1-20171214/examples/landmarks/HTML5.html
https://www.w3.org/TR/2017/NOTE-wai-aria-practices-1.1-20171214/examples/landmarks/HTML5.html
https://www.w3.org/TR/2017/NOTE-wai-aria-practices-1.1-20171214/examples/landmarks/HTML5.html
https://web.dev/labels-and-text-alternatives/#check-for-missing-names
https://web.dev/labels-and-text-alternatives/#check-for-missing-names
https://web.dev/labels-and-text-alternatives/#check-for-missing-names
https://web.dev/labels-and-text-alternatives/#check-for-missing-names
https://web.dev/labels-and-text-alternatives/#check-for-missing-names
https://web.dev/labels-and-text-alternatives/#check-for-missing-names
https://web.dev/labels-and-text-alternatives/#check-for-missing-names
https://web.dev/labels-and-text-alternatives/#check-for-missing-names
https://web.dev/labels-and-text-alternatives/#check-for-missing-names
https://web.dev/labels-and-text-alternatives/#check-for-missing-names
https://web.dev/labels-and-text-alternatives/#check-for-missing-names
https://web.dev/labels-and-text-alternatives/#check-for-missing-names
https://web.dev/labels-and-text-alternatives/#check-for-missing-names
https://web.dev/labels-and-text-alternatives/#check-for-missing-names
https://web.dev/labels-and-text-alternatives/#check-for-missing-names
https://web.dev/labels-and-text-alternatives/#check-for-missing-names
https://web.dev/labels-and-text-alternatives/#check-for-missing-names

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

4. Video elements9 embedded in web pages can be made acces-
sible by using track elements to the video. The track element
links to a web video text tracks (WebVTT) file which contains
a series of cues with the video timespan to which they are
applicable. Cues such as captions, subtitles, and descriptions
are included in the WebVTT file so that accessibility devices
such as screen readers can read them.

TOUCH SCREENS

When designing for touch screens, including mobile devices and
smartphones, you need to pay special attention to the placement of
input elements, especially for people with motor impairments.

1. As per Android accessibility guidelines,10 touch targets should
be at least 48 × 48 px in size. This size corresponds to the
average finger pad area of a person.

2. Touch targets should also be placed at least 8 px apart to avoid
overlap when tapping on different targets.

3. You can use The pointer css media feature11 to change the
style of an element for different types of screens, as shown.

@media (pointer: fine) { /* pointer fine for mouse */
 input[type="checkbox"]
 width: 15px;
 height: 15px;
 }
}

9 https://smashed.by/videoelements
10 https://smashed.by/touchtarget
11 https://smashed.by/pointer

Success at Scale272

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video
https://support.google.com/accessibility/android/answer/7101858
https://support.google.com/accessibility/android/answer/7101858
https://support.google.com/accessibility/android/answer/7101858
https://support.google.com/accessibility/android/answer/7101858
https://support.google.com/accessibility/android/answer/7101858
https://developer.mozilla.org/en-US/docs/Web/CSS/@media/pointer
https://developer.mozilla.org/en-US/docs/Web/CSS/@media/pointer
https://developer.mozilla.org/en-US/docs/Web/CSS/@media/pointer
https://developer.mozilla.org/en-US/docs/Web/CSS/@media/pointer
https://developer.mozilla.org/en-US/docs/Web/CSS/@media/pointer
https://developer.mozilla.org/en-US/docs/Web/CSS/@media/pointer
https://developer.mozilla.org/en-US/docs/Web/CSS/@media/pointer

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

@media (pointer: coarse) { /* pointer coarse for touch */
 input[type="checkbox"] {
 width: 30px;
 height: 30px;
 }
}

DISPLAY

Some best practices ensure that content displayed is accessible to all
users, including those with slight visual impairments.

Colors used in the background and foreground should be sufficient-
ly different, resulting in high enough contrast. WebAIM guidelines
recommend a minimum of 4.5:1 contrast ratio. The high contrast
compensates for the loss in contrast sensitivity usually experienced
by older people.

Color vision deficiency affects over 300 million people worldwide. So
if you are using colors alone to convey information (for example, in
validation errors or charts), these people may not perceive the content.

Responsive design12 is a good practice for users who access the web-
site from devices with varied viewport sizes and those with vision
impairments who zoom the page to access the content.

Accessibility Standards

The Web Accessibility Initiative (wai) within the World Wide Web
Consortium (w3c) is responsible for maintaining the Web Content

12 https://smashed.by/reponsivedesign

273Introduction

https://en.wikipedia.org/wiki/Responsive_web_design
https://en.wikipedia.org/wiki/Responsive_web_design
https://en.wikipedia.org/wiki/Responsive_web_design

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

Accessibility Guidelines (wcag). The current standard is wcag 2.2.13
It allows three levels of conformance to websites, levels A, AA, and
AAA, going from conformance to basic requirements for some users
with disabilities to enhanced requirements to cover a larger group of
users. Most websites should aim for level AA of conformance. You can
find a checklist corresponding to this guideline here.14

Additionally, wai-aria (Accessible Rich Internet Applications) speci-
fies the standard for increasing accessibility, especially for dynamic
components that are rendered using JavaScript. ARIA attributes ex-
tend html markup by adding textual information to html semantic
tags. These attributes were later incorporated into html5.

Testing for Accessibility

You can use the Lighthouse accessibility audits during the develop-
ment life cycle to determine your accessibility score15 and meet the
requirements. Lighthouse audits the page for several accessibility
requirements, such as alt text for images, landmark regions, names
for different elements, track elements for videos, and others. The
accessibility score is a weighted average of all accessibility audits.
Each audit passes only if all elements relevant to the audit satisfy the
specific accessibility requirement being audited.

Additionally, there are several automated accessibility testing tools
for different platforms. These include:

1. Axe16 and Tenon.io17 for automated testing on different frame-
works/browsers.

13 https://smashed.by/wcag21
14 https://smashed.by/wcagchecklist
15 https://web.dev/accessibility-scoring/
16 https://smashed.by/axe
17 https://tenon.io/

Success at Scale274

https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://webaim.org/standards/wcag/checklist
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA
https://web.dev/accessibility-scoring/
https://web.dev/accessibility-scoring/
https://web.dev/accessibility-scoring/
http://www.deque.com/products/axe/
https://tenon.io/
https://tenon.io/
https://tenon.io/

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

2. eslint-plugin-jsx-a11y18 for testing react components.

3. codelyzer19 for testing in-editor testing for Angular.

4. tota11y20 to visualize how your site performs with assistive
technology.

5. Accessibility Inspector21 and VoiceOver22 utility on macOS.

6. Windows Automation api Testing Tools,23 nvda,24 and
AccProbe25 on Windows.

However, manual testing is required to identify some issues. W3C
recommends that you plan and design for accessibility early in the
development life cycle. Teams should also evaluate accessibility early
to address issues.

Case Studies

Let us now look at some websites that have successfully built acces-
sibility as an integral part of their user experience.

18 https://smashed.by/eslint
19 https://smashed.by/codelyzer
20 https://smashed.by/tota11y
21 https://smashed.by/accessibilityinspector
22 https://smashed.by/voiceover
23 https://smashed.by/testtools
24 http://www.nvaccess.org/
25 http://accessibility.linuxfoundation.org/a11yweb/util/accprobe/

275Introduction

https://www.npmjs.com/package/eslint-plugin-jsx-a11y
https://www.npmjs.com/package/eslint-plugin-jsx-a11y
https://www.npmjs.com/package/eslint-plugin-jsx-a11y
https://www.npmjs.com/package/eslint-plugin-jsx-a11y
https://www.npmjs.com/package/eslint-plugin-jsx-a11y
https://www.npmjs.com/package/eslint-plugin-jsx-a11y
https://www.npmjs.com/package/eslint-plugin-jsx-a11y
https://www.npmjs.com/package/eslint-plugin-jsx-a11y
https://www.npmjs.com/package/eslint-plugin-jsx-a11y
https://web.dev/accessible-angular-with-codelyzer/
http://khan.github.io/tota11y/
http://khan.github.io/tota11y/
http://khan.github.io/tota11y/
https://developer.apple.com/library/mac/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXTesting/OSXAXTestingApps.html#//apple_ref/doc/uid/TP40001078-CH210-TPXREF101
https://developer.apple.com/library/mac/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXTesting/OSXAXTestingApps.html#//apple_ref/doc/uid/TP40001078-CH210-TPXREF101
https://developer.apple.com/library/mac/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXTesting/OSXAXTestingApps.html#//apple_ref/doc/uid/TP40001078-CH210-TPXREF101
https://support.apple.com/en-gb/guide/voiceover/vo2682/mac
http://msdn.microsoft.com/en-us/library/windows/desktop/dd373661(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd373661(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd373661(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd373661(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd373661(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd373661(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd373661(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd373661(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd373661(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd373661(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd373661(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd373661(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd373661(v=vs.85).aspx
http://accessibility.linuxfoundation.org/a11yweb/util/accprobe/

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

The Story of Making Wix Accessible
By Ohad Laufer

One of Wix’s mottos is “The Way the Web was Meant to Be.”1
We believe that everyone should have a website, and of
course, anyone should be able to access and use websites

built using Wix tools.

Wix has many users, and these users are very diverse. Users have
various devices, browsers, internet connections, and more. Users
might also not be able to use all interfaces, due to different physical
or cognitive impairments: they may have dyslexia, be blind or deaf,
or have motor control impairments that make it difficult – or impos-
sible – to use a mouse or trackpad.

In 2017, we at Wix decided to make sure our sites were accessible.
When we say a site is accessible, it means that the site’s content is
available to and all of its functionality can be operated by anyone.

The goal was to “enable our users to create an accessible site.” This
is different from modifying existing sites to be accessible. Wix can’t
prevent our users from using low-contrast colors or small fonts, so
we decided that the first phase of the project should focus on en-
abling users to build sites that are accessible using the existing Wix
tools.

Our team took on this project after we saw the “Accessibility – Sady”2
video by Apple and another one by Microsoft. We wanted to take on
this challenge and believed in its importance and ability to make an
actual difference. We had two months and a team of six developers

1 The original version of this case study was published in December 2017:
https://smashed.by/wixcasestudy

2 https://smashed.by/sady

Success at Scale276

http://www.youtube.com/watch?v=XB4cjbYywqg
http://www.youtube.com/watch?v=XB4cjbYywqg
http://www.youtube.com/watch?v=XB4cjbYywqg
http://www.youtube.com/watch?v=XB4cjbYywqg
http://www.youtube.com/watch?v=XB4cjbYywqg
http://www.youtube.com/watch?v=XB4cjbYywqg

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

split between Israel and Ukraine. In this limited time we knew we
couldn’t cover all aspects of accessibility, but tried to make the most
impact. The scope of the project was to:

• enable navigation by keyboard,

• provide screen reader compatibility,

• build infrastructure for accessibility development and testing.

Other assistive technologies and additional aspects of accessibility
will be supported in future phases.

Enable Keyboard Navigation

Developers sometimes assume that all our users can interact with
the sites using mouse, keyboard, and touch. People with some
disabilities might not be able to use all these interfaces and depend
on the most basic one: the keyboard. Keyboard navigation is usually
done with the Tab or arrow keys. The user can use Tab to move for-
ward in the site to the next interactive element, and Shift + Tab to
move back. Interaction with focused elements is usually done using
Enter or Space keys.

Focusable Elements

We wanted to make sure that all of the site’s features were accessi-
ble via keyboard interactions: the user should be able to access and
operate all interactive elements of the site. This means that all links,
buttons, menus, and so on need to work well when using a keyboard.
Not only do “simple” elements need to behave properly when used
with a keyboard, but more complex elements, such as galleries,

277The Story of Making Wix Accessible

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

contact forms, and strips (a common Wix element that acts as a
full-width container), need to have a logical behavior that supports
keyboard interaction too.

With the help of our product manager and UX expert, and also an
accessibility expert, we created a document that listed the desired
behavior of each Wix component. There are over 150 such compo-
nents, each with several display options. Our developers then went
through all these and applied the desired behavior.

The best method was to use the proper semantic html elements. For
instance, if we have a button component, it should use a <button>
html tag. A page’s navigation menu should use a <nav> tag. This
may sound obvious, but often developers choose to mimic a native
element behavior rather than simply use the most semantic element
for the task.

If, for any reason, we couldn’t change the html element in use, we
had to resort to other, less semantic methods, such as using html’s
tabindex attribute. This overrides the native behavior of an element
when using the keyboard by telling the browser to skip an element,
to focus on it (even if it’s not focusable by default), and can even
control the order of the tabbing.

Once users can get to all the interactive elements, they need to get
there in a meaningful order. For example, when navigating through
matrix gallery images, the first Tab should land on the first image,
then allow the user to use their arrow keys to move through the
collection. The next Tab should move the focus to the “next page”
button, and another Tab key press should move the focus to the
“previous page” button. All these adjustments had to be made for
each possible layout of the component.

Success at Scale278

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

Tab order in a gallery.

An additional aspect of keyboard navigation we had to handle were
“focus traps.” We needed to make sure that elements that open as a
modal window on top of the page (such as lightbox) allow navigation
inside, but don’t let the focus out until the modal window is closed.

Conversely, we needed to make sure that only components that we
deliberately made focus traps acted as such to prevent other compo-
nents (usually external iframes) from getting the user’s focus and
not releasing it as the user keeps on tabbing.

Focus trap: focus should be retained within the modal (right) and not
leak outside it (left).

279The Story of Making Wix Accessible

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

DOM Order

The last aspect of keyboard navigation is the need for the navi-
gation path to follow the way the site looks. This means that if
element X is directly before element Y on the site, the user should
pass from element X to element Y when tabbing. We want to make
this flow as intuitive as possible to the user. When navigating, the
browser uses only the html document object model (dom) order,
so we had to make sure the dom order reflected the actual order of
components on screen. Luckily for us, we used an existing algo-
rithm developed at Wix that analyzes the elements’ position on the
site and generates the proper order. We now allow users to explic-
itly run this algorithm on the site. In the future, this will be done
behind the scenes for all users.

Wix site dom order: the red line depicts the order in which tabbing occurs,
before (left) and after (right).

Visual Focus

In addition to it being keyboard accessible, the element should
display an indication when focused. This indication (visual focus)
behaves as an alternative to the mouse cursor and lets users know
which element they’re interacting with.

Success at Scale280

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

At Wix, like many other websites, the visual focus was actively dis-
abled up until now, rendering the sites inaccessible. The reason for
that was a design one: the focus indication “didn’t look good.” In this
project we now enabled users to toggle visual focus for their site on
or off. We also tried to use the new :focus-visible standard3 that
displays the visual focus only when using the keyboard to navigate,
hoping that it will make it less intrusive for mouse-using users.

Having completed all of the above, handling many components and
lots of edge cases, we finally had a site that is fully navigable and
functional using a keyboard only.

Make the Site Usable by Screen Readers

People with impaired vision use assistive technology tools such as a
screen magnifier or screen reader to interact with their computer. A
screen reader synthesizes a voice to read the site out loud to the user.
Examples are VoiceOver, TalkBack, jaws and nvda.

Screen readers use an “accessibility tree”4 created by the operating
system and browser, and enable various interactions with the site.
Screen readers read all elements, including non-actionable ele-
ments like text paragraphs and descriptions of images, using the
dom, which makes the dom treatment discussed in the last section
even more valuable.

Document Landmarks

We applied html document landmarks wherever we could, mark-
ing up the site header as <header>, the menu as <nav>, and more.
These semantics tell the screen reader what each section does, thus
enabling it to create a more accurate accessibility tree with more rel-

3 https://smashed.by/focusring
4 https://smashed.by/accessibilitytree

281The Story of Making Wix Accessible

http://github.com/WICG/focus-ring
http://github.com/WICG/focus-ring
http://github.com/WICG/focus-ring
http://github.com/WICG/focus-ring
http://github.com/WICG/focus-ring
http://github.com/WICG/focus-ring
http://github.com/WICG/focus-ring
http://developers.google.com/web/fundamentals/accessibility/semantics-builtin/the-accessibility-tree
http://developers.google.com/web/fundamentals/accessibility/semantics-builtin/the-accessibility-tree
http://developers.google.com/web/fundamentals/accessibility/semantics-builtin/the-accessibility-tree

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

evant information about the site content. Many screen readers allow
the user to jump past repeated content, such as header and site-wide
navigation, and get straight to the main content.

ARIA Roles

Roles give information to assistive technologies about the behavior
of an element, its current state, and how to interact with it, in case
the native html can’t be used or is not enough. One example is
aria-hidden which makes a screen reader ignore an element. This
is most commonly used when an element is heavily nested and we
only want that element to be read, omitting all its predecessors.
Another common use is aria-live which is used when something
changes on the page and we want to notify the screen reader. We
used it for such components as the contact form (for invalid field
indications), lightboxes and image zoom mode.

We also used roles such as button to tell screen readers that an
element should be read
and operated as a but-
ton, when a different
html element is used
to mimic a button. As
far as possible, we tried
to limit using roles
as much as possible,
favoring the built-in be-
haviors of native html
semantics to minimize
the chance of unwant-
ed side effects.

New shape settings includes alt text.

Success at Scale282

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

Titles and Alternative Text

It’s simple – but crucial – to add titles, labels, and headings – and to
all components. Wix has many graphic components that may only
make sense when visible; for example, an icon shaped as a house.
To a sighted person, it’s obvious that it’s a link to the homepage,
but a person who doesn’t see won’t know that. Alternative text is a
well-known best practice for images that convey meaning (photos,
charts, and so on – not purely decorative ones), but descriptive text is
needed for other graphic components as well, so we added the ability
for the user to set it for any such kind of component.

The same goes for types of buttons and iframes that can be used for
various purposes: adding a title or aria-label to these items tells
the screen reader user the functionality of the specific element.

As a very desirable side effect, these additions also make the site
more seo-friendly: bots don’t “see” the graphics either, but only text
content, so in this case it’s totally a win–win.

Build Infrastructure for Accessibility
Development and Testing

When working on the project, we always kept in mind that accessibil-
ity is not a one-time effort. Accessibility needs to become an insep-
arable aspect of product development, just like we already consider
performance, UX, mobile, and localization. Therefore, we didn’t only
work on the tasks already described, but also aspired to create tools
for the future and for easier development, testing, and maintenance.

We built a collection of utility classes for handling keyboard interac-
tion on components, getting “Tab-able” (that is, actionable) elements

283The Story of Making Wix Accessible

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

for easier navigation, and creation of focus traps. We also introduced
testing tools and methods to address accessibility validation. We
used both third-party libraries (axe-core)5 and our own tools for easi-
er component creation and validation.

All the knowledge we acquired during the process is continuously
shared with other developers who work on different accessibility
projects at Wix and is curated in different forms (readme files, pre-
sentations, this case study) for future developers joining our team.

Technical Scope

While working on this project, we used the wcag 2.0 guidelines.6 We
found that there are no clear guidelines on how some elements (mainly
complex ones) should behave, so we tried to rely on wcag 2.0 as refer-
ence and guide while creating the specifications that best fit our needs.

Different operating systems, browsers and screen readers treat
accessibility aspects very differently. As a rule of thumb, we set our
scope on the following support matrix:

• Win 7/10 + Firefox + nvda7
• macOS + Safari + VoiceOver

To verify the outcome of our project we were helped by an organiza-
tion that employs people with disabilities who tested our websites
and gave us vital feedback.

Summary

In this case study, I told the story of the work we did over two
months making Wix sites accessible. Apart from the main goal of

5 https://smashed.by/axecoregit
6 https://smashed.by/wcag20
7 http://www.nvaccess.org/

Success at Scale284

http://github.com/dequelabs/axe-core
http://github.com/dequelabs/axe-core
http://github.com/dequelabs/axe-core
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/WCAG20/

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

Wix Key Takeaways

this project, we also had a greater mission: to create a new culture of
development that considers accessibility as one of the cornerstones
of our product.In the web world, as in the real world, there’s always
more than one way to achieve a goal. We aspired to set a new mind-
set of always preferring the native solution over a proprietary one.

Another important outcome of this project was the introduction of
accessibility, its language, conversations, and practices to Wix devel-
opers, by creating a small but dedicated community within Wix to
advocate this cause.

Enhanced the product to create a culture for accessibility

and enable users to build accessible websites using Wix.

Wix is a product that enables developers to build websites quickly
with its library of customizable components. To ensure that sites
built using Wix are accessible, they had to enhance each of their 150
components to support navigation using keyboard and screen readers.

They also had to create a framework that allows the development and
testing of accessible components and websites. This effort involved
reengineering all the components (including complex components
such as galleries and contact forms) to support standard accessibility
requirements like correct tab orders, focus indicators, semantic html
elements with aria attributes, and others. They also introduced tools
and methods for easier component creation and accessibility valida-
tion in the future.

285The Story of Making Wix Accessible

Success at Scale286

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

Interview

Ohad Laufer
Former Engineering Manager at Wix

Author, The Story of Making Wix Accessible

What excited you or your team the most about the work in
the case study?

There were two things that made this project special.

The thing that caught the team’s attention initially was the mission.
Wix had decided to make all websites created by the platform acces-
sible. Up until that point, accessibility wasn’t something we were
considering as important or relevant. However, as we were about to
start working on the project, we took a few days to get inspired by
other companies’ approach to accessibility. We watched some videos
and talked to people with visual impairments and got a sense of how
they experience the web. This was a mind-boggling experience that
motivated us throughout the project and made us understand we
were making an actual difference. This project gave us a glance into
the world of differently-abled people, an issue I took to heart and
have advocated ever since.

The other exciting part was the opportunity to touch and guide the
entire company on the technical approach to accessibility. We were
empowered by Wix engineering leadership to provide a complete
solution. As a team focused on a specific feature within the Wix prod-
uct, we now had a chance to dive deep into the architecture beyond
our product scope, understand how things are built, and design a

287

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

The Story of Making Wix Accessible

solution that fits all current and future product features. This was the
kind of engineering challenge that we were super excited to take on.

Were you surprised by the impact your work had on the overall
user experience, business, team, or other metrics?

When we started, we didn’t expect to have such an impact. We
thought we were about to fix a specific pain that our users expe-
rienced. It was supposed to include lots of coding and even more
testing. Little did we know that the fix would require changing
development methodologies and mindsets throughout the company.
Furthermore, the end result of a well-structured, accessible website
proved valuable for seo purposes as well. That was another valuable
and unexpected win.

If you had a similar project/problem today, do you think your
process/tooling/decisions would be exactly the same? Or, to
put it differently, looking back now, what would you have done
differently if you had a chance to make adjustments?

In hindsight, the most important outcome of this project was creat-
ing a group of accessibility advocates within the company. It was a
by-product of the effort and something that we started to establish
late in the project.

If I was to do something differently, this would be it: I would focus
only on creating the guidelines and tools and then make an effort to
establish a group of advocates throughout the company who would
apply these guidelines to their respective products. This would allow
for better scaling and continuity of the initiative.

Success at Scale288

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

What do you think was the one critical decision that made the
outcome successful? What brought you to this decision, and
how did you or your entire team make it?

The most critical decision was to document our process. Early on
it was clear this was a project unlike any other we’d recently
worked on as a team in terms of the breadth and depth we had to
get into and the significant time constraints. It was quite obvious
that our usual practices wouldn’t fit the project’s needs and we had
to create new ones.

We created a new execution and tracking process, focused on
communication and quick decision-making with all stakeholders
and amended it as we progressed. We also documented the entire
decision-making process as a single source of truth and for future
reference. Luckily enough, this decision later made it easier to share
our key learnings across the company and to create this lovely case
study about the project.

Do you have any advice for teams that would like to follow
in your footsteps?

Getting help and guidance from a subject matter expert was key.

Product teams often mistakenly assume they “get” their users and
their needs. In our case, there was no way for us to do that. As people
who don’t use assistive technologies regularly, we lacked the knowl-
edge and expertise of how to use those as intended, so defining
desired behavior and performing verification of our solution was not
something we could do on our own. Having an accessibility expert
join us for consultation enabled us to make the right decisions and
make sure we were building the right thing.

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

The Understood: How We
Improved Web Accessibility
By Catherine Houle & Ilknur Eren

The Understood.org front-end team1 has a special focus on
removing barriers for people who learn and think differently.
Our core users have adhd, dyslexia, and other common

challenges. But we are committed to creating products that meet the
needs of all people. To do this, we combine accessibility and usabil-
ity in ways that increase ease of use for everyone. This case study
outlines the why and how of our process. We also include basic steps
on how to fix common accessibility issues.

Why is Digital Accessibility Important?

Understood.org serves the one in five people who learn and think
differently, which translates to approximately 70 million people in
the U.S. alone. Learning and thinking differences can include the
areas of memory, attention, and reading, as well as language and
math, among others.

The Understood front-end team specializes in serving users who
learn and think differently. But we are committed to creating prod-
ucts that meet the needs of all people.

Despite how common disabilities are, an article in AdWeek2 cited the
fairly shocking fact that only 2% of all websites meet accessibility
standards. Those guidelines are set out by the Web Content Acces-
sibility Guidelines (wcag), known and accepted worldwide as the
minimum requirements to meet digital accessibility.

1 The original version of this case study was published in August 2022:
https://smashed.by/understoodcasestudy

2 https://smashed.by/adweek

289The Understood: How Our Organization Improved Web Accessibillity

https://www.adweek.com/media/only-2-of-sites-meet-accessibility-standards-lets-change-that/

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

The wcag are essential to our work, but they serve as a floor, not
a ceiling. These standards should underlie each website and app
but also be woven throughout the fabric of every developer’s pro-
cess. Building and maintaining coding configurations that ensure
error-free and equal access is the clarion call for all developers and
designers.

Ethically, culturally, financially, and legally,3 expanding accessibility
to include neurodivergent people and those with other disabilities is
an intelligent and highly relevant business strategy.

DEEP FOCUS ON ACCESSIBILITY

The engineering team at Understood.org is working to combine acces-
sibility and usability4 in ways that improve ease of use for everyone.

We define “accessibility” as removing barriers for people to gain
equal access to information, par-
ticularly neurodivergent people,
and “usability” as making products
like websites and apps easy to use
for all people. That includes how

simple the product is to use the first time and if the experience was
gratifying, one that a user would likely repeat. A physical corollary
would be knowing whether you need PUSH or PULL to open a door.

Developers and designers who are fluent in accessibility are increas-
ingly highly sought after. The Wall Street Journal5 noted job listings
with ‘accessibility’ in the title grew a whopping 78% in 2021.

To be truly accessible, we need to implement solutions for people of
all abilities, with both visible and invisible differences. Wheelchair
ramps and closed captions are essential. But full access to the amaz-
ing power granted by access to goods, services, information, and

3 https://smashed.by/lawsuits
4 https://smashed.by/commitment
5 https://smashed.by/wsj

The reality is that digital

accessibility is and always

will be an ongoing process.

Success at Scale290

https://www.wsj.com/articles/lawsuits-over-digital-accessibility-for-people-with-disabilities-are-rising-11626369056
https://www.understood.org/en/articles/understoods-commitment-to-accessibility-and-usability?_sp=0d27ec45-f293-4419-8a78-7afa1284fc3c.1645901106434
https://www.understood.org/en/articles/understoods-commitment-to-accessibility-and-usability?_sp=0d27ec45-f293-4419-8a78-7afa1284fc3c.1645901106434
https://www.understood.org/en/articles/understoods-commitment-to-accessibility-and-usability?_sp=0d27ec45-f293-4419-8a78-7afa1284fc3c.1645901106434
https://www.understood.org/en/articles/understoods-commitment-to-accessibility-and-usability?_sp=0d27ec45-f293-4419-8a78-7afa1284fc3c.1645901106434
https://www.understood.org/en/articles/understoods-commitment-to-accessibility-and-usability?_sp=0d27ec45-f293-4419-8a78-7afa1284fc3c.1645901106434
https://www.understood.org/en/articles/understoods-commitment-to-accessibility-and-usability?_sp=0d27ec45-f293-4419-8a78-7afa1284fc3c.1645901106434
https://www.understood.org/en/articles/understoods-commitment-to-accessibility-and-usability?_sp=0d27ec45-f293-4419-8a78-7afa1284fc3c.1645901106434
https://www.understood.org/en/articles/understoods-commitment-to-accessibility-and-usability?_sp=0d27ec45-f293-4419-8a78-7afa1284fc3c.1645901106434
https://www.understood.org/en/articles/understoods-commitment-to-accessibility-and-usability?_sp=0d27ec45-f293-4419-8a78-7afa1284fc3c.1645901106434
https://www.understood.org/en/articles/understoods-commitment-to-accessibility-and-usability?_sp=0d27ec45-f293-4419-8a78-7afa1284fc3c.1645901106434
https://www.understood.org/en/articles/understoods-commitment-to-accessibility-and-usability?_sp=0d27ec45-f293-4419-8a78-7afa1284fc3c.1645901106434
https://www.understood.org/en/articles/understoods-commitment-to-accessibility-and-usability?_sp=0d27ec45-f293-4419-8a78-7afa1284fc3c.1645901106434
https://www.wsj.com/articles/more-companies-are-looking-to-hire-accessibility-specialists-11630501200
https://www.wsj.com/articles/more-companies-are-looking-to-hire-accessibility-specialists-11630501200
https://www.wsj.com/articles/more-companies-are-looking-to-hire-accessibility-specialists-11630501200
https://www.wsj.com/articles/more-companies-are-looking-to-hire-accessibility-specialists-11630501200
https://www.wsj.com/articles/more-companies-are-looking-to-hire-accessibility-specialists-11630501200

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

communication options provided by the Internet also needs more
learning and thinking support. This includes ways to help users
focus and remember key points.

To do this, we have started putting people at the center of the
process. Previously, the focus was on process, data evolution, key
metrics, and results. That mindset leaves out a sizable portion of the
population which diminishes access for users to all websites and
apps across the board – from e-commerce and media outlets (includ-
ing social and traditional) to government sites, search engines, and
educational interests.

What is the Role of Front-End Developers?

As developers, we play an important part in the consistency chain
for coding best practices. We believe that due to timing and raising
awareness, we are literally part of the process that is developing a
foundational language for accessibility and usability that will be
utilized by all future generations.

As such, we not only use our knowledge of programming languages
to help develop the desired look and feel of our products, we ensure
those products are accessible across multiple platforms.

And this is where the rubber meets the road: ensuring flawless op-
eration when incorporating graphics, applications, audio, and video
into the mix, ensuring those elements are cohesive and accessible for
everyone by consistently testing for speed, usability, and accessibility.

ADDRESSING ACCESSIBILITY

We are on a continuous mission to ensure that sites are perceivable
and error-free. Most industries come at the accessibility thing hap-

291The Understood: How Our Organization Improved Web Accessibillity

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

hazardly. At Understood.org, we have found that the cleanest, most
efficient way to approach it is to have “accessibility and usability” as
prime factors in the initial development process.

It may seem like a basic statement, but as front-end developers,
it is crucial that we have an in-depth understanding of how
people actually use their devices when they are seeking informa-
tion or online services.

At Understood.org, we reverse the traditional site creation process by
listening closely to our users and accessibility consultants rather
than designing first and asking questions second. It is not an exag-
geration to say that our users’ insights guide our work.

The fundamentals of solid development and design practices apply
doubly to accessibility and usability:

• Basic to advanced accessibility training for all technical
teams, including front-end, back-end, and designers.

• Attending accessibility conferences each year to keep up
with the latest advancements and expand your knowledge base.

• Conducting surveys and tests with ‘actual’ instead of theoret-
ical users. In our case, that would be people who learn and think
differently.

Working as a Team

Every industry has its own style and uses a unique flow for devel-
opment. Because serving people with learning and thinking differ-
ences is top-of-mind for us, Understood.org begins with user research
which includes creating and applying surveys. The information and
insights we glean from those surveys inform the designers, who

Success at Scale292

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

then share content and possibilities with product managers. That
information gets relayed to the front-end team to update/create, and
then the front-end team creates the site/product for designers who
provide feedback and apply their edits.

Why does our process start with user research to inform designers?
Deque Systems,6 a provider of compliance accessibility tools and
software, observed that 67% of accessibility issues originate in the
design phase of development.

Evolving and maintaining open and honest communications with
product managers and design teams translates to less compliance
and operational issues down the road. As with any team that works
together, yet asynchronously, it is sometimes easier to spot potential
concerns from the other side. In our experience:

• Engineers detected accessibility flaws, and the designers found
alternative solutions that also aligned with the design vision.

• Designers had top-flight guidance on crafting color contrast,
character counts, and effective font styles.

All engineer tickets include accessibility, so each ticket includes an
Accessibility Audit. That way, we assign time to deal with whatever
issues were revealed.

In our process, we use screen readers to test our pages manually.
If there is a video, we refine the closed captions and check individ-
ual elements, including headings, buttons, navigation, lists, and
color contrast.

Our front-end team always works with product managers to pri-
oritize tickets, and we make it a point to align both teams to make
things work. Importantly, engineering teams are realistic when they
spec out the appropriate timeline for creation and review.

6 https://www.deque.com/

293The Understood: How Our Organization Improved Web Accessibillity

https://www.deque.com/?utm_term=deque&utm_campaign=Search - Branded&utm_source=adwords&utm_medium=ppc&hsa_src=g&hsa_ad=430042340357&hsa_tgt=kwd-297262585353&hsa_mt=e&hsa_ver=3&hsa_acc=7854167720&hsa_kw=deque&hsa_grp=98767378934&hsa_cam=1494072164&hsa_net=adwords&gclid=CjwKCAiAvOeQBhBkEiwAxutUVMqai8_l87f1ERVQSHUWKhLdsRhBwOGVdaYPLsqZUNhUVlwwjMbP4RoChJkQAvD_BwE
https://www.deque.com/?utm_term=deque&utm_campaign=Search - Branded&utm_source=adwords&utm_medium=ppc&hsa_src=g&hsa_ad=430042340357&hsa_tgt=kwd-297262585353&hsa_mt=e&hsa_ver=3&hsa_acc=7854167720&hsa_kw=deque&hsa_grp=98767378934&hsa_cam=1494072164&hsa_net=adwords&gclid=CjwKCAiAvOeQBhBkEiwAxutUVMqai8_l87f1ERVQSHUWKhLdsRhBwOGVdaYPLsqZUNhUVlwwjMbP4RoChJkQAvD_BwE
https://www.deque.com/?utm_term=deque&utm_campaign=Search - Branded&utm_source=adwords&utm_medium=ppc&hsa_src=g&hsa_ad=430042340357&hsa_tgt=kwd-297262585353&hsa_mt=e&hsa_ver=3&hsa_acc=7854167720&hsa_kw=deque&hsa_grp=98767378934&hsa_cam=1494072164&hsa_net=adwords&gclid=CjwKCAiAvOeQBhBkEiwAxutUVMqai8_l87f1ERVQSHUWKhLdsRhBwOGVdaYPLsqZUNhUVlwwjMbP4RoChJkQAvD_BwE

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

Product managers then QA all the features and test for accessibility
issues. This means that we have two entire teams that review all
features for accessibility and errors.

In evolving the workflow, we’ve learned how important it is to allo-
cate time in sprints to work on accessibility.

Example

For our mobile app:

• We examine everything page by page and log all errors into a
central database.

• We then convert that content to Jira tickets, complete with
descriptions, screenshots, and story points.

• If we work with a third party, and one of its tools is not accessi-
ble, we work with them to make it accessible.

THE DEVELOPER’S POV

• Will non-screen reader users have a comparable experience to
that of screen reader users?

• Can users focus on every interactivity in the right order?

• Does the html markup make sense?

• Are we conveying helpful semantic and stating information
to screen readers? For example, we don’t want repeated infor-
mation that isn’t necessary or bad image descriptions.

• Make sure dynamic (error message for form, confirmation of
login) changes are transmitted to screen reader users.

• Are our features or components keyboard-accessible?

Success at Scale294

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

THE DESIGNER’S POV

• Is there sufficient color contrast?

• Do we have a good font size, clean flow, and layout throughout?

• Does the light/dark mode function well and look good?

• Are all interactions reachable and executable?

Fixing Common Accessibility Errors

There’s a wide range of issues that can compromise accessibility,
including those the website webaim.org calls “mistakes, miscon-
ceptions, over-indulgences, intricacies, and generally silly aspects
of modern accessibility.” We find that webaim.org is an invaluable
resource for understanding and then rectifying just about anything
that can go haywire. In an article7 for freecodecamp.org, Ilknur Eren,
a front-end developer on our team, included a chart illustrating the
most common types of wcag 2 failures that WebAIM says comprise
96.8% of all accessibility errors:8

wcag
failure
type

% of
home pages
in 2022

% of
home pages
in 2021

% of
home pages
in 2020

% of
home pages
in 2019

Low contrast
text

83.9% 86.4% 86.3% 85.3%

Missing alternative
text for images

55.4% 60.6% 66.0% 68.0%

Empty links 50.1% 51.3% 59.9% 58.1%

Missing form
input labels

46.1% 54.4% 53.8% 52.8%

Empty buttons 27.2% 26.9% 28.7% 25.0%

Missing document
language

22.3% 28.9% 28.0% 33.1%

This chart lists the most glaring failures, but read on for those that are most
common and for understanding quick fixes.

7 https://smashed.by/accessibilityerrors
8 https://smashed.by/detectederrors

295The Understood: How Our Organization Improved Web Accessibillity

https://www.freecodecamp.org/news/common-accessibility-errors-and-how-to-fix-them/
https://webaim.org/projects/million/#errors
https://webaim.org/projects/million/#errors
https://webaim.org/projects/million/#errors
https://webaim.org/projects/million/#errors
https://webaim.org/projects/million/#errors
https://webaim.org/projects/million/#errors
https://webaim.org/projects/million/#errors
https://webaim.org/projects/million/#errors
https://webaim.org/projects/million/#errors
https://webaim.org/projects/million/#errors

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

MISSING ALTERNATIVE TEXT FOR IMAGES

Understanding the “why” of a coding style is as important as know-
ing a specific guideline. For images, the context from image to image
will vary and should determine the code because algorithms can’t
always interpret the meaning of an image.

One classic example of this is creating alternative text9 for an image
in the alt attribute of an tag.

If you don’t understand why you’re doing it, you may create some-
thing that isn’t helpful to the end user but may actually create a
brand new barrier.

Say we have an image, and we add the alt attribute:

While this might not get flagged by automated accessibility tests,
a screen reader focusing on this image will say, “image, image.” It
doesn’t inform the user and precludes their ability to solve their
problem of understanding how to exit a program.

LOW-CONTRAST TEXT

According to recent reports10 from the WebAim Million, over the last
three years, by far the most significant accessibility error is low-con-
trast text. A surprising 80% of websites have this error, but it is
relatively simple to fix. Google has a free tool called Lighthouse that
makes it quick and easy to check the color contrast on any web page.

9 https://smashed.by/alt
10 https://smashed.by/webaimmillion

Success at Scale296

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

MISSING FORM INPUT LABELS

According to WebAIM,11 in 2021 half of the delinquent websites were
missing their form input labels, which describe what the various
fields in the form are for.

One of the most common missing labels is for search forms. If there is
no label on a search form, screen readers won’t know what the form is.

Here’s how you fix that in html:

<label for="searchLabel" class="sr-only">Search</label>
<input type="text" name="search" id="searchLabel">
<input type="submit" value="Search">

And here’s css coding for the screen reader portion of that html
snippet:

.sr-only{
 position: absolute;
 left: -10000px;
 top: auto;
 width: 1px;
 height: 1px;
 overflow: hidden;

}

EMPTY LINKS

As above, almost half of the websites had empty links. This is a sim-
ple issue to identify and resolve.

11 https://smashed.by/webaim2021

297The Understood: How Our Organization Improved Web Accessibillity

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

For example, a Facebook logo that doesn’t add a label for a screen
reader user will generate an empty link accessibility issue for a
non-sighted user.

Adding a label to a link is simple and straightforward:

 <i aria-hidden="true"></i>
 Facebook

.sr-only{
 position: absolute;
 left: -10000px;
 top: auto;
 width: 1px;
 height: 1px;
 overflow: hidden;
}

MISSING DOCUMENT LANGUAGE

It’s essential to list the language of the page. Screen readers use doc-
ument language to decide how to pronounce words.

That said, somewhere between 28% and 33% of homepages have been
missing a document language for the previous three years.

Add the language to the html tag:

<html lang="en">
...
</html>

Success at Scale298

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

EMPTY BUTTONS

It can be frustrating to click on a button and have nothing happen.
The user is trying to submit a form or show/hide elements, and the
lack of functionality is enough to make them exit the page.

Like empty links, buttons need text for screen readers to read when
on focus.

If an image is used inside a button, we should add an alt attribute to
create a functional image:

<button type="submit">

</button>

Conclusions

In this day and age, accessibility should not be an afterthought. Ev-
erybody has the right to access the benefits and power of the Inter-
net and apps that make
daily life easier and more
enjoyable. When review-
ing sites and apps for us-
ability, make sure to test
your products manually
for accessibility. It makes a difference. Allocate specific time to focus
on accessibility and maintain open communication channels with
product managers and designers.

Allocate specific time to focus on

accessibility and maintain open

communication channels with

product managers and designers.

299The Understood: How Our Organization Improved Web Accessibillity

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

Continuing to explore technical training and new knowledge goes
hand-in-hand with interviewing and surveying people who think
differently so that what you produce and put out into the world is of
the highest quality and easy for everyone to use.

Understood.org Key Takeaways
Allocate specific time to focus on accessibility and test your

products manually for accessibility.

Understood.org, a non-profit that supports people with learning and
thinking differences, improved accessibility on their website by fixing
common accessibility issues. This included fixing low contrast text,
missing form input labels, empty links and buttons, and missing doc-
ument language for screen reader use.

The team leveraged user research. Engineers on the team detected
accessibility flaws. Designers then helped to find alternative solutions

Success at Scale300

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

Pinafore: What I Learned
About Accessibility in SPAs
By Nolan Lawson

Over the past year or so,1 I’ve learned a lot about accessibility,
mostly thanks to working on Pinafore,2 which is a single
page app (SPA). In this case study, I’d like to share some of

the highlights of what I’ve learned, in the hope that it can help others
who are trying to learn more about accessibility.

One big advantage I’ve had in this area is the help of Marco Zehe3, an
accessibility expert who works at Mozilla and is blind himself. Marco
has patiently coached me on a lot of these topics, and his comments4
on the Pinafore GitHub repo are a treasure trove of knowledge.

So without further ado, let’s dive in!

Misconceptions

One misconception I’ve observed in the web community is that
JavaScript is somehow inherently anti-accessibility. This seems to
stem from a time when screen readers did not support JavaScript
particularly well, and so, indeed, the more JavaScript you used, the
more likely things were to be inaccessible. I’ve found, though, that
most of the accessibility fixes I’ve made have actually involved writ-
ing more JavaScript, not less. So today, this rule is definitely more
myth than fact. However, there are a few cases where it holds true.

1 The original version of this case study was published in November 2019:
https://smashed.by/spasaccessibility

2 https://pinafore.social/
3 https://marcozehe.wordpress.com//
4 https://smashed.by/pinaforecomment

301Pinafore: What I Learned about Accessibility in SPAs

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

DIVS AND SPANS VERSUS BUTTONS AND INPUTS

Here’s the best piece of accessibility advice for newbies: if something
is a button, make it a <button>. If something is an input, make it an
<input>. Don’t try to reinvent everything from scratch using <div>s
and s. This may seem obvious to more seasoned web develop-
ers, but for those who are new to accessibility, it’s worth reviewing
why this is the case.

First off, for anyone who doubts that this is a thing, there was a large
open-source dependency of Pinafore (and of Mastodon) that had sev-
eral thousand GitHub stars, tens of thousands of weekly downloads
on npm, and was composed almost entirely of <div>s and s.
In other words: when something should have been a <button>, it
was instead a with a click listener. (I’ve since fixed most of
these accessibility issues, but this was the state I found it in.)

This is a real problem! People really do try to build entire interfaces
out of <div>s and s. Rather than chastise, though, let me ana-
lyze the problem and offer a solution.

I believe the reason people are tempted to use <div>s and s
is that they have minimal user agent styles; that is, there is less you
have to override in css. However, resetting the style on a <button> is
actually pretty easy:

button {
 margin: 0;
 padding: 0;
 border: none;
 background: none;
}

Success at Scale302

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

Ninety-nine percent of the time, I’ve found that this was all I needed
to reset a <button> to have essentially the same style as a <div>
or a . For more advanced use cases, you can explore this
CSS-Tricks article.5

In any case, the whole reason you want to use a real <button> over a
 or a <div> is that you essentially get accessibility for free:

• For keyboard users who tab around instead of using a mouse, a
<button> automatically gets the right focus in the right order.

• When focused, you can press the Space bar on a <button>
to press it.

• Screen readers announce the <button> as a button.

• etc.

You could build all this yourself in JavaScript, but you’ll probably mess
something up, and you’ll also have a bunch of extra code to maintain.
It’s best just to use the native semantic html elements.

SPAs Must Manually Handle Focus
and Scroll Position

There is another case where the “JavaScript is anti-accessibility”
mantra has a kernel of truth: spa navigation. Within spas, it’s com-
mon for JavaScript to handle navigation between pages by modify-
ing the dom and History api6 rather than triggering a full page load.
This causes several challenges for accessibility:

• You need to manage focus yourself.

• You need to manage the scroll position yourself.

5 https://smashed.by/overridingstyles
6 https://smashed.by/historyapi

303Pinafore: What I Learned about Accessibility in SPAs

https://css-tricks.com/overriding-default-button-styles/
https://css-tricks.com/overriding-default-button-styles/
https://css-tricks.com/overriding-default-button-styles/
https://css-tricks.com/overriding-default-button-styles/
https://css-tricks.com/overriding-default-button-styles/
https://css-tricks.com/overriding-default-button-styles/

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

For instance, let’s say I’m in my timeline, and I want to click this
timestamp to see the full thread of a post:

Click timestamp to view full thread

When I click the link and then press the Back button, focus should
return to the element I last clicked (note the purple outline):

Focus should return to the timestamp on click of the Back button

For classic server-rendered pages, most browser engines give you
this functionality for free.7 You don’t have to code anything. But in

7 https://smashed.by/browserengines

Success at Scale304

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

an spa, since you’re overriding the normal navigation behavior, you
have to handle the focus yourself.

This also applies to scrolling, especially in a virtual list. In the
screenshot above, note that I’m scrolled down to exactly the point
in the page where I was when I clicked. Again, this is seamless
when you’re dealing with server-rendered pages, but for spas the
responsibility is yours.

Easier Integration Testing

One thing I was surprised to learn is that, by making my app more ac-
cessible, I also made it easier to test. Consider the case of toggle buttons.

A toggle button is a button that can have two states: pressed or not
pressed.8 For instance, in the screenshot below, the “boost” and “fa-
vorite” buttons (the circular arrow and the star) are toggle buttons,
because it’s possible to boost or favorite a post, and they start off in
unboosted/unfavorited states.

Distinguishing the state of a toggle (star) button using darker colors

Visually, there are plenty of styles you can use to signal the pressed/
unpressed state – for instance, I’ve opted to make the colors darker
when pressed. But for the benefit of screen reader users, you’ll typi-
cally want to use a pattern like the following:

8 https://smashed.by/togglebutton

305Pinafore: What I Learned about Accessibility in SPAs

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

<button type=”button” aria-pressed=”false”>
Unpressed
</button>

<button type=”button” aria-pressed=”true”>
Pressed
</button>

Incidentally, this makes it easier to write integration tests (using Test-
Cafe9 or Cypress, for instance). Why rely on classes and styles, which
might change if you redesign your app, when you can instead rely on
the semantic attributes, which are guaranteed to stay the same?
I observed this pattern again and again: the more I improved accessi-
bility, the easier things were to test. For instance:

• When using the feed pattern,10 I could use aria-posinset and
aria-setsize to confirm that the virtual list had the correct
number of items and in the correct order.

• For buttons without text, I could test the aria-label rather
than the background image or something that might change if
the design changed.

• For hidden elements, I could use aria-hidden to identify them.

So make accessibility a part of your testing strategy! If something is
easy for screen readers to interpret, then it’ll probably be easier for your
automated tests to interpret too. After all, screen reader users might
not be able to see colors, but neither can your headless browser tests!

Subtleties with Focus Management

After watching a talk by Ian Forrest (“Beyond Alt-Text: Trends in Online
Accessibility,”11), and playing around with KaiOS, I realized I could make
some small changes to improve keyboard accessibility in my app.

9 https://smashed.by/testcafe
10 https://smashed.by/feedpattern
11 https://smashed.by/beyondalt

Success at Scale306

https://www.w3.org/TR/wai-aria-practices-1.1/#feed
https://www.w3.org/TR/wai-aria-practices-1.1/#feed
https://www.w3.org/TR/wai-aria-practices-1.1/#feed
https://youtu.be/pNcB7ChyO1E
https://youtu.be/pNcB7ChyO1E
https://youtu.be/pNcB7ChyO1E
https://youtu.be/pNcB7ChyO1E
https://youtu.be/pNcB7ChyO1E
https://youtu.be/pNcB7ChyO1E
https://youtu.be/pNcB7ChyO1E
https://youtu.be/pNcB7ChyO1E
https://youtu.be/pNcB7ChyO1E
https://youtu.be/pNcB7ChyO1E
https://youtu.be/pNcB7ChyO1E
https://youtu.be/pNcB7ChyO1E
https://youtu.be/pNcB7ChyO1E
https://youtu.be/pNcB7ChyO1E
https://youtu.be/pNcB7ChyO1E
https://nolanlawson.com/2019/09/22/the-joy-and-challenge-of-developing-for-kaios/
https://nolanlawson.com/2019/09/22/the-joy-and-challenge-of-developing-for-kaios/
https://nolanlawson.com/2019/09/22/the-joy-and-challenge-of-developing-for-kaios/
https://nolanlawson.com/2019/09/22/the-joy-and-challenge-of-developing-for-kaios/
https://nolanlawson.com/2019/09/22/the-joy-and-challenge-of-developing-for-kaios/
https://nolanlawson.com/2019/09/22/the-joy-and-challenge-of-developing-for-kaios/
https://nolanlawson.com/2019/09/22/the-joy-and-challenge-of-developing-for-kaios/

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

As pointed out in the talk, it’s not necessarily the case that every
mouse-accessible element also needs to be keyboard-accessible. If
there are redundant links on the page, then you can skip them in the
tabindex order, so a keyboard user won’t have to press Tab so much.

In the case of Pinafore, consider a post. There are two links that lead
to the user’s profile page: the profile picture, and the user name:

Two links that lead to the same page

These two links lead to exactly the same page; they are strictly
redundant. So I chose to add tabindex=”-1” to the profile picture,
giving keyboard users one less link to have to tab through. Especially
on a KaiOS device with a tiny directional pad (d-pad), this is a nice
feature! Video example: https://smashed.by/changingfocus

In the video above, note that the profile picture and timestamp are
skipped in the tab order because they are redundant – clicking the
profile picture does the same thing as clicking the user name, and
clicking the timestamp does the same thing as clicking on the entire
post. (Users can also disable the “click the entire post” feature, as it
may be problematic for those with motor impairments. In that case,
the timestamp is re-added to the tab order.)

Interestingly, an element with tabindex=”-1” can still become
focused if you click it and then press the Back button. But luckily,
tabbing out of that element does the right thing as long as the other
tabbable elements are in the proper order.

307Pinafore: What I Learned about Accessibility in SPAs

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

The Final Boss: Accessible Autocomplete

After implementing several accessible widgets from scratch, including
the feed pattern and an image carousel, I found that the single most
complicated widget to implement correctly was autocompletion.
Video: https://smashed.by/autocompletion

The autocomplete widget detects potential usernames while the user types, and
allows them to select from a list instead of having to type the entire name.

Originally, I had implemented this widget12 by following this de-
sign13 by Adina Halter that relies largely on creating an element with
aria-live=”assertive”, which explicitly speaks every change in the
widget state (e.g. “the current selected item is number 2 of 3”). This is
kind of a heavy-handed solution, though, and it led to several bugs.

After toying around with a few patterns, I eventually settled on a
more standard design using aria-activedescendant. Roughly, the
html looks like this:

<textarea
 id="the-textarea"
 aria-describedby="the-description”
 aria-owns="the-list”
 aria-expanded="false”
 aria-autocomplete="both"

12 https://smashed.by/widget
13 https://smashed.by/autocompletedesign

Success at Scale308

https://github.com/nolanlawson/pinafore/issues/129
https://github.com/nolanlawson/pinafore/issues/129
https://github.com/nolanlawson/pinafore/issues/129
https://github.com/nolanlawson/pinafore/issues/129
https://github.com/nolanlawson/pinafore/issues/129
https://github.com/nolanlawson/pinafore/issues/129
https://github.com/nolanlawson/pinafore/issues/129
https://github.com/nolanlawson/pinafore/issues/129
https://github.com/nolanlawson/pinafore/issues/129
https://haltersweb.github.io/Accessibility/autocomplete.html
https://haltersweb.github.io/Accessibility/autocomplete.html
https://haltersweb.github.io/Accessibility/autocomplete.html
https://haltersweb.github.io/Accessibility/autocomplete.html

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

 aria-activedescendant="option-1">
</textarea>
<ul id="the-list" role="listbox">
 <li
 id="option-1"
 role="option"
 aria-label="First option (1 of 2)">

 <li
 id="option-2"
 role="option"
 aria-label="Second option (2 of 2)">

<label for="the-textarea" class="sr-only">
 What’s on your mind?
</label>

 When autocomplete results are available, press up or down
 arrows and enter to select.

In broad strokes, what’s happening is:

• The description and label are offscreen, using styles which make
it only visible to screen readers.14 The description explains that
you can press up or down on the results and press Enter to select.

• aria-expanded indicates whether there are autocomplete
results or not.

• aria-activedescendant indicates which option in the
list is selected.

• aria-labels on the options allow me to control how it’s spoken
by a screen reader, and to explicitly include text like “1 of 2” in
case the screen reader doesn’t speak this information.

14 https://smashed.by/pinaforebugs

309Pinafore: What I Learned about Accessibility in SPAs

https://github.com/nolanlawson/pinafore/blob/af1bb984c93a4961c12ab92001519a18af963cc0/src/scss/global.scss#L185-L195
https://github.com/nolanlawson/pinafore/blob/af1bb984c93a4961c12ab92001519a18af963cc0/src/scss/global.scss#L185-L195
https://github.com/nolanlawson/pinafore/blob/af1bb984c93a4961c12ab92001519a18af963cc0/src/scss/global.scss#L185-L195
https://github.com/nolanlawson/pinafore/blob/af1bb984c93a4961c12ab92001519a18af963cc0/src/scss/global.scss#L185-L195
https://github.com/nolanlawson/pinafore/blob/af1bb984c93a4961c12ab92001519a18af963cc0/src/scss/global.scss#L185-L195
https://github.com/nolanlawson/pinafore/blob/af1bb984c93a4961c12ab92001519a18af963cc0/src/scss/global.scss#L185-L195
https://github.com/nolanlawson/pinafore/blob/af1bb984c93a4961c12ab92001519a18af963cc0/src/scss/global.scss#L185-L195
https://github.com/nolanlawson/pinafore/blob/af1bb984c93a4961c12ab92001519a18af963cc0/src/scss/global.scss#L185-L195
https://github.com/nolanlawson/pinafore/blob/af1bb984c93a4961c12ab92001519a18af963cc0/src/scss/global.scss#L185-L195
https://github.com/nolanlawson/pinafore/blob/af1bb984c93a4961c12ab92001519a18af963cc0/src/scss/global.scss#L185-L195
https://github.com/nolanlawson/pinafore/blob/af1bb984c93a4961c12ab92001519a18af963cc0/src/scss/global.scss#L185-L195
https://github.com/nolanlawson/pinafore/blob/af1bb984c93a4961c12ab92001519a18af963cc0/src/scss/global.scss#L185-L195
https://github.com/nolanlawson/pinafore/blob/af1bb984c93a4961c12ab92001519a18af963cc0/src/scss/global.scss#L185-L195
https://github.com/nolanlawson/pinafore/blob/af1bb984c93a4961c12ab92001519a18af963cc0/src/scss/global.scss#L185-L195
https://github.com/nolanlawson/pinafore/blob/af1bb984c93a4961c12ab92001519a18af963cc0/src/scss/global.scss#L185-L195
https://github.com/nolanlawson/pinafore/blob/af1bb984c93a4961c12ab92001519a18af963cc0/src/scss/global.scss#L185-L195
https://github.com/nolanlawson/pinafore/blob/af1bb984c93a4961c12ab92001519a18af963cc0/src/scss/global.scss#L185-L195

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

After extensive testing, this was more-or-less the best solution I
could come up with. It works perfectly in nvda on the latest version
of Firefox, although sadly it has some minor issues in VoiceOver
on Safari and nvda on Chrome.15 However, since this is the stan-
dards-based solution (and doesn’t rely on aria-live=”assertive”
hacks), my hope is that browsers and screen readers will catch up
with this implementation.

Update: I managed to get this widget working in Chrome+nvda and
Safari+VoiceOver. The fixes needed are described in this comment.16

Manual and Automated Accessibility Testing

There are a lot of automated tools that can give you good tips on
improving accessibility in your web app. Some of the ones I’ve used
include Lighthouse (which uses Axe17 under the hood), the Chrome
accessibility tools,18 and the Firefox accessibility tools.19 (These tools
can give you slightly different results, so I like to use several so I can
get second opinions!)

The DevTools Accessibility tab for a post

15 https://smashed.by/voiceoverissues
16 https://smashed.by/lighthouse
17 https://smashed.by/dequeaxe
18 https://smashed.by/chrometools
19 https://smashed.by/firefoxtools

Success at Scale310

https://github.com/nolanlawson/pinafore/pull/1513#issue-320087960
https://github.com/nolanlawson/pinafore/pull/1513#issue-320087960
https://github.com/nolanlawson/pinafore/pull/1513#issue-320087960
https://github.com/nolanlawson/pinafore/pull/1513#issue-320087960
https://github.com/nolanlawson/pinafore/pull/1513#issue-320087960
https://github.com/nolanlawson/pinafore/pull/1513#issue-320087960
https://github.com/nolanlawson/pinafore/pull/1513#issue-320087960
https://github.com/nolanlawson/pinafore/pull/1513#issue-320087960
https://github.com/nolanlawson/pinafore/pull/1513#issue-320087960
https://github.com/nolanlawson/pinafore/pull/1513#issue-320087960
https://github.com/nolanlawson/pinafore/pull/1513#issue-320087960
https://github.com/nolanlawson/pinafore/pull/1513#issue-320087960
https://github.com/nolanlawson/pinafore/pull/1513#issue-320087960
https://github.com/nolanlawson/pinafore/pull/1513#issue-320087960
https://github.com/nolanlawson/pinafore/pull/1513#issue-320087960
https://github.com/nolanlawson/pinafore/pull/1513#issue-320087960
https://github.com/nolanlawson/pinafore/pull/1513#issue-320087960
https://github.com/nolanlawson/pinafore/pull/1513#issue-320087960
https://github.com/nolanlawson/pinafore/pull/1513#issue-320087960
https://github.com/nolanlawson/pinafore/pull/1513#issue-320087960
https://github.com/nolanlawson/pinafore/pull/1513#issue-320087960
https://github.com/nolanlawson/pinafore/pull/1513#issue-320087960
https://github.com/nolanlawson/pinafore/pull/1513#issue-320087960
https://github.com/nolanlawson/pinafore/pull/1513#issue-320087960
https://github.com/nolanlawson/pinafore/pull/1632#issuecomment-552154682
https://github.com/nolanlawson/pinafore/pull/1632#issuecomment-552154682
https://github.com/nolanlawson/pinafore/pull/1632#issuecomment-552154682
https://github.com/nolanlawson/pinafore/pull/1632#issuecomment-552154682
https://github.com/nolanlawson/pinafore/pull/1632#issuecomment-552154682

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

However, I’ve found, especially for screen reader accessibility,
that there is no substitute for testing in an actual browser with
an actual screen reader. It gives you the exact experience a screen
reader user would have, and it helps build empathy for the kinds
of design patterns that work well for voice navigation – and which
ones don’t. Also, sometimes screen readers have bugs or slightly
differing behaviors, and these are things that accessibility auditing
tools can’t tell you.

If you’re just getting started, I would recommend watching Rob
Dodson’s “A11ycasts” series,20 especially the tutorials on VoiceOver for
macOS21 and nvda for Windows.22 (Note that nvda is usually paired
with Firefox, and VoiceOver is optimized for Safari. So although you
can use either one with other browsers, those are the pairings that
tend to be most representative of real-world usage.)

Personally I find VoiceOver to be the easiest to use from a devel-
oper’s point of view, mostly because it has a visual display of the
assistive text while it’s being spoken.

Voice over assistance on macOS

20 https://smashed.by/a11ycasts
21 https://smashed.by/voiceovertutorial
22 https://smashed.by/nvdatutorial

311Pinafore: What I Learned about Accessibility in SPAs

https://www.youtube.com/playlist?list=PLNYkxOF6rcICWx0C9LVWWVqvHlYJyqw7g
https://www.youtube.com/playlist?list=PLNYkxOF6rcICWx0C9LVWWVqvHlYJyqw7g
https://www.youtube.com/playlist?list=PLNYkxOF6rcICWx0C9LVWWVqvHlYJyqw7g
https://www.youtube.com/playlist?list=PLNYkxOF6rcICWx0C9LVWWVqvHlYJyqw7g
https://www.youtube.com/playlist?list=PLNYkxOF6rcICWx0C9LVWWVqvHlYJyqw7g
https://www.youtube.com/playlist?list=PLNYkxOF6rcICWx0C9LVWWVqvHlYJyqw7g
https://www.youtube.com/playlist?list=PLNYkxOF6rcICWx0C9LVWWVqvHlYJyqw7g
https://www.youtube.com/playlist?list=PLNYkxOF6rcICWx0C9LVWWVqvHlYJyqw7g
https://www.youtube.com/playlist?list=PLNYkxOF6rcICWx0C9LVWWVqvHlYJyqw7g
https://www.youtube.com/playlist?list=PLNYkxOF6rcICWx0C9LVWWVqvHlYJyqw7g
https://www.youtube.com/playlist?list=PLNYkxOF6rcICWx0C9LVWWVqvHlYJyqw7g
https://youtu.be/5R-6WvAihms
https://youtu.be/5R-6WvAihms
https://youtu.be/5R-6WvAihms
https://youtu.be/5R-6WvAihms
https://youtu.be/5R-6WvAihms
https://youtu.be/Jao3s_CwdRU
https://youtu.be/Jao3s_CwdRU
https://youtu.be/Jao3s_CwdRU
https://youtu.be/Jao3s_CwdRU

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

NVDA can also be configured to do this, but you have to go into the
settings and enable the Speech Viewer option. I would definitely
recommend turning this on if you’re using nvda for development!

Speech viewer in nvda

Similar to testing screen readers, it’s also a good idea to try tabbing
around your app to see how comfortable it is with a keyboard. Does
the focus change unexpectedly? Do you have to do a lot of unneces-
sary tabbing to get where you want? Are there any handy keyboard
shortcuts you’d like to add?

For a lot of things in accessibility, there are no hard-and-fast rules.
Like design or usability in general, sometimes you just have to
experience what your users are experiencing and see where you
can optimize.

Conclusion

Accessibility can be challenging, but ultimately it’s worth the effort.
Working on accessibility has improved the overall usability of my

Success at Scale312

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

app in a number of ways, leading to unforeseen benefits such as
KaiOS arrow key navigation23 and better integration tests.

The greatest satisfaction, though, comes from users who are happy
with the work I’ve done. I was beyond pleased when Marco Zehe had
this to say:

Pinafore is for now by far the most accessible way to use
Mastodon. I use it on desktop as well as iOS, both iPhone &
iPad, too. So thank you again for getting accessibility in right
from the start and making sure the new features you add are
also accessible.
– Marco Zehe, October 21, 201924

Thank you, Marco, and thanks for all your help! Hopefully this case
study will serve as a way to pay your accessibility advice forward.

23 https://smashed.by/arrowkey
24 https://smashed.by/marcozehe

Pinafore Key Takeaways
JavaScript is not necessarily anti-accessibility, and you can

build accessible spas using JavaScript.

Nolan Lawson built Pinafore, a web client for the Mastodon open
source social network. Pinafore is a single page application and a
progressive web app (PWA). Nolan was worried about making the app
accessible since it used JavaScript extensively. However, he was able
to achieve the desired results with workarounds for specific scenarios
such as using native semantic html elements with aria attributes.

Nolan also recommends that we try to test for accessibility using
actual browsers and screen readers to discover the issues that
users might face.

313Pinafore: What I Learned about Accessibility in SPAs

https://github.com/nolanlawson/arrow-key-navigation/
https://github.com/nolanlawson/arrow-key-navigation/
https://github.com/nolanlawson/arrow-key-navigation/
https://github.com/nolanlawson/arrow-key-navigation/
https://github.com/nolanlawson/arrow-key-navigation/
https://github.com/nolanlawson/arrow-key-navigation/
https://github.com/nolanlawson/arrow-key-navigation/
https://toot.cafe/@marcozehe/103001716835941254
https://toot.cafe/@marcozehe/103001716835941254
https://toot.cafe/@marcozehe/103001716835941254
https://toot.cafe/@marcozehe/103001716835941254
https://toot.cafe/@marcozehe/103001716835941254
https://toot.cafe/@marcozehe/103001716835941254

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

LinkedIn’s Approach to Automated
Accessibility Testing
By Oliver Tse, Andrew Lee, Melanie Sumner, Renato Iwashima

Accessibility (a11y) engineering at LinkedIn1 aims to stream-
line accessible product development and maintenance. We
think about how tooling can help achieve accessibility suc-

cess and increase the efficiency of our fellow engineers across the
organization. We design tools and the infrastructure necessary for
engineers to build products that are accessible, elegant, delightful,
and more easily testable.

Our overall aim is to bring together the amazing talent across all
product teams at LinkedIn and to facilitate inclusive design through
innovative tooling, collaborative projects, and consultations. Just as
LinkedIn ensures that everyone is connected to economic opportu-
nity, a11y engineering ensures that every product and platform is
inclusively empowered to do just that.

With this vision in mind, we have strategically embraced accessibil-
ity test automation to accelerate our detection of common issues in
new features and reduce regressions in existing features. At its core,
accessibility test automation involves running a suite of accessibility
rules on essential user flows and user interfaces of our applications.

The main strength of automated accessibility testing is its ability
to find “low-hanging fruit” caused by oversights at the code level.
This frees up engineering time and covers common defects that
are often overlooked.

1 The original version of this case study was published in May 2020: https://
engineering.linkedin.com/blog/2020/automated-accessibility-testing (need
short link)

Success at Scale314

https://engineering.linkedin.com/blog/2020/automated-accessibility-testing
https://engineering.linkedin.com/blog/2020/automated-accessibility-testing
https://engineering.linkedin.com/blog/2020/automated-accessibility-testing
https://engineering.linkedin.com/blog/2020/automated-accessibility-testing
https://engineering.linkedin.com/blog/2020/automated-accessibility-testing
https://engineering.linkedin.com/blog/2020/automated-accessibility-testing
https://engineering.linkedin.com/blog/2020/automated-accessibility-testing
https://engineering.linkedin.com/blog/2020/automated-accessibility-testing
https://engineering.linkedin.com/blog/2020/automated-accessibility-testing
https://engineering.linkedin.com/blog/2020/automated-accessibility-testing
https://engineering.linkedin.com/blog/2020/automated-accessibility-testing
https://engineering.linkedin.com/blog/2020/automated-accessibility-testing
https://engineering.linkedin.com/blog/2020/automated-accessibility-testing
https://engineering.linkedin.com/blog/2020/automated-accessibility-testing
https://engineering.linkedin.com/blog/2020/automated-accessibility-testing

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

The other key benefit is the ability to guard against regressions.
Good accessibility test coverage provides a clear signal for overall
a11y health. A sudden introduction of new violations will act as a
smoke signal, serving as a leading indicator for the existence of
other issues. In an environment characterized by multiple releases
per day, where it is not feasible to accompany each new release with
manual testing, this becomes an indispensable tool.

Running accessibility test automation rules during continuous in-
tegration prevents common accessibility issues from ever reaching
LinkedIn members, allowing us to address problems before we ship.
While we see automated testing as an essential part of our arsenal
to scale accessibility, we fully acknowledge that, depending on who
you ask or reference, accessibility test automation will only identify
between 20% and 30% of accessibility issues out there. (“Automated
accessibility checking [...] can only auto-check about 30% of #a11y
issues”2 and “Manual Accessibility Testing: Why & How”3.)

At LinkedIn, we integrate various open-source and licensed automa-
tion frameworks into our continuous integration pipeline, where only
if the commit passes accessibility checks will it be merged into the
main branch for our web, iOS, and Android applications, including:

1. Deque’s axe-core for the web4

2. Google’s Toolbox for Accessibility for iOS (GTXiLib)5

3. Google’s Accessibility Test Framework for Android (atf)6

LinkedIn web applications are built using the Ember JavaScript
framework. It features an extensive ecosystem of plugins and exten-
sions commonly referred to as Ember add-ons. Testing is a core tenet
of the framework and is built in as a first-class citizen.

2 https://smashed.by/autocheck
3 https://smashed.by/manualtesting
4 https://smashed.by/dequecore
5 https://smashed.by/gtxilib
6 https://smashed.by/atf

315LinkedIn’s Approach to Automated Accessibility Testing

https://twitter.com/stevefaulkner/status/863157742005047296
https://twitter.com/stevefaulkner/status/863157742005047296
https://twitter.com/stevefaulkner/status/863157742005047296
https://twitter.com/stevefaulkner/status/863157742005047296
https://twitter.com/stevefaulkner/status/863157742005047296
https://twitter.com/stevefaulkner/status/863157742005047296
https://twitter.com/stevefaulkner/status/863157742005047296
https://twitter.com/stevefaulkner/status/863157742005047296
https://twitter.com/stevefaulkner/status/863157742005047296
https://twitter.com/stevefaulkner/status/863157742005047296
https://twitter.com/stevefaulkner/status/863157742005047296
https://twitter.com/stevefaulkner/status/863157742005047296
https://twitter.com/stevefaulkner/status/863157742005047296
https://twitter.com/stevefaulkner/status/863157742005047296
https://twitter.com/stevefaulkner/status/863157742005047296
https://twitter.com/stevefaulkner/status/863157742005047296
https://twitter.com/stevefaulkner/status/863157742005047296
https://twitter.com/stevefaulkner/status/863157742005047296
https://twitter.com/stevefaulkner/status/863157742005047296
https://twitter.com/stevefaulkner/status/863157742005047296
https://twitter.com/stevefaulkner/status/863157742005047296
https://twitter.com/stevefaulkner/status/863157742005047296
https://twitter.com/stevefaulkner/status/863157742005047296
https://twitter.com/stevefaulkner/status/863157742005047296
https://twitter.com/stevefaulkner/status/863157742005047296
https://www.mediacurrent.com/blog/manual-accessibility-testing-why-how/
https://www.mediacurrent.com/blog/manual-accessibility-testing-why-how/
https://www.mediacurrent.com/blog/manual-accessibility-testing-why-how/
https://www.mediacurrent.com/blog/manual-accessibility-testing-why-how/
https://www.mediacurrent.com/blog/manual-accessibility-testing-why-how/
https://www.mediacurrent.com/blog/manual-accessibility-testing-why-how/
https://www.mediacurrent.com/blog/manual-accessibility-testing-why-how/
https://www.mediacurrent.com/blog/manual-accessibility-testing-why-how/
https://www.mediacurrent.com/blog/manual-accessibility-testing-why-how/
https://github.com/dequelabs/axe-core/
https://github.com/dequelabs/axe-core/
https://github.com/dequelabs/axe-core/
https://github.com/dequelabs/axe-core/
https://github.com/dequelabs/axe-core/
https://github.com/dequelabs/axe-core/
https://github.com/dequelabs/axe-core/
https://github.com/dequelabs/axe-core/
https://github.com/dequelabs/axe-core/
https://github.com/dequelabs/axe-core/
https://github.com/dequelabs/axe-core/
https://github.com/dequelabs/axe-core/
https://github.com/dequelabs/axe-core/
https://github.com/google/GTXiLib
https://github.com/google/GTXiLib
https://github.com/google/GTXiLib
https://github.com/google/GTXiLib
https://github.com/google/GTXiLib
https://github.com/google/GTXiLib
https://github.com/google/GTXiLib
https://github.com/google/GTXiLib
https://github.com/google/GTXiLib
https://github.com/google/GTXiLib
https://github.com/google/GTXiLib
https://github.com/google/GTXiLib
https://github.com/google/GTXiLib
https://github.com/google/GTXiLib
https://github.com/google/GTXiLib
https://github.com/google/GTXiLib
https://github.com/google/Accessibility-Test-Framework-for-Android
https://github.com/google/Accessibility-Test-Framework-for-Android
https://github.com/google/Accessibility-Test-Framework-for-Android
https://github.com/google/Accessibility-Test-Framework-for-Android
https://github.com/google/Accessibility-Test-Framework-for-Android
https://github.com/google/Accessibility-Test-Framework-for-Android
https://github.com/google/Accessibility-Test-Framework-for-Android
https://github.com/google/Accessibility-Test-Framework-for-Android
https://github.com/google/Accessibility-Test-Framework-for-Android
https://github.com/google/Accessibility-Test-Framework-for-Android
https://github.com/google/Accessibility-Test-Framework-for-Android
https://github.com/google/Accessibility-Test-Framework-for-Android
https://github.com/google/Accessibility-Test-Framework-for-Android
https://github.com/google/Accessibility-Test-Framework-for-Android
https://github.com/google/Accessibility-Test-Framework-for-Android

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

Web Apps

LinkedIn uses Deque’s axe-core accessibility testing framework for
our web apps. Axe is a static analysis engine for websites and other
html-based user interfaces. It is integrated into our Ember testing
infrastructure by the Ember a11y testing add-on.7

There are three types8 of Ember tests:

1. Unit tests verify individual pieces of code. They are insuf-
ficient to assess a11y but are very quick to execute.

2. Integration tests verify user interface components. They
are examined in isolation, somewhat quick to execute, but
lack the fidelity to accurately assess a11y.

3. Acceptance tests are the ideal point of integration as they
most closely resemble what a user would experience. However,
they are much more costly in terms of runtime and resourcing.

Our continuous integration and deployment (ci/cd) process is 3×3,
consisting of at least three daily deployments and three stages of
validation: pre-commit, pre-merge, and post-merge.

• Pre-commit occurs on push-to-remote and includes static lint-
ing checks and dependency validation.

• Pre-merge occurs after a successful push and includes build
verification and test suite execution.

• If successful, post-merge checks queue up associated changes
for deployment.

In terms of accessibility, any resulting violations prevent changes
from moving to the next stage. Specifically, invalid a11y ember-tem-

7 https://smashed.by/embertesting
8 https://smashed.by/testtypes

Success at Scale316

https://github.com/ember-a11y/ember-a11y-testing
https://github.com/ember-a11y/ember-a11y-testing
https://github.com/ember-a11y/ember-a11y-testing
https://github.com/ember-a11y/ember-a11y-testing
https://github.com/ember-a11y/ember-a11y-testing
https://github.com/ember-a11y/ember-a11y-testing
https://github.com/ember-a11y/ember-a11y-testing
https://github.com/ember-a11y/ember-a11y-testing
https://guides.emberjs.com/release/testing/test-types/
https://guides.emberjs.com/release/testing/test-types/
https://guides.emberjs.com/release/testing/test-types/
https://github.com/ember-template-lint/ember-template-lint
https://github.com/ember-template-lint/ember-template-lint
https://github.com/ember-template-lint/ember-template-lint

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

plate-lint9 checks block commits, while failed a11y test assertions
block merging and are auto-reverted.

So, we have a multifaceted approach to accessibility engineering: we
use linting for static analysis; automated testing for dynamic analysis;
and manual testing for the things we can’t automate yet. Each of these
approaches has their strengths: linting gives developers feedback right
in their integrated development environment (ide); automated testing
can more robustly check the rendered code to make sure it provides
what screen readers expect; and manual audits ensure usability. As
such, we consider them to all be important parts of the whole.

As engineers run local tests during their day-to-day work, a11y
regressions resulting from UI changes are automatically identified
by existing a11y assertions. As such, it is imperative that all new a11y
assertions are introduced at a clean state, meaning that all identified
violations are addressed before submission. Since the entire test
suite runs after pushing a code commit, any a11y failures block the
associated commit from being merged.

9 https://smashed.by/templatelint

LinkedIn’s Lighthouse accessibility report for their main timeline experience.

317LinkedIn’s Approach to Automated Accessibility Testing

https://github.com/ember-template-lint/ember-template-lint
https://github.com/ember-template-lint/ember-template-lint
https://github.com/ember-template-lint/ember-template-lint

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

Impact on Performance

Commit-to-publish (c2p) time is an important metric signaling the
overall health of our build and testing infrastructure. Unfortunately,
the initial implementation of automated accessibility tests turned
out to negatively impact and regress c2p. Tests with added a11y as-
sertions were found to more than double in execution time. Consid-
ering that there are over 8,000 acceptance tests, the additional load
would equate to substantial degradation of the ci/cd pipeline.

Mitigation Strategies

Mitigating negative performance impacts required cross-collabo-
ration with several partner teams. Based on intensive investigatory
work, clear guidance and integration, best practices were formulated:

1. Indiscriminate a11y assertions cause redundancy, as multiple
tests end up checking the same view.

2. To avoid such redundancy, assertions should be deliberate
and scoped into specific segments of the screen.

3. Assertions should cover high-traffic, high-impact
transaction paths.

4. One hundred percent accessibility test coverage is not the goal.
Tests are a signal of overall accessibility health, but not the
only signal. They are but a single tool in our overall arsenal.

Further investigation led to improvements from optimized config-
uration settings and the omission of non-performant, low-impact
rules. But by far the biggest improvement came from the creation of
a dedicated accessibility distributed test job. This job automatically

Success at Scale318

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

pipes all a11y assertions into a parallel process so that the main test
execution isn’t affected, thus preserving c2p time.

iOS and Android Apps

We use the same testing approach for iOS and Android that we use
for the web. However, we run fewer rules and we do not run them
using the same library. This is because mobile platforms have their
own apis and different ways to interact with assistive technologies.
We do plan to increase the number of accessibility checks as the
accessibility capability of both platforms evolves.

IOS

We have six rules. We check for whether:

1. Label is present: Ensure that all accessibility elements
have a label.

2. Trait is not in the label: Ensure that elements don’t
redundantly describe accessibility traits such as “Button” in
the label, since these roles are announced by the screen
reader automatically.

3. Label is not redundant: Ensure that accessibility labels
are unique so that they are distinguishable when using
a screen reader.

4. Traits don’t conflict: Ensure that incompatible traits
such as “Button” and “Link” are not used at the same time.

5. Touch target size: Ensure that all interactive elements
have a touch target size of at least 44pt.

319LinkedIn’s Approach to Automated Accessibility Testing

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

6. Contrast is sufficient: Ensure that text contrast is at least
4.5 to 1.

For more information, check Google’s GTXiLib.10

ANDROID

We have ten rules. We check for:

1. Unsupported item type: Ensure that specified accessibility
class name (role) is supported by TalkBack.

2. Clickable span: Ensure that ClickableSpan is not being used
in a TextView, since it is inaccessible because individual spans
cannot be selected independently in a single TextView.

3. Traversal order: Ensure that the traversal order specified
by the developer doesn’t have any problems such as loops or
constraints in the traversal.

4. Contrast check: Ensure that text contrast is at least 4.5 to 1.

5. Label present: Ensure that all accessibility elements
have a label.

6. Duplicate clickable bounds: Ensure that clickable/touchable
bounds are not overlapping each other.

7. Duplicate speakable text: Ensure that accessibility labels
are unique so that they are distinguishable when using
a screen reader.

10 https://smashed.by/gtxilib

Success at Scale320

https://github.com/google/GTXiLib
https://github.com/google/GTXiLib
https://github.com/google/GTXiLib
https://github.com/google/GTXiLib
https://github.com/google/GTXiLib

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

8. Editable content description: Ensure that an editable Text-
View is not labeled by a contentDescription.

9. Touch target size: Ensure that all interactive elements have
the touch target size of at least 48dp.

10. Link purpose is unclear: Ensure that the link purpose is
neither unclear nor insufficiently descriptive enough.

For more information, check Google’s Accessibility Testing Frame-
work11 and Google’s Accessibility Scanner.12

Libraries for Accessibility Checking
on iOS and Android

We use internal wrapper libraries for both Android and iOS called
android-autocheck and ios-autocheck respectively.

Android/iOS libraries used for a11y checking

11 https://smashed.by/atf
12 https://smashed.by/accessibilityscanner

321LinkedIn’s Approach to Automated Accessibility Testing

https://github.com/google/Accessibility-Test-Framework-for-Android
https://github.com/google/Accessibility-Test-Framework-for-Android
https://github.com/google/Accessibility-Test-Framework-for-Android
https://github.com/google/Accessibility-Test-Framework-for-Android
https://github.com/google/Accessibility-Test-Framework-for-Android
https://github.com/google/Accessibility-Test-Framework-for-Android
https://github.com/google/Accessibility-Test-Framework-for-Android
https://github.com/google/Accessibility-Test-Framework-for-Android
https://github.com/google/Accessibility-Test-Framework-for-Android
https://github.com/google/Accessibility-Test-Framework-for-Android
https://support.google.com/accessibility/android/answer/6376570?hl=en
https://support.google.com/accessibility/android/answer/6376570?hl=en
https://support.google.com/accessibility/android/answer/6376570?hl=en
https://support.google.com/accessibility/android/answer/6376570?hl=en
https://support.google.com/accessibility/android/answer/6376570?hl=en
https://support.google.com/accessibility/android/answer/6376570?hl=en
https://support.google.com/accessibility/android/answer/6376570?hl=en

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

These wrapper libraries use the Accessibility Testing Framework for
Android and GTXiLib for iOS.

We use wrapper libraries because we can:

• add custom rules,
• override existing rules,
• define sets of rules,
• define suppression list.

Android also provides a linting tool that does some basic accessibil-
ity checks. None of the linting checks are considered errors, due to
false positives inherent to static analysis checks, but they are still
very helpful for engineers to detect possible issues.

Conclusion

To be effective, a11y automated testing must be executed thought-
fully, deliberately, and in conjunction with multiple types of testing
(including human manual testing, engineers doing their due dili-
gence, linting, and so on), with each deployed at the right time in the

continuous integration
development process.

Automated a11y testing
is forward-looking.
When executed early
and often during the

development process, it is a highly accurate predictor of how accessi-
ble our products will be. While it’s true that a11y automated testing is
unable to detect issues found only by manual testing, its key benefit
is that it is highly efficient. Automated testing can identify issues

Automated a11y testing is forward-

looking. When executed early and often

during the development process, it

is a highly accurate predictor of how

accessible our products will be.

Success at Scale322

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

faster than the amount of time it takes a human manual tester to file
a single bug. By exploiting its efficiency, we use it as a litmus test to
gain insight into the accessibility of our products.

Overall, a11y automated testing is an essential tool that empowers
our engineers to build accessible products for our members in service
of our vision to create economic opportunity for everyone, including
the more than one billion people around the world with disabilities.

LinkedIn Key Takeaways

Automated accessibility testing helps to find “low-hanging

fruit” early when it comes to accessibility issues and is an

accurate predictor of overall accessibility health.

LinkedIn has built automated accessibility testing as part of its contin-
uous integration and deployment (ci/cd) process for its web apps and
iOS and Android apps. Deque’s axe-core accessibility testing frame-
work is integrated with the Ember framework for web apps and is
used for unit testing, integration testing, and acceptance testing. This
is combined with linting and manual testing to ensure that accessibil-
ity is tested at different life cycle stages. Guidelines are also in place to
prevent developers from adding redundant or low-impact test asser-
tions that degrade the ci/cd pipeline.

Additionally, LinkedIn uses Google’s Toolbox for Accessibility for
iOS (GTXiLib) for testing its iOS apps, and Google’s Accessibility Test
Framework for Android (atf) for Android apps.

323LinkedIn’s Approach to Automated Accessibility Testing

Success at Scale324

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

Interview

Oliver Tse & Andrew Lee
Co-Authors – along with Rachel Peterson – of

LinkedIn’s Approach to

Automated Accessibility Testing

What excited you or your team the most about the work in the
case study?

Oliver: This definitely would be integrating accessibility automated
testing into our continuous integration development pipeline.

We really wanted to enhance our code quality and ensure that our
products were accessible before they reached our developers. We
also wanted to make our developer experience seamless so that
it was not just something additional that they had to do – not yet
another process!

Integrating automated accessibility testing into the continuous inte-
gration pipeline helps to increase the efficiency of the development
process. Our developers can quickly identify and address accessibility
issues before they become more complex and more costly to fix later on.

This also means that accessibility can be considered throughout
the development life cycle and with contributions from accessibil-
ity and inclusive designers, thus improving collaboration between
our r&d teams.

Overall, integrating accessibility testing into the continuous integra-
tion process leads to a better user experience for everyone.

Andrew: This work was Accessibility Engineering’s first foray into
an organization-wide initiative that allowed us to meaningfully scale

325

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

LinkedIn’s Approach to Automated Accessibility Testing

our impact. Prior efforts were primarily rooted in evangelism and
trusting our partners in developing apps with accessibility in mind.
Implementing automated accessibility testing meant that there was
now a tight bond between a11y and the development life cycle, where
it is integral to the process.

Were you surprised by the impact your work had on the overall
user experience, business, team, or other metrics?

Oliver: We knew that automated testing can find at best 30% of a11y
issues. It still is amazing how many a11y nonconformances are not
caught by automated testing and how much manual testing is re-
quired, and we acknowledge that automated a11y testing has limited
scope; testing can only identify certain types of issues and may not
be able to detect all accessibility problems.

This reminds us that automated a11y testing is not the only method
used to test for accessibility. Automated a11y testing tools can-
not yet fully replicate the user experience, and may not take into
account factors such as user behavior or the impact of the issue on
the user. Manual testing by humans,a11y expert review, and user
testing are also important components of a comprehensive accessi-
bility testing strategy.

Andrew: The limitations and effectiveness of automated accessibility
testing tools were generally understood, so the overall impact was
not too surprising for me. However, I believe the biggest win was
bringing accessibility to the forefront among front-end engineers
who weren’t yet directly exposed to a11y. It suddenly became a part
of the conversation, where teams were outlining their own resources
and strategies for actively addressing a11y issues that were the result
of the automation tools.

Success at Scale326

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

If you had a similar project/problem today, do you think your
process/tooling/decisions would be exactly the same? Or, to
put it differently, looking back now, what would you have done
differently if you had a chance to make adjustments?

Andrew: At the time, integration of web automated accessibility
testing was limited owing to having to mitigate performance issues
in running tests. This ultimately resulted in inadequate coverage.
The process for enabling a11y checks also didn’t scale well to
newly-authored tests. Most of the performance issues have since
been mitigated as our infrastructure and tooling matured. This
allowed us to revisit our approach and ease many of the integration
pain points by leveraging some of the core apis in our web frame-
work. Given a do-over, we would’ve explored augmenting the core
framework much sooner in the process, as it turned out to be the
main source for the bulk of the improvements.

What do you think was the one critical decision that made the
outcome successful? What brought you to this decision, and
how did you or your entire team make it?

Andrew: The most critical decision was adopting open-source librar-
ies across the majority of platforms instead of building in-house
solutions. This allowed coalescing across a unified set of resources
and the ability for all engineers to triage issues and contribute back
to the respective projects. The decision was made after carefully
considering the available options in the open source landscape and
weighing the cost of adoption versus maintaining custom-built
solutions. Ultimately, the decision proved to be the right one, as the
solutions, especially on the web platform, have been immensely
improved by the contributions of others.

327

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

LinkedIn’s Approach to Automated Accessibility Testing

Do you have any advice for teams that would like to follow in
your footsteps?

Oliver: Clearly set expectations on what automated a11y testing
can and cannot find. Automated a11y testing should be one of the
methods used to test for accessibility, along with manual testing by
humans, expert review, and user testing.

Automated a11y testing is a valuable tool in identifying and address-
ing accessibility issues. We use it as part of a comprehensive ap-
proach to accessibility testing, rather than relying on it exclusively.

Has the site changed significantly since the case study was
published?

Oliver: No, the site has not significantly changed since the case
study was published.

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

Building Dark Mode on
Stack Overflow
By Aaron Shekey

On March 30, 2020,1 we enabled folks to opt into a beta dark
mode on Stack Overflow. Let’s talk about the work that
went into it. I’m Aaron Shekey, Stack Overflow’s principal

product designer on design systems. I help design all the interface
components that get assembled into new features.

First, a bit of irony. I don’t actually prefer dark user interfaces.

I often find the usable contrast to be way too low. It’s hard to use the
full spectrum of colors to express your interface. It’s even harder to
introduce depth with shadows and other visual cues. Light text on
dark backgrounds is fatiguing to my eyes. Things that are hard to
manage on light screens like simultaneous contrast are even harder
to manage against dark backgrounds.

But here I am, the guy who finally shipped dark mode on Stack
Overflow.

The work I’m about to talk about was never about dark mode specifi-
cally, even though countless users asked for it. By solving everything
along the way to dark mode, Stack Overflow would modernize its
front-end codebase, enable accessibility-conscious theming, and
push for adoption of our design system2.

We could give our users dark mode and offer future accessibility
modes for free? Let’s do it!

1 The original version of this case study was published in March 2020:
https://smashed.by/stackoverflowdarkmode

2 https://stackoverflow.design/

Success at Scale328

https://stackoverflow.design/
https://stackoverflow.design/
https://stackoverflow.design/

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

Color Exploration

When building our product’s original color scales, we – perhaps
naively – took a single color value and modified it using Less.js color
transformations. For example, we’d define a Less variable, @red, and
darken it by 10% a few times using darken(@red, 10%). Then we’d
tint to lighten a few times at the other end of the spectrum: tint(@
red, 10%). This would lead us to a color scale represented by @red-
050 through @red-900 with 10% steps in between.

In my first explorations of what Stack Overflow would look like in
dark mode, I wanted to simply test swapping the white background
for black, and reversing the color scales. With this approach, @red-
050 became @red-900 with the values in the middle staying pretty
much the same.

Dark mode opt-in banner

329Building Dark Mode on Stack Overflow

http://lesscss.org/

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

This approach made everything have unusable contrast, and fell into
the traps of what I dislike about dark modes in general. Pay close
attention to the darkest value of red against the black background.
It’s nearly indistinguishable. More on that later.

We’d have to do better than this.

STARTING WITH THE MOCKUP

After just diving in technically proved to be a false start, I instead
chose colors by hand in my design tool of choice, Figma.3 I could
design what Stack Overflow ought to look like without concern for
how the original color values would map. Reducing the overall con-
trast was key to preserving depth in our interface, allowing elements
to cast shadows, and displaying the full spectrum of colors.

Starting with a mockup allowed us to define an aesthetic goal first,
regardless of technical requirements.

3 https://figma.com/

Success at Scale330

https://figma.com/

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

CHOOSING A BETTER ALGORITHM

After picking a lighter background for dark mode, I could then ex-
plore the color scale in a deeper manner. First, I needed to solve some
of the color issues the design system inherited in light mode. At the
light end of the spectrum our reds and yellows weren’t as usable as I
would have liked. With some colors, the lightest value was too close
to white, while for others the lightest value was much too dark.

The original lightest yellow was indistinguishable from white, and the darkest
yellow indistinguishable from black.

We had trouble at the darker end of the spectrum for each color.
When applying @red-900 and @blue-900 to a background, these col-
ors were indistinguishable from black and each other. We needed an
algorithm that would provide colors that still read as their primary
hue at the lightest and darkest values, allowing us to build compo-
nents from these color values.

The darkest values of our colors were indistinguishable from each other and black.

When creating our notices component, we couldn’t use colors from
our design system. Instead, we had to eyeball custom colors.

331Building Dark Mode on Stack Overflow

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

These colors are beautiful, but weren’t based on values within our color scale.

I used Lyft’s amazing ColorBox4 to help normalize our colors. Instead
of a naive linear scale at 10% increments, I used bezier curves – a vast
improvement at the more extreme ends of the scale.

After normalizing our color values at the light end of the spectrum, I could now

build our notices component using values within our color scale.

DARK VERSIONS

Once I polished our light versions, I could now explore these colors
against the dark background. I would ultimately end up hand-tuning
the algorithm’s output to preserve long-used brand colors at certain
values. This would allow me to drop the new colors into production
without too jarring a shift.

4 https://www.colorbox.io/

Success at Scale332

https://www.colorbox.io/

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

Adding the Colors to Stacks

If I had any hope of shipping dark mode to Stack Overflow, I’d
first need to solve dark mode using Stacks,5 our design system,
as a sandbox.

VARIABLES

I needed to convert static, Less-compiled hex values to runtime cus-
tom css properties. This meant storing our color values as var(--
red-500) instead of a static @red-500. This was an interesting prob-
lem in our design system and the site in general. We routinely take a
single color value like @red-500 and lighten or darken for hover and
focus states, and things like backgrounds and border colors.

5 https://stackoverflow.design/

The full
normalized
color
gamut.

333Building Dark Mode on Stack Overflow

https://stackoverflow.design/

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

Each of our many buttons and their individual states were based on
a set of transformations of a single compiled color value. It reminded
me of this scene6 in The Big Short: “We can transform an original 10
million dollar investment into billions of dollars,” and of course the
whole thing explodes.

The problem with native css variables is you can’t apply any type of
Less transformation to them. darken(var(--red-500), 5%) breaks
the compiler since css variables are only evaluated at runtime.

This meant I’d need to refactor how all of our buttons were created.
These were the existing button styles using the Less syntax:

.s-btn {
 color: @white;

 background-color: @blue-600;
 border: 1px solid darken(@blue-600, 5%);

 &:hover {
 background-color: darken(@blue-600, 5%);
 border-color: darken(@blue-600, 10%);
 }
}

I needed to translate these to their more explicit color values as de-
fined by our color system. Instead, it ended up looking like this:

.s-btn {
 color: var(--white);
 background-color: var(--blue-600);
 border: 1px solid var(--blue-700);

 &:hover {
 background-color: var(--blue-700);
 border-color: var(--blue-800);
 }
}

6 https://smashed.by/bigshort

Success at Scale334

https://www.youtube.com/watch?v=Pxr_FzpPM2Q

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

I needed to do this across all of our Stacks components, not just the
buttons. These same concepts applied across notices, pop-overs,
modals, buttons, and links to name a few.

BROWSER COMPATIBILITY

Oh, but wait a second. css variables aren’t supported by Internet
Explorer 11 (ie11), a browser we very much supported at the time of
this exploration. Ultimately, we made the decision to drop support
for IE11, ripping out all the css hacks we’d added over the years to get
it to behave, and then shipping deprecation notices to users on IE11
urging them to install a new browser. This was not a decision we
took lightly, and this prerequisite alone took weeks of refactoring.

CONDITIONAL CLASSES

With IE11 no longer holding us back, I was able to work with our
colors within Stacks. I chose to enable adding the class .theme-sys-
tem to the body element. In doing so, we’d swap our light colors for
their dark equivalents behind the dark mode media query. Addition-
ally, we could skip that media query entirely and just force the dark
colors by adding .theme-dark instead to the body. This would allow
users to see dark mode regardless of their system’s settings. My
approach ended up looking like this:

body {
 --red-600: #c02d2e;
}

body.theme-system {
 @media (prefers-color-scheme: dark) {
 --red-600: #d25d5d;
 }
}
body.theme-dark {
 --red-600: #d25d5d;
}

335Building Dark Mode on Stack Overflow

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

To offer complete flexibility, Stacks provides atomic color classes
that are only applied when dark mode is enabled. You can read about
Stacks css design choices at length at my personal portfolio.7 By
adding .d:bg-green-100 to an element, our engineers and designers
can say “In dark mode, apply a background of green 100.” Additional
conditional classes allow us to drop borders, swap backgrounds, or
change text colors in dark mode. Steve Schoger’s got a really great
tweet8 demonstrating the customizations that are sometimes required
for dark modes. I’ve taken lots of inspiration from Tailwind CSS.9

DOCUMENTING IT

Once Stacks was in a place to ship its own dark mode, we opted to
add a button on the top of the site to quickly toggle between them.
Folks from Design & Engineering need to be able to switch between
both views as quickly as possible.

Switching from light to dark mode

Adding the Colors to Stack Overflow

I solved all these color issues on the design system side with relative
ease. Our design system has inherited fewer mistakes from our past,
making it easier to refactor with the new future in mind. In order
to ship to Stack Overflow, I needed to maintain our original Less
variables for backwards compatibility. This allowed us to enable dark
mode on certain parts of our interface incrementally.

7 https://smashed.by/aaronshekey
8 https://smashed.by/steveschoger
9 https://tailwindcss.com/

Success at Scale336

https://aaronshekey.com/work/stackoverflow/
https://aaronshekey.com/work/stackoverflow/
https://aaronshekey.com/work/stackoverflow/
https://aaronshekey.com/work/stackoverflow/
https://aaronshekey.com/work/stackoverflow/
https://twitter.com/steveschoger/status/1151160261170126850?s=20
https://twitter.com/steveschoger/status/1151160261170126850?s=20
https://twitter.com/steveschoger/status/1151160261170126850?s=20
https://twitter.com/steveschoger/status/1151160261170126850?s=20
https://twitter.com/steveschoger/status/1151160261170126850?s=20

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

Since the majority of our interfaces built after 2018 use Stacks, they
get dark mode and responsive layouts for free. The majority of our
site, however? Not so much.

SITE CHROME

First, I’d need to make the largest changes I could without disrupting
Stack Overflow’s default light mode. These tasks were mostly just
replacing static Less variables with their css variable equivalents
throughout the site. I first applied background-color: var(--
white) to the background of the site, replacing background-color:
@white. This would now flip most of the page appropriately. I then
did this for font colors. Rinse and repeat. Mostly, this actually meant
deleting a lot of css, since we often were over-specifying font colors
on child elements when we could just inherit from the parent.

STAFF SHIPPING

Once I got the broad strokes down, I leaned on engineers Adam Lear
and Nick Craver to provide a method to ship a preview of dark mode
to Stack Overflow employees. This would allow our staff to opt into a
woefully broken dark mode, allowing folks to see how much conver-
sion was left, but hopefully motivate them to help fix the portions
of our site with the most traffic. This would let me fix the biggest
barriers of the site – our existing codebase.

BUTTONS

If the view you’re working on is already built with Stacks, there
really isn’t a ton you have to do to fix things for dark mode. You
might decide you don’t actually need a border, or you want to select
a slightly different shade of gray for the background. Unfortunately,
for the widest majority of the site, we still weren’t relying on Stacks.

337Building Dark Mode on Stack Overflow

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

This was most obvious when it came to our buttons. Over the years,
we had various implementations of buttons. The last was the most
frustrating since we targeted the button element itself for styling. This
means that any button or input type=”button” on the site would
get default, super-specific styling from a deprecated set of styles.

This kicked off a large refactor that’s still ongoing to delete ele-
ment-level references to button in css, instead replacing them with
their Stacks equivalent. For example, hundreds of input type=”-
submit” would need to be replaced with <button type=”submit”
class=”s-btn s-btn__primary”>. To complicate things, we were
often wiring up JavaScript interactivity to these visual selectors. If
we changed the visual classes, it often broke what the button actual-
ly did. Across thousands of buttons, I needed to first add js- specific
classes, wire them up, and then rip out the old visuals.

This eventually got me to the point of deleting a majority of the
legacy button classes, allowing our buttons to switch colors properly
when dark mode was enabled – all with few regressions to the light
mode of our site.

THE SITE HEADER

Complicating things even further, our site-wide header has several
modes: light, dark, and themed. Both teams and our network sites

force a dark
appearance
of the header.
Additionally,
our teams
have a colored
bar that’s es-

tablished by the team’s avatar color. Like a lot of our components, the
site header’s css took a single color, measured if it was light or dark,

We couldn’t just rip this out and replace it

with pre-baked css variables as we did on the

design system. Our enterprise clients actually

theme their headers entirely, using a single

color to generate all the custom overrides.

Success at Scale338

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

and then mutated that color through a complex set of Less functions.
However, we couldn’t just rip this out and replace it with pre-baked
css variables as we did on the design system. Our enterprise clients
actually theme their headers entirely, using a single color to generate
all the custom overrides.

Light header

Dark header

Team header

For the light header that we ship to Stack Overflow, we needed to
find a solution to measure if our color was a css variable or a
static hex value. If it was a css variable, we’d skip the Less trans-
formations entirely, building a header that would swap colors
based on dark mode. If you passed a static Less variable instead,
it’d then measure that color for lightness or darkness, and build
the appropriate header.

Our approach ended up looking like this:

& when (iscolor(@theme-topbar-background-color)) {
 @theme-topbar-style: if(luma(@theme-topbar-background-
color) >= 50%, light, dark);
 }
 & when not (iscolor(@theme-topbar-background-color)) {
 @theme-topbar-style: automatic;
 }

I’d then build the header appropriately based on automatic,
light, or dark.

339Building Dark Mode on Stack Overflow

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

TAGS

If there’s one bit of advice I could give when designing a component:
don’t add layout to your component. In other words, your context
should define how much space is between them. Don’t bake it into
your component. In Stack Overflow’s earliest iterations, it was
decided that our post-tag component would have outside margins
applied to it. Like our buttons, tags ran into the same JS-targeting
issue. To complicate things further, most tags were generated using
a single helper method in our application.

Refactoring tags would mean swapping post-tag for our new
theme-aware s-tag component. I’d also need to refactor our JS to
target js-tag where appropriate. I’d also need to change our tag
generator method to accept arbitrary layout classes, since, in certain
contexts we might want to wrap our tags in a flex layout instead of
relying on (or fighting against) pre-baked margins.

POST STYLING

The majority of Stack Overflow is user-generated posts. These posts
display Markdown as the original question body as well as answers
and comments. At the time of Stack Overflow’s launch, Markdown
was relatively new.

Over the years, the industry has coalesced on some standard ways
of displaying things like headers and blockquotes. Dark mode was a
perfect time to reconsider how we handled some of our post format-
ting – the most controversial being block quotes.

We originally implemented block quotes with an overpowering
yellow background that reduced the contrast of the quote itself.

Success at Scale340

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

The yellow was also problematic when displayed against a dark
background. Ultimately, we switched to the industry-standard single
gray bar to represent block quotes.

CODE STYLING

For Stack Overflow, we very clearly have a lot of code to display.
Our syntax highlighting colors used completely unbranded colors
I’m pretty sure we inherited from the original syntax highlighting
library we hacked in. Ultimately, I punted on a heavier redesign
of syntax highlighting. Instead, I ended up shifting the existing
syntax highlighting toward colors from our design system’s
values, finding dark mode equivalents that didn’t make too big
a change too soon.

The Results

Dark mode beta’s debut on March 30, 2020

With these refactors in place, we can make larger changes with few-
er regressions. We can far more easily consider extending our color
palette to include high-contrast accessibility modes.

341Building Dark Mode on Stack Overflow

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

Building a feature like dark mode is the result of a fundamental shift
toward designing systemically at Stack Overflow. I’ve been pushing
adoption of our design system over the last year, using dark mode
as an opportunity to rebuild many parts of our products. This is the
first of many projects to bring more accessibility to our users.

Not counting the deprecation of Internet Explorer 11, work on
dark mode started in earnest in July 2019 with an exploratory pull
request.10 Prior to that, you can see some public discussion11 of
what it took to build a dark mode in April 2019. A proof of concept
in the production codebase was hacked together in October 2019.
After at least 60 follow-up pull requests, the dark mode beta went
live on March 30, 2020.

10 https://smashed.by/stackspr
11 https://smashed.by/stacksdiscussion

Stack Overflow Key Takeaways
Reengineering for dark mode provides an opportunity to cre-

ate the foundation for an accessible design system.

Stack Overflow introduced dark mode in March 2020. Besides iden-
tifying the right color set for dark mode, this resulted in an overhaul
of their Stacks design system. Enabling dark mode on different inter-
face components presented plenty of challenges. For example, colors
within css were static earlier and modified using transformations
for different states of individual elements (a button with a blue back-
ground transforms to dark blue on hover). However, with different
modes available, the base color was a variable. CSS classes had to be
enhanced to use the prefers-color-scheme media feature.

Similarly, there were other challenges in standardizing components
across the site. However, the exercise helped lay down the foundation
for Stacks components to support high-contrast accessibility modes
and other accessibility requirements.

Success at Scale342

https://stackoverflow.design/
https://stackoverflow.design/
https://stackoverflow.design/
https://github.com/StackExchange/Stacks/pull/356
https://github.com/StackExchange/Stacks/pull/356
https://github.com/StackExchange/Stacks/pull/356
https://github.com/StackExchange/Stacks/pull/356
https://github.com/StackExchange/Stacks/pull/356
https://github.com/StackExchange/Stacks/issues/297
https://github.com/StackExchange/Stacks/issues/297
https://github.com/StackExchange/Stacks/issues/297

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

How Intercom Approached
Messenger Accessibility
By Daniel Husar

At Intercom, our mission is to make internet business per-
sonal.1 But in order for an internet business to be personal, it
must also be possible for everyone to access. More than one

billion people worldwide live with a disability – that’s more than 15%
of the global population. Without assistive technologies like screen
readers, the web is inaccessible or hard for them to use. Think of it
this way: it’s like entering your neighborhood coffee shop and dis-
covering that the counter is too tall for you to reach – because you’re
using a wheelchair.

We believe businesses should be able to communicate with every-
one on their website, regardless of how their visitors interact with
the web. This isn’t just a company philosophy; it’s also an engineer-
ing commitment. To prioritize accessibility in our Messenger,2
we took a hard look at the technical improvements we needed to
make and turned what were often fuzzy requirements into real,
meaningful solutions.

What we achieved is making our web Messenger accessible and com-
pliant with the Web Content Accessibility Guidelines 2.0 Level AA.

A Shared Framework for Web Accessibility

The Web Content Accessibility Guidelines (wcag) are a shared set of
technical standards that explain how to make web content accessible to

1 The original version of this article was published in December 2018:
https://www.intercom.com/blog/messenger-accessibility/

2 https://smashed.by/messenger

343

https://www.intercom.com/messenger

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

people with disabilities. Its twelve guidelines are organized around four
main principles, which provide the foundation for web accessibility:

• Perceivable: Users must be able to perceive the content in
some way, using one or more of their senses. For instance,
images that convey meaningful information should have alter-
native text provided.

• Operable: Users must be able to control UI elements. For exam-
ple, all functionality like buttons and form elements should be
accessible using keyboard controls.

• Understandable: The content must be understandable to its
users. That means things like the language of the page should
be detectable in the code.

• Robust: The content must be developed using well-known and
adopted web standards. In other words, your code should be eas-
ily parsed and interpreted by different browsers and user agents
like screen readers.

Our engineering work started by exploring the wcag guidelines
and then identifying all the areas in our web Messenger that needed
improvement. As we quickly learned, turning these four principles
into real solutions was simpler on paper than in practice.

Turning Fuzzy Requirements
into Real Solutions

The wcag guidelines are extensive – across the four principles,
there are nearly 100 sections – and some areas are quite fuzzy. Re-
quirements like “meaningful sequence” and “focus order” are very
broad in scope, especially for applications like ours that get embed-
ded in many different environments.

Success at Scale34 4

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

These fuzzy requirements meant there wasn’t always a direct or ob-
vious correlation between the wcag guidelines and what we needed
to build. We encountered issues that didn’t have clear answers on-
line, leaving it up to us to come up with the right technical solutions.
In the end, we identified three main areas of focus for accessibility
in our web Messenger:

• Keyboard navigation
• Screen reader support
• Color contrast

I’ll walk you through each of these areas, what we learned, and the
solutions we shipped.

Improving Keyboard Navigation

Keyboard navigation is a very important part of making your app
accessible. When visually- or auditory-impaired people use web
browsers, they often rely on keyboard navigation to tab into fields
and then have their screen reader read what action could be per-
formed. Our work on keyboard navigation can be broken down into
three main changes:

1. Making elements clickable by keyboard
2. Setting proper focus states
3. Designing intentional focus traps

1. MAKING ELEMENTS CLICKABLE BY KEYBOARD

The Intercom web Messenger is a React app. If we want keyboard
navigation to work with the Messenger, every onClick handler
that is added to an element, except the elements that browsers
support natively, also needs onKeyDown, which checks if the Enter

345How Intercom Approached Messenger Accessibility

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

or Space keys were pressed and execute the same function as the
onClick handler.

Let’s imagine a scenario where our component looks like this (these
examples include React components using JSX. You can learn more
about JSX here.3):

export default function(props) {
 return <div onClick={props.onClick}>Open modal</div>;
};

In order to make this component keyboard accessible, we can con-
vert it to a button:

export default function(props) {
 return <button onClick={props.onClick}>Open modal</button>;
}

This might not always be easy because your component might be
quite complex; for instance, you probably don’t want to wrap your
whole app in a <button> element – and buttons have specific styling.

Another approach to make this component accessible is to add on-
KeyDown, tabIndex and role attributes to it:

export default function(props) {
 return <div
 onClick={props.onClick}
 onKeyDown={(e) => (e.keyCode === 13 || e.keyCode === 32) &&
 props.onClick(e)}
 tabIndex="0"
 role="button"
 >Open modal</div>;
};

The problem is that adding these three attributes to every clickable
element in your app is quite a lot of work, and it’s easy for engineers

3 https://smashed.by/jsx

Success at Scale346

https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

adding new functionality to forget to add these attributes or use the
<button> element instead.

Building an Automated Solution

To make keyboard accessibility the default condition, we wrote a
custom babel plugin4 that automatically adds onKeyDown, tabIndex
and role attributes to all elements where:

1. Browsers do not natively support tabNavigation.

2. Browsers do not natively trigger onClick handlers when a
user hits the Enter or Space keys.

Since babel transforms jsx into regular JavaScript function calls, it’s
easy to statically determine components that need to have keyboard
events added to them. Our custom babel plugin now handles the
majority of our keyboard navigation issues. Here’s an example of
using babel-plugin-react-add-a11y-props within a React app: https://
smashed.by/babelsandbox

For the folks wondering about the performance implications of
having an arrow function in the render method, it really is fine, but
since your mileage may vary, you should always measure your per-
formance before you optimize.

While this plugin will add keyboard navigation to all elements with
onClick, if something behaves like a button, the best solution5 is still
to change it to an actual <button> element.

2. SETTING PROPER FOCUS STATES

In order for your app to be navigable by keyboard, you need proper
focus states. Focus states help users (and their screen readers) under-
stand where they are in the app and what elements are being selected.

4 https://smashed.by/babelplugin
5 https://smashed.by/ryanflorence

347How Intercom Approached Messenger Accessibility

https://github.com/danielhusar/babel-plugin-react-add-a11y-props
https://github.com/danielhusar/babel-plugin-react-add-a11y-props

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

A good rule of thumb: if a user is relying on keyboard navigation,
there should be a visual indicator to highlight which element cur-
rently has focus. In our case, we’ve designed our visual indicators to
show only if we detect you are using keyboard navigation. That way,
we minimize visual noise for our mouse users. You can use the CSS
focus-visible property to provide a different focus indicator based
on the user’s input modality, keyboard, or mouse.

3. DESIGNING INTENTIONAL FOCUS TRAPS

For keyboard navigation to work, you may need to set intentional
focus traps. Focus traps refer to times when a user hits the Tab key
or Shift + Tab keys, and they’re placed in a certain cycle of focusable
elements.6 The most common example where you would want to set
up a focus trap is a modal.

In our case, while the Messenger is open, we’ve set a focus trap
so users are not able to tab outside of it. That way, users are able
to navigate all of the elements in the Messenger without having
to navigate through the entire webpage. Here is our Messenger’s
focus trap in action:

6 https://smashed.by/dialogmodal

Here is our
Messenger
with the
focus
indicator
turned on:

Success at Scale348

https://www.w3.org/TR/wai-aria-practices-1.1/#dialog_modal
https://www.w3.org/TR/wai-aria-practices-1.1/#dialog_modal

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

Setting a focus trap is usually a complex task. Focus from the last
element should jump to the first one and when going backwards,
the focus should jump from the first one to the last one. For that
to work, you need to calculate all the focusable elements, set up
proper event listeners and have it flexible enough that you can
override those rules.

We have created an open-source library7 to quickly and easily create
focus traps. This library provides a high-level api that will handle the
focus traps. A simple example is to pass the dom element in which
the focus should be trapped:

const trap = new FocusTrap({
 node: document
});

You can check out the focus traps in action here:
https://smashed.by/focustrapsandbox

Just as it’s important to set intentional focus traps, you should al-
ways provide a way for keyboard users to exit those focus traps.

7 https://smashed.by/focustraplibrary

349How Intercom Approached Messenger Accessibility

https://github.com/danielhusar/focus-trap

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

You can see that in the example below. We’ve also designed it so that
after the modal is closed, the focus returns back to the element that
originally opened the modal. Here it is in our Messenger:

Supporting Screen Readers

Screen readers are software applications that allow visually-impaired
users to read text that is displayed on their computers. Together with
keyboard navigation, providing full support to screen readers was
crucial to making our Messenger accessible.

Our work on supporting screen readers can be broken down into
four main changes:

1. Making text content readable and navigable
2. Defining states and properties with aria attributes
3. Adding visually hidden text
4. Removing mouse hover states

Success at Scale350

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

1. MAKING TEXT CONTENT READABLE AND NAVIGABLE

The first thing we did was set the language attribute on html ele-
ments. Screen readers use this attribute to determine the language
of the page and read the text in its intended way.

The second thing we did was add semantic markup to our Messen-
ger. Since our Messenger is a single page app that you embed, seo
doesn’t apply to it and semantic markup hasn’t been a priority. To
support screen readers, we updated our code to include semantic
elements like headings, paragraphs and labels.

2. DEFINING STATES AND PROPERTIES WITH

ARIA ATTRIBUTES

To fully support screen readers in our web Messenger, we used
wai-aria attributes. Accessible Rich Internet Applications (aria) are
a set of attributes that supplement html so screen readers can han-
dle common interactions like form hints and error messages,
live content updates, and more.

Establishing Non-Text Elements with aria-label

We have added the aria-label attribute to all elements that have
onClick handlers, but it’s not clear to screen readers what the intend-
ed functionality is. The most common scenario is when elements
have decoration styles without any text. The screen reader will read
the aria-label when the keyboard is focused on that element. The
close button is good example:

We also support an ecosystem of apps8 that are built on top of our
Messenger. Previously it was not possible to make Messenger apps

8 https://smashed.by/intercomapps

351How Intercom Approached Messenger Accessibility

https://www.intercom.com/app-store/

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

accessible. Now we have extended our framework with aria-la-
bel attributes so every Messenger app can be fully accessible. For
instance, the Article Search app9 is accessible with aria-label attri-
butes for the input field and submit button:

Announcing Dynamic Changes with aria-live

Our Messenger behaves like a single page app. To support dynamic
changes to our content without page reload, we added aria-live
attributes to our app.

Our aria-live attributes tell screen readers to watch for changes
in selected dom elements, and any dom mutation inside of it will
be announced. We’ve wrapped our whole app with this attribute as
all changes that are made need to be presented to users. We’ve also
wrapped various parts like our conversation view in an aria-live
attribute so when a new message is received, the screen reader will
announce it first.

Indicating Error States with aria-invalid

All error states need to be properly announced to screen readers.
Previously, error states on the input would be represented only
with css classes. To make those error states visible to screen read-
ers, we’ve added aria-invalid attributes to inputs with errors and
role=”alert” to the error messages. Here is the error state for the
Mailchimp app10 in our Messenger:

9 https://smashed.by/intercomarticle
10 https://smashed.by/mailchimpapp

Success at Scale352

https://www.intercom.com/app-store/?app_package_code=article-search&search=article
https://www.intercom.com/app-store/?app_package_code=mailchimp&search=mailchimp

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

3. ADDING VISUALLY-HIDDEN TEXT

There are some scenarios where it’s only clear visually what compo-
nents do. Without the visual indicators, these elements are meaning-
less or confusing. In these cases, we’ve added visually-hidden text to
help screen readers interpret what’s happening.

The typing bubble in our Messenger is a good example of this:

While this makes it clear visually that somebody is typing, screen
readers have no way of processing or communicating that. We’ve
added hidden text inside the speech bubble for screen readers to
reference. You can visually hide text with this css snippet:

.visually-hidden {
 position: absolute !important;
 clip: rect(1px, 1px, 1px, 1px);
}

The html might look like this:

<div class=”typing-admin-bubble”>
 <div class=”typing-admin-dot-1”></div>
 <div class=”typing-admin-dot-2”></div>
 <div class=”typing-admin-dot-3”></div>
 <div class=”visually-hidden”>Is typing.</div>
</div>

4. REMOVING MOUSE HOVER STATES

Any functionality that is available just on mouse hover, such as
tooltips, should be accessible to screen readers too. In our case,

353How Intercom Approached Messenger Accessibility

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

we display timestamps in conversations when you hover over the
specific message:

Since timestamps are very useful information for screen readers, we
have opted to show timestamps all the time for screen readers:

Optimizing Color Contrast

For users with visual impairments like colorblindness, high contrast
between colors make it easier to read text content. The recommend-
ed contrast ratio for accessible content is 4:5:1 between the text and
background colors.

We split our color contrast work into three buckets:

1. Issues caused by customizable colors

2. Issues caused by non-customizable colors

3. Supporting high contrast mode in Windows 10

Success at Scale354

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

1. ISSUES CAUSED BY CUSTOMIZABLE COLORS

These are issues caused by customers who customize the Messen-
ger and choose colors that don’t match the recommended contrast
ratio. For example, teammates can choose the background and action
colors of the Messenger:

To help, we’ve published documentation11 on how to choose colors
for your Messenger while maintaining accessibility.

2. ISSUES CAUSED BY NON-CUSTOMIZABLE COLORS

These are issues caused by the colors that are hardcoded in our
codebase. We have inspected all the hardcoded colors we have in
the Messenger. After we identified all the colors that had to change,
our designers prepared alternative colors that matched the contrast
ratio. You can see the before and after here:

11 https://smashed.by/intercomdocs

On the left is the
Messenger before
we made the update.
On the right is the
Messenger with colors
matching the 4:5:1
contrast ratio.

355How Intercom Approached Messenger Accessibility

https://www.intercom.com/help/faqs-and-troubleshooting/the-intercom-messenger/is-the-intercom-messenger-accessible

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

3. SUPPORTING HIGH CONTRAST MODE IN WINDOWS 10

We’ve even added support for high contrast mode in Microsoft Win-
dows 10.12 High contrast mode is specifically designed for visually-
impaired people to consume content more easily.

Ensuring the Future Accessibility
of Our Messenger

We offer many customizations in our Messenger. While we want
our customers to be able to customize the Messenger to fit their
brand, it’s not always easy to keep accessibility in mind. That’s
why we’ve published a set of guidelines13 on how to customize the
Messenger to be accessible. Guidelines include what colors to pick,
which Messenger apps to use, how to send media content and at-
tachments in conversations, and more.

We’ve also put automated tooling in place to prevent any re-
gressions in the code. We’ve implemented two main tools: ESLint14

12 https://smashed.by/highcontrast
13 https://smashed.by/intercomguidelines
14 https://smashed.by/eslintjsx

Success at Scale356

https://blogs.windows.com/msedgedev/2016/04/20/building-a-more-accessible-web-platform/#CbZGC2hMXdTKis4k.97
https://blogs.windows.com/msedgedev/2016/04/20/building-a-more-accessible-web-platform/#CbZGC2hMXdTKis4k.97
https://www.intercom.com/help/faqs-and-troubleshooting/the-intercom-messenger/is-the-intercom-messenger-accessible

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

and react-a11y. ESLint helps us statically check our codebase for any
accessibility issues. React-a11y15 is a runtime validator that works in
our integration tests and will validate accessibility before we ship
any changes to production.

15 https://smashed.by/reacta11y

Intercom Key Takeaways

Building accessibility into a customizable Messenger so that

it could be accessed by anyone who wants to add a personal

touch to their internet business.

The Intercom business Messenger appears as a chat widget on
websites. To make their Messenger accessible, the team improved
keyboard navigation and color contrast, and introduced support for
screen readers. A few of the unique issues they addressed were:

 Designing intentional focus traps: When tabbing through el-
ements inside the messenger, the focus should not go outside
after the last element. This requires setting up focus traps to
reset the focus to the first element.

 Screen reader support for Messenger-specific features: In
addition to reading out live text messages, the Messenger can
inform screen reader users when another person is typing
(audio indicator for “typing…”). Screen readers can also read
the timestamp for a message when the user hovers on it.

 Color contrast with customization: Messenger customers can
customize it for their businesses. Some colors may make the
Messenger inaccessible to the customers of that business. To
avoid this, the team has published guidance on choosing colors.

357How Intercom Approached Messenger Accessibility

https://github.com/evcohen/eslint-plugin-jsx-a11y
https://github.com/reactjs/react-a11y

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

Making Internet Business
Personal and Possible

Every day, thousands of businesses use Intercom to talk to their
customers. That’s hundreds of thousands of people, or more,
who communicate with each other using our Messenger. And
while not everyone experiences web content in the same way,
using the Messenger should always feel personal and, just as im-
portant, be possible.

Making our web Messenger accessible – the engineering work
and changes – ended up being a small technical commitment

compared to its
huge and ongoing
impact. At the end
of the day, we want
the Messenger to
be the kind of space
online that feels

like walking into your neighborhood coffee shop and knowing
it’s designed to accommodate you.

Making our web Messenger

accessible – the engineering work

and changes – ended up being a small

technical commitment compared

to its huge and ongoing impact.

Success at Scale358

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

Shopping Platforms: Accessibility
Is More Than a Technical Problem
By Devon Persing

Digital accessibility is more than a technical problem to
solve,1 although many organizations approach it as some-
thing that can be fully addressed by development and

testing. However, approaching accessibility in a sustainable way
requires appreciating the complexity and breadth of disabilities that
impact your users, and understanding how accessibility impacts
every part of your product or service, as well as your organizational
values and goals.

I’ve been doing accessibility work full-time for about 11 years, after a
short career in libraries, so I’m pretty familiar with some of the myths
surrounding accessibility work. I’ve worked as a consultant, both solo
and in agencies, as well as in product companies. It’s through that
product company lens that I’m approaching this article, with the idea
that you can improve accessibility programming from within. In this
case study, I’m going to help you rethink accessibility work and give
you some practical tips for making your products and services more
accessible, more easily. To do that, I need to debunk some myths.

Myth #1: Disability is Simple

There’s a myth around accessibility work that disability is simple.
Or, maybe a better way of saying this is that disability is mono-
lithic. However, “disabled” is not a user type. Disability is often

1 The original version of this case study was published in April 2021:
https://smashed.by/shopifya11y

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

dynamic and situational, and impacts every disabled person’s
experiences differently.2

To start, it’s important to know that about 26% of adults in the United
States,3 22% of adults in Canada,4 and 15% of people worldwide have
a disability that affects their daily lives.5 (How people measure and
count disability varies across nations and cultures, but it’s safe to say
that approximately a quarter of all people have at least one disability.)

There are a few common types of disabilities that relate to digital
spaces, which can be organized into a few categories:

• Dexterity and mobility, which impacts how a person physical-
ly interacts with devices.

• Cognitive and neurological, which impacts how a person takes
in, processes, and remembers information and sensory input.

• Vestibular and motion, which impacts how people experience
visual motion, as well as the physical impacts of motion or per-
ceived motion on the body.

• Vision, which impacts how and how much a person can see.

• Hearing, which impacts how and how much a person can hear.

• Speech, which impacts how or whether a person speaks or
communicates verbally.

Using the social model of disability,6 disability is a mismatch be-
tween a person and the environment that has been designed.7
The negative impacts of disability are caused by systemic barriers,
attitudes, and exclusion in society, not a failing of the person with a
disability, nor something to be “fixed” or “overcome” in the person.

2 I use the phrase “disabled person” to describe myself, but you may prefer
“person with a disability.”

3 https://smashed.by/cdc
4 https://smashed.by/cdccanada
5 https://smashed.by/who
6 https://smashed.by/socialmodel
7 https://smashed.by/rethinkingdisability

Success at Scale360

https://www.cdc.gov/ncbddd/disabilityandhealth/infographic-disability-impacts-all.html
https://www.cdc.gov/ncbddd/disabilityandhealth/infographic-disability-impacts-all.html
https://www.cdc.gov/ncbddd/disabilityandhealth/infographic-disability-impacts-all.html
https://www.cdc.gov/ncbddd/disabilityandhealth/infographic-disability-impacts-all.html
https://www.cdc.gov/ncbddd/disabilityandhealth/infographic-disability-impacts-all.html
https://www.cdc.gov/ncbddd/disabilityandhealth/infographic-disability-impacts-all.html
https://www.cdc.gov/ncbddd/disabilityandhealth/infographic-disability-impacts-all.html
https://www.cdc.gov/ncbddd/disabilityandhealth/infographic-disability-impacts-all.html
https://www.cdc.gov/ncbddd/disabilityandhealth/infographic-disability-impacts-all.html
https://www.cdc.gov/ncbddd/disabilityandhealth/infographic-disability-impacts-all.html
https://www.cdc.gov/ncbddd/disabilityandhealth/infographic-disability-impacts-all.html
https://www.cdc.gov/ncbddd/disabilityandhealth/infographic-disability-impacts-all.html
https://www.canada.ca/en/employment-social-development/programs/accessible-canada.html
https://www.canada.ca/en/employment-social-development/programs/accessible-canada.html
https://www.canada.ca/en/employment-social-development/programs/accessible-canada.html
https://www.canada.ca/en/employment-social-development/programs/accessible-canada.html
https://www.canada.ca/en/employment-social-development/programs/accessible-canada.html
https://www.canada.ca/en/employment-social-development/programs/accessible-canada.html
https://www.canada.ca/en/employment-social-development/programs/accessible-canada.html
https://www.canada.ca/en/employment-social-development/programs/accessible-canada.html
https://www.who.int/health-topics/disability#tab=tab_1
https://www.who.int/health-topics/disability#tab=tab_1
https://www.who.int/health-topics/disability#tab=tab_1
https://www.who.int/health-topics/disability#tab=tab_1
https://www.who.int/health-topics/disability#tab=tab_1
https://www.who.int/health-topics/disability#tab=tab_1
https://www.who.int/health-topics/disability#tab=tab_1
https://www.who.int/health-topics/disability#tab=tab_1
https://www.who.int/health-topics/disability#tab=tab_1
https://www.who.int/health-topics/disability#tab=tab_1
https://www.who.int/health-topics/disability#tab=tab_1
https://www.who.int/health-topics/disability#tab=tab_1
https://www.who.int/health-topics/disability#tab=tab_1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4596173/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4596173/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4596173/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4596173/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4596173/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4596173/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4596173/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4596173/

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

To make things even more complex, many people experience dis-
abilities that vary day to day. As Brianne Benness says: “In main-
stream culture and media, ‘disabled’ usually refers to people with
static and visible disabilities. […] And so, if I tell somebody that I am
disabled, I must explain that not all disabilities are visible and also
not all disabilities are static.”8 For example, I have two conditions,
fibromyalgia and adhd, which make my day-to-day very different,
depending on how much stress I’m under, whether I’ve been sleep-
ing, and many other factors.

Assistive Tech Is More than Screen Readers

Often when I talk to designers and developers about assistive tech-
nology, they get stuck on the idea of the screen reader experience
being the accessibility experience we need to work for. But, consider-
ing the broad diversity in disabled experiences, people with disabil-
ities use a wide variety of assistive software and hardware tools to
connect to technology, and some people with disabilities don’t use
assistive tech at all.

Here are just a few examples of the many types of tech
disabled folks use.

TECH FOR DEXTERITY AND MOBILITY DISABILITIES

One of the most common categories of assistive tech is for people
with dexterity and mobility issues. These might be caused by an
injury (even temporary ones), limb difference, paralysis, or chronic
pain. (Over 22% of Americans have arthritis, fibromyalgia, or similar
chronic pain disorders,9 so chronic pain is quite common!) These
tools might make it easier for a person to use a keyboard and/or

8 https://smashed.by/dynamicdisability
9 https://smashed.by/arthritis

361Shopping Platforms: Accessibility Is More Than a Technical Problem

https://medium.com/age-of-awareness/my-disability-is-dynamic-bc2a619fcc1
https://medium.com/age-of-awareness/my-disability-is-dynamic-bc2a619fcc1
https://medium.com/age-of-awareness/my-disability-is-dynamic-bc2a619fcc1
https://medium.com/age-of-awareness/my-disability-is-dynamic-bc2a619fcc1
https://medium.com/age-of-awareness/my-disability-is-dynamic-bc2a619fcc1
https://medium.com/age-of-awareness/my-disability-is-dynamic-bc2a619fcc1
https://www.cdc.gov/arthritis/data_statistics/arthritis-related-stats.htm
https://www.cdc.gov/arthritis/data_statistics/arthritis-related-stats.htm
https://www.cdc.gov/arthritis/data_statistics/arthritis-related-stats.htm
https://www.cdc.gov/arthritis/data_statistics/arthritis-related-stats.htm
https://www.cdc.gov/arthritis/data_statistics/arthritis-related-stats.htm
https://www.cdc.gov/arthritis/data_statistics/arthritis-related-stats.htm
https://www.cdc.gov/arthritis/data_statistics/arthritis-related-stats.htm
https://www.cdc.gov/arthritis/data_statistics/arthritis-related-stats.htm
https://www.cdc.gov/arthritis/data_statistics/arthritis-related-stats.htm
https://www.cdc.gov/arthritis/data_statistics/arthritis-related-stats.htm
https://www.cdc.gov/arthritis/data_statistics/arthritis-related-stats.htm
https://www.cdc.gov/arthritis/data_statistics/arthritis-related-stats.htm
https://www.cdc.gov/arthritis/data_statistics/arthritis-related-stats.htm
https://www.cdc.gov/arthritis/data_statistics/arthritis-related-stats.htm
https://www.cdc.gov/arthritis/data_statistics/arthritis-related-stats.htm
https://www.cdc.gov/arthritis/data_statistics/arthritis-related-stats.htm
https://www.cdc.gov/arthritis/data_statistics/arthritis-related-stats.htm
https://www.cdc.gov/arthritis/data_statistics/arthritis-related-stats.htm
https://www.cdc.gov/arthritis/data_statistics/arthritis-related-stats.htm
https://www.cdc.gov/arthritis/data_statistics/arthritis-related-stats.htm
https://www.cdc.gov/arthritis/data_statistics/arthritis-related-stats.htm

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

mouse, or might replace those altogether. There are eye-tracking
tools that let you interact without touching a device at all, for exam-
ple. There are similar hardware and software combinations that let
users interact through a switch device, by pressing simple buttons
or performing small movements with their head or mouth to control
the mouse. There are yet other tools that allow people to control their
devices with their voice alone, such as Dragon on Windows and
Voice Control on Mac devices, as well as highly customizable key-
boards designed for use with one hand, or which replace keyboard
keys with large paddles.

TECH FOR VISION AND VISUAL SENSORY DISABILITIES

While most folks familiar with accessibility are familiar with screen
readers, there is a wide variety of other tools available for people
with issues related to vision and visual input.

Screenshot of high contrast settings in Windows 10, showing the default colors, with
a black background and bright colors to indicate links, text, and other elements.

Success at Scale362

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

A common vision tool is the high contrast theme in Windows, which
allows users to change colors across the operating system and in the
browser. This is used by people with vision issues, as well as visual
sensory issues. It color-codes different types of content, based on
the user’s settings and based on how the page is marked up. There
are other tools that invert colors to add permanent “dark modes” for
content that many people use as well.

For people who aren’t on Windows, or who have other preferences,
dark mode (or light mode!) at the system level or through browser
plug-ins is a legitimate accessibility need. People with photosensitivity
or who can have migraines triggered by certain types of contrast may
use these settings. Tools and settings to reduce motion or turn off an-
imations are also helpful for people with conditions that are triggered
by unnecessary movement or animation. Personally, I get migraines
if I look at content that is on a bright white background or has a lot
of motion. Slack threads full of animated emojis and gifs are a night-
mare, for example, and I’m grateful that I can just turn all that off.

Users with vision issues also often use magnification, and text or
content resizing in the browser. This gives users control over what
part of the screen they see at a given time, and makes information
easier to read.

TECH FOR COGNITIVE AND NEUROLOGICAL DISABILITIES

Options to reduce motion or adjust other sensory inputs can also be
extremely helpful for people with cognitive and neurological dis-
abilities. It’s critical to prevent triggering seizures. Also, people with
adhd, brain injuries, and other conditions may rely on dark or light
mode or motion reduction to prevent sensory overload and head-
aches. There are also plug-ins that allow users to customize colors
related to text, which can help folks with reading disabilities.

363Shopping Platforms: Accessibility Is More Than a Technical Problem

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

For people who have trouble reading on busy web pages, Reader
Mode in the Safari and Firefox web browsers allows you to strip out
all ads, navigation, sharing buttons – anything that’s not an article –
while you’re reading. It also gives you options for changing fonts and
colors. It’s designed to make it easier to read without distractions or
without complicated layouts, which can be a huge help for folks with
reading disabilities and disabilities that impact focus and attention.

Prevent Assistive Tech Barriers

We all need a greater awareness of how people use (and don’t use)
assistive tech. It’s possible to find some accessibility barriers with
automated testing, but the vast majority of websites and apps are too
complex to rely only on an automated solution. It’s important to be
able to test behavior as well as check for basic issues.

Pre-Covid, many tech organizations had device labs or other in-
house solutions for device testing. These often served as a way
for teams to do testing with different types of assistive tech. With
many product teams continuing to work remotely, there need to
be other options.

One option is to build your own “virtual” assistive tech lab based on
the tech that your customers (or potential customers) are probably
using. This requires educating teams about how to test with assistive
technology effectively, which has its own learning curve but leads
to a deeper understanding of how users might actually interact with
your product. To be effective, this type of effort requires documen-
tation and clear guidance about how and when to use assistive tech
when testing new features and products.

Success at Scale364

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

Another option is to work with a vendor that provides virtual ma-
chines specifically for accessibility testing. This will give you access
to common assistive technologies without the overhead of managing
your own virtual machines, but does still have that learning curve.

Focus on the Experience

When I teach workshops about disability and accessibility, I often
ask my students to do a matching exercise to map good UX practic-
es to the types of disabilities they might help. My students quickly
learn there are no one-to-one relationships between accessibility
best practices and individual types of disabilities. The interconnec-
tions show us that none of these individual types of disabilities are
experienced in a vacuum.

Here’s an example of how we might map UX experience to
disability categories:

example
practice dexterity cognitive vestibular vision hearing speech

Keyboard

support

Use of color

Clear labels

No auto-

playing video

Captions

and

transcripts

Text-based

commands

for virtual

assistants

like Siri

365Shopping Platforms: Accessibility Is More Than a Technical Problem

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

The upside to this level of complexity is that it forces us to give up
the notion that categories of disability are silos. Instead, we can
focus on how these different experiences are supported, rather
than trying to over-engineer solutions for any one audience or
disability type. This actually makes it easier to think about disability
as a collection of experiences that can be met with best practices, not
a monolith of people or stereotypes.

In this way, we can focus on a few general types of experiences:

• Dexterity and mobility barriers caused by pain or other factors
can result in a variety of different ways of touching or interact-
ing with hardware and software. These might even affect how
people hold a device, and whether a user might touch a device at
all, or rely fully on voice activation or other tools.

• The wide variety of neurodiversity means we need to think
broadly about how people think, process, and sense informa-
tion. No two people think alike, and people with cognitive
disabilities typically benefit from the simple language, clear
organization, and consistent workflows that help all users.

• Media that relies heavily on visuals, color, or sounds needs to have
alternatives for people who can’t or prefer to not to take in infor-
mation in those ways. Many people are visual learners, but consid-
ering how people who don’t take in information visually strength-
ens how we design visual or color-based experiences, making our
decision-making to use visuals or colors even stronger.

• People with vestibular or mobility issues need to have control
over how they interact with motion, or how they move. Think-
ing about low-motion experiences makes us focus on the real
goals we want users to achieve, and how we can use motion to
guide those experiences. It forces us to make workflows and
transitions that are clear even without motion.

• And people with disabilities that impact speech and people who
are nonverbal need non-speech based interfaces for tools like
virtual and home assistants.

Success at Scale366

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

Include Disabled People in the Process

To better understand the experiences of disabled users, invite
disabled people into your usability and inclusivity work. You’ll
never be able to test for every use case, but engaging in research
with participants with disabilities is the best way to ensure the ex-
periences of disabled people are included. This helps designers and
developers get better insights into making usable, accessible experi-
ences from the start.

To find participants in this kind of research, there are a few options.
One is to survey your existing user base to see if they use assistive
tech.10 You don’t even have to call it assistive tech! You can simply ask
if folks use a screen reader, switch device, and so on. You can also
reach out to organizations in your area that serve disabled people to
do your own recruitment, or contract with a company that performs
research with disabled users.

Just as critical, however, is considering who is designing, building,
and testing your products today. If you are not hiring disabled
people to do those jobs, it’s a good bet that accessibility is a chal-
lenge for your organization. Look into how accessible your organi-
zation’s hiring process is, and invest in recruiting and supporting
disabled employees.

Myth #2: Accessibility is a Technical Problem

To really deal with digital accessibility, we have to go beyond fixing
things, and start preventing them. The lack of accessibility, and how
to address it, is a cultural problem rooted in ableism. Most of our
resources and standards around accessibility are technical and ori-
ented towards testing. And, since so much accessibility work focuses

10 Asking what types of assistive technology a person might use is a way to find
participants who fall into the categories we’ve been discussing. Some people
who use assistive tech might not identify as disabled or having a disability,
and this also avoids asking people about sensitive medical information.

367Shopping Platforms: Accessibility Is More Than a Technical Problem

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

on fixing things that have already been implemented, developers are
often given the responsibility.

MEASURING ACCESSIBILITY

The primary tool we use to measure accessibility is the Web Content
Accessibility Guidelines, a technical document created by a working
group within the w3c.11 Not to knock the extremely important work
that these folks do, but this approach compounds a testing-oriented
culture around accessibility that puts the onus on developers and
testers. This results in a lot of accessibility work being done at the
end of a project, in a workflow that often starts with auditing sites
and apps that are already in the wild, then fixing issues, but not dig-
ging into the processes and workflows that caused those problems
in the first place.

This has also led to “solutions” like third-party overlays that promise
to solve complex accessibility issues with the click of a button, but
usually cause more harm than good. (Colleagues in the field have put a
useful resource together on overlays if you’d like more information.)12

Resources and guidance for designers, writers, researchers, and
others are minimal and repetitive. If you’re in one of these roles and
you’ve tried to find resources on how to integrate accessibility into
your practice, you’ve probably seen the same advice over and over
again: “Use good color contrast!” “Use simple language!” “Test with
users!” There is a lot of why, and not a lot of how. And that’s because
the how is going to vary from project to project, team to team, and
organization to organization.

Instead, try:

• Holistic, continuing education about how disability
and technology intersect.

11 https://smashed.by/wcag
12 https://overlayfactsheet.com/

Success at Scale368

https://overlayfactsheet.com/
https://overlayfactsheet.com/
https://overlayfactsheet.com/
https://overlayfactsheet.com/

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

• To include people with disabilities as part of your team
and process.

• Continuous improvement of processes and workflows to move
beyond technical guidelines to usability.

• To make accessibility part of the current work, not a future goal.

As a place to start, teams can review usability feedback from users
with disabilities, acquaint themselves with the assistive tech avail-
able on the devices they support, and look at any reported issues
for their product. These steps can help teams and team leads think
about when they might insert specific steps to avoid accessibility
issues in their workflow.

Ideally, a product workflow with accessibility included from the start
looks something like this:

1. Users with disabilities are included in the product audience
from the start.

2. Accessible experiences are included in design decisions.

3. Prototypes for new work are tested for usability, including
with users with disabilities.

4. Built solutions leverage automated testing, and testing with
common assistive tech.

5. If issues are reported by users after the product is released,
those issues are triaged and addressed by severity and priority
along with any other issues.

A lot of accessibility education focuses on developers, designers, and
content creators, but doesn’t support the people who manage those

369Shopping Platforms: Accessibility Is More Than a Technical Problem

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

UX practitioners. A critical addition was building out training ma-
terials for managers to help them better evaluate how literate their
teams are in accessibility, and how to better support accessibility
work in their processes, rituals, and hiring practices.

Myth #3: Accessibility is Hard

Accessibility work doesn’t have to be hard. Everything is hard when
you don’t know enough about it. Think back to when you first start-
ed learning your craft, gaining real experiences, learning new tools
and standards, and sometimes failing. You have to celebrate small
wins! Those wins just don’t represent the end of improvement.

And your goal doesn’t have to aim for expertise. Expertise is hard
to teach because it takes a long time. I also don’t think it’s possible
to really teach empathy. Instead, we should focus on ways to make
accessibility just another part of every process to create products.
Accessibility work at scale is an exercise in literacy and prac-
tice, not expertise or empathy.

To improve the accessibility of your work, here are some accessibility
literacy aims, borrowed from information literacy in library science:

• Learn how to discover resources about accessibility efficiently.

• Evaluate the usefulness and accuracy of resources.

• Understand the context in which those resources were created.

• Create new work using what you have learned.

• Participate in a community of practice to reinforce and
scale learning.

Success at Scale370

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

ENABLING BEST PRACTICE THROUGH RESEARCH

AND ITERATION

In a prior product company, I had the enormous benefit of working
alongside a user experience research (uxr) team. We were working
on the almost identical problem of scaling accessibility literacy and
research literacy in the same organization. This meant that we got
to iterate on each other’s experiments with tooling, education, and
processes, with the aim of creating a consistent, literacy-focused
methodology for creating user-focused activities and resources
across the organization.

Even if you don’t have a strong uxr team, there are other ways to
iterate. Many organizations have gone through major changes to
address localization and
other cultural differences,
workflows and tools, and
other aspects of their product
work. If your organization
had a particularly successful campaign to change how people work,
study that to get ideas about how you might grow accessibility.

SHARE WINS

Another way to grow community is to create an accessibility guild
across the organization. It can be a place for teams to share their ac-
cessibility wins, to ask questions from internal and external accessi-
bility experts, and generally build a more sustainable community of
practice around accessibility. This is a great way to turn accessibility
improvements into learning opportunities for other teams, instead
of always relying on an accessibility specialist or small accessibility
team to do that teaching.

Accessibility work at scale is an

exercise in literacy and practice,

not expertise or empathy.

371Shopping Platforms: Accessibility Is More Than a Technical Problem

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

For more formal programming, adding accessibility to project
requirements is also a huge step. This allows teams to formally ac-
knowledge their wins at demos, town halls, or whatever other rituals
your organization has around your workflows and processes.

LIVE UP TO YOUR CURRENT GOALS

As both an accessibility specialist in organizations and as a con-
sultant, I often found that organizations had values, mission state-
ments, diversity and inclusion programs, or other foundational
beliefs that should have prioritized accessibility, but did not in prac-
tice. This comes down to ableism. If your organization aims to serve
“everyone” in a particular demographic, geographic area, or other
category of user, you need to consider accessibility, now.

Accessibility should not be a future goal. Start now. Aim to become
literate in accessibility, not an expert, and your users and products
will benefit exponentially from the experiences you design and
consistently improve.

Shopping Platform Key Takeaways
Accessibility is not just a technical problem, but also a

cultural one.

Considering accessibility when designing and developing digital
products can have a significant impact on the user experience.
Designing for disability is not easy. It is important to consider the
different types of disabilities when designing digital products, as
different disabilities may require different accommodations.

This team integrated accessibility into the design process from the be-
ginning, rather than treating it as an afterthought. This helps ensure
that the product is accessible to all users, regardless of their abilities.

Success at Scale372

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

Improving Accessibility
on YouTube Web
By Addy Osmani & Sriram Krishnan

In this case study, learn how the YouTube team discovered that
mobile screen readers often behaved very differently than
desktop screen readers, and how they addressed these prob-

lems as part of their testing.

Building an Accessible Web

Web accessibility1 is the practice of ensuring sites are built with
inclusion in mind, so that they can be used by users with disabilities.
This includes users who are blind, deaf, have mobility impairments,
or have cognitive disabilities.

Accessible websites use a variety of techniques to make their content
accessible, such as using alternative text for images, ensuring there
is enough color contrast, and making sure that keyboards are a via-
ble way to navigate. By making sites accessible, we can ensure that
everyone has equal access to information and services online.

1 https://smashed.by/learnaccessibility

373Improving Accessibility on YouTube Web

https://web.dev/learn/accessibility/
https://web.dev/learn/accessibility/
https://web.dev/learn/accessibility/

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

Developers can use Lighthouse in Chrome DevTools for auditing
a number of accessibility opportunities. Of course, testing a real
screen reader environment would be even better.

YouTube web provides accessibility features2 so users with visual
disabilities can experience YouTube with screen readers. Support for
reading titles, accessing player controls, and settings is available on
both YouTube desktop web and mobile web properties.

A YouTube mobile page and how it looks with current visualization tools

Issues on Mobile Web

The YouTube team had followed accessibility best practices, such
as providing alt text for images3 and using accessible color contrast
combinations4 on web pages. However, in early 2020, the YouTube
team discovered a number of common issues related to screen read-
ers on mobile web.

2 https://smashed.by/youtubescreenreaders
3 https://smashed.by/alttext
4 https://smashed.by/contrast

Success at Scale374

https://support.google.com/youtube/answer/189278?hl=en#zippy=%2Csection-headers%2Con-the-player
https://support.google.com/youtube/answer/189278?hl=en#zippy=%2Csection-headers%2Con-the-player
https://support.google.com/youtube/answer/189278?hl=en#zippy=%2Csection-headers%2Con-the-player
https://web.dev/labels-and-text-alternatives/
https://web.dev/labels-and-text-alternatives/
https://web.dev/labels-and-text-alternatives/
https://web.dev/labels-and-text-alternatives/
https://web.dev/labels-and-text-alternatives/
https://web.dev/labels-and-text-alternatives/
https://web.dev/labels-and-text-alternatives/
https://web.dev/color-and-contrast-accessibility/
https://web.dev/color-and-contrast-accessibility/
https://web.dev/color-and-contrast-accessibility/
https://web.dev/color-and-contrast-accessibility/
https://web.dev/color-and-contrast-accessibility/

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

They soon realized that testing with desktop screen readers was in-
sufficient because the screen reader behavior is different on desktop
web and on various mobile devices.

Testing for a11y on YouTube

The first issue they discovered was that Android and iOS mobile
screen readers behaved differently for the same piece of html.

For example, one screen reader would allow the user to swipe to
two dom nodes; but for another screen reader, the user could swipe
to three. To make things even more complicated, when both screen
readers had the same elements getting focus, they would almost
always have different announcements.

An example of the same dom structure focusing very differently on Android and
iOS screen readers

375Improving Accessibility on YouTube Web

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

Common Roadblocks to Testing Screen
Readers for Mobile Web

To prevent issues in production, they had to be caught when testing.
However, there were several roadblocks to simulating mobile screen
reader behavior to find and fix accessibility issues.

• No current standard for mobile web screen readers
Existing standards are based on older device specifications and
are often outdated. For this reason, the team made recommen-
dations based on intuition, which wasn’t natural for screen
readers. As a result, the same dom may have different behaviors
between screen readers.

• Mobile screen readers are unavailable in the
development environment
Unlike desktop, where you have access to all your screen readers,
you are required to port the code to mobile devices for testing.

• Getting development code on real devices is tricky
For large companies like YouTube, the release process is locked
for only trusted devices and getting development code on real
devices can be slow. Emulators, like Chrome DevTools, can
speed up testing and help catch 90% of the issues in the develop-
ment environment. However, to catch all issues, consumer apps
such as YouTube must be tested on untrusted devices.

• Testing for regression after every change is difficult
It was really easy to cause a regression with one line change be-
cause screen reader behavior is invisible. This made it difficult for
the team to verify the existing behavior and prevent regressions.

The Solution

Since the challenge was in the testing process, the team con-
ducted research on how screen readers behaved with common

Success at Scale376

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

html patterns and documented where behavior differed be-
tween screen readers.

That knowledge was then transferred to a JavaScript library to
predict what gets focused and what gets announced for each screen
reader. This was integrated into our testing framework, a Chrome
extension, internal education materials, and a pre-submit check to
help the team speed up their workflow.

Finally, to make accessibility issues as visible to engineers as tradi-
tional UX bugs, tests are purposely very colorful, to highlight what
gets focus on the page.

Takeaways

The lessons learned from YouTube’s accessibility improvements can
be applied to other web development projects. Here are some key
best practices that were instrumental in enhancing YouTube’s web
accessibility, with a particular focus on manual testing.

UNDERSTAND THE LIMITATIONS OF AUTOMATED TESTING

Automated testing can catch many accessibility issues, but not all.
For example, while automated tools can detect if image alternative
text exists, they can’t verify
if the text is accurate and
properly assigned. Similarly,
automated tools can identify
keyboard-focusable elements,
but they can’t determine if the focus order makes logical sense or
if the focus indicator is visible. Learn more about the limitations
of automated testing5 on web.dev.

5 https://smashed.by/testmanual

Automated testing can

catch many accessibility

issues, but not all.

377Improving Accessibility on YouTube Web

https://web.dev/learn/accessibility/test-manual/
https://web.dev/learn/accessibility/test-manual/
https://web.dev/learn/accessibility/test-manual/
https://web.dev/learn/accessibility/test-manual/
https://web.dev/learn/accessibility/test-manual/
https://web.dev/learn/accessibility/test-manual/
https://web.dev/learn/accessibility/test-manual/

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

PERFORM KEYBOARD CHECKS: KEYBOARD FUNCTIONALITY

IS CRUCIAL FOR ACCESSIBILITY

Test your website using only your keyboard to ensure all function-
ality is accessible without a mouse. Check if the tabbing order is
logical and intuitive, if the keyboard focus indicator is always visible,
and if focus is managed correctly when interacting with different
elements. Note that keyboard checks may not always map to ges-
tures such as swipe on mobile devices. For example, tabbing through
a page will be very different from swipes on a platform like iOS.

Learn more about managing focus6 in the Learn Accessibility course
on web.dev.

CONDUCT VISUAL CHECKS

Visual checks can help identify color contrast issues that automated
tools might miss, such as text on top of a gradient or image. They
can also help ensure that elements that look like headings, lists, and
other structural elements are coded as such, and that navigation
links and form inputs are consistent throughout the website or app.

Developers can also emulate vision deficiencies7 in Chrome DevTools (such as
low-contrast and blurred vision) and test features like prefers-reduced-motion.

6 https://smashed.by/learningfocus
7 https://smashed.by/visionemulator

Success at Scale378

https://web.dev/learn/accessibility/focus/
https://web.dev/learn/accessibility/focus/
https://web.dev/learn/accessibility/focus/
https://developer.chrome.com/blog/new-in-devtools-83/
https://developer.chrome.com/blog/new-in-devtools-83/
https://developer.chrome.com/blog/new-in-devtools-83/
https://developer.chrome.com/blog/new-in-devtools-83/
https://developer.chrome.com/blog/new-in-devtools-83/

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

PERFORM CONTENT CHECKS

Content checks can help ensure that page titles, headings, and form
labels are clear and descriptive, that image alternatives are concise,
accurate, and useful, and that color is not the only means of conveying
meaning or information. They can also help identify issues with link
text, language changes within a page, and the use of plain language.

TEST ON DIFFERENT DEVICES

Screen reader behavior can vary between desktop and mobile de-
vices, and even between different mobile devices. Always test your
website on a variety of devices to ensure it is accessible to all users.

ADDRESS SCREEN READER FOCUS FLOW

AND ANNOUNCEMENTS

It’s crucial to ensure that screen readers are focusing on the right
elements and providing appropriate announcements. This can be
particularly challenging to test, as behavior can vary between differ-
ent screen readers and devices.

Note that teams should ideally align on standards for what screen
readers should do for certain patterns, rather than simply going
off of a gut feeling of what might be intuitive. This can otherwise
lead to an endless cycle of bugs being filed where one person
makes a fix that a different tester may later consider a bug. This is
applicable for many mobile web experiences where there are fewer
aligned on standards.

By following these best practices, you can make your web projects
more accessible and inclusive for all users. Remember, manual
testing is a vital part of the process, and while it may be more

379Improving Accessibility on YouTube Web

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

complex and time-consuming than automated testing, it can catch
a higher percentage of issues.

By following these best practices, you can make your web projects
more accessible and inclusive for all users.

Accessibility on YouTube in the Future

Maintaining accessibility for YouTube’s mobile website is no longer
seen as a painful problem for engineers. Now YouTube has tools for
instant feedback, debugging, and programmatic testing. Potential
issues get addressed beforehand, with pre-submit tests preventing
regressions for new releases.

YouTube Key Takeaways
Use of automation and manual testing can help to improve

the accessibility of web applications.

In early 2020 the YouTube team discovered a number of common
issues related to screen readers on their mobile web platform. They
soon realized that testing with desktop screen readers was insuffi-
cient because the screen reader behavior is different on desktop web
and on various mobile devices.

They researched these differences for screen readers on different
mobile devices and addressed accessibility by developing a JavaS-
cript library to predict what gets focused and what gets announced
for each screen reader. This library was integrated into their testing
framework, a Chrome extension, internal education materials, and
a pre-submit check. As a result, they were able to identify and fix
accessibility issues more quickly and easily.

Success at Scale380

A
C

C
E

S
S

IB
IL

IT
Y

A
C

C
E

S
S

IB
IL

IT
Y

This has significantly decreased efforts in fixing accessibility issues
and other Google properties, such as Maps and Merchant Center,
have adopted these same tools for testing.

USER-FACING IMPACT

Google sets high accessibility standards for its products, which in-
clude ensuring experiences work well with different screen readers
and assistive technology. YouTube’s work to improve web accessibili-
ty helped it better adhere to more advanced levels of these standards.

We believe the changes outlined in this case study enable screen
reader users to have an even more complete, seamless experience
browsing YouTube on the web than in previous years and look for-
ward to hearing any additional feedback from users.

While YouTube’s accessibility isn’t perfect yet, the improvements
here already represent a more inclusive experience for users.
YouTube, of course, continues to have opportunities to improve
accessibility, and the team is excited to iterate on the improvements
mentioned in this study.

381Improving Accessibility on YouTube Web

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

0000

0000

0000

0000

0000

0000

0000

0000

00 00

0000

0000

393

403

42 1

430

444

467

48 1

509

5251

534

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Apideck: How to Build a

Great Developer Experience

Deploying New Tech for Facebook.com

Frontend at Lyft: An Overview

Migrating Notion’s Marketing Site

to Next.js

Bloomberg: 10 Insights to

Adopting TypeScript at Scale

Zoover: Using Monorepos Is Not That Bad

Rebuilding a Featured News Section

with Modern CSS: Vox News

Auto Trader: Around the Artifacts

of Design Systems

Wix: When Life Gives You Lemons,

Write Better Error Messages

#

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Introduction

When starting a new project, engineering teams aim to
create a project environment that developers feel good
about and that motivates them to do better. Developer

experience1 (DX) is a term used to indicate how developers think
and feel about their activities within their working environments. It
assumes that an improvement of the developer experience positively
impacts characteristics like sustained team and project performance.

DX is the sum of experiences resulting from different activities that
developers perform. It includes perceptions about the following:

1. Development infrastructure consisting of tools, languages,
processes, etc.

2. Feelings about work, such as respect, attachment, belonging,
work-life balance, etc.

3. Value of their own contributions due to alignment of goals,
feedback, etc.

Knowledge of these factors can help design a development experience
so that the platform and ecosystem are more attractive to developers.
Research2 indicates that “happy software developers solve problems
better.” Unhappy developers3 can result in low productivity and low
code quality, thus affecting the software product being developed.
Several factors4 affect the overall developer experience. Many of
them depend on individual needs, personality, and interactions with
others. This section focuses on aspects related to development infra-
structure and how engineering tools and processes contribute to DX.

1 https://smashed.by/dx
2 https://smashed.by/happydevs
3 https://smashed.by/unhappydevs
4 https://smashed.by/satisfaction

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

DX and Development Infrastructure

Development infrastructure can comprise technologies, applications,
software, and content. A few examples of development tools are:

• A wide range of applications that include ides (VS Code), bun-
dlers (webpack), source control software (GitHub), etc.

• Languages (TypeScript, GraphQL), frameworks (React or Next.js),
and api providers (Stripe).

• Testing and performance tools (Selenium, Enzyme, Lighthouse).

• Hardware (machines or virtually hosted environments).

• Documentation, blogs, forums, and a community
knowledge base.

• Team collaboration and communication tools
(Slack, Teams, Zoom).

User experience measures how easy or pleasing it is to use an ap-
plication. A good developer experience ensures that developers will
enjoy working with development tools whose user base consists
exclusively of developers. Development tools, practices, and plat-
forms should be designed as aids that allow developers to achieve
their maximum potential in terms of productivity and code quality.
This becomes impossible with poorly designed tools or frameworks
where developers end up spending time on Stack Overflow, Reddit,
or other forums before they can get started.

A positive developer experience can boost team morale and improve
overall project execution and quality. It contributes to the following
aspects of a project:

Success at Scale386

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

1. Velocity: The team spends more time on activities that add
value to the project. This leads to a faster implementation path.

2. Quality: Tools that reduce development, debugging, and
testing times help teams catch more bugs and improve the
quality of products.

3. Onboarding: New team members have a shorter learning
curve, and they can get started independently without any
hand-holding required.

Developer experience can mean different things for different tools.
To ensure that a tool provides a good developer experience, we must
understand: what do developers want from engineering infrastruc-
ture? A simple answer is: developers just want to write efficient
code that is easy to test, maintain, and deploy. Let’s break this down
further in terms of software requirements.

Developers want:

• Languages and tech stacks they are comfortable with or find
easy to learn.

• A robust, obstacle-free, easy-to-use development environment
for writing code, version control, and management of builds.

• Easy-to-set-up testing infrastructure and data suitable
for the application.

• Accessible support for times when they do get stuck.

Using the list above, we can define some of the desirable character-
istics in a development platform to ensure a pleasing end-to-end
developer experience.

387Introduction

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

1. Function
2. Stability
3. Adoption time and learning curve
4. Coding experience
5. Documentation clarity
6. Intuitiveness

Let’s examine each of the above characteristics in detail and discuss
how they contribute to the overall developer experience.

DX Components

FUNCTION

Probably the most fundamental characteristic of DX, function
ensures that the software works and performs the set of activities
that developers expect it to perform. If it does not work, there is no
experience to talk about. A few examples of development tools with
their core functions are:

1. An IDE should allow you to edit code, manage projects and
files, debug, build, etc.

2. A BI tool should allow you to connect to databases or upload
text/CSV/Excel files.

3. A language should support different constructs such as ar-
rays, functions, events, etc.

4. An image editor should support commonly used file formats
like JPEG and PNG.

These are features that developers automatically assume the tool
or platform will support. All other features mean little without

Success at Scale388

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

function. The function thus creates the first impression when it
comes to developer experience.

STABILITY

Tools used by developers should be performant and reliable. De-
velopers would find it challenging to trust frameworks requiring
frequent patches. Minor issues can be dismissed as platform quirks
but would deteriorate the DX over time. The instability could hinder
developer performance and developer experience because:

1. Addressing issues with tools will distract developers from
their core tasks and affect the focus required for efficient
cognitive function.

2. They will lose trust in the tool and may not quickly identify
valid issues in their code that could also be caused by a mal-
functioning tool.

3. Upgrades that are not backward-compatible can break the build.

4. Slow functionality can slow down developers and lead to
frustration: for instance, having to wait too long to build code
after every small change.

A stable development ecosystem automatically creates an
obstacle-free environment for developers where they can focus
on their work.

ADOPTION TIME AND LEARNING CURVE

Developers who have already been assigned to a project may not
have a lot of time to learn a new tool or language. A tool that follows
many of the standard practices will be easier to adopt or learn. A
shorter learning curve is beneficial for both the team and the project.

389Introduction

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Some features that can result in a shorter adoption time and learn-
ing curve are:

1. Tools that use established standards for UI interactions, such
as menus and keyboard shortcuts, are easy to adopt for first-
time developer users.

2. Frameworks and libraries should be easy to install
and get started.

3. In cases where registration is required, the registration pro-
cess should be simple, requiring a minimum number of fields.

4. Compatibility issues with other hardware or software
should be clearly highlighted with the corrective action the
developer can take.

If developers adopt and learn a language or tool quickly, it will pro-
vide the feel-good factor and ensure better developer engagement.

CODING EXPERIENCE

Coding is what developers do, primarily. An excellent coding expe-
rience is thus crucial to ensure a great developer experience. Code
editors that enable developers to write correct code quickly provide
the best experience. Some features that contribute to the coding
experience are:

1. WYSIWYG editors allow you to see the changes as
you make them.

2. IntelliSense5 features help developers focus on implementing
logic without worrying about syntax.

5 https://smashed.by/intellisense

Success at Scale390

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

3. Integration with source control lets you check out, commit, or
merge in the same window.

4. Social development environments like CodePen6 let you run
your code and share it with a larger user base or embed it in
tutorials and blogs.

VS Code7 is probably the best example of a tool that provides a
fantastic coding experience and is constantly improving. It supports
hundreds of languages and features such as syntax highlighting,
bracket-matching, and auto-indentation and is highly customizable.

INTUITIVENESS

A product designed to be intuitive does not need an instruction
manual or documentation to support it. This quality is inherent to a
good user experience and developer experience. Developers deserve
a simple, easy-to-use interface as much as any other user. Some areas
that can be designed to be intuitive are:

• APIs should be named clearly with the parameters they need
and what they return.

• Developer-facing UI should be intuitive, helpful, and easily
configurable.

• Errors raised should be understandable and actionable and
explain how developers can fix or avoid the error.

• APIs should be uniform. For example, if a token is expected as a
parameter in all function calls, it should be consistently placed
at the beginning or end of the parameter list.

6 https://codepen.io/
7 https://smashed.by/vscode

391Introduction

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

DOCUMENTATION CLARITY

Most developers rely on documentation, forums, discussions, blogs,
and the community to address specific needs and use cases. Mostly
they rely on a search engine to find what they are looking for. The
following factors affect documentation clarity:

1. Documentation should be indexed and easy to search.

2. Issues like broken links and infinite loops should be ad-
dressed quickly. Page A may refer to Page B for a specific
topic, B refers to A, and the developer’s question
remains unanswered.

3. Availability of use cases and getting started docs to comple-
ment the primary documentation are usually helpful.

4. Mandatory or legal documentation like terms of service or
privacy policies for apis should be reviewed for clarity and
accuracy as they are known to cause DX issues.8

Ideal DX is where the tool is intuitive enough, so developers do
not need docs to guide them. However, even for advanced users
and sophisticated use cases, there will always be situations where
an easily discoverable explanation can go a long way in enhancing
the experience.

While these characteristics are critical to good DX, you cannot iso-
late and measure them. The best DX is where you never notice the
tools or the technology because they just work as expected, giving
you a smooth experience. Let us now look at some teams that have
done this and done it well.

8 https://smashed.by/dxissues

Success at Scale392

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Apideck: How to Build a Great
Developer Experience
By Nick Lloyd

Nowadays,1 developer experience (DX) is essential for soft-
ware products. Akin to user experience (UX), DX instead
focuses on improving the developer’s journey, reducing

hang-ups, and encouraging success throughout their programming
experience. As software-as-a-service (saas) rises in importance,
quality DX is no longer a choice – it is imperative in order to remain
competitive. Below, we’ll define what it takes to build a great devel-
oper experience. We’ll consider why having quality DX is important
and highlight some stellar examples of great DX in practice.

What Does DX Mean?

Developer experience (abbreviated as DX, DevX, or Dev EX) is like user
experience but for software developers. To have excellent DX means
that a software tool is functional, usable, well-designed, self-service-
able, and easy to navigate. This general gauge of quality can be applied
to any developer-facing utility, whether it’s apis (application program-
ming interfaces), skks (Software development Kits), clis (Command
line interfaces), cloud infrastructure, or other software-as-a-service.

WHY IS QUALITY DEVELOPER EXPERIENCE IMPORTANT?

Developers are customers now. Many companies have found suc-
cess in defering to the developer’s judgment when selecting new
tools, as opposed to relying on top-down direction. In this envi-
ronment, competition is increasingly driven by the usability of the

1 The original version of this case study was published at Apideck:
https://smashed.by/apideck

393

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

integration. In other words, usability matters for developers just as
much as it does for users.

Furthermore, there are now more APIs than ever. Even the number
of APIs within a single sector has flourished – for example, we’ve
tracked over 25 apis in the crm space alone.2 The hockey-stick
growth of the api economy means that software providers must
fight to survive, and battles are being won by the tools with the best
developer experience, such as Twilio, Stripe, and Shopify. Improving
usability directly correlates to more users and more sales.

In recent years, the bar has risen dramatically. It can also be hard
to cold-call developers, meaning SaaS must be discoverable and
self-service. With the advent of spec-driven development,3 the
standard for developer support materials has grown to include sleek
documentation, shared libraries, testing sandboxes, and more open
experiences curated to developer tastes.

In essence, apis must supply more than a static reference – the
market now expects intuitive, self-service experiences. In this new
paradigm, things are more sophisticated, and to remain relevant,
quality DX is no longer optional.

Tips for Building a Great Developer
Experience

Now that we understand what DX is and why it has soared in im-
portance, let’s consider some specific ways api providers can build a
great developer experience.

MAKE IT SELF-SERVICE

Make the entire process as self-service as possible. The api should
require zero human support intervention – from onboarding to api

2 https://smashed.by/crmapis
3 https://smashed.by/openapi

Success at Scale394

https://blog.apideck.com/25-crm-apis-to-integrate-with
https://blog.apideck.com/25-crm-apis-to-integrate-with
https://blog.apideck.com/25-crm-apis-to-integrate-with
https://blog.apideck.com/25-crm-apis-to-integrate-with
https://blog.apideck.com/25-crm-apis-to-integrate-with
https://blog.apideck.com/25-crm-apis-to-integrate-with
https://blog.apideck.com/25-crm-apis-to-integrate-with
https://blog.apideck.com/25-crm-apis-to-integrate-with
https://blog.apideck.com/25-crm-apis-to-integrate-with
https://blog.apideck.com/25-crm-apis-to-integrate-with
https://blog.apideck.com/introduction-to-openapi-specification
https://blog.apideck.com/introduction-to-openapi-specification
https://blog.apideck.com/introduction-to-openapi-specification
https://blog.apideck.com/introduction-to-openapi-specification
https://blog.apideck.com/introduction-to-openapi-specification

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

key generation, integration, and ongoing maintenance. Instead,
design the service to be easily discoverable and understandable by
users. Increasing self-service capabilities means providing public
documentation with a playground to test requests and responses
quickly. Avoiding a paywall with a free tier can encourage early use.

HAVE GREAT FUNCTIONALITY

Developers integrate apis to avoid reinventing the wheel, so the
functionality had better be worth it. Beyond simply performing as
expected, a quality DX supports engineers with non-reproducible,
innovative functionality. As a baseline, the functionality must be
stable and predictable. The api must also function as documented,
as inconsistencies between docs and production can be a big deter-
rent. Human-readable error messages are also critical for diagnos-
ing failed requests.

MEET SLAS AND BE TRANSPARENT

Quality DX also means high uptime and reliability. API.expert4 does a
good job showcasing the performance standards in our sector – most
apis hover around three-nines (99.9%) availability or higher, with a
200–500 ms median latency. APIs should specify a service-level agree-
ment (sla) with consumers, and strive to meet these benchmarks.
It’s also vital to monitor the service and maintain transparent status
reports; this could be accomplished with a real-time status page or a
decoupled uptime endpoint. When errors occur, notify the communi-
ty and correct them immediately, as did Stripe in a recent outage.5

USE MODERN DESIGN STANDARDS

A quality DX also considers modern programming trends. For
example, a soap web api serving xml feels antiquated. Nowadays,
rest design and json data formatting are more standardly used.
When appropriate, GraphQL can also increase usability signifi-

4 https://www.api.expert/
5 https://smashed.by/stripeoutage

395Apideck: How to Build a Great Developer Experience

https://hub.packtpub.com/stripes-api-suffered-two-consecutive-outages-yesterday-causing-elevated-error-rates-and-response-times/
https://hub.packtpub.com/stripes-api-suffered-two-consecutive-outages-yesterday-causing-elevated-error-rates-and-response-times/
https://hub.packtpub.com/stripes-api-suffered-two-consecutive-outages-yesterday-causing-elevated-error-rates-and-response-times/
https://hub.packtpub.com/stripes-api-suffered-two-consecutive-outages-yesterday-causing-elevated-error-rates-and-response-times/
https://hub.packtpub.com/stripes-api-suffered-two-consecutive-outages-yesterday-causing-elevated-error-rates-and-response-times/
https://hub.packtpub.com/stripes-api-suffered-two-consecutive-outages-yesterday-causing-elevated-error-rates-and-response-times/
https://hub.packtpub.com/stripes-api-suffered-two-consecutive-outages-yesterday-causing-elevated-error-rates-and-response-times/
https://hub.packtpub.com/stripes-api-suffered-two-consecutive-outages-yesterday-causing-elevated-error-rates-and-response-times/
https://hub.packtpub.com/stripes-api-suffered-two-consecutive-outages-yesterday-causing-elevated-error-rates-and-response-times/

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

cantly by combining disparate requests. Or, to cater to event-driven
workflows, asynchronous webhooks6 may be worth considering.
APIs are also expected to open-source OpenAPI specifications to
increase transparency and interoperability. Regardless, staying on
top of api design trends7 will help keep your service sleek, relevant,
and developer-friendly.

MEET DEVELOPERS WHERE THEY ARE

Part of this developer-friendly focus is meeting engineers wherev-
er they are – in skill-level, programming language, and preferred
development tool. APIs can boost developer experience by providing
easy integration for whatever programming language the engineer
is most comfortable with. Accomplish this by offering code samples
and libraries for popular languages, such as Python, Ruby, php C++,
or Go, and by generating sdks for mobile platforms like iOS, An-
droid, or Windows. Other ideas include:

• a cli to test requests from the command line
• a virtual testing environment
• a Run in Postman button
• a Run in Insomnia button

The point is to accommodate developer skill sets and appeal to the
workflows and tools they already use.

INCLUDE ACCOUNT DASHBOARDS

APIs are not usable with reference material alone. In addition to
documentation, a complete developer portal requires account man-
agement features. An api dashboard should provide ways to generate
api keys, handle billing, upgrade rate limits, and transparently view

6 https://smashed.by/webhook
7 https://smashed.by/apitrends

Success at Scale396

https://blog.apideck.com/what-is-a-webhook
https://blog.apideck.com/what-is-a-webhook
https://blog.apideck.com/what-is-a-webhook
https://apifriends.com/api-management/top-10-api-trends-for-2021/
https://apifriends.com/api-management/top-10-api-trends-for-2021/
https://apifriends.com/api-management/top-10-api-trends-for-2021/
https://apifriends.com/api-management/top-10-api-trends-for-2021/
https://apifriends.com/api-management/top-10-api-trends-for-2021/

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

usage. An advanced dashboard that logs all api calls and supplies
metadata such as specific client usage could benefit developers as
they refine their applications and perform error diagnostics.

ENFORCE DATA PRIVACY AND SECURITY COMPLIANCE

Conforming to regulations like gdpr or ccpa is now mandatory for
most businesses. Without the proper data compliance and security
clearance, the use of an api could stop dead in its tracks – a total buzz-
kill for potential developer consumers. To understand what policies to
enforce, api developers can easily compare security and compliance
ratings between cloud services, companies, and subprocessors using
a tool like ComplianceRank.8 From a security perspective, apis that
only support http Basic Authentication or don’t use mtls are prone
to abuse. Instead, advanced api security structures adopt OAuth and
jwt to share authorization scopes.

INVEST IN EXCELLENT DEVELOPER RELATIONS

A final piece of advice to instill great DX is to invest in community de-
velopment. Being part of a community can help boost confidence and
increase overall engagement around software. Developer advocates
can host virtual seminars to engage with developers, or organize the
community around
shared forums,
message boards, or
chat, like Discord or
Slack. API evangelists
can elevate users by offering pragmatic advice and creating training
materials. All in all, developer relations provides a path for additional
support, greatly supporting the developer journey and improving DX.

8 https://compliancerank.com/

Being part of a community can help

boost confidence and increase overall

engagement around software.

397Apideck: How to Build a Great Developer Experience

https://compliancerank.com/

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Five Examples of High-Quality
Developer Experience

The best way to demonstrate high-quality developer experience is to see
it in practice. Here are five examples of great DX in the api industry.

1. API TRACKER9

To compare api developer experiences on the market, look no further
than API Tracker. API Tracker, a curated directory of over 1,200 apis,
is an excellent way to discover apis and see how they compare to
others. API Tracker scores each api’s developer experience by show-
casing supported sdks and client libraries, api styles, compliance
statuses, the presence of a free account, and other pertinent integra-
tion information.

Marketo’s page on the api Tracker app.

2. SQUARE API EXPLORER10

Square, the popular payment-processing platform, offers a truly
innovative way to explore its api catalog. In addition to the typical
three-columned api documentation most developers have come to an-
ticipate, Square also created a reactive api explorer. Using drop-downs,
developers can select the api, the method, and preferred language to

9 https://apitracker.io
10 https://smashed.by/square

Success at Scale398

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

quickly generate responses and run requests in any language. Users
can insert an api key to run in sandbox or production modes. This
simple tool represents a distinctive way to navigate a web api.

Using the Square API Explorer

3. UNIFIED APIS11

API aggregation is often necessary for industry-specific integrators
– but consuming many apis at once can be tiresome. Unified apis
decrease this burden, offering an easy way to integrate multiple apis
of the same vertical simultaneously. By reducing development over-
head, Unified apis can significantly improve developer experience.
For example, the Lead API12 offers one Unified api to push and query
lead data from over 12 connectors.

API aggregation using Lead API

11 https://smashed.by/unifiedapi
12 https://smashed.by/leadapi

399Apideck: How to Build a Great Developer Experience

https://developers.apideck.com/apis/lead/reference
https://developers.apideck.com/apis/lead/reference

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

4. AWS DEVELOPER COMMUNITY13

When it comes to building developer communities, Amazon Web
Services (aws) is unrivaled. For one, the aws Heroes14 program
recognizes specific aws engineers, turning customers into stars in a
blog and podcast format. Many developer support options exist, in-
cluding developer advocates, user groups, a dedicated aws subreddit,
and live video training. AWS also supports language-specific forums
for Java, JavaScript, .net, php, Python, and Ruby. As you can see, aws
isn’t just talking about “meeting developers where they are” – they’re
actually doing it.

AWS Partner Network on social media

5. SHOPIFY GRAPHIQL EXPLORER15

Shopify is another api-first company known for its excellent devel-
oper community-building and high-quality DX. To increase usability
for its Shopify Admin api, Shopify provides a GraphiQL explorer.
Using the explorer on the left side, users can select what data to
return, and the playground will generate a request and response in

13 https://smashed.by/awscommunity
14 https://smashed.by/awsheroes
15 https://smashed.by/graphiql

Success at Scale400

https://aws.amazon.com/blogs/aws/get-to-know-the-first-new-aws-heroes-of-2021/

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

the following columns – this makes constructing GraphQL queries
much easier. You can view a demo here,16 and download this pack-
age17 to build queries and mutations.

Shopify’s GraphiQL explorer

DX Shapes the Future of Software
Development

Nowhere was quality DX needed most than within the api economy
where, for years, integration was notoriously painful. Yet in recent
times this has all changed. The standards have risen. Now, great
DX is no longer optional – instead, it’s core to the api-as-a-product
movement.

As seen in the above examples, interactive demonstrations help
programmers learn and get started quickly. Developers have also
come to expect great functionality, high uptime, and modern design.
A developer dashboard is also necessary for self-service capabilities,
while developer relations can extend a helping hand to the strug-
gling implementers. Lastly, meeting standard compliances is needed
to avoid a broken experience entirely.

16 https://smashed.by/admingraphiql
17 https://smashed.by/graphiqlinstaller

401Apideck: How to Build a Great Developer Experience

https://shopify.dev/graphiql/admin-graphiql
https://shopify-graphiql-app.shopifycloud.com/login
https://shopify-graphiql-app.shopifycloud.com/login

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Optimizing DX is an art. For powerful software tools, balancing
complexity and usability is challenging. Simultaneously, developer
love is hard to generate. Though not mentioned above, it probably
goes without saying that apis should avoid empty sales dialogue,
as it could do more harm than good. Instead, show the power of the
utility and get out of the way.

With more and more products targeting the developer mindshare,
the market is highly competitive. The tools that prosper will surely
be the ones that invest in developer experience and reimagine it in
unforeseen ways. Hopefully, then, only the software with great DX
will rule the future.

Apideck Key Takeaways
Implementing robust development tools and fostering a

feedback-centric culture significantly enhances the

developer experience.

 Solid onboarding processes and comprehensive documenta-
tion smooth the learning curve for new developers.

 Automated testing and continuous integration/continuous
deployment (CI/CD) pipelines allow developers to catch and
correct errors sooner.

 A culture that values feedback and iteration leads to continual
improvement of processes and tools.

 Providing developers with the tools that allow them to easily
reproduce and diagnose problems minimizes frustration.

 Regularly soliciting and acting on feedback from developers
helps to identify and rectify areas of friction.

Success at Scale402

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Deploying New Tech
for Facebook.com
By Ashley Watkins & Royi Hagigi

Facebook.com launched in 2004 as a simple server-rendered
PHP website.1 Over time, we’ve added layer upon layer of new
technology to deliver more interactive features. Each of these

new features and technologies incrementally slowed the site down
and made it harder to maintain. This made it harder to introduce
new experiences. Features like dark mode and saving your place in
news feed had no straightforward technical implementation. We
needed to take a step back to rethink our architecture.

When we thought about how we would build a new web app – one
designed for today’s browsers, with the features people expect from
Facebook – we realized that our existing tech stack wasn’t able to
support the app-like feel and performance we needed. A complete re-
write is extremely rare, but in this case, since so much has changed
on the web over the course of the past decade, we knew it was the
only way we’d be able to achieve our goals for performance and
sustainable future growth. Today, we’re sharing the lessons we’ve
learned while rearchitecting Facebook.com, using React (a declar-
ative JavaScript library for building user interfaces) and Relay2 (a
GraphQL client for React).

Getting Started

We knew we wanted Facebook.com to start up fast, respond fast, and
provide a highly interactive experience. Although a server-driven

1 The original version of this article was published in May 2020: https://
smashed.by/fbtechstack

2 https://relay.dev/

403

https://relay.dev/

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

app could deliver a fast startup time, we weren’t convinced we could
make it as interactive and delightful as a client-driven app. However,
we believed we could build a client-driven app with a competitively
fast startup time.

But starting from the ground-up with a client-first app brought a new
set of problems. We needed to rebuild the tech stack quickly while also
addressing speed and other user experience issues – and we needed to
do it in such a way that it would be sustainable for years to come.

Throughout the process, we anchored our work around two
technical mantras:

1. As little as possible, as early as possible. We should deliver
only the resources we need, and we should strive to have
them arrive right before we need them.

2. Engineering experience in service of user experience.
The end goal of our development is all about the people using
our website. As we think about the UX challenges on our site,
we can adapt the experience to guide engineers to do the right
thing by default.

We applied these same principles to improve four main elements of
the site: css, JavaScript, data, and navigation.

Rethinking CSS to Unlock New Capabilities

First, we reduced the css on the homepage by 80% by changing how
we write and build our styles. On the new site, the css we write is
different from what gets sent to the browser.

While we write familiar css-like JavaScript in the same files as our
components, a build tool splits these styles into separate, optimized

Success at Scale404

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

bundles. As a result, the new site ships less css, supports dark
mode and dynamic font sizes for accessibility, and has improved
image rendering performance – all while making it easier for
engineers to work with.

GENERATING ATOMIC CSS TO REDUCE

HOMEPAGE CSS BY 80%

On our old site, we were loading more than 400 KB of compressed
css (2 MB uncompressed) when loading the homepage, but only 10%
of that was actually used for the initial render. We didn’t start out
with that much css; it just grew over time and rarely decreased. This
happened in part because every new feature meant adding new css.

We addressed this by generating atomic css at build time. Atomic
css has a logarithmic growth curve because it’s proportional to the
number of unique style declarations rather than to the number of
styles and features we write. This lets us combine the generated
atomic css from across our site into a single, small, shared style
sheet. As a result, the new homepage downloads less than 20% of the
css the old site downloaded.

COLOCATING STYLES TO REDUCE UNUSED CSS AND

MAKE IT EASIER TO MAINTAIN

Another reason our css grew over time was that it was difficult
to identify whether various css rules were still in use. Atomic css
helps mitigate the performance impact of this, but unique styles still
add unnecessary bytes, and the unused css in our source code adds
engineering overhead. Now, we colocate our styles with our com-
ponents so they can be deleted in tandem, and only split them into
separate bundles at build time.

We also addressed another issue we were facing: css precedence
depends on ordering, which is especially difficult to manage when

405Deploying New Tech for Facebook.com

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

using automated packaging that can change over time. It was previ-
ously possible for changes in one file to break the styles in another
without the author realizing it. Instead, we now author styles using
a familiar syntax inspired by React Native3 styling APIs: we guaran-
tee that the styles are applied in a stable order, and we don’t support
css descendant selectors.

CHANGING FONT SIZES FOR BETTER ACCESSIBILITY

We’ve taken advantage of our offline build step to make accessibil-
ity updates as well. On many websites today, people enlarge text by
using their browser’s zoom function. This can accidentally trigger a
tablet or mobile layout or increase the size of things they didn’t need
to enlarge, such as images.

By using rems,4 we can respect user-specified defaults and are able
to provide controls for customizing font size without requiring
changes to the style sheet. Designs, however, are usually created us-
ing css pixel values. Manually converting to rems adds engineering
overhead and the potential for bugs, so we have our build tool do this
conversion for us.

SAMPLE BUILD-TIME HANDLING

const styles = stylex.create({
 emphasis: {
 fontWeight: ‘bold’,
 },
 text: {
 fontSize: ‘16px’,
 fontWeight: ‘normal’,
 },
);

3 https://reactnative.dev/
4 https://smashed.by/rems

Success at Scale406

https://reactnative.dev/
https://reactnative.dev/
https://reactnative.dev/
https://developer.mozilla.org/en-US/docs/Web/CSS/font-size

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

function MyComponent(props) {
 return <span className={styles('text', props.isEmphasized
 && 'emphasis')} />;
} }

Example of source code

.c0 { font-weight: bold; }
.c1 { font-weight: normal; }
.c2 { font-size: 0.9rem; }

Example of generated css

function MyComponent(props) {
 return <span className={(props.isEmphasized ? 'c0 ' :
 'c1 ') + 'c2 '} />;
}

Example of generated JavaScript

CSS VARIABLES FOR THEMING (DARK MODE)

On the old site, we used to attempt to apply themes by adding a class
name to the body element and then using that class name to override
existing styles with rules that had a higher specificity. This approach
has issues, and it no longer works with our new atomic css-in-JavaS-
cript approach, so we have switched to css variables5 for theming.

CSS variables are defined under a class, and when that class is
applied to a dom element, its values are applied to the styles within
its dom subtree. This lets us combine the themes into a single style
sheet, meaning toggling different themes doesn’t require reloading
the page, different pages can have different themes without down-
loading additional css, and different products can use different
themes side-by-side on the same page.

5 https://smashed.by/cssvariables

407Deploying New Tech for Facebook.com

https://developer.mozilla.org/en-US/docs/Web/CSS/Using_CSS_custom_properties
https://developer.mozilla.org/en-US/docs/Web/CSS/Using_CSS_custom_properties
https://developer.mozilla.org/en-US/docs/Web/CSS/Using_CSS_custom_properties

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

.light-theme {
 --card-bg: #eee;
}
.dark-theme {
 --card-bg: #111;
}
.card {
 background-color: var(--card-bg);
}

This made the performance impact of a theme proportional to the
size of the color palette rather than to the size or complexity of the
component library. A single atomic css bundle also includes the dark
mode implementation.

SVGS IN JAVASCRIPT FOR FAST,

SINGLE-RENDER PERFORMANCE

To prevent flickering as icons come in after the rest of the content,
we inline svgs into the html using React rather than passing svg
files to tags. Because these svgs are now effectively JavaScript,
they can be bundled and delivered together with their surrounding
components for a clean one-pass render. We’ve found that the upside
of loading these at the same time as the JavaScript is greater than the
cost of svg painting performance. By inlining, there’s no flickering
of icons that pop in afterward.

function MyIcon(props) {
 return (
 <svg {...props} className={styles({/*...*/})}>
 <path d=”M17.5 ... 25.479Z” />
 </svg>
);
}

Success at Scale408

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Additionally, these icons can change colors smoothly at runtime
without requiring further downloads. We’re able to style the icon ac-
cording to its props and use our css variables to theme certain types
of icons, especially ones that are monochrome.

SVG icons without dark mode

SVG icons in dark mode

409Deploying New Tech for Facebook.com

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Code-Splitting JavaScript
for Faster Performance

Code size is one of the biggest concerns with a JavaScript-based
single-page app because it has a large influence on page load per-
formance. We knew that if we wanted a client-side React app for
Facebook.com, we’d need to solve for this. We introduced several
new apis that work in line with our “as little as possible, as early
as possible” mantra.

INCREMENTAL CODE DOWNLOAD TO DELIVER

JUST WHAT WE NEED, WHEN WE NEED IT

When someone is waiting for a page to load, our goal is to give
immediate feedback by rendering UI “skeletons” of what the page is
going to look like. This skeleton needs minimal resources, but we can’t
render it early if our code is packaged in a single bundle, so we need to
code-split into bundles based on the order in which the page should be
displayed. However, if we do this natively (that is, by using dynamic
imports6 that are fetched during render), we could hurt performance
instead of helping it. This is the basis of our code-splitting design of
JavaScript loading tiers: we split the JavaScript needed for the initial
load into three tiers, using a declarative, statically analyzable api.

Tier 1 is the basic layout needed to display the first paint for the above-
the-fold content, including UI skeletons for initial loading states.

The page after tier 1 code loads and renders

6 https://smashed.by/dynamicimports

Success at Scale410

https://github.com/tc39/proposal-dynamic-import
https://github.com/tc39/proposal-dynamic-import
https://github.com/tc39/proposal-dynamic-import

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

import ModuleA from 'ModuleA';

Tier 1 uses regular import syntax.

Tier 2 includes all the JavaScript needed to fully render all above-
the-fold content. After tier 2, nothing on the screen should still be
visually changing as a result of code loading.

The page after tier 2 code loads and renders.

importForDisplay ModuleBDeferred from 'ModuleB';

Once an importForDisplay is encountered, it and its dependencies
are moved into tier 2. This returns a promise-based wrapper to ac-
cess the module once it’s loaded.

Tier 2 needs to be fully interactive. If someone clicks on a menu after tier 2 code
loads and renders, they get immediate feedback about the interaction, even if the
contents of the menu are not ready to render.

411Deploying New Tech for Facebook.com

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Tier 3 includes everything that is only needed after display that
doesn’t affect the current pixels on the screen, including logging
code and subscriptions for live-updating data.

importForAfterDisplay ModuleCDeferred from ‘ModuleC’;
// ...
function onClick(e) {
 ModuleCDeferred.onReady(ModuleC => {
 ModuleC.log(‘Click happened! ‘, e);
 });
}

Once an importForAfterDisplay is encountered, it and its depen-
dencies are moved into tier 3. This returns a promise-based wrapper
to access the module once it’s loaded.

A 500 KB JavaScript page can become 50 KB in tier 1, 150 KB in tier
2, and 300 KB in tier 3. Splitting our code this way enables us to im-
prove time to first paint and time to visual completion by reducing
the amount of code that needs to be downloaded to hit each mile-
stone. Because tier 3 doesn’t affect the pixels on the screen, it isn’t
really a render, and the final paint finishes earlier. Most significant-
ly, the loading screen is able to render much earlier.

DELIVERING EXPERIMENT-DRIVEN DEPENDENCIES

ONLY WHEN THEY’RE NEEDED

We often need to render two variations of the same UI; for example,
in an A/B test. The simplest way to do this is to download both ver-
sions for all people, but this means we often download code that is
never executed. A slightly better approach is to use dynamic imports
on render, but this can be slow.

Instead, in keeping with our “as little as possible, as early as possible”
mantra, we built a declarative api that alerts us to these decisions
early and encodes them in our dependency graph. As the page is

Success at Scale412

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

loading, the server is able to check the experiment and send down
only the required version of the code.

const Composer = importCond(‘NewComposerExperiment’, {
 true: ‘NewComposer’,
 false: ‘OldComposer’,
});

This works well when the conditions we split on are static across
page loads for that person, such as A/B tests, locales, or device classes.

DELIVERING DATA-DRIVEN DEPENDENCIES

ONLY WHEN THEY’RE NEEDED

What about code branches that are not static across page loads? For
example, sending down all the rendering code for all the different
types and combinations of components for news feed posts would
considerably bloat the page’s JavaScript size.

These dependencies are decided at runtime, based on which data
is returned from the back end. This allows us to use a new feature
of Relay7 to express which rendering code is needed, depending on
what type of data is returned. If the post has a special attachment,
such as a photo, we describe that we need the PhotoComponent in
order to render that photo.

... on Post {
 ... on PhotoPost {
 @module(‘PhotoComponent.js’)
 Photo_data
 }
 ... on VideoPost {
 @module(‘VideoComponent.js’)
 Video_data
 }
}

7 https://smashed.by/relay

413Deploying New Tech for Facebook.com

https://github.com/facebook/relay

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

We express the dependencies needed to render each post type as
part of the query.

Even better, the PhotoComponent itself describes exactly which data
on the photo attachment type it needs as a fragment, which means
we can even split out the query logic.

USING JAVASCRIPT BUDGETS TO PREVENT CODE CREEP

Tiers and conditional dependencies help us deliver just the code nec-
essary for each phase, but we also need to make sure the size of each
tier stays under control over time. To manage this, we’ve introduced
per-product JavaScript budgets.

We set budgets based on performance goals, technical constraints,
and product considerations. We allocated page-level budgets and
subdivide the page based on product boundaries and team boundar-
ies. Shared infra is added to a carefully curated list and given its own
budget. Shared infra counts against all pages’ budgets, but modules
within it are free for product teams to use. We also have budgets for
code that’s deferred, conditionally loaded, or loaded on interaction.

We’ve created additional tooling for each step of the process:

• A dependency graph tool makes it easier to understand
where bytes are coming from and identify opportunities to
decrease code size.

• Size monitoring on merge requests displays size regressions/
improvements and triggers customizable alerts.

• Interactive graphs show historical size and how things have
changed between revisions.

• Dashboards help us understand the current state of sizes in
relation to budgets.

Success at Scale414

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Modernizing Data-Fetching to Get It
as Early as Possible

As part of this rebuild, we modernized our data-fetching infra on the
web. While some features of the old site used Relay and GraphQL for
data-fetching, most fetched data ad hoc as part of their server-side
PHP rendering. With the new site, we were able to standardize with
our mobile apps and ensure that all data-fetching goes through
GraphQL. Since Relay and GraphQL already handle the “as little as
possible” work for us, we just needed to make some changes to sup-
port getting the data we needed as early as possible.

PRELOADING DATA ON THE INITIAL SERVER REQUEST

TO IMPROVE STARTUP

Many web apps need to wait until all their JavaScript is downloaded
and executed before fetching data from the server. With Relay, we
know statically what data the page needs. This means that as soon
as our server receives the request for a page, it can immediately
start preparing the necessary data and download it in parallel with
the required code. We stream this data with the page as it becomes
available so the client can avoid additional round trips and render
the final page content sooner.

STREAMING DATA FOR FEWER ROUND TRIPS

AND BETTER INTERACTIVITY

On the initial load of Facebook.com, some content may initially
be hidden or rendered outside of the viewport. For example, most
screens fit one or two news feed posts, but we don’t know in advance
how many will fit. Additionally, it’s very likely the user will scroll,
and it would take time to fetch each story individually in a serial
round trip. On the other hand, the more stories we fetch in one que-
ry, the slower that query gets, which leads to longer query times and
a longer visually complete time for even the first story.

415Deploying New Tech for Facebook.com

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

To solve this, we use an internal GraphQL extension, @stream, to
stream the feed connection to the client both for initial load and sub-
sequent pagination on scroll. This allows us to send each feed story
as soon it’s ready, one by one, with just a single query operation.

fragment HomepageData on User {
 newsFeed(first: 10) {
 edges @stream
 }
 ...AdditionalData
}

DEFERRING DATA THAT’S NOT NEEDED RIGHT AWAY

Different parts of certain queries take longer to compute than oth-
ers. For example, when viewing a profile, it’s relatively quick to fetch
a person’s name and profile photo, but it takes a bit longer to fetch
the contents of their timeline.

To fetch both types of data with a single query, we use @defer, which
enables different sections of the response to be streamed as soon as
they’re ready. This lets us render the bulk of the UI with initial data
as quickly as possible, and render loading states for the rest. With
React Suspense,8 this is even easier, as we can explicitly craft our
loading states to ensure a smooth, top-down page load experience.

fragment ProfileData on User {
 name
 profile_picture { ... }
 ...AdditionalData @defer
}

8 https://smashed.by/suspense

Success at Scale416

https://reactjs.org/docs/concurrent-mode-suspense.html
https://reactjs.org/docs/concurrent-mode-suspense.html
https://reactjs.org/docs/concurrent-mode-suspense.html

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Route Maps and Definitions
for Faster Navigation

Fast navigation is an important feature of single-page applications.
When navigating to a new route, we need to fetch various code and
data from the server to render the destination page. To reduce the
number of network round trips required when loading a new page,
the client needs to know which resources will be needed for each
route ahead of time. We call this a route map and each entry
a route definition.

GETTING ROUTE DEFINITIONS AS EARLY AS POSSIBLE

For Facebook, this route map is too large to send all at once. Instead,
we dynamically add route definitions to the route map during the
session, as new links are rendered. The route map and the router live
at the very top of the application, allowing the combination of cur-
rent application and router state to drive app-level state decisions,
such as the behavior of the top navigation bar or chat tabs based on
the current route.

PREFETCHING RESOURCES AS EARLY AS POSSIBLE

It’s common for client-side applications to wait until a page is being
rendered by React to download the code and data needed for that
page. Often this is done using React.lazy or a similar primitive.
Since this can make page navigation slow, we instead start our first re-
quest for some of the necessary resources even before a link is clicked.

To provide a more fluid experience than just showing a blank screen
when navigating, we use React Suspense transitions9 to continue
rendering the previous route until the next route is either fully

9 https://smashed.by/transitions

417Deploying New Tech for Facebook.com

https://reactjs.org/docs/code-splitting.html#reactlazy
https://reactjs.org/docs/code-splitting.html#reactlazy
https://reactjs.org/docs/code-splitting.html#reactlazy
https://reactjs.org/docs/concurrent-mode-patterns.html#transitions
https://reactjs.org/docs/concurrent-mode-patterns.html#transitions
https://reactjs.org/docs/concurrent-mode-patterns.html#transitions
https://reactjs.org/docs/concurrent-mode-patterns.html#transitions
https://reactjs.org/docs/concurrent-mode-patterns.html#transitions

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

rendered or suspends into a “good” loading state with UI skeletons
for the next page. This is much less jarring, and it mimics standard
browser behavior.

We kick off fetches early, preloading on hover or focus, and fetching on
mousedown. This example is specific to desktop, but other heuristics can
be used for touch devices.

PARALLELIZING CODE AND DATA DOWNLOAD

We do a lot of lazy loading of code on the new site, but if we lazy
load the code for a route and the data-fetching code for that route
lives inside of that code, we end up with a serial load.

A “traditional” React/Relay app with lazy-loaded routes results in
two round trips.

Success at Scale418

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

To solve this problem, we came up with EntryPoints, which are
files that wrap a code-split point and transform inputs into queries.
These files are very small and are downloaded in advance for any
reachable code-split point.

Code and data are fetched in parallel, allowing us to download these in a single
network round trip.

The GraphQL query is still colocated with the view, but the Entry-
Point encapsulates when that query is needed and how to transform
the inputs into the
correct variables.
The app uses these
EntryPoints to au-
tomatically decide
when to fetch the
resources, making
sure the right thing happens by default. This has the added benefit
of creating a single JavaScript function that contains all the da-
ta-fetching needs for any given point in the app, which can be used
for the server preloading discussed earlier.

Many of the changes we’ve discussed here are not specific to Face-
book. These concepts and patterns can be applied to any client-side

Engineering experience improvements

and user experience improvements

must go hand-in-hand, and performance

and accessibility cannot be viewed

as a tax on shipping features.

419Deploying New Tech for Facebook.com

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

app using any framework or library. By standardizing our tech stack,
we have been able to rethink how we introduce functionality that
people want in a performant, sustainable way – even as we operate
at engineering and product scale.

Engineering experience improvements and user experience im-
provements must go hand in hand, and performance and accessibil-
ity cannot be viewed as a tax on shipping features. With great apis,
tools, and automation, we can help engineers move faster and ship
better, more performant code at the same time. The work done to
improve performance for the new Facebook.com was extensive and
we expect to share more on this work soon.

Facebook Key Takeaways

Gradual rollouts and extensive testing can make deploying

new technology more manageable and less risky.

 Gradual rollouts help in managing risk when deploying
new technology.

 Rigorous testing allows for catching and addressing issues
before they affect end users.

 Clear communication across the team is vital during the tran-
sition process to keep everyone informed and coordinated.

 Collecting and analyzing metrics allows for data-driven
decisions and iterations.

 Ensuring backward compatibility aids in smooth transitions,
allowing parts of the application to fall back to the old
technology if necessary.

Success at Scale420

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Front End at Lyft: An Overview
By Fernando Augusto López Plascencia

At Lyft we have the enormous privilege of working with a
product that impacts millions of people all around the US
and Canada.1 Most people are familiar with Lyft through

our apps, which are the main way our users give and request rides,
rent a vehicle, or take rides on bikes and scooters. There’s also the
infrastructure that allows that to happen, mainly in the form of
thousands of back-end microservices. But did you know that there is
a sizable portion of web front-end development as well?

While it might come as a surprise, front-end development is an
integral part of what makes Lyft possible. Most of our front-end
microservices are built on a TypeScript-heavy stack; these
services, for example:

• Power lyft.com and affiliate websites

• Provide services to our corporate partners, allowing them to man-
age their fleets through the Lyft Network (such as our partner-
ship with Hertz, which allows you to rent a car to drive with Lyft2)

• Allow the management of internal resources through easy-to-
use interfaces that add reliability to our operations

1 The original version of this article was published in March 2021:
https://smashed.by/lyftfrontend

2 https://smashed.by/expressdrive

421

https://www.lyft.com/expressdrive

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

• Empower our scientists to understand and improve how Lyft
runs through data tooling

• Show dashboards through custom UX/UI to support activities
such as indicator monitoring, searches and decision making

All of the above need to be delivered with a high degree of quality.
Front-end software development is a complex solution space, where a
number of factors have to be taken into consideration, such as scalabil-
ity, resiliency, consistent user experiences, heterogeneous client capa-
bilities, and real-time experiences, with code that runs on both server
and browser environments. Accomplishing these goals will provide
our riders and drivers with the best transportation experiences.

Tooling and Infrastructure

To make things happen reliably, quickly, and at the same time pro-
vide an awesome developer experience, we invested in infrastruc-
ture tooling early on.

When I joined Lyft, in mid-2016, we were no more than 25 front-end
engineers. Our front-end infrastructure was simpler too, but it was
already evident that it needed to become more scalable. Thus, we
started migrating from an Angular-based monolithic approach for all
front-end internal tools to a truly distributed network of React-on-
Node services to host those tools.

Before: a front-end monolith connected to many back-end services

Success at Scale422

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

The transition from having dozens to hundreds of microservices
was made possible by the use of shared, centralized libraries, such as
our build system package, called Frontend Build. This allowed us to
create a new service from scratch on top of Express, with preconfig-
ured defaults for webpack, and connected to the Lyft microservice
mesh through Envoy.3 This also helped us better support recom-
mended technologies and standards, such as Redux for state man-
agement and Jest for testing.

After: While the ratio is not necessarily 1:1, front-end services today are much
more distributed.

Another shared piece of code, in this case for styling, was a set of
classes that followed the atomic css4 philosophy, allowing everyone
to create “Lyft-looking” interfaces by composing a set of well-
documented classes.

By this time, an internal portal to share React components was also
created, using Lerna5 and Storybook.6 Each component becomes its
own package in an internal namespace, which means each compo-
nent is trivially easy to include in other front end projects across Lyft.

An excessively simplified view of how the front-end platform at Lyft has evolved

3 https://www.envoyproxy.io/
4 https://smashed.by/atomiccss
5 https://lerna.js.org
6 https://storybook.js.org

423Frontend at Lyft: An Overview

https://www.envoyproxy.io/
https://css-tricks.com/lets-define-exactly-atomic-css/
https://lerna.js.org
https://storybook.js.org

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Frontend Build kept evolving as the front-end environment did. For
example, when the time was right, we stopped endorsing Redux as a
default, in favor of a React Context-heavy approach.7 Still, developers
and teams truly owned the ever-increasing number of services they
created. This meant we were able to provide the best experience for
each particular case, whether it was about data exploration, data
visualization, or support resolution for our drivers and passengers
through specific flows.

Just four years later we were almost 100 front-end developers,
distributed in six offices across two continents. The distributed
approach was right for Lyft, but also introduced some challenges.
For example, having teams working independently on their own
services meant that each service could diverge greatly from others.
Due to this, we were at a point where upgrading Frontend Build was
a complex task and, in some cases, a real showstopper – and not
doing it could expose us to a number of issues, including potential
security risks. It was time for a change, one that would still support a
wide variety of use cases, streamlining upgrades, yet not leaving the
developer out of the driver’s seat.

The solution came in 2020 with @lyft/service, a new infrastruc-
ture platform based on Next.js. Adopting Next.js means the infra-
structure is, in many cases, automatically upgraded, but the devel-
opers and teams still get to retain control over configuration: most
Lyft-specific integrations have migrated to a plugin system, and
external packages are still supported. (For more on how this migra-
tion happened, read “Changing Lanes: How Lyft is Migrating 100+
Frontend Microservices to Next.js.”8)

In the meantime, our friends in the design organization, who were
facing similar challenges, created the Lyft product language (lpl)
design system, which now brings visual consistency to all our exter-

7 https://smashed.by/reactcontext
8 https://smashed.by/changinglanes

Success at Scale424

https://reactjs.org/docs/context.html
https://eng.lyft.com/changing-lanes-how-lyft-is-migrating-100-frontend-microservices-to-next-js-42199aaebd5f
https://eng.lyft.com/changing-lanes-how-lyft-is-migrating-100-frontend-microservices-to-next-js-42199aaebd5f
https://design.lyft.com/building-a-design-system-library-3a1f0d09088f

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

nal mobile and web apps. Paired with this, in 2019 the first version of
the lpl was created for front end as a library called CoreUI. This has
now replaced our old, atomic css classes. Being a port, CoreUI makes
the implementation of interfaces much easier, since it’s based in the
same language in which the designs were made. Also, CoreUI uses
styled components for embedding css, which provides for much
better modularity and smaller bundle sizes. Examples of what can be
found in CoreUI are: typography, colors, inputs, buttons, dropdowns,
icons, and layout components.

CoreUI is also hosted internally using Storyboard.

Today, almost a hundred different front-end-specific microservices
exist in the Lyft ecosystem, owned by a variety of teams.

Organization and Communication

Engineering at Lyft is vertically integrated. Instead of having teams
organized by work function (such as a front-end team, a back-end
team, and so on), every team instead owns a portion of the Lyft

425Frontend at Lyft: An Overview

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

product. For example, my team is called Pricing: we make ourselves
responsible for providing accurate pricing for all rides, and the algo-
rithms around that. This is a multidisciplinary effort, of which I, as a
front-end developer, am also a part.

With this organization, a challenge is to effectively be in touch with
other front-end developers. Collaboration needs to happen just to
make things work: for example, every pull request has to be re-
viewed by another front-end developer. In my case, as the sole front-
end developer in my team, I require to build relationships across
teams just to make my work happen.

Front end members are distributed across a number of teams.

This is why, as a distributed organization, front-end at Lyft puts
special emphasis on community and communication. Here are just
some of the ways we achieve this:

• We have a number of organization-wide events, such as a
monthly all-hands meetings, where everybody – from the most
senior members to the most junior ones – are encouraged to
talk about what they care about.

• We have a shared calendar where everybody that does front end
can check out what events are happening.

• There’s a #frontend Slack channel for general questions, plus a
number of specialized channels for inquiries about particular
topics. Slack is a great way to get help fast, request peer reviews,
look at tech issues others have encountered in the past, and so on.

Success at Scale426

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

• We hold informal events as well, such as a monthly meetup
called “Front End and Friends,” with the sole purpose of con-
necting with each other.

• The front-end organization also started its own mentoring pro-
gram, which greatly helped reduce siloing and allowed individ-
uals to support each other technically and professionally. This
program has recently grown to include all of engineering.

• An internal portal exists to document all of the generally accept-
ed front-end standards at Lyft. Another one lists all of the front-
end services and how they align with these standards.

• At the center of it all is our Front End Working Group, a volun-
tarily run organism that coordinates work to standardize and
advance our technologies and internal standards, to advocate
for the career and growth of front-end engineers, and to ensure
we have a real community – a particularly tough challenge dur-
ing the Covid pandemic.

The Front End Working Group has executive sponsors and represen-
tatives from across all of Lyft’s business lines. It consists of a central
group and three grouplets (tech, career and community), with each
grouplet working independently on a number of work streams. The
tech grouplet works on topics such as accessibility, state manage-
ment, performance, and so on. The career grouplet concerns itself
with topics such as: upward mobility, and education for calibrations.

All front-end members are linked through the Front End Working Group.

427Frontend at Lyft: An Overview

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Finally, the community grouplet is responsible for initiatives and
events that foster a sense of connectedness. Any front-end engineer
at Lyft can be a part of the Front End Working Group.

Apart from the above, we have a dedicated front-end infrastructure
team, which exists as part of the general infrastructure vertical and
whose sole mission is to support and improve the experience of the
front-end developer. The members of this team are responsible for
the creation and maintenance of Frontend Build, @lyft/service and
all of the other pieces of software around it, along with documen-
tation, help systems and developer assistance. Having a dedicated
team for this important work has been a key for having a quickly

Lyft Key Takeaways

Cohesive tooling and clear architectural guidance can drasti-

cally improve the developer experience in large codebases.

Insights from Lyft’s case study are:

 A single end-to-end type system improves the developer expe-
rience by reducing inconsistencies and potential bugs.

 Clear architectural patterns make it easier for developers to
understand how to contribute to the codebase.

 Coordinated tooling reduces friction and speeds up development.

 Performance should always be a consideration. Lyft used lazy
loading and server-side rendering to ensure its client-side
JavaScript remained fast.

 The usage of monorepos can simplify dependency manage-
ment and code sharing across teams.

Success at Scale428

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

iterative improvement process on front-end tooling and the software
development processes themselves in all of the organization.

We All Make Front-End Possible

Front-end work at Lyft is important, diverse, and exciting. While our
organization has become robust during the years, we are still very
flexible and anybody that contributes can have the chance to create
real impact. For a couple of examples:

• A couple of front-end engineers proposed recently the internal
adoption of XState as a state machine engine; this is now recog-
nized as an optional part of our state management stack.

• A group of engineers is tackling low-hanging web performance
fruit in our tech stack.

• Another group is leading an internal initiative to rebuild end-to-
end testing using the Cypress framework.

• Another group of engineers is driving GraphQL adoption across
the organization by building tooling and internal support.

For a couple of public examples of our work, you can check out:

• The Lyft website, with info on all things Lyft

• Our ride web page, where you can book a ride now, no app needed

• Our open-source projects with front-end components, such
as Clutch, our extensible platform infrastructure manager;
also, projects formerly owned by Lyft and donated to the
open-source community, such as Amundsen, a data discovery
and metadata engine, and Flyte, a machine learning and data
processing platform.

Thanks to Andrew Hao, Jamie Cohen, Alex Ung, and Sheng Hong Tan for
their collaboration in this article.

429Frontend at Lyft: An Overview

https://xstate.js.org
https://www.cypress.io
https://graphql.org
https://www.lyft.com
https://ride.lyft.com
https://clutch.sh/
https://www.amundsen.io
https://flyte.org

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Migrating Notion’s Marketing
Site to Next.js
By Cory Etzkorn

One of the most challenging aspects of being an engineer1
is knowing when to introduce abstractions and when to
keep things simple. How many times have you invested

time in building a scalable system upfront, planning for growth
that never comes to fruition? At Notion, we’re certainly no stranger
to this age-old engineering dilemma.

At the end of 2020, however, we decided the time had come to invest
in scalable systems that would help propel our marketing efforts
into the future. Our content team had begun frequently publishing
blog posts,2 guides,3 and spinning up various new landing pages.
We were creating a large amount of content to support our rapidly
growing user base, but at the same time were concerned that perfor-
mance issues were preventing us from reaching our full audience.

We rebuilt our entire marketing site from scratch, choosing to go
with a statically-generated architecture over our former purely
client-rendered approach. Two months and 109 React components

1 The original version of this case study was published in August 2021:
https://smashed.by/migratingnotion

2 https://smashed.by/notionblog
3 https://smashed.by/notionguides

Success at Scale430

https://www.notion.so/blog
https://www.notion.so/blog
https://www.notion.so/blog
https://www.notion.so/guides

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

later, we’ve now fully migrated to our framework of choice, Next.js,
and couldn’t be happier with our decision. Here’s how we got there.

Where We Started

In the early days of Notion, we chose to build our marketing site as
an extension of our core app. We leveraged existing components and
infrastructure so we could ship big with a small team. This approach
served us well for about two years, but over time the productivity
benefits we enjoyed were overshadowed by the many technical and
user-facing problems associated with this approach.

The core benefit of our original client-rendered approach was devel-
oper experience. Our app and marketing site shared one large folder
of React components. If we needed a popup menu on the marketing
site, it was likely an existing component from the app could be reused.
Shared code also enabled some interesting user experiences, like the
ability to embed the full app in the marketing site as a live demo.

Sharing client app and marketing code enabled an embedded live product demo.

431Migrating Notion’s Marketing Site to Next.js

https://nextjs.org/
https://nextjs.org/
https://nextjs.org/

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Eventually, the developer experience degraded. We felt like we were
inheriting complexity from the app when implementing even small
things on the marketing site. For example, we might import a button
component from the app that looked like this:

<Button
 variant=”marketingPrimary”
 onClick={() => soSomething()}
 mobileFeedback={() => doSomething()}
 allowTextSelection={() => doSomething()}
 onDoubleClick={() => doSomething()}
 onTouchStart={() => doSomething()}
 onTouchEnd={() => doSomething()}
 onTouchCancel={() => doSomething()}
 onContextMenu={() => doSomething()}
>

When all we really needed for marketing purposes was a button
with a few props like this:

<Button
 variant=”primary”
 onClick={() => doSomething()}
>

It got to a point where we felt our entire codebase would be easier to
maintain by splitting the app and marketing site apart. Marketing
teams need to be nimble and our existing setup was holding us back.

On top of the engineering problems, our implementation was caus-
ing a slew of user-facing problems. To name just a few:

• JS bundle size: On initial load of the marketing site, visitors
were forced to download a 9.1 MB app.js file that contained code
for the entire app. Very little of this code was marketing-related.

• SEO: Since pages were only client-rendered, crawling by search
engines was dubious at best. Google has gotten better at crawling
client-side JS, but nothing beats a static or server-rendered page.

Success at Scale432

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

• Content management: Without a build system, requests had
to be made to our content management system’s (contentful)
api on every client-side visit. This resulted in millions of un-
needed api calls and loading spinners on otherwise straightfor-
ward marketing pages.

• Performance: For the reasons above, our Google Lighthouse
score for marketing pages hovered around 50/100.

The combination of these engineering and user experience issues
made it clear that we needed a new, more scalable approach.

EXPLORING SOLUTIONS

Like all big decisions at Notion, our decision to integrate a static site
generator began with an rfc (a “request for comment,” where we ask
the broader team for feedback) in our docs database.

Our company-wide docs database

Part of the static site rfc

433Migrating Notion’s Marketing Site to Next.js

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

After documenting the problems we were experiencing, we were
faced with two divergent paths forward.

1. OPTIMIZE EXISTING CLIENT-SIDE CODEBASE

In this scenario, we’d build on top of what we already had instead of
forging an entirely new path. This work would include:

• Using code splitting to reduce marketing JS bundle size.

• Implementing better asset caching to reduce page weight.

• Creating a distinction between marketing and app components
to reduce inherited complexity and risk of marketing bugs
affecting the app.

• Sticking to client-side rendering in hopes performance improve-
ments alone would improve seo.

2. MIGRATE TO A STATIC SITE GENERATOR

This approach would mean starting from scratch so we could lever-
age the full benefits of a static site. The work would include:

• Rebuilding the marketing site using a JS-based static site gener-
ator such as Gatsby or Next.js.

• Migrating approximately 109 React components.

• Configuring a new build and deployment process.

• Rethinking our editorial workflows.

• Routing requests to notion.so between a separate client and
marketing router.

No matter which path we chose, there’d be work ahead. Weighing
the pros and cons, we felt the extra investment required to go fully

Success at Scale434

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

static would pay long-term dividends for both user experience and
developer productivity. It would let us be nimble.

Choosing a Static Site Generator

We kicked off the next phase of the RFC process by writing down our
desires for our new static site. Seeing our needs written down helped
illuminate the problems we hoped to solve. We didn’t want to pick the
shiniest new tool off the shelf unless it truly aligned with our goals.

OUR STATIC SITE WISHLIST

• React-based: Our apps are powered by React.4 Our marketing
site should use the same technology.

• TypeScript support: Our entire codebase has benefited greatly
from static typing. This power should be extended to the mar-
keting site. We also have bits of code and logic that still need to
be shared between the app and marketing site.

• Contentful integration: Our content lives here and needs to
integrate seamlessly.

• Localization: A large percentage of Notion users reside outside
of the US. Our marketing site needs to be fully localized to cre-
ate a better experience for those customers.

• Full css support: We need the ability to use pseudo-selectors
and modern techniques that cannot be expressed via inline styles.

• Publishing workflow: Our content creators need a way to
preview their work before publishing.

• Future-proof: This is a big investment and we need to be confi-
dent the framework we choose is here to stay.

These parameters naturally narrowed down to just a few contenders.

4 https://smashed.by/datamodel

435Migrating Notion’s Marketing Site to Next.js

https://www.notion.so/blog/data-model-behind-notion
https://www.notion.so/blog/data-model-behind-notion
https://www.notion.so/blog/data-model-behind-notion
https://www.notion.so/blog/data-model-behind-notion
https://www.notion.so/blog/data-model-behind-notion
https://www.notion.so/blog/data-model-behind-notion
https://www.notion.so/blog/data-model-behind-notion
https://www.notion.so/blog/data-model-behind-notion
https://www.notion.so/blog/data-model-behind-notion

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

WHY WE PICKED NEXT.JS

Next.js powers our new static marketing site.

After a thorough review and proof-of-concept built in Next.js, we
realized there was a lot to love:

• The framework is lightweight and declarative in nature. It han-
dles the important things: routing, code splitting, static genera-
tion, localization, and image optimization. After that it gets out
of the way.

• Full TypeScript support.

• The docs5 and code examples6 are excellent and left us feeling
supported in the migration.

• Server-side rendering7 wasn’t something we initially needed,
but we were excited to have it in our toolbox for future use.

• Internationalized routing8 comes out of the box.
A huge time saver.

• The image component9 can integrate with Cloudflare to cache
assets and improve performance.

5 https://smashed.by/nextjsdocs
6 https://smashed.by/codeexamples
7 https://smashed.by/serversiderendering
8 https://smashed.by/internationalizedrouting
9 https://smashed.by/imagecomponent

Success at Scale436

https://nextjs.org/docs/getting-started
https://github.com/vercel/next.js/tree/canary/examples
https://github.com/vercel/next.js/tree/canary/examples
https://github.com/vercel/next.js/tree/canary/examples
https://nextjs.org/docs/api-reference/data-fetching/getInitialProps
https://nextjs.org/docs/api-reference/data-fetching/getInitialProps
https://nextjs.org/docs/api-reference/data-fetching/getInitialProps
https://nextjs.org/docs/api-reference/data-fetching/getInitialProps
https://nextjs.org/docs/api-reference/data-fetching/getInitialProps
https://nextjs.org/docs/advanced-features/i18n-routing#locale-strategies
https://nextjs.org/docs/advanced-features/i18n-routing#locale-strategies
https://nextjs.org/docs/advanced-features/i18n-routing#locale-strategies
https://nextjs.org/docs/api-reference/next/image
https://nextjs.org/docs/api-reference/next/image
https://nextjs.org/docs/api-reference/next/image
https://nextjs.org/docs/api-reference/next/image
https://nextjs.org/docs/api-reference/next/image

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

In nearly every arena, Next.js aligned with our technical goals.

Building the Static Site

Migrating our marketing site to an entirely new framework was a
gigantic undertaking. It required the contributions of three engi-
neers off and on over the course of two months. Together we migrat-
ed and refactored:

• 200k+ lines of code
• 109 React components
• 23 static pages
• 129 dynamically generated pages
• 2 locales

The migration process was smooth – which mostly involved copy/
pasting code or modifying functionality to follow Next.js best prac-
tices. But there were a few areas that required extra attention and
consideration.

VERSION CONTROL

Our entire codebase lives in a single monorepo. The web app, desk-
top apps, mobile apps – everything. We briefly considered starting a
new repo specifically for the marketing site. The main benefit being
that the marketing team could deploy autonomously to a static host-
ing platform like Vercel.10

Our intention was to split up the app and the marketing site, but
we found separate repos unnecessary. We did end up fulfilling our
dream of having a separate set of components just for marketing, but

10 https://vercel.com/

437Migrating Notion’s Marketing Site to Next.js

https://vercel.com/

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

we still needed access to some shared resources. Things like analytics
events, apis, and helper methods needed to be kept in sync. Thus, we
chose to stick with our monorepo and sort out deployment ourselves.

ROUTING

Adding Next.js to our stack meant we needed a way for our main
client router to be aware of our new statically generated routes.
Our client app and marketing site live on the same domain, making
things a bit more complicated. Luckily, the solution ended up being
rather straightforward.

We set up a reverse proxy that works like this:

• A request comes into notion.so.

• The api server inspects the request and parses out the path and
user agent.

• We check the request’s path against an allow-list of known mar-
keting subpaths.

• If the path and user agent qualify as a marketing route, we for-
ward the request to our marketing service.

• If the path and user agent qualify as an app route, the api server
handles the request directly.

This approach allows us to maintain custom routing in the client
app while also taking advantage of dynamically-generated routes in
Next.js for the marketing site.

HOSTING AND DEPLOYMENT

To take advantage of some of the best Next.js features, our market-
ing site lives in its own Docker container and is deployed to AWS

Success at Scale438

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

ECS. Having a full server environment enables features like preview
mode,11 internationalized routing, and SSR.

Logging in production ended up being more challenging than ex-
pected. We created a custom server entry point12 specifically for error
handling and performance monitoring.

CSS

One of the biggest pain points of our previous marketing codebase
was how we handled styles. The app primarily uses React style
props. Styles are generally returned from functions:

class Button extends React.Component {
 // isHovered stored in component state up here
 render() {
 return (
 <button
 onMouseEnter={setIsHovered(true)}
 onMouseLeave={setIsHovered(false)}
 style={getButtonStyle(isHovered)}>
 Log in
 </button>
)
 }
 private getButtonStyle(isHovered: boolean): cssProperties {
 return {
 height: 45,
 background: isHovered ? this.theme.buttonHoverColor :
this.theme.buttonColor,
 fontSize: 16,
 fontWeight: bold,
 }
 }
}

This approach works great for a complex app like Notion where a large
portion of styles need to be computed at runtime, but it’s less suitable
for a marketing site with a more traditional publishing use case.

11 https://smashed.by/previewmode
12 https://smashed.by/preloadhack

439Migrating Notion’s Marketing Site to Next.js

https://nextjs.org/docs/advanced-features/preview-mode
https://nextjs.org/docs/advanced-features/preview-mode
https://nextjs.org/docs/advanced-features/preview-mode
https://jake.tl/notes/2021-04-04-nextjs-preload-hack
https://jake.tl/notes/2021-04-04-nextjs-preload-hack
https://jake.tl/notes/2021-04-04-nextjs-preload-hack
https://jake.tl/notes/2021-04-04-nextjs-preload-hack
https://jake.tl/notes/2021-04-04-nextjs-preload-hack
https://jake.tl/notes/2021-04-04-nextjs-preload-hack
https://jake.tl/notes/2021-04-04-nextjs-preload-hack

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Our marketing codebase now uses Styled JSX13 instead of inline
styles. It looks like this:

const Button: FunctionComponent = () => {
 const theme = useTheme()
 return (
 <>
 <button>Log in</button>
 <style jsx>{`
 button {
 height: 45px;
 background: ${theme.buttonColor};
 font-size: 16px;
 font-weight: bold;
 }
 button:hover {
 background: ${theme.buttonHoverColor};
 }
 `}</style>
 </>
)
}

We were overwhelmed by the number of great css-in-JS options
available and it was hard to choose just one. We’ve been extremely
happy with Styled JSX for a few reasons:

• We get to write full, real css! Things like pseudo-selectors and
media queries “just work.”

• Styles are component-scoped by default, eliminating nasty
specificity bugs.

• It works out-of-the-box in Next.js. No additional
packages are needed.

• We can still interpolate values from JS as needed.

Our new approach to css has cut the development time of landing
pages in half and has allowed us to style more expressively.

13 https://smashed.by/styledjsx

Success at Scale4 40

https://github.com/vercel/styled-jsx
https://github.com/vercel/styled-jsx
https://github.com/vercel/styled-jsx

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Making the Switch

One of our final PR diffs removing a bunch of old code

The most challenging aspect of this project was the sheer scale of it.
We not only had to rebuild large portions of our site, but also main-
tain and update the existing site at the same time.

To make this possible, there were a few technical considerations:

• The new static site was developed in the same repo. Any
external dependencies stayed in sync throughout the build.

• We hid the new routing logic behind an experiment, allowing
us to turn on the new site in our dev environment and keep it
off in production.

• When it came time to launch, we were able to ramp up traffic to
the experiment over a period of two weeks to ensure everything
worked as expected.

This approach made the transition completely seamless and resulted
in zero downtime.

The Results

After two months of intense migration work, it was beyond exciting
to share this message internally with the team on launch day:

4 41Migrating Notion’s Marketing Site to Next.js

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

It was a funny message to share because, to the naked eye, nothing
on our site had really changed. We intentionally chose to limit the
scope of this project to migration and performance improvements.
Adding a layer of design polish would have complicated the process
and made it more challenging to measure results.

So what were the results? A whole bunch of incredible quantitative
and qualitative improvements.

Our new Google Lighthouse score for notion.so/product

Performance: We now have one of the best-performing marketing
sites in the entire industry. Our previous Google Lighthouse perfor-
mance score hovered around 50/100 for most pages. Our new score is
97/100. We plan to improve it even further.

User experience: There is no longer a single loading spinner on the
entire marketing site. Everything is pre-rendered, cached by a CDN,
and delivered instantly. Performance is a feature!

Page weight: The size of our initial required JavaScript is down 93%
from 9.1 MB to 847 KB. Similar improvements are seen across the
entire site. The total file size of https://notion.so/product is down 75%
from 12.5 MB to 3.1 MB.

Success at Scale4 42

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Notion Key Takeaways

SEO: Google can now fully crawl and index our marketing pages.

Developer productivity: We can now make sweeping changes to
the marketing codebase without worrying they’ll cause trouble in
the app. We can write full, modern css. Best of all, we can safely
query any piece of content from our cms, knowing that the majority
of data fetching will happen at build time instead of at request.

With our new, rock-solid foundation, we’re excited for the marketing
team’s shipping cadence to accelerate significantly. We have big things
planned – and we could use a little help making them a reality.

Carefully planned and executed migrations can result in

significant developer experience improvements.

Takeaways from Notion’s migration case study:

 Migrating to a modern framework can provide benefits in
performance, developer productivity, and user experience.

 The benefits of incremental adoption allow you to slowly
transition over to a new framework, reducing the risk of big-
bang migrations.

 Careful planning and testing are essential to avoid disrup-
tions during migration.

 Clear communication across the organization ensures every-
one understands the process and can assist where necessary.

 Post-migration, it’s important to monitor the new system
closely to catch and fix any unforeseen issues promptly.

4 43Migrating Notion’s Marketing Site to Next.js

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Bloomberg: 10 Insights to
Adopting TypeScript at Scale
By Rob Palmer

Afew years ago, Bloomberg Engineering decided to adopt
TypeScript as a first-class supported language.1 This case
study shares some of the insights and lessons we learned

during this journey. The headline is that we found TypeScript to be
a strong net positive! Please keep that in mind when reading about
some of the surprising corners we explored. As engineers, we are
naturally attracted to seeing, solving, and sharing problems, even
when we’re having a good time.

Background

Bloomberg already had a colossal investment in JavaScript before
TypeScript even existed – more than 50 million lines of JS code.
Our main product is the Bloomberg Terminal, which contains
more than 10,000 apps. The variety of apps is huge, ranging from
the display of intensive real-time financial data and news, to in-
teractive trading solutions, and many forms of messaging. Back in
2005, the company started migrating those apps from Fortran and
C/C++ to server-side JavaScript, with client-side JavaScript arriving
around 2012. Today, we have more than 2,000 software engineers
at the company writing JavaScript.

Transitioning this scale of codebase from plain JavaScript to
TypeScript is a big deal. So we worked hard to ensure there was a
thoughtful process that would keep us aligned with standards and

1 The original version of this case study was published November 2020:
https://smashed.by/typescriptatscale

Success at Scale4 4 4

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

preserve our existing capabilities to evolve and deploy our code
quickly and safely.

The Bloomberg Terminal

If you’ve ever been part of a technology migration in a large com-
pany, you may be used to heavy-handed project management being
used to force progress from reluctant teams who would rather be
working on new features. We found that adopting TypeScript was
something altogether different. Engineers were self-starting con-
versions and championing the process! When we launched the beta
version of our TypeScript platform support, more than 200 projects
opted into TypeScript in the first year alone. Zero projects went back.

What Makes This Usage
of TypeScript Special?

In addition to scale, something that makes this integration of Type-
Script unique is that we have our own JavaScript runtime environ-
ment. This means that, in addition to well-known JavaScript host
environments, such as browsers and Node, we also embed the V8
engine and Chromium directly to create our own JavaScript plat-
form. The upside of this situation is that we can offer a simple de-

4 45Bloomberg: 10 Insights to Adopting TypeScript at Scale

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

veloper experience in which TypeScript is supported directly by our
platform and package ecosystem. Ryan Dahl’s Deno pursues similar
ideas by putting TypeScript compilation into the runtime, whereas
we keep it in tooling that is versioned independently of the runtime.
An interesting consequence is that we get to explore what it’s like
to exercise the TypeScript compiler in a standalone JS environment
that spans both client and server and that does not use Node-specific
conventions (for example, there is no node_modules directory).

Our platform supports an internal ecosystem of packages that uses a
common tooling and publishing system. This allows us to encourage
and enforce best practices, such as defaulting to TypeScript’s strict

mode, as well as ensur-
ing global invariants. For
example, we guarantee
that all published types
are modular rather than
global. It also means
that engineers can focus

on writing code rather than needing to figure out how to make
TypeScript play nicely with a bundler or test framework. DevTools
and error stacks use sourcemaps correctly. Tests can be written in
TypeScript, and code coverage is accurately expressed in terms of
the original TypeScript code. It just works.

We aim for regular TypeScript files to be the single source of truth
for our apis, as opposed to maintaining handwritten declaration
files. This means we have a lot of code leaning heavily on the Type-
Script compiler’s automatic generation of .d.ts declaration files
from TypeScript source code. So when declaration emit is not ideal,
we notice it, as you will see.

Our platform supports an internal

ecosystem of packages that uses

a common tooling and publishing

system. This allows us to encourage

and enforce best practices

Success at Scale4 46

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Principles

Let’s outline three key principles we’re striving for.

1. Scalability: Development speed should be kept high as more
packages adopt TypeScript. Time spent installing, compiling,
and checking code should be minimized.

2. Ecosystem coherence: Packages should work together. Up-
grading dependencies should be pain-free.

3. Standards alignment: We want to stick with standards, such
as ECMAScript, and be ready for where they might go next.

The discoveries that surprised us usually came down to cases where
we weren’t sure if we could preserve these principles.

Ten Learning Points

1. TYPESCRIPT CAN BE JAVASCRIPT + TYPES

Over the years, the TypeScript team has actively pursued the
adoption of and alignment with standard ECMAScript syntax and
runtime semantics. This leaves TypeScript to concentrate on pro-
viding a layer of type syntax and type-checking semantics on top of
JavaScript. The responsibilities are clearly separated: TypeScript =
JavaScript + Types!

This is a wonderful model. It means that the compiler output is
human-readable JavaScript, just like the programmer wrote. This
makes debugging production code easy even if you don’t have the
original source code. It means you do not need to worry that choos-
ing TypeScript might cut you off from future ECMAScript2 features.

2 https://tc39.es/

4 47Bloomberg: 10 Insights to Adopting TypeScript at Scale

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

It leaves the door open to runtimes, and maybe even future JavaS-
cript engines, that can ignore the type syntax and therefore “run”
TypeScript natively. A simpler developer experience is in sight!

Along the way, TypeScript was extended with a small number of
features that don’t quite fit this model: enum, namespace, parame-
ter properties, and experimental decorators all have semantics that
require them to be expanded into runtime code that, in all likelihood,
will never be directly supported by JavaScript engines.

Standards Alignment

This is not a big deal. The TypeScript design goals3 articulate the
need to avoid introducing more runtime features in the future. One
member of the TypeScript team, Orta Therox, created a meme-slide
to emphasize this recognition.

Our toolchain addresses this set of undesirable features by prevent-
ing their use. This ensures that our growing TypeScript codebase is
truly JS + Types.

2. KEEPING UP WITH THE COMPILER IS WORTHWHILE

TypeScript evolves rapidly. New versions of the language intro-
duce new type-level features, add support for JavaScript features,

3 https://smashed.by/designgoals

Success at Scale4 48

https://github.com/Microsoft/TypeScript/wiki/TypeScript-Design-Goals#goals
https://github.com/Microsoft/TypeScript/wiki/TypeScript-Design-Goals#goals
https://github.com/Microsoft/TypeScript/wiki/TypeScript-Design-Goals#goals
https://github.com/Microsoft/TypeScript/wiki/TypeScript-Design-Goals#goals
https://github.com/Microsoft/TypeScript/wiki/TypeScript-Design-Goals#goals

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

and improve performance and stability, as well as improve the
type-checker to find more type errors. So there’s a lot of enticement
to use new versions!

While TypeScript strives to preserve compatibility, these type-check-
ing improvements represent breaking changes to the build process
as new errors are identified in codebases that previously appeared
error-free. Upgrading TypeScript therefore requires some interven-
tion to get these benefits.

There is another form of compatibility to consider, which is in-
ter-project compatibility. As both JavaScript and TypeScript syntaxes
evolve, declaration files need to contain new syntax.

If a library upgrades TypeScript and starts producing modern decla-
ration files with new syntax, application projects using that library
will fail to compile if their version of TypeScript does not under-
stand that syntax. An example of new declaration syntax is the emit
of getter/setter accessors in TypeScript 3.7. These are not understood
by TypeScript 3.5 or earlier. This means that having an ecosystem of
projects using different compiler versions is not ideal.

Ecosystem Coherence

At Bloomberg, codebases are spread across various Git repositories
that use common tooling. Despite not having a monorepo, we do
have a centralized registry of TypeScript projects. This allowed us
to create a continuous integration (CI) job to “build the world” and
verify the build-time and runtime effects of compiler upgrades on
every TypeScript project.

This global checking is very powerful. We use this to assess beta and
candidate releases of TypeScript to discover issues ahead of general
release. Having a diverse corpus of real-world code means we also
find edge cases. We use this system to guide fix-ups to projects ahead
of the compiler upgrade, so that the upgrade itself is flawless. So far,

4 49Bloomberg: 10 Insights to Adopting TypeScript at Scale

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

this strategy has worked well and we have been able to keep the entire
codebase on the latest version of TypeScript. This means we have not
needed to employ mitigations such as down-levelling .d.ts files.

3. CONSISTENT TSCONFIGTSCONFIG SETTINGS ARE WORTHWHILE

Much of the flexibility provided by tsconfig.json is to allow you to
adapt TypeScript to your runtime platform. In an environment
where all projects are targeting the same evergreen runtime, it turns
out to be a hazard for each project to configure this separately.

Ecosystem Coherence

Therefore, we made our toolchain responsible for generating
tsconfig.json at build time with “ideal” settings. For example, strict
mode is enabled by default to increase type-safety. isolatedModules
is enforced to ensure our code can be compiled quickly by simple
transpilers that operate on a single file at a time.

A further benefit of treating tsconfig.json as a generated file, rather
than as a source file, is that it permits higher-level tooling to flexibly
link together multi-project workspaces by taking responsibility for
defining options such as references and paths.

There is some tension here, as a minority of projects wanted the
ability to make customizations such as switching to looser modes to
reduce the migration burden. Initially we tried to cater to these re-
quests and gave access to a small number of options. Later, we found
that this resulted in interpackage conflicts, when declaration files
built using one set of options were consumed by a package using
different options. Here’s one example.

It’s possible to create a conditional type that is directed by the value
of strictNullChecks.

Success at Scale450

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

type A = unknown extends {} ? string : number;

If strictNullChecks are enabled, then A is a number. If
strictNullChecks are disabled, then A is a string. This code breaks
if the package exporting this type is not using the same strictness
settings as the package importing it.

This is a simplified example of a real-life issue we faced. As a result,
we chose to deprecate the flexibility on strictness modes in favor of
having consistent configurations for all projects.

4. HOW YOU SPECIFY THE LOCATION

OF DEPENDENCIES MATTERS

We needed the ability to explicitly declare the location of our depen-
dencies to TypeScript. This is because our ES module system does
not rely on the Node file system convention of finding dependencies
by walking up a series of directories named node_modules.

We needed the ability to declare a mapping of bare specifiers (“lo-
dash,” for example) to directory locations on disk (c:\dependencies\
lodash). This is similar to the problem that import maps attempt to
solve for the web. At first, we tried using the paths option in tsconfig.
json.

// tsconfig.json
"paths": {
 "lodash": ["../../dependencies/lodash"]
}

This worked great for nearly all use cases. However, we discovered
this degraded the quality of generated declaration files. The Type-
Script compiler necessarily injects synthetic import statements into

451Bloomberg: 10 Insights to Adopting TypeScript at Scale

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

declaration files to allow for composite types – where types can
depend on types from other modules. When the synthetic imports
reference types in dependencies, we found the paths approach
injected a relative path (import(“../../dependencies/lodash”))
rather than preserving the bare specifier (import “lodash”). For our
system, the relative location of external package typings is an imple-
mentation detail that may change, so this was unacceptable.

Ecosystem Coherence

The solution we found was to use ambient modules:

// ambient-modules.d.ts
declare module "lodash" {
 export * from "../../dependencies/lodash";
 export default from "../../dependencies/lodash";
}

Ambient modules are special. TypeScript’s declaration emit preserves
references to them rather than converting them to a relative path.

5. DE-DUPLICATING TYPES CAN BE IMPORTANT

App performance is critical, so we try to minimize the volume of
JS that apps load at runtime. Our platform ensures that only one
version of a package is used at runtime. This de-duplication of
versions means that a given package cannot freeze or pin their
dependencies. Consequently, this means packages must preserve
compatibility over time.

We wanted to provide the same “exactly-one” guarantee for types
to ensure that, for a given compilation of a project, the type check
would only ever consider one single version of a package’s depen-
dencies. In addition to compile-time efficiency, the motivation was
to ensure the type-checked world better reflects the runtime world.
We specifically wanted to avoid staleness issues and “nominality
hell,” in which two incompatible versions of nominal types are im-
ported via a diamond pattern. This is a hazard that will likely grow

Success at Scale452

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

as ecosystem adoption of nominal types increases.

Scalability and Ecosystem Coherence

We wrote a deterministic resolver that selects exactly one version
of each dependency to type against based on the declared version
constraints of the package being built.

This means the graph of type dependencies is dynamically assem-
bled – it is not frozen. While this unpinned dependency approach
provides benefits and avoids some hazards, we later learned that it
can introduce a different hazard due to subtle behavior in the Type-
Script compiler. (See item 9 on this list to learn more.)

These trade-offs and choices are not specific to our platform. They
apply equally to anyone publishing to DefinitelyTyped/npm, and are
determined by the aggregate effect of each package’s version con-
straints expressed in package.json dependencies.

6. IMPLICIT TYPE DEPENDENCIES SHOULD BE AVOIDED

It’s easy to introduce global types in TypeScript. It’s even easier to de-
pend on global types. If left unchecked, this means it is possible for
hidden coupling to occur between distant packages. The TypeScript
handbook calls this out as being “somewhat dangerous.”

Scalability and Ecosystem Coherence

// A declaration that injects global types
declare global {
 interface String {
 fancyFormat(opts?: StringFormatOptions): string;
 }
}

// Somewhere in a file far, far away...
String.fancyFormat(); // no error!

453Bloomberg: 10 Insights to Adopting TypeScript at Scale

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

The solution to this is well known: prefer explicit dependencies over
global state. TypeScript has provided support for ECMAScript import
and export statements for a long time, which achieve this goal.

The only remaining need was to prevent accidental creation of
global types. Thankfully, it is possible to statically detect each of the
cases where TypeScript permits the introduction of global types. So,
we were able to update our toolchain to detect and error in the cases
where these are used. This means we can safely rely on the fact that
importing a package’s types comes without side effects.

7. DECLARATION FILES HAVE THREE EXPORT MODES

Not all declaration files are equal. A declaration file operates in one
of three modes,4 depending on the content, specifically the use of
import and export keywords.

1. Global: A declaration file with no usage of import or export
will be considered to be global. Top-level declarations are
globally exported.

2. Module: A declaration file with at least one export declaration
will be considered to be a module. Only the export declara-
tions are exported and no globals are defined.

3. Implicit exports: A declaration file that has no export declara-
tions, but does use import will trigger defined yet undocument-
ed behavior. This means that top-level declarations are treated
as named export declarations and no globals are defined.

We do not use the first mode. Our toolchain prevents global declara-
tion files (see section 6). This means all declaration files use
ES module syntax.

4 https://smashed.by/modes

Success at Scale454

https://github.com/microsoft/TypeScript/issues/38592#issue-619054264
https://github.com/microsoft/TypeScript/issues/38592#issue-619054264
https://github.com/microsoft/TypeScript/issues/38592#issue-619054264
https://github.com/microsoft/TypeScript/issues/38592#issue-619054264
https://github.com/microsoft/TypeScript/issues/38592#issue-619054264
https://github.com/microsoft/TypeScript/issues/38592#issue-619054264
https://github.com/microsoft/TypeScript/issues/38592#issue-619054264

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Scalability, Ecosystem Coherence, and Standards Alignment

Perhaps surprisingly, we found the slightly spooky third mode to be
useful. By adding just a single-line self-import to the top of ambient
declaration files, you can prevent them from polluting the global
namespace: import {} from “./<my-own-name>”;. This one-liner
made it trivial to convert third-party declarations, such as lib.dom.d.ts,
to be modular and avoided the need to maintain a more complex fork.

The TypeScript team do not seem to love the third mode, so consider
avoiding it where possible.

8. ENCAPSULATION OF PACKAGES CAN BE VIOLATED

As explained earlier (in item 5, “De-Duplicating Types Can Be
Important”), our use of unpinned dependencies means it is im-
portant for our packages to preserve not only runtime compatibil-
ity, but also type compatibility over time. That’s a challenge, so to
make this preservation of compatibility practical, we have to really
understand which types are exposed and must be constrained in
this way. A first step is to explicitly differentiate between public
and private modules.

Node recently gained this capability in the form of the package.json
exports field.5 This defines an encapsulation boundary by explicitly
listing the files that are accessible from outside the package.

Today, TypeScript is not aware of package exports and so does not
have the concept of which files within a dependency are consid-
ered public or not. This becomes a problem during declaration
generation, when TypeScript synthesizes import statements to
transitive types in the emitted .d.ts file. It is not acceptable for
our .d.ts files to reference private files in other packages. Here’s
an example of it going wrong:

5 https://smashed.by/exportsfield

455Bloomberg: 10 Insights to Adopting TypeScript at Scale

https://nodejs.org/dist/latest-v14.x/docs/api/packages.html#packages_package_entry_points
https://nodejs.org/dist/latest-v14.x/docs/api/packages.html#packages_package_entry_points
https://nodejs.org/dist/latest-v14.x/docs/api/packages.html#packages_package_entry_points
https://nodejs.org/dist/latest-v14.x/docs/api/packages.html#packages_package_entry_points
https://nodejs.org/dist/latest-v14.x/docs/api/packages.html#packages_package_entry_points
https://nodejs.org/dist/latest-v14.x/docs/api/packages.html#packages_package_entry_points
https://nodejs.org/dist/latest-v14.x/docs/api/packages.html#packages_package_entry_points
https://nodejs.org/dist/latest-v14.x/docs/api/packages.html#packages_package_entry_points
https://nodejs.org/dist/latest-v14.x/docs/api/packages.html#packages_package_entry_points

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

// index.ts
import boxMaker from "another-package"
export const box = boxMaker();

The above source can lead to tsc emitting the following
undesirable declaration:

// index.d.ts
export const box : import("another-package/private").Box

This is bad because “another-package/private” is not part of that pack-
age’s compatibility promise, so might be moved or renamed without
a SemVer major bump. TypeScript today has no way of knowing it
generated a fragile import.

Ecosystem Coherence

We mitigate this problem using two steps:

1. Our toolchain informs the TypeScript resolver of the inten-
tionally public bare specifier paths that point to dependen-
cies (e.g. “lodash/public1”, “lodash/public2”). We ensure
TypeScript knows about the full set of legitimate dependen-
cy entry points by silently adding type-only import state-
ments to the bottom of the TypeScript files just before they
flow into the compiler.

// user's source code
// injected by toolchain to assist declaration emit
import type * as __fake_name_1 from "lodash/public1";
import type * as __fake_name_2 from "lodash/public2";

When generating references to inferred transitive types,
TypeScript’s declaration emit will prefer to use these exist-

Success at Scale456

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

ing namespace identifiers rather than synthesizing imports
to private files.

2. Our toolchain generates errors if TypeScript generates a path
to a file in a dependency that we know is private. This is
analogous to the existing TypeScript errors emitted when
TypeScript realizes that it is generating a potentially hazard-
ous path to a dependency.

error TS2742: The inferred type of '...' cannot be
named without a reference to '...'.
This is likely not portable. A type annotation is
necessary.

This informs the user to work around the issue, by explicitly
annotating their exports. Or, in some cases, they need to
update the dependency to publicize internal types by directly
exporting them from a public package entry point.

We look forward to TypeScript gaining first-class support for entry
points so that workarounds like this are unnecessary.

9. GENERATED DECLARATIONS CAN INLINE

TYPES FROM DEPENDENCIES

Packages need to export .d.ts declarations so that users can consume
them. We choose to use the TypeScript declaration option to gener-
ate .d.ts files from the original .ts files. While it’s possible to manually
write and maintain .d.ts sibling files alongside regular code, this is
less preferable because it is a hazard to keep them synchronized.

TypeScript’s declaration emit works well most of the time. One issue
we found was that sometimes TypeScript will inline types from a
dependency into the generated types (#37151). This means the type
definition is relocated and potentially duplicated, rather than being

457Bloomberg: 10 Insights to Adopting TypeScript at Scale

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

referenced via an import statement. With structural typing, the
compiler is not compelled to ensure types are referenced from one
definition site – duplication of these types can be OK.

We have seen extreme cases where duplication has inflated file sizes,
such as a declaration file growing from 7 KB to 700 KB. That’s quite a
lot of redundant code to download and parse.

Scalability

Inlining of types within a package is not an ecosystem problem, be-
cause it is not externally visible. It becomes problematic when types
are inlined across package boundaries, because it couples those two
specific versions together. In our unpinned package system, pack-
ages can evolve independently. This means there is a risk of type
incompatibility and, in particular, a risk of type staleness.

Ecosystem Coherence

Through experimentation, we discovered potential techniques to
prevent inlining of type declarations, such as:

• Prefer interface instead of type (interfaces are not inlined):

• If an interface needed by a declaration is not exported, tsc
will refuse to inline the type and will generate a clear error6
(e.g. TS4023: Exported variable has or is using

name from external module but cannot be named.).

• If a type needed by a generated declaration is not exported,
tsc will silently inline the type.7

• Nicholas Jamieson wrote an article on preferring interface
over types,8 including an ESlint rule.

• Make types nominal (nominal types such as enum and class
with private members are not inlined).

6 https://smashed.by/inliningdeclarations
7 https://smashed.by/silentinlining
8 https://smashed.by/declarations

Success at Scale458

https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPDHNNGTFEsaKACSoAN55Q80Ino4ArlQBGQgNx4AvgWgAPBlmRpQxFTliZcFnKAAUASlD0pshaGTQ0K5A7SirQAjKC6OvqEYOCk5JQ09Awq6vAYsFy8GFQmZjLEOLoWyFhUoABEHMBMrOwcAFbc5QREQiXIoAAqAMoALAAMAEwAzPQAosamgpCgbMyIqeIA5CxLoAAWiNygpqAY2yrc-ADmoAnLEmvEJWVGggGI8KBUWJAq5BWImeWg6irmsEQOBwWHMmjO1GgkA4eCMuQBuG45hYoAAvPYXDo8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPDHNNGTFEsaKACSoAN55Q80Ino4ArlQBGQgNx4AvgWgAPBlmRpQxFTliZcFnKAAUASlD0pshaGTQ0K5A7SirQAjKC6OvqEYOCk5JQ09Awq6vAYsFy8GFQmZjLEOLoWyFhUoABEHMBMrOwcAFbc5QREQiXIoAAqAMoALAAMAEwAzPQAosamgpCgbMyIqeIA5CxLoAAWiNygpqAY2yrc-ADmoAnLEmvEJWVGggGI8KBUWJAq5BWImeWg6irmsEQOBwWHMmjO1GgkA4eCMuQBuG45hYoAAvPYXDo8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPDHNNGTFEsaKACSoAN55Q80Ino4ArlQBGQgNx4AvgWgAPBlmRpQxFTliZcFnKAAUASlD0pshaGTQ0K5A7SirQAjKC6OvqEYOCk5JQ09Awq6vAYsFy8GFQmZjLEOLoWyFhUoABEHMBMrOwcAFbc5QREQiXIoAAqAMoALAAMAEwAzPQAosamgpCgbMyIqeIA5CxLoAAWiNygpqAY2yrc-ADmoAnLEmvEJWVGggGI8KBUWJAq5BWImeWg6irmsEQOBwWHMmjO1GgkA4eCMuQBuG45hYoAAvPYXDo8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPDHNNGTFEsaKACSoAN55Q80Ino4ArlQBGQgNx4AvgWgAPBlmRpQxFTliZcFnKAAUASlD0pshaGTQ0K5A7SirQAjKC6OvqEYOCk5JQ09Awq6vAYsFy8GFQmZjLEOLoWyFhUoABEHMBMrOwcAFbc5QREQiXIoAAqAMoALAAMAEwAzPQAosamgpCgbMyIqeIA5CxLoAAWiNygpqAY2yrc-ADmoAnLEmvEJWVGggGI8KBUWJAq5BWImeWg6irmsEQOBwWHMmjO1GgkA4eCMuQBuG45hYoAAvPYXDo8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPDHNNGTFEsaKACSoAN55Q80Ino4ArlQBGQgNx4AvgWgAPBlmRpQxFTliZcFnKAAUASlD0pshaGTQ0K5A7SirQAjKC6OvqEYOCk5JQ09Awq6vAYsFy8GFQmZjLEOLoWyFhUoABEHMBMrOwcAFbc5QREQiXIoAAqAMoALAAMAEwAzPQAosamgpCgbMyIqeIA5CxLoAAWiNygpqAY2yrc-ADmoAnLEmvEJWVGggGI8KBUWJAq5BWImeWg6irmsEQOBwWHMmjO1GgkA4eCMuQBuG45hYoAAvPYXDo8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPDHNNGTFEsaKACSoAN55Q80Ino4ArlQBGQgNx4AvgWgAPBlmRpQxFTliZcFnKAAUASlD0pshaGTQ0K5A7SirQAjKC6OvqEYOCk5JQ09Awq6vAYsFy8GFQmZjLEOLoWyFhUoABEHMBMrOwcAFbc5QREQiXIoAAqAMoALAAMAEwAzPQAosamgpCgbMyIqeIA5CxLoAAWiNygpqAY2yrc-ADmoAnLEmvEJWVGggGI8KBUWJAq5BWImeWg6irmsEQOBwWHMmjO1GgkA4eCMuQBuG45hYoAAvPYXDo8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPDHNNGTFEsaKACSoAN55Q80Ino4ArlQBGQgNx4AvgWgAPBlmRpQxFTliZcFnKAAUASlD0pshaGTQ0K5A7SirQAjKC6OvqEYOCk5JQ09Awq6vAYsFy8GFQmZjLEOLoWyFhUoABEHMBMrOwcAFbc5QREQiXIoAAqAMoALAAMAEwAzPQAosamgpCgbMyIqeIA5CxLoAAWiNygpqAY2yrc-ADmoAnLEmvEJWVGggGI8KBUWJAq5BWImeWg6irmsEQOBwWHMmjO1GgkA4eCMuQBuG45hYoAAvPYXDo8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPDHNNGTFEsaKACSoAN55Q80Ino4ArlQBGQgNx4AvgWgAPBlmRpQxFTliZcFnKAAUASlD0pshaGTQ0K5A7SirQAjKC6OvqEYOCk5JQ09Awq6vAYsFy8GFQmZjLEOLoWyFhUoABEHMBMrOwcAFbc5QREQiXIoAAqAMoALAAMAEwAzPQAosamgpCgbMyIqeIA5CxLoAAWiNygpqAY2yrc-ADmoAnLEmvEJWVGggGI8KBUWJAq5BWImeWg6irmsEQOBwWHMmjO1GgkA4eCMuQBuG45hYoAAvPYXDo8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPDHNNGTFEsaKACSoAN55Q80Ino4ArlQBGQgNx4AvgWgAPBlmRpQxFTliZcFnKAAUASlD0pshaGTQ0K5A7SirQAjKC6OvqEYOCk5JQ09Awq6vAYsFy8GFQmZjLEOLoWyFhUoABEHMBMrOwcAFbc5QREQiXIoAAqAMoALAAMAEwAzPQAosamgpCgbMyIqeIA5CxLoAAWiNygpqAY2yrc-ADmoAnLEmvEJWVGggGI8KBUWJAq5BWImeWg6irmsEQOBwWHMmjO1GgkA4eCMuQBuG45hYoAAvPYXDo8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPDHNNGTFEsaKACSoAN55Q80Ino4ArlQBGQgNx4AvgWgAPBlmRpQxFTliZcFnKAAUASlD0pshaGTQ0K5A7SirQAjKC6OvqEYOCk5JQ09Awq6vAYsFy8GFQmZjLEOLoWyFhUoABEHMBMrOwcAFbc5QREQiXIoAAqAMoALAAMAEwAzPQAosamgpCgbMyIqeIA5CxLoAAWiNygpqAY2yrc-ADmoAnLEmvEJWVGggGI8KBUWJAq5BWImeWg6irmsEQOBwWHMmjO1GgkA4eCMuQBuG45hYoAAvPYXDo8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPDHNNGTFEsaKACSoAN55Q80Ino4ArlQBGQgNx4AvgWgAPBlmRpQxFTliZcFnKAAUASlD0pshaGTQ0K5A7SirQAjKC6OvqEYOCk5JQ09Awq6vAYsFy8GFQmZjLEOLoWyFhUoABEHMBMrOwcAFbc5QREQiXIoAAqAMoALAAMAEwAzPQAosamgpCgbMyIqeIA5CxLoAAWiNygpqAY2yrc-ADmoAnLEmvEJWVGggGI8KBUWJAq5BWImeWg6irmsEQOBwWHMmjO1GgkA4eCMuQBuG45hYoAAvPYXDo8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPDHNNGTFEsaKACSoAN55Q80Ino4ArlQBGQgNx4AvgWgAPBlmRpQxFTliZcFnKAAUASlD0pshaGTQ0K5A7SirQAjKC6OvqEYOCk5JQ09Awq6vAYsFy8GFQmZjLEOLoWyFhUoABEHMBMrOwcAFbc5QREQiXIoAAqAMoALAAMAEwAzPQAosamgpCgbMyIqeIA5CxLoAAWiNygpqAY2yrc-ADmoAnLEmvEJWVGggGI8KBUWJAq5BWImeWg6irmsEQOBwWHMmjO1GgkA4eCMuQBuG45hYoAAvPYXDo8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPDHNNGTFEsaKACSoAN55Q80Ino4ArlQBGQgNx4AvgWgAPBlmRpQxFTliZcFnKAAUASlD0pshaGTQ0K5A7SirQAjKC6OvqEYOCk5JQ09Awq6vAYsFy8GFQmZjLEOLoWyFhUoABEHMBMrOwcAFbc5QREQiXIoAAqAMoALAAMAEwAzPQAosamgpCgbMyIqeIA5CxLoAAWiNygpqAY2yrc-ADmoAnLEmvEJWVGggGI8KBUWJAq5BWImeWg6irmsEQOBwWHMmjO1GgkA4eCMuQBuG45hYoAAvPYXDo8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPDHNNGTFEsaKACSoAN55Q80Ino4ArlQBGQgNx4AvgWgAPBlmRpQxFTliZcFnKAAUASlD0pshaGTQ0K5A7SirQAjKC6OvqEYOCk5JQ09Awq6vAYsFy8GFQmZjLEOLoWyFhUoABEHMBMrOwcAFbc5QREQiXIoAAqAMoALAAMAEwAzPQAosamgpCgbMyIqeIA5CxLoAAWiNygpqAY2yrc-ADmoAnLEmvEJWVGggGI8KBUWJAq5BWImeWg6irmsEQOBwWHMmjO1GgkA4eCMuQBuG45hYoAAvPYXDo8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPDHNNGTFEsaKACSoAN55Q80Ino4ArlQBGQgNx4AvgWgAPBlmRpQxFTliZcFnKAAUASlD0pshaGTQ0K5A7SirQAjKC6OvqEYOCk5JQ09Awq6vAYsFy8GFQmZjLEOLoWyFhUoABEHMBMrOwcAFbc5QREQiXIoAAqAMoALAAMAEwAzPQAosamgpCgbMyIqeIA5CxLoAAWiNygpqAY2yrc-ADmoAnLEmvEJWVGggGI8KBUWJAq5BWImeWg6irmsEQOBwWHMmjO1GgkA4eCMuQBuG45hYoAAvPYXDo8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPDHNNGTFEsaKACSoAN55Q80Ino4ArlQBGQgNx4AvgWgAPBlmRpQxFTliZcFnKAAUASlD0pshaGTQ0K5A7SirQAjKC6OvqEYOCk5JQ09Awq6vAYsFy8GFQmZjLEOLoWyFhUoABEHMBMrOwcAFbc5QREQiXIoAAqAMoALAAMAEwAzPQAosamgpCgbMyIqeIA5CxLoAAWiNygpqAY2yrc-ADmoAnLEmvEJWVGggGI8KBUWJAq5BWImeWg6irmsEQOBwWHMmjO1GgkA4eCMuQBuG45hYoAAvPYXDo8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPDHNNGTFEsaKACSoAN55Q80Ino4ArlQBGQgNx4AvgWgAPBlmRpQxFTliZcFnKAAUASlD0pshaGTQ0K5A7SirQAjKC6OvqEYOCk5JQ09Awq6vAYsFy8GFQmZjLEOLoWyFhUoABEHMBMrOwcAFbc5QREQiXIoAAqAMoALAAMAEwAzPQAosamgpCgbMyIqeIA5CxLoAAWiNygpqAY2yrc-ADmoAnLEmvEJWVGggGI8KBUWJAq5BWImeWg6irmsEQOBwWHMmjO1GgkA4eCMuQBuG45hYoAAvPYXDo8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPDHNNGTFEsaKACSoAN55Q80Ino4ArlQBGQgNx4AvgWgAPBlmRpQxFTliZcFnKAAUASlD0pshaGTQ0K5A7SirQAjKC6OvqEYOCk5JQ09Awq6vAYsFy8GFQmZjLEOLoWyFhUoABEHMBMrOwcAFbc5QREQiXIoAAqAMoALAAMAEwAzPQAosamgpCgbMyIqeIA5CxLoAAWiNygpqAY2yrc-ADmoAnLEmvEJWVGggGI8KBUWJAq5BWImeWg6irmsEQOBwWHMmjO1GgkA4eCMuQBuG45hYoAAvPYXDo8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPDHNNGTFEsaKACSoAN55Q80Ino4ArlQBGQgNx4AvgWgAPBlmRpQxFTliZcFnKAAUASlD0pshaGTQ0K5A7SirQAjKC6OvqEYOCk5JQ09Awq6vAYsFy8GFQmZjLEOLoWyFhUoABEHMBMrOwcAFbc5QREQiXIoAAqAMoALAAMAEwAzPQAosamgpCgbMyIqeIA5CxLoAAWiNygpqAY2yrc-ADmoAnLEmvEJWVGggGI8KBUWJAq5BWImeWg6irmsEQOBwWHMmjO1GgkA4eCMuQBuG45hYoAAvPYXDo8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPDHNNGTFEsaKACSoAN55Q80Ino4ArlQBGQgNx4AvgWgAPBlmRpQxFTliZcFnKAAUASlD0pshaGTQ0K5A7SirQAjKC6OvqEYOCk5JQ09Awq6vAYsFy8GFQmZjLEOLoWyFhUoABEHMBMrOwcAFbc5QREQiXIoAAqAMoALAAMAEwAzPQAosamgpCgbMyIqeIA5CxLoAAWiNygpqAY2yrc-ADmoAnLEmvEJWVGggGI8KBUWJAq5BWImeWg6irmsEQOBwWHMmjO1GgkA4eCMuQBuG45hYoAAvPYXDo8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPDHNNGTFEsaKACSoAN55Q80Ino4ArlQBGQgNx4AvgWgAPBlmRpQxFTliZcFnKAAUASlD0pshaGTQ0K5A7SirQAjKC6OvqEYOCk5JQ09Awq6vAYsFy8GFQmZjLEOLoWyFhUoABEHMBMrOwcAFbc5QREQiXIoAAqAMoALAAMAEwAzPQAosamgpCgbMyIqeIA5CxLoAAWiNygpqAY2yrc-ADmoAnLEmvEJWVGggGI8KBUWJAq5BWImeWg6irmsEQOBwWHMmjO1GgkA4eCMuQBuG45hYoAAvPYXDo8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPDHNNGTFEsaKACSoAN55Q80Ino4ArlQBGQgNx4AvgWgAPBlmRpQxFTliZcFnKAAUASlD0pshaGTQ0K5A7SirQAjKC6OvqEYOCk5JQ09Awq6vAYsFy8GFQmZjLEOLoWyFhUoABEHMBMrOwcAFbc5QREQiXIoAAqAMoALAAMAEwAzPQAosamgpCgbMyIqeIA5CxLoAAWiNygpqAY2yrc-ADmoAnLEmvEJWVGggGI8KBUWJAq5BWImeWg6irmsEQOBwWHMmjO1GgkA4eCMuQBuG45hYoAAvPYXDo8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPDHNNGTFEsaKACSoAN55Q80Ino4ArlQBGQgNx4AvgWgAPBlmRpQxFTliZcFnKAAUASlD0pshaGTQ0K5A7SirQAjKC6OvqEYOCk5JQ09Awq6vAYsFy8GFQmZjLEOLoWyFhUoABEHMBMrOwcAFbc5QREQiXIoAAqAMoALAAMAEwAzPQAosamgpCgbMyIqeIA5CxLoAAWiNygpqAY2yrc-ADmoAnLEmvEJWVGggGI8KBUWJAq5BWImeWg6irmsEQOBwWHMmjO1GgkA4eCMuQBuG45hYoAAvPYXDo8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPDHNNGTFEsaKACSoAN55Q80Ino4ArlQBGQgNx4AvgWgAPBlmRpQxFTliZcFnKAAUASlD0pshaGTQ0K5A7SirQAjKC6OvqEYOCk5JQ09Awq6vAYsFy8GFQmZjLEOLoWyFhUoABEHMBMrOwcAFbc5QREQiXIoAAqAMoALAAMAEwAzPQAosamgpCgbMyIqeIA5CxLoAAWiNygpqAY2yrc-ADmoAnLEmvEJWVGggGI8KBUWJAq5BWImeWg6irmsEQOBwWHMmjO1GgkA4eCMuQBuG45hYoAAvPYXDo8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPDHNNGTFEsaKACSoAN55Q80Ino4ArlQBGQgNx4AvgWgAPBlmRpQxFTliZcFnKAAUASlD0pshaGTQ0K5A7SirQAjKC6OvqEYOCk5JQ09Awq6vAYsFy8GFQmZjLEOLoWyFhUoABEHMBMrOwcAFbc5QREQiXIoAAqAMoALAAMAEwAzPQAosamgpCgbMyIqeIA5CxLoAAWiNygpqAY2yrc-ADmoAnLEmvEJWVGggGI8KBUWJAq5BWImeWg6irmsEQOBwWHMmjO1GgkA4eCMuQBuG45hYoAAvPYXDo8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPNATwbRQAFVABeUAG88oOaET0cAVyoAjaMgDceAL4FoADwZZkaUMWU5YmXBZygAFAEpQ9MTPmhk0NMuQOUgq0AIygujr6hGDgpOSUNPQMymrwGLBcvBhUJmbSxDi6FshYVKAARBzATKzsHABW3OUERAByWKCaJcgAhHhGueawuNzmLBL2LjrRoADK0MIAItBqygDmoGiIapsd3AuMKWkZkJmgGDhpOBcbiA53uPxUWMrconhAA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPNATwbRQAFVABeUAG88oOaET0cAVyoAjaMgDceAL4FoADwZZkaUMWU5YmXBZygAFAEpQ9MTPmhk0NMuQOUgq0AIygujr6hGDgpOSUNPQMymrwGLBcvBhUJmbSxDi6FshYVKAARBzATKzsHABW3OUERAByWKCaJcgAhHhGueawuNzmLBL2LjrRoADK0MIAItBqygDmoGiIapsd3AuMKWkZkJmgGDhpOBcbiA53uPxUWMrconhAA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPNATwbRQAFVABeUAG88oOaET0cAVyoAjaMgDceAL4FoADwZZkaUMWU5YmXBZygAFAEpQ9MTPmhk0NMuQOUgq0AIygujr6hGDgpOSUNPQMymrwGLBcvBhUJmbSxDi6FshYVKAARBzATKzsHABW3OUERAByWKCaJcgAhHhGueawuNzmLBL2LjrRoADK0MIAItBqygDmoGiIapsd3AuMKWkZkJmgGDhpOBcbiA53uPxUWMrconhAA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPNATwbRQAFVABeUAG88oOaET0cAVyoAjaMgDceAL4FoADwZZkaUMWU5YmXBZygAFAEpQ9MTPmhk0NMuQOUgq0AIygujr6hGDgpOSUNPQMymrwGLBcvBhUJmbSxDi6FshYVKAARBzATKzsHABW3OUERAByWKCaJcgAhHhGueawuNzmLBL2LjrRoADK0MIAItBqygDmoGiIapsd3AuMKWkZkJmgGDhpOBcbiA53uPxUWMrconhAA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPNATwbRQAFVABeUAG88oOaET0cAVyoAjaMgDceAL4FoADwZZkaUMWU5YmXBZygAFAEpQ9MTPmhk0NMuQOUgq0AIygujr6hGDgpOSUNPQMymrwGLBcvBhUJmbSxDi6FshYVKAARBzATKzsHABW3OUERAByWKCaJcgAhHhGueawuNzmLBL2LjrRoADK0MIAItBqygDmoGiIapsd3AuMKWkZkJmgGDhpOBcbiA53uPxUWMrconhAA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPNATwbRQAFVABeUAG88oOaET0cAVyoAjaMgDceAL4FoADwZZkaUMWU5YmXBZygAFAEpQ9MTPmhk0NMuQOUgq0AIygujr6hGDgpOSUNPQMymrwGLBcvBhUJmbSxDi6FshYVKAARBzATKzsHABW3OUERAByWKCaJcgAhHhGueawuNzmLBL2LjrRoADK0MIAItBqygDmoGiIapsd3AuMKWkZkJmgGDhpOBcbiA53uPxUWMrconhAA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPNATwbRQAFVABeUAG88oOaET0cAVyoAjaMgDceAL4FoADwZZkaUMWU5YmXBZygAFAEpQ9MTPmhk0NMuQOUgq0AIygujr6hGDgpOSUNPQMymrwGLBcvBhUJmbSxDi6FshYVKAARBzATKzsHABW3OUERAByWKCaJcgAhHhGueawuNzmLBL2LjrRoADK0MIAItBqygDmoGiIapsd3AuMKWkZkJmgGDhpOBcbiA53uPxUWMrconhAA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPNATwbRQAFVABeUAG88oOaET0cAVyoAjaMgDceAL4FoADwZZkaUMWU5YmXBZygAFAEpQ9MTPmhk0NMuQOUgq0AIygujr6hGDgpOSUNPQMymrwGLBcvBhUJmbSxDi6FshYVKAARBzATKzsHABW3OUERAByWKCaJcgAhHhGueawuNzmLBL2LjrRoADK0MIAItBqygDmoGiIapsd3AuMKWkZkJmgGDhpOBcbiA53uPxUWMrconhAA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPNATwbRQAFVABeUAG88oOaET0cAVyoAjaMgDceAL4FoADwZZkaUMWU5YmXBZygAFAEpQ9MTPmhk0NMuQOUgq0AIygujr6hGDgpOSUNPQMymrwGLBcvBhUJmbSxDi6FshYVKAARBzATKzsHABW3OUERAByWKCaJcgAhHhGueawuNzmLBL2LjrRoADK0MIAItBqygDmoGiIapsd3AuMKWkZkJmgGDhpOBcbiA53uPxUWMrconhAA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPNATwbRQAFVABeUAG88oOaET0cAVyoAjaMgDceAL4FoADwZZkaUMWU5YmXBZygAFAEpQ9MTPmhk0NMuQOUgq0AIygujr6hGDgpOSUNPQMymrwGLBcvBhUJmbSxDi6FshYVKAARBzATKzsHABW3OUERAByWKCaJcgAhHhGueawuNzmLBL2LjrRoADK0MIAItBqygDmoGiIapsd3AuMKWkZkJmgGDhpOBcbiA53uPxUWMrconhAA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPNATwbRQAFVABeUAG88oOaET0cAVyoAjaMgDceAL4FoADwZZkaUMWU5YmXBZygAFAEpQ9MTPmhk0NMuQOUgq0AIygujr6hGDgpOSUNPQMymrwGLBcvBhUJmbSxDi6FshYVKAARBzATKzsHABW3OUERAByWKCaJcgAhHhGueawuNzmLBL2LjrRoADK0MIAItBqygDmoGiIapsd3AuMKWkZkJmgGDhpOBcbiA53uPxUWMrconhAA

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

• Add type annotations to exports:

• With no annotation we see inlining.9

• With an explicit type annotation we force
referencing behavior.10

The inlining behavior does not seem to be strictly specified. It is a
side effect of the way declaration files are constructed. So the above
methods may not work in future. We hope this is something that can
be formalized in TypeScript. Until then we shall rely on user educa-
tion to mitigate this risk.

10. GENERATED DECLARATIONS CAN CONTAIN

NON-ESSENTIAL DEPENDENCIES

Consumers of TypeScript declaration files typically only care
about the public type api of a package. TypeScript declaration emit
generates exactly one declaration file for every TypeScript file in
a project. Some of this content can be irrelevant to users and can
expose private implementation details. This behavior can be sur-
prising to newcomers to TypeScript, who expect the typings to be a
representation of the public api like the handwritten typings found
on DefinitelyTyped.

One example of this is generated declarations including typings for
functions used only for internal testing.11

Scalability

Since our package system knows all the public package entry points,
our tooling can crawl the graph of reachable types to identify all the
types that do not need to be made public. This is dead type elimina-
tion (dte) or, more precisely, tree-shaking. We wrote a tool to do this;
it performs minimal work by only eliminating code from declaration
files. It does not rewrite or relocate code – it is not a bundler. This

9 https://smashed.by/noannotation
10 https://smashed.by/explicitannotation
11 https://smashed.by/declarations

459Bloomberg: 10 Insights to Adopting TypeScript at Scale

https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPNATwbRQAFVABeUAG88oOaET0cAVyoAjaMgDceAL4FoADwZZkaUMWU5YmXBZygAFAEpQ9MTPmhk0NMuQOUgq0AIygujr6hGDgpOSUNPQMymrwGLBcvBhUJmbSxDi6FshYVKAARBzATKzs5QREAHJYoAJCCjg4WGjo2DgANKAA7sLc0MIYOGk4kwDmeEa55rC43OYsEvYuOtGgAMrjoAAi0GrKs62Iaq0tY8LJqekckJmgABaI3KBdoNlLvEA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPNATwbRQAFVABeUAG88oOaET0cAVyoAjaMgDceAL4FoADwZZkaUMWU5YmXBZygAFAEpQ9MTPmhk0NMuQOUgq0AIygujr6hGDgpOSUNPQMymrwGLBcvBhUJmbSxDi6FshYVKAARBzATKzs5QREAHJYoAJCCjg4WGjo2DgANKAA7sLc0MIYOGk4kwDmeEa55rC43OYsEvYuOtGgAMrjoAAi0GrKs62Iaq0tY8LJqekckJmgABaI3KBdoNlLvEA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPNATwbRQAFVABeUAG88oOaET0cAVyoAjaMgDceAL4FoADwZZkaUMWU5YmXBZygAFAEpQ9MTPmhk0NMuQOUgq0AIygujr6hGDgpOSUNPQMymrwGLBcvBhUJmbSxDi6FshYVKAARBzATKzs5QREAHJYoAJCCjg4WGjo2DgANKAA7sLc0MIYOGk4kwDmeEa55rC43OYsEvYuOtGgAMrjoAAi0GrKs62Iaq0tY8LJqekckJmgABaI3KBdoNlLvEA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPNATwbRQAFVABeUAG88oOaET0cAVyoAjaMgDceAL4FoADwZZkaUMWU5YmXBZygAFAEpQ9MTPmhk0NMuQOUgq0AIygujr6hGDgpOSUNPQMymrwGLBcvBhUJmbSxDi6FshYVKAARBzATKzs5QREAHJYoAJCCjg4WGjo2DgANKAA7sLc0MIYOGk4kwDmeEa55rC43OYsEvYuOtGgAMrjoAAi0GrKs62Iaq0tY8LJqekckJmgABaI3KBdoNlLvEA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPNATwbRQAFVABeUAG88oOaET0cAVyoAjaMgDceAL4FoADwZZkaUMWU5YmXBZygAFAEpQ9MTPmhk0NMuQOUgq0AIygujr6hGDgpOSUNPQMymrwGLBcvBhUJmbSxDi6FshYVKAARBzATKzs5QREAHJYoAJCCjg4WGjo2DgANKAA7sLc0MIYOGk4kwDmeEa55rC43OYsEvYuOtGgAMrjoAAi0GrKs62Iaq0tY8LJqekckJmgABaI3KBdoNlLvEA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPNATwbRQAFVABeUAG88oOaET0cAVyoAjaMgDceAL4FoADwZZkaUMWU5YmXBZygAFAEpQ9MTPmhk0NMuQOUgq0AIygujr6hGDgpOSUNPQMymrwGLBcvBhUJmbSxDi6FshYVKAARBzATKzs5QREAHJYoAJCCjg4WGjo2DgANKAA7sLc0MIYOGk4kwDmeEa55rC43OYsEvYuOtGgAMrjoAAi0GrKs62Iaq0tY8LJqekckJmgABaI3KBdoNlLvEA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPNATwbRQAFVABeUAG88oOaET0cAVyoAjaMgDceAL4FoADwZZkaUMWU5YmXBZygAFAEpQ9MTPmhk0NMuQOUgq0AIygujr6hGDgpOSUNPQMymrwGLBcvBhUJmbSxDi6FshYVKAARBzATKzs5QREAHJYoAJCCjg4WGjo2DgANKAA7sLc0MIYOGk4kwDmeEa55rC43OYsEvYuOtGgAMrjoAAi0GrKs62Iaq0tY8LJqekckJmgABaI3KBdoNlLvEA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPNATwbRQAFVABeUAG88oOaET0cAVyoAjaMgDceAL4FoADwZZkaUMWU5YmXBZygAFAEpQ9MTPmhk0NMuQOUgq0AIygujr6hGDgpOSUNPQMymrwGLBcvBhUJmbSxDi6FshYVKAARBzATKzs5QREAHJYoAJCCjg4WGjo2DgANKAA7sLc0MIYOGk4kwDmeEa55rC43OYsEvYuOtGgAMrjoAAi0GrKs62Iaq0tY8LJqekckJmgABaI3KBdoNlLvEA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPNATwbRQAFVABeUAG88oOaET0cAVyoAjaMgDceAL4FoADwZZkaUMWU5YmXBZygAFAEpQ9MTPmhk0NMuQOUgq0AIygujr6hGDgpOSUNPQMymrwGLBcvBhUJmbSxDi6FshYVKAARBzATKzs5QREAHJYoAJCCjg4WGjo2DgANKAA7sLc0MIYOGk4kwDmeEa55rC43OYsEvYuOtGgAMrjoAAi0GrKs62Iaq0tY8LJqekckJmgABaI3KBdoNlLvEA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPNATwbRQAFVABeUAG88oOaET0cAVyoAjaMgDceAL4FoADwZZkaUMWU5YmXBZygAFAEpQ9MTPmhk0NMuQOUgq0AIygujr6hGDgpOSUNPQMymrwGLBcvBhUJmbSxDi6FshYVKAARBzATKzs5QREAHJYoAJCCjg4WGjo2DgANKAA7sLc0MIYOGk4kwDmeEa55rC43OYsEvYuOtGgAMrjoAAi0GrKs62Iaq0tY8LJqekckJmgABaI3KBdoNlLvEA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPNATwbRQAFVABeUAG88oOaET0cAVyoAjaMgDceAL4FoADwZZkaUMWU5YmXBZygAFAEpQ9MTPmhk0NMuQOUgq0AIygujr6hGDgpOSUNPQMymrwGLBcvBhUJmbSxDi6FshYVKAARBzATKzs5QREAHJYoAJCCjg4WGjo2DgANKAA7sLc0MIYOGk4kwDmeEa55rC43OYsEvYuOtGgAMrjoAAi0GrKs62Iaq0tY8LJqekckJmgABaI3KBdoNlLvEA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPNATwbRQAFVABeUAG88oOaET0cAVyoAjaMgDceAL4FoADwZZkaUMWU5YmXBZygAFAEpQ9MTPmhk0NMuQOUgq0AIygujr6hGDgpOSUNPQMymrwGLBcvBhUJmbSxDi6FshYVKAARBzATKzs5QREIgAWwgJCCjg4WGjo2A5M0CwUPKAYOGk4YwDmogCEeEa55rC43OYsbqAASr7+OCKC0AA8bdBYxPYAfBL2LjrRoADK0MIAItBqyjM9aqBoWKBuC9GCk0hlIJlvNBiJoKLBpoxmGw0JwITw8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPNATwbRQAFVABeUAG88oOaET0cAVyoAjaMgDceAL4FoADwZZkaUMWU5YmXBZygAFAEpQ9MTPmhk0NMuQOUgq0AIygujr6hGDgpOSUNPQMymrwGLBcvBhUJmbSxDi6FshYVKAARBzATKzs5QREIgAWwgJCCjg4WGjo2A5M0CwUPKAYOGk4YwDmogCEeEa55rC43OYsbqAASr7+OCKC0AA8bdBYxPYAfBL2LjrRoADK0MIAItBqyjM9aqBoWKBuC9GCk0hlIJlvNBiJoKLBpoxmGw0JwITw8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPNATwbRQAFVABeUAG88oOaET0cAVyoAjaMgDceAL4FoADwZZkaUMWU5YmXBZygAFAEpQ9MTPmhk0NMuQOUgq0AIygujr6hGDgpOSUNPQMymrwGLBcvBhUJmbSxDi6FshYVKAARBzATKzs5QREIgAWwgJCCjg4WGjo2A5M0CwUPKAYOGk4YwDmogCEeEa55rC43OYsbqAASr7+OCKC0AA8bdBYxPYAfBL2LjrRoADK0MIAItBqyjM9aqBoWKBuC9GCk0hlIJlvNBiJoKLBpoxmGw0JwITw8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPNATwbRQAFVABeUAG88oOaET0cAVyoAjaMgDceAL4FoADwZZkaUMWU5YmXBZygAFAEpQ9MTPmhk0NMuQOUgq0AIygujr6hGDgpOSUNPQMymrwGLBcvBhUJmbSxDi6FshYVKAARBzATKzs5QREIgAWwgJCCjg4WGjo2A5M0CwUPKAYOGk4YwDmogCEeEa55rC43OYsbqAASr7+OCKC0AA8bdBYxPYAfBL2LjrRoADK0MIAItBqyjM9aqBoWKBuC9GCk0hlIJlvNBiJoKLBpoxmGw0JwITw8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPNATwbRQAFVABeUAG88oOaET0cAVyoAjaMgDceAL4FoADwZZkaUMWU5YmXBZygAFAEpQ9MTPmhk0NMuQOUgq0AIygujr6hGDgpOSUNPQMymrwGLBcvBhUJmbSxDi6FshYVKAARBzATKzs5QREIgAWwgJCCjg4WGjo2A5M0CwUPKAYOGk4YwDmogCEeEa55rC43OYsbqAASr7+OCKC0AA8bdBYxPYAfBL2LjrRoADK0MIAItBqyjM9aqBoWKBuC9GCk0hlIJlvNBiJoKLBpoxmGw0JwITw8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPNATwbRQAFVABeUAG88oOaET0cAVyoAjaMgDceAL4FoADwZZkaUMWU5YmXBZygAFAEpQ9MTPmhk0NMuQOUgq0AIygujr6hGDgpOSUNPQMymrwGLBcvBhUJmbSxDi6FshYVKAARBzATKzs5QREIgAWwgJCCjg4WGjo2A5M0CwUPKAYOGk4YwDmogCEeEa55rC43OYsbqAASr7+OCKC0AA8bdBYxPYAfBL2LjrRoADK0MIAItBqyjM9aqBoWKBuC9GCk0hlIJlvNBiJoKLBpoxmGw0JwITw8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPNATwbRQAFVABeUAG88oOaET0cAVyoAjaMgDceAL4FoADwZZkaUMWU5YmXBZygAFAEpQ9MTPmhk0NMuQOUgq0AIygujr6hGDgpOSUNPQMymrwGLBcvBhUJmbSxDi6FshYVKAARBzATKzs5QREIgAWwgJCCjg4WGjo2A5M0CwUPKAYOGk4YwDmogCEeEa55rC43OYsbqAASr7+OCKC0AA8bdBYxPYAfBL2LjrRoADK0MIAItBqyjM9aqBoWKBuC9GCk0hlIJlvNBiJoKLBpoxmGw0JwITw8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPNATwbRQAFVABeUAG88oOaET0cAVyoAjaMgDceAL4FoADwZZkaUMWU5YmXBZygAFAEpQ9MTPmhk0NMuQOUgq0AIygujr6hGDgpOSUNPQMymrwGLBcvBhUJmbSxDi6FshYVKAARBzATKzs5QREIgAWwgJCCjg4WGjo2A5M0CwUPKAYOGk4YwDmogCEeEa55rC43OYsbqAASr7+OCKC0AA8bdBYxPYAfBL2LjrRoADK0MIAItBqyjM9aqBoWKBuC9GCk0hlIJlvNBiJoKLBpoxmGw0JwITw8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPNATwbRQAFVABeUAG88oOaET0cAVyoAjaMgDceAL4FoADwZZkaUMWU5YmXBZygAFAEpQ9MTPmhk0NMuQOUgq0AIygujr6hGDgpOSUNPQMymrwGLBcvBhUJmbSxDi6FshYVKAARBzATKzs5QREIgAWwgJCCjg4WGjo2A5M0CwUPKAYOGk4YwDmogCEeEa55rC43OYsbqAASr7+OCKC0AA8bdBYxPYAfBL2LjrRoADK0MIAItBqyjM9aqBoWKBuC9GCk0hlIJlvNBiJoKLBpoxmGw0JwITw8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPNATwbRQAFVABeUAG88oOaET0cAVyoAjaMgDceAL4FoADwZZkaUMWU5YmXBZygAFAEpQ9MTPmhk0NMuQOUgq0AIygujr6hGDgpOSUNPQMymrwGLBcvBhUJmbSxDi6FshYVKAARBzATKzs5QREIgAWwgJCCjg4WGjo2A5M0CwUPKAYOGk4YwDmogCEeEa55rC43OYsbqAASr7+OCKC0AA8bdBYxPYAfBL2LjrRoADK0MIAItBqyjM9aqBoWKBuC9GCk0hlIJlvNBiJoKLBpoxmGw0JwITw8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPNATwbRQAFVABeUAG88oOaET0cAVyoAjaMgDceAL4FoADwZZkaUMWU5YmXBZygAFAEpQ9MTPmhk0NMuQOUgq0AIygujr6hGDgpOSUNPQMymrwGLBcvBhUJmbSxDi6FshYVKAARBzATKzs5QREIgAWwgJCCjg4WGjo2A5M0CwUPKAYOGk4YwDmogCEeEa55rC43OYsbqAASr7+OCKC0AA8bdBYxPYAfBL2LjrRoADK0MIAItBqyjM9aqBoWKBuC9GCk0hlIJlvNBiJoKLBpoxmGw0JwITw8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPNATwbRQAFVABeUAG88oOaET0cAVyoAjaMgDceAL4FoADwZZkaUMWU5YmXBZygAFAEpQ9MTPmhk0NMuQOUgq0AIygujr6hGDgpOSUNPQMymrwGLBcvBhUJmbSxDi6FshYVKAARBzATKzs5QREIgAWwgJCCjg4WGjo2A5M0CwUPKAYOGk4YwDmogCEeEa55rC43OYsbqAASr7+OCKC0AA8bdBYxPYAfBL2LjrRoADK0MIAItBqyjM9aqBoWKBuC9GCk0hlIJlvNBiJoKLBpoxmGw0JwITw8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPNATwbRQAFVABeUAG88oOaET0cAVyoAjaMgDceAL4FoADwZZkaUMWU5YmXBZygAFAEpQ9MTPmhk0NMuQOUgq0AIygujr6hGDgpOSUNPQMymrwGLBcvBhUJmbSxDi6FshYVKAARBzATKzs5QREIgAWwgJCCjg4WGjo2A5M0CwUPKAYOGk4YwDmogCEeEa55rC43OYsbqAASr7+OCKC0AA8bdBYxPYAfBL2LjrRoADK0MIAItBqyjM9aqBoWKBuC9GCk0hlIJlvNBiJoKLBpoxmGw0JwITw8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPNATwbRQAFVABeUAG88oOaET0cAVyoAjaMgDceAL4FoADwZZkaUMWU5YmXBZygAFAEpQ9MTPmhk0NMuQOUgq0AIygujr6hGDgpOSUNPQMymrwGLBcvBhUJmbSxDi6FshYVKAARBzATKzs5QREIgAWwgJCCjg4WGjo2A5M0CwUPKAYOGk4YwDmogCEeEa55rC43OYsbqAASr7+OCKC0AA8bdBYxPYAfBL2LjrRoADK0MIAItBqyjM9aqBoWKBuC9GCk0hlIJlvNBiJoKLBpoxmGw0JwITw8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPNATwbRQAFVABeUAG88oOaET0cAVyoAjaMgDceAL4FoADwZZkaUMWU5YmXBZygAFAEpQ9MTPmhk0NMuQOUgq0AIygujr6hGDgpOSUNPQMymrwGLBcvBhUJmbSxDi6FshYVKAARBzATKzs5QREIgAWwgJCCjg4WGjo2A5M0CwUPKAYOGk4YwDmogCEeEa55rC43OYsbqAASr7+OCKC0AA8bdBYxPYAfBL2LjrRoADK0MIAItBqyjM9aqBoWKBuC9GCk0hlIJlvNBiJoKLBpoxmGw0JwITw8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPNATwbRQAFVABeUAG88oOaET0cAVyoAjaMgDceAL4FoADwZZkaUMWU5YmXBZygAFAEpQ9MTPmhk0NMuQOUgq0AIygujr6hGDgpOSUNPQMymrwGLBcvBhUJmbSxDi6FshYVKAARBzATKzs5QREIgAWwgJCCjg4WGjo2A5M0CwUPKAYOGk4YwDmogCEeEa55rC43OYsbqAASr7+OCKC0AA8bdBYxPYAfBL2LjrRoADK0MIAItBqyjM9aqBoWKBuC9GCk0hlIJlvNBiJoKLBpoxmGw0JwITw8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5QAHZDAN3WgDo0BnPNATwbRQAFVABeUAG88oOaET0cAVyoAjaMgDceAL4FoADwZZkaUMWU5YmXBZygAFAEpQ9MTPmhk0NMuQOUgq0AIygujr6hGDgpOSUNPQMymrwGLBcvBhUJmbSxDi6FshYVKAARBzATKzs5QREIgAWwgJCCjg4WGjo2A5M0CwUPKAYOGk4YwDmogCEeEa55rC43OYsbqAASr7+OCKC0AA8bdBYxPYAfBL2LjrRoADK0MIAItBqyjM9aqBoWKBuC9GCk0hlIJlvNBiJoKLBpoxmGw0JwITw8EA
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5Q1oBnNAOjSb2gA8AHLZGlAYcjZMUSxooACrM0AEXSJQAbzyhNmgEb0WyEQHM8AXwKEw4UuUo16vAwDd00dpwxV+ghgE9e01Vl5JTQVE1BiZCwqUAAiVmBGFliCHi8hWFwWUBwsNABRPiwmaEgAIR8ABQBXbXgMWFB6ORYQlQBeNVBdOKS0AFpIZVjQM2AAKlB8x2hkHzQACyNQRG0sGYYlplB6nGkMbYxkZGhyZ1EGLFBqkuRtrGJNg9BeSQBrRENpceBUou8RGIJFJQABJC7qLQreg4apUbSzUx-dIRao4WCYXARHCgAAUAEommCIRotCc0NVkDjAoh6ABGUYAbiRBCIVjIFGodBetXqsDceA8KNUxBw4Ui0TiCQcGGcjBSXH+GSINCLUDEPICTURE
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5Q1oBnNAOjSb2gA8AHLZGlAYcjZMUSxooACrM0AEXSJQAbzyhNmgEb0WyEQHM8AXwKEw4UuUo16vAwDd00dpwxV+ghgE9e01Vl5JTQVE1BiZCwqUAAiVmBGFliCHi8hWFwWUBwsNABRPiwmaEgAIR8ABQBXbXgMWFB6ORYQlQBeNVBdOKS0AFpIZVjQM2AAKlB8x2hkHzQACyNQRG0sGYYlplB6nGkMbYxkZGhyZ1EGLFBqkuRtrGJNg9BeSQBrRENpceBUou8RGIJFJQABJC7qLQreg4apUbSzUx-dIRao4WCYXARHCgAAUAEommCIRotCc0NVkDjAoh6ABGUYAbiRBCIVjIFGodBetXqsDceA8KNUxBw4Ui0TiCQcGGcjBSXH+GSINCLUDEPICTURE
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5Q1oBnNAOjSb2gA8AHLZGlAYcjZMUSxooACrM0AEXSJQAbzyhNmgEb0WyEQHM8AXwKEw4UuUo16vAwDd00dpwxV+ghgE9e01Vl5JTQVE1BiZCwqUAAiVmBGFliCHi8hWFwWUBwsNABRPiwmaEgAIR8ABQBXbXgMWFB6ORYQlQBeNVBdOKS0AFpIZVjQM2AAKlB8x2hkHzQACyNQRG0sGYYlplB6nGkMbYxkZGhyZ1EGLFBqkuRtrGJNg9BeSQBrRENpceBUou8RGIJFJQABJC7qLQreg4apUbSzUx-dIRao4WCYXARHCgAAUAEommCIRotCc0NVkDjAoh6ABGUYAbiRBCIVjIFGodBetXqsDceA8KNUxBw4Ui0TiCQcGGcjBSXH+GSINCLUDEPICTURE
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5Q1oBnNAOjSb2gA8AHLZGlAYcjZMUSxooACrM0AEXSJQAbzyhNmgEb0WyEQHM8AXwKEw4UuUo16vAwDd00dpwxV+ghgE9e01Vl5JTQVE1BiZCwqUAAiVmBGFliCHi8hWFwWUBwsNABRPiwmaEgAIR8ABQBXbXgMWFB6ORYQlQBeNVBdOKS0AFpIZVjQM2AAKlB8x2hkHzQACyNQRG0sGYYlplB6nGkMbYxkZGhyZ1EGLFBqkuRtrGJNg9BeSQBrRENpceBUou8RGIJFJQABJC7qLQreg4apUbSzUx-dIRao4WCYXARHCgAAUAEommCIRotCc0NVkDjAoh6ABGUYAbiRBCIVjIFGodBetXqsDceA8KNUxBw4Ui0TiCQcGGcjBSXH+GSINCLUDEPICTURE
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5Q1oBnNAOjSb2gA8AHLZGlAYcjZMUSxooACrM0AEXSJQAbzyhNmgEb0WyEQHM8AXwKEw4UuUo16vAwDd00dpwxV+ghgE9e01Vl5JTQVE1BiZCwqUAAiVmBGFliCHi8hWFwWUBwsNABRPiwmaEgAIR8ABQBXbXgMWFB6ORYQlQBeNVBdOKS0AFpIZVjQM2AAKlB8x2hkHzQACyNQRG0sGYYlplB6nGkMbYxkZGhyZ1EGLFBqkuRtrGJNg9BeSQBrRENpceBUou8RGIJFJQABJC7qLQreg4apUbSzUx-dIRao4WCYXARHCgAAUAEommCIRotCc0NVkDjAoh6ABGUYAbiRBCIVjIFGodBetXqsDceA8KNUxBw4Ui0TiCQcGGcjBSXH+GSINCLUDEPICTURE
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5Q1oBnNAOjSb2gA8AHLZGlAYcjZMUSxooACrM0AEXSJQAbzyhNmgEb0WyEQHM8AXwKEw4UuUo16vAwDd00dpwxV+ghgE9e01Vl5JTQVE1BiZCwqUAAiVmBGFliCHi8hWFwWUBwsNABRPiwmaEgAIR8ABQBXbXgMWFB6ORYQlQBeNVBdOKS0AFpIZVjQM2AAKlB8x2hkHzQACyNQRG0sGYYlplB6nGkMbYxkZGhyZ1EGLFBqkuRtrGJNg9BeSQBrRENpceBUou8RGIJFJQABJC7qLQreg4apUbSzUx-dIRao4WCYXARHCgAAUAEommCIRotCc0NVkDjAoh6ABGUYAbiRBCIVjIFGodBetXqsDceA8KNUxBw4Ui0TiCQcGGcjBSXH+GSINCLUDEPICTURE
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5Q1oBnNAOjSb2gA8AHLZGlAYcjZMUSxooACrM0AEXSJQAbzyhNmgEb0WyEQHM8AXwKEw4UuUo16vAwDd00dpwxV+ghgE9e01Vl5JTQVE1BiZCwqUAAiVmBGFliCHi8hWFwWUBwsNABRPiwmaEgAIR8ABQBXbXgMWFB6ORYQlQBeNVBdOKS0AFpIZVjQM2AAKlB8x2hkHzQACyNQRG0sGYYlplB6nGkMbYxkZGhyZ1EGLFBqkuRtrGJNg9BeSQBrRENpceBUou8RGIJFJQABJC7qLQreg4apUbSzUx-dIRao4WCYXARHCgAAUAEommCIRotCc0NVkDjAoh6ABGUYAbiRBCIVjIFGodBetXqsDceA8KNUxBw4Ui0TiCQcGGcjBSXH+GSINCLUDEPICTURE
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5Q1oBnNAOjSb2gA8AHLZGlAYcjZMUSxooACrM0AEXSJQAbzyhNmgEb0WyEQHM8AXwKEw4UuUo16vAwDd00dpwxV+ghgE9e01Vl5JTQVE1BiZCwqUAAiVmBGFliCHi8hWFwWUBwsNABRPiwmaEgAIR8ABQBXbXgMWFB6ORYQlQBeNVBdOKS0AFpIZVjQM2AAKlB8x2hkHzQACyNQRG0sGYYlplB6nGkMbYxkZGhyZ1EGLFBqkuRtrGJNg9BeSQBrRENpceBUou8RGIJFJQABJC7qLQreg4apUbSzUx-dIRao4WCYXARHCgAAUAEommCIRotCc0NVkDjAoh6ABGUYAbiRBCIVjIFGodBetXqsDceA8KNUxBw4Ui0TiCQcGGcjBSXH+GSINCLUDEPICTURE
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5Q1oBnNAOjSb2gA8AHLZGlAYcjZMUSxooACrM0AEXSJQAbzyhNmgEb0WyEQHM8AXwKEw4UuUo16vAwDd00dpwxV+ghgE9e01Vl5JTQVE1BiZCwqUAAiVmBGFliCHi8hWFwWUBwsNABRPiwmaEgAIR8ABQBXbXgMWFB6ORYQlQBeNVBdOKS0AFpIZVjQM2AAKlB8x2hkHzQACyNQRG0sGYYlplB6nGkMbYxkZGhyZ1EGLFBqkuRtrGJNg9BeSQBrRENpceBUou8RGIJFJQABJC7qLQreg4apUbSzUx-dIRao4WCYXARHCgAAUAEommCIRotCc0NVkDjAoh6ABGUYAbiRBCIVjIFGodBetXqsDceA8KNUxBw4Ui0TiCQcGGcjBSXH+GSINCLUDEPICTURE
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5Q1oBnNAOjSb2gA8AHLZGlAYcjZMUSxooACrM0AEXSJQAbzyhNmgEb0WyEQHM8AXwKEw4UuUo16vAwDd00dpwxV+ghgE9e01Vl5JTQVE1BiZCwqUAAiVmBGFliCHi8hWFwWUBwsNABRPiwmaEgAIR8ABQBXbXgMWFB6ORYQlQBeNVBdOKS0AFpIZVjQM2AAKlB8x2hkHzQACyNQRG0sGYYlplB6nGkMbYxkZGhyZ1EGLFBqkuRtrGJNg9BeSQBrRENpceBUou8RGIJFJQABJC7qLQreg4apUbSzUx-dIRao4WCYXARHCgAAUAEommCIRotCc0NVkDjAoh6ABGUYAbiRBCIVjIFGodBetXqsDceA8KNUxBw4Ui0TiCQcGGcjBSXH+GSINCLUDEPICTURE
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5Q1oBnNAOjSb2gA8AHLZGlAYcjZMUSxooACrM0AEXSJQAbzyhNmgEb0WyEQHM8AXwKEw4UuUo16vAwDd00dpwxV+ghgE9e01Vl5JTQVE1BiZCwqUAAiVmBGFliCHi8hWFwWUBwsNABRPiwmaEgAIR8ABQBXbXgMWFB6ORYQlQBeNVBdOKS0AFpIZVjQM2AAKlB8x2hkHzQACyNQRG0sGYYlplB6nGkMbYxkZGhyZ1EGLFBqkuRtrGJNg9BeSQBrRENpceBUou8RGIJFJQABJC7qLQreg4apUbSzUx-dIRao4WCYXARHCgAAUAEommCIRotCc0NVkDjAoh6ABGUYAbiRBCIVjIFGodBetXqsDceA8KNUxBw4Ui0TiCQcGGcjBSXH+GSINCLUDEPICTURE
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5Q1oBnNAOjSb2gA8AHLZGlAYcjZMUSxooACrM0AEXSJQAbzyhNmgEb0WyEQHM8AXwKEw4UuUo16vAwDd00dpwxV+ghgE9e01Vl5JTQVE1BiZCwqUAAiVmBGFliCHi8hWFwWUBwsNABRPiwmaEgAIR8ABQBXbXgMWFB6ORYQlQBeNVBdOKS0AFpIZVjQM2AAKlB8x2hkHzQACyNQRG0sGYYlplB6nGkMbYxkZGhyZ1EGLFBqkuRtrGJNg9BeSQBrRENpceBUou8RGIJFJQABJC7qLQreg4apUbSzUx-dIRao4WCYXARHCgAAUAEommCIRotCc0NVkDjAoh6ABGUYAbiRBCIVjIFGodBetXqsDceA8KNUxBw4Ui0TiCQcGGcjBSXH+GSINCLUDEPICTURE
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5Q1oBnNAOjSb2gA8AHLZGlAYcjZMUSxooACrM0AEXSJQAbzyhNmgEb0WyEQHM8AXwKEw4UuUo16vAwDd00dpwxV+ghgE9e01Vl5JTQVE1BiZCwqUAAiVmBGFliCHi8hWFwWUBwsNABRPiwmaEgAIR8ABQBXbXgMWFB6ORYQlQBeNVBdOKS0AFpIZVjQM2AAKlB8x2hkHzQACyNQRG0sGYYlplB6nGkMbYxkZGhyZ1EGLFBqkuRtrGJNg9BeSQBrRENpceBUou8RGIJFJQABJC7qLQreg4apUbSzUx-dIRao4WCYXARHCgAAUAEommCIRotCc0NVkDjAoh6ABGUYAbiRBCIVjIFGodBetXqsDceA8KNUxBw4Ui0TiCQcGGcjBSXH+GSINCLUDEPICTURE
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5Q1oBnNAOjSb2gA8AHLZGlAYcjZMUSxooACrM0AEXSJQAbzyhNmgEb0WyEQHM8AXwKEw4UuUo16vAwDd00dpwxV+ghgE9e01Vl5JTQVE1BiZCwqUAAiVmBGFliCHi8hWFwWUBwsNABRPiwmaEgAIR8ABQBXbXgMWFB6ORYQlQBeNVBdOKS0AFpIZVjQM2AAKlB8x2hkHzQACyNQRG0sGYYlplB6nGkMbYxkZGhyZ1EGLFBqkuRtrGJNg9BeSQBrRENpceBUou8RGIJFJQABJC7qLQreg4apUbSzUx-dIRao4WCYXARHCgAAUAEommCIRotCc0NVkDjAoh6ABGUYAbiRBCIVjIFGodBetXqsDceA8KNUxBw4Ui0TiCQcGGcjBSXH+GSINCLUDEPICTURE
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5Q1oBnNAOjSb2gA8AHLZGlAYcjZMUSxooACrM0AEXSJQAbzyhNmgEb0WyEQHM8AXwKEw4UuUo16vAwDd00dpwxV+ghgE9e01Vl5JTQVE1BiZCwqUAAiVmBGFliCHi8hWFwWUBwsNABRPiwmaEgAIR8ABQBXbXgMWFB6ORYQlQBeNVBdOKS0AFpIZVjQM2AAKlB8x2hkHzQACyNQRG0sGYYlplB6nGkMbYxkZGhyZ1EGLFBqkuRtrGJNg9BeSQBrRENpceBUou8RGIJFJQABJC7qLQreg4apUbSzUx-dIRao4WCYXARHCgAAUAEommCIRotCc0NVkDjAoh6ABGUYAbiRBCIVjIFGodBetXqsDceA8KNUxBw4Ui0TiCQcGGcjBSXH+GSINCLUDEPICTURE
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5Q1oBnNAOjSb2gA8AHLZGlAYcjZMUSxooACrM0AEXSJQAbzyhNmgEb0WyEQHM8AXwKEw4UuUo16vAwDd00dpwxV+ghgE9e01Vl5JTQVE1BiZCwqUAAiVmBGFliCHi8hWFwWUBwsNABRPiwmaEgAIR8ABQBXbXgMWFB6ORYQlQBeNVBdOKS0AFpIZVjQM2AAKlB8x2hkHzQACyNQRG0sGYYlplB6nGkMbYxkZGhyZ1EGLFBqkuRtrGJNg9BeSQBrRENpceBUou8RGIJFJQABJC7qLQreg4apUbSzUx-dIRao4WCYXARHCgAAUAEommCIRotCc0NVkDjAoh6ABGUYAbiRBCIVjIFGodBetXqsDceA8KNUxBw4Ui0TiCQcGGcjBSXH+GSINCLUDEPICTURE
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5Q1oBnNAOjSb2gA8AHLZGlAYcjZMUSxooACrM0AEXSJQAbzyhNmgEb0WyEQHM8AXwKEw4UuUo16vAwDd00dpwxV+ghgE9e01Vl5JTQVE1BiZCwqUAAiVmBGFliCHi8hWFwWUBwsNABRPiwmaEgAIR8ABQBXbXgMWFB6ORYQlQBeNVBdOKS0AFpIZVjQM2AAKlB8x2hkHzQACyNQRG0sGYYlplB6nGkMbYxkZGhyZ1EGLFBqkuRtrGJNg9BeSQBrRENpceBUou8RGIJFJQABJC7qLQreg4apUbSzUx-dIRao4WCYXARHCgAAUAEommCIRotCc0NVkDjAoh6ABGUYAbiRBCIVjIFGodBetXqsDceA8KNUxBw4Ui0TiCQcGGcjBSXH+GSINCLUDEPICTURE
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5Q1oBnNAOjSb2gA8AHLZGlAYcjZMUSxooACrM0AEXSJQAbzyhNmgEb0WyEQHM8AXwKEw4UuUo16vAwDd00dpwxV+ghgE9e01Vl5JTQVE1BiZCwqUAAiVmBGFliCHi8hWFwWUBwsNABRPiwmaEgAIR8ABQBXbXgMWFB6ORYQlQBeNVBdOKS0AFpIZVjQM2AAKlB8x2hkHzQACyNQRG0sGYYlplB6nGkMbYxkZGhyZ1EGLFBqkuRtrGJNg9BeSQBrRENpceBUou8RGIJFJQABJC7qLQreg4apUbSzUx-dIRao4WCYXARHCgAAUAEommCIRotCc0NVkDjAoh6ABGUYAbiRBCIVjIFGodBetXqsDceA8KNUxBw4Ui0TiCQcGGcjBSXH+GSINCLUDEPICTURE
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5Q1oBnNAOjSb2gA8AHLZGlAYcjZMUSxooACrM0AEXSJQAbzyhNmgEb0WyEQHM8AXwKEw4UuUo16vAwDd00dpwxV+ghgE9e01Vl5JTQVE1BiZCwqUAAiVmBGFliCHi8hWFwWUBwsNABRPiwmaEgAIR8ABQBXbXgMWFB6ORYQlQBeNVBdOKS0AFpIZVjQM2AAKlB8x2hkHzQACyNQRG0sGYYlplB6nGkMbYxkZGhyZ1EGLFBqkuRtrGJNg9BeSQBrRENpceBUou8RGIJFJQABJC7qLQreg4apUbSzUx-dIRao4WCYXARHCgAAUAEommCIRotCc0NVkDjAoh6ABGUYAbiRBCIVjIFGodBetXqsDceA8KNUxBw4Ui0TiCQcGGcjBSXH+GSINCLUDEPICTURE
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5Q1oBnNAOjSb2gA8AHLZGlAYcjZMUSxooACrM0AEXSJQAbzyhNmgEb0WyEQHM8AXwKEw4UuUo16vAwDd00dpwxV+ghgE9e01Vl5JTQVE1BiZCwqUAAiVmBGFliCHi8hWFwWUBwsNABRPiwmaEgAIR8ABQBXbXgMWFB6ORYQlQBeNVBdOKS0AFpIZVjQM2AAKlB8x2hkHzQACyNQRG0sGYYlplB6nGkMbYxkZGhyZ1EGLFBqkuRtrGJNg9BeSQBrRENpceBUou8RGIJFJQABJC7qLQreg4apUbSzUx-dIRao4WCYXARHCgAAUAEommCIRotCc0NVkDjAoh6ABGUYAbiRBCIVjIFGodBetXqsDceA8KNUxBw4Ui0TiCQcGGcjBSXH+GSINCLUDEPICTURE
https://www.typescriptlang.org/dev/bug-workbench/?ts=4.1.0-dev.20200917#code/PTAEAEBMFMGMBsCGAnRAXAlgewHYCg8QIAzDeaHRAW2gC5Q1oBnNAOjSb2gA8AHLZGlAYcjZMUSxooACrM0AEXSJQAbzyhNmgEb0WyEQHM8AXwKEw4UuUo16vAwDd00dpwxV+ghgE9e01Vl5JTQVE1BiZCwqUAAiVmBGFliCHi8hWFwWUBwsNABRPiwmaEgAIR8ABQBXbXgMWFB6ORYQlQBeNVBdOKS0AFpIZVjQM2AAKlB8x2hkHzQACyNQRG0sGYYlplB6nGkMbYxkZGhyZ1EGLFBqkuRtrGJNg9BeSQBrRENpceBUou8RGIJFJQABJC7qLQreg4apUbSzUx-dIRao4WCYXARHCgAAUAEommCIRotCc0NVkDjAoh6ABGUYAbiRBCIVjIFGodBetXqsDceA8KNUxBw4Ui0TiCQcGGcjBSXH+GSINCLUDEPICTURE

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

means the published declarations are an unchanged subset of the
TypeScript-generated declarations.

Reducing the volume of published types has several advantages:

• It decreases the coupling to other packages (some packages do
not re-export types from their dependencies).

• It aids encapsulation by preventing fully private types from leaking.

• It decreases the count and size of the published declaration files
that need to be downloaded and unpacked by users.

• It decreases the volume of code the TypeScript compiler has to
parse when type-checking.

The “shaking” can have a dramatic effect. We’ve seen several packag-
es where more than 90% of the files and more than 90% of the lines
of types can be dropped.

Some Options Have Sharp Edges

We found a few surprises in the semantics of some of the
tsconfig.json options.

MANDATED baseUrlbaseUrl IN TSCONFIG.JSONTSCONFIG.JSON

In TypeScript 4.0. if you want to use project references or paths, you
are required to also specify a baseUrl. This has the side effect of
causing all bare specifier imports to resolve relative to your project’s
root directory.

// package-a/main.ts
import "sibling" // Will auto-complete and type-check if
`package-a/sibling.js` exists

Success at Scale460

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

The hazard is that if you want to introduce any form of paths, it car-
ries the additional implication that import "sibling" will be unde-
sirably interpreted by TypeScript as an import of <project-root>/
sibling.js from inside your source directory.

Standards Alignment

To work around this, we used an unspeakable baseUrl. Using a
null character prevents the undesirable bare auto-completions. We
don’t recommend you try this at home. We reported this on the
TypeScript issue tracker and were thrilled to see that Andrew has
solved this for TypeScript 4.1, which will enable us to say goodbye
to the null character!

JSON MODULES IMPLY SYNTHETIC DEFAULT IMPORTS

If you want to use resolveJsonModules”, you are required to also
enable useSyntheticDefaultImports in order for TypeScript to
see the json module as a default import. Using default imports
is likely to become the way that Node and the web handle json
modules in future.

Enabling useSyntheticDefaultImports has the unfortunate conse-
quence of artificially allowing default imports from regular ES modules
that do not have a default export! This is a hazard that you will only find
out about when you come to run the code and it quickly falls over.

Standards Alignment

Ideally, there should be a way to import json modules that does not
involve globally enabling synthetic defaults.

The Great Parts

It’s worth calling out some of the particularly good things we’ve seen
from TypeScript along the way from a tooling perspective.

461Bloomberg: 10 Insights to Adopting TypeScript at Scale

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Incremental builds have been essential. api support for incremental
builds was a huge boost to us in TypeScript 3.6, allowing custom
toolchains to have fast rebuilds. After we reported a performance
issue when combining incremental with noEmitOnError, Sheetal
Kamat made them even faster in TypeScript 4.0.

isolatedModules was vital to ensure we can perform fast stand-
alone (one in, one out) transpilation. The TypeScript team fixed a
bunch of issues to improve this option including:

• allowing emitDeclaration with isolatedModules

• allowing noEmitOnError with isolatedModules

Bloomberg Key Takeaways
The adoption of TypeScript can improve code quality and de-

veloper productivity, but the migration process should be well

thought out.

 TypeScript provides self-documentation, catches errors at
compile time, and improves developer tooling, all of which
enhance the developer experience.

 Migration to TypeScript should be gradual and incremental to
manage risk and limit disruption.

 Training and resources should be provided to help developers
get up to speed with TypeScript.

 Build systems and continuous integration processes need to
be updated to support TypeScript.

 A balance must be found in defining TypeScript con-
figuration and rules to gain the benefits without overly
burdening developers.

Success at Scale462

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

• clarifying that types must be exported explicitly
with isolatedModules

Project references are the key to providing a seamless ide expe-
rience. We leverage them greatly to make multipackage work-
space-based development as slick as single-project development.
Thanks to Sheetal, they are now even better and support file-less
“solution-style” tsconfigs.

Type-only imports have been super useful. We use them everywhere
to safely distinguish runtime imports from compile-time imports.
They are essential for certain patterns using isolatedModules and
allowed us to use importsNotUsedAsValues: error for maximum
safety. Thanks to Andrew Branch for delivering this!

useDefineForClassFields was important for ensuring our emit-
ted ESNext code does not get rewritten, preserving the JS + Types
nature of the language. It means we can natively use class fields.
Thanks to Nathan Shively-Sanders for providing this and making
the migration process as smooth as possible. Feature delivery in
TypeScript has been very fortuitous. Each time we realized we
needed a feature, we frequently discovered it was already being
delivered in the next version.

Conclusion

The end result is that TypeScript is now a first-class language for
our application platform. Integrating TypeScript with yet another
runtime shows that the language and compiler seem to be just as
flexible as JavaScript – they can both be used pretty much anywhere.
While we had to learn a lot along the way, nothing was insurmount-
able. When we needed support, we were pleasantly surprised at the
responses from both the community and the TypeScript team them-
selves. A clear benefit of using shared open source technology is that
when you have a problem, more often than not you find you are not
alone. And when you find answers, you get the joy of sharing them.

463Bloomberg: 10 Insights to Adopting TypeScript at Scale

Interview

Rob Palmer
JavaScript Infrastructure & Tooling Lead

Author of “Bloomberg - 10 insights from

Adopting TypeScript at Scale”

What excited you or your team the most about the work in
the case study?

The real motivator was the ability to connect our existing application
platform and software engineers to the same technologies enjoyed
by the wider open source software community – specifically Type-
Script and the ecosystem of tooling and knowledge that has grown
up around it. Bloomberg has always invested heavily in JavaScript
and the result was a thriving set of internal JS-related technologies.

Previous approaches resulted in an inventive, yet insular, style that
did not lend itself to the reuse of industry-standard technology.
In this initiative, we threw away that playbook and aggressively
pursued standards compliance and industry alignment. This was
appreciated by our internal community of more than 2,000 JavaS-
cript developers and helped energize the project team. It’s fun to
find and fix bugs in widely used projects because you get the added
bonus of knowing your contributions will have an impact beyond
your own organization.

Were you surprised by the impact your work had on the overall
user experience, business, team, or other metrics?

We were impressed by the level of engagement of software engi-
neers around the company. Mostly TypeScript sells itself: its awe-

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Success at Scale464

some ide navigation, completions, and error checking are almost
entirely a pure win. However, converting existing JavaScript code is
still work that product teams need to fold into their schedules, while
still continuing to deliver. The best antidote for that is grassroots
developer enthusiasm – and that’s exactly what we saw. Early adopt-
ers in particular not only converted their own codebases, but also
promoted the benefits to others in turn. So it triggered a viral effect
of adoption that scaled up the number of people who can support
each other through the transition.

If you had a similar project/problem today, do you think your
process/tooling/decisions would be exactly the same? Or, to
put it differently, looking back now, what would you have done
differently if you had a chance to make adjustments?

The JavaScript world never sleeps! We were very fortunate to begin
this project at a time when TypeScript was already mature. This
meant we could leverage relatively new TypeScript features like
project references and incremental builds to make our large multi-
project set-ups work well. We were also boosted by a historical in-
ternal decision to use the amd module format many years ago. This
made migrating to modern ES modules easy, because it was primari-
ly just a mechanical exchange of one syntax for another.

The industry is currently undergoing a revolution in tooling trig-
gered by the rise of browser-loadable native ES Modules as a replace-
ment for the widely used CommonJS format. This enables leaps
forward to be made in the speed of development and the transparen-
cy of debugging, so it’s easy to anticipate that there will be further it-
erations in this space. While there’s no need to always be leaping on
the latest shiny things, the theory is that we best prepare ourselves
for whatever wins out long-term by sticking to standards.

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

465Bloomberg: 10 Insights to Adopting TypeScript at Scale

What do you think was the one critical decision that made the
outcome successful? What brought you to this decision, and
how did you or your entire team make it?

We had to make some hard technical decisions. Looking back, I be-
lieve some were critical choices. For example, ensuring the build was
fully deterministic based on the source code rather than permitting
it to be affected by environmental factors that can change over time.
In retrospect, the most important choice was non-technical. It was
to release a minimum viable product (mvp) as early as possible, first
to one courageous guinea-pig customer, and then to incrementally
release it to a defined set of early adopters with functionality based
on their feedback.

This created a virtuous cycle and unearthed requirements and
problems we could not have predicted ahead of time. This structure
meant that, even if we had made mistakes, there was an inherent
mechanism by which problems would be identified and fixed. It
helped make success inevitable.

What came next after the case study was published?

After the general availability release, we held an internal “Get
Typed!” event to promote TypeScript within Bloomberg. This was
heavily advertised, and we tried to make it both fun and education-
al. The theme was “Back To The Future,” a 1980s time-travel film, to
convey the sense of returning to a world of static typing that we had
temporarily left behind during the transition from C++ to JavaScript
many years ago.

One team created a highly produced comedy infomercial to convey
the life-changing properties of static types. It managed to attract
a very large audience and led to a healthy bump in the number of
projects adopting TypeScript.

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Success at Scale466

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Zoover: Using Monorepos
Is Not That Bad
By Medhat Dawoud

The decision either to use or not to use monorepos1 has been
very difficult for a lot of reasons, especially when you do
some quick research and read this article titled “Monorepos:

Please don’t” and then read this one titled “Monorepo: please do!”
There are a lot of good reasons here and there. In this case study
I’ll tell a quick story about me and my team at Zoover and why we
got into the decision of adopting a monorepo in our projects, what
tools we used, and what the impact was, as well as workarounds for
a common issue.

A Brief About the Problem

Let me tell you first about the situation and what pushed us to our
decision in the first place.

1 The original version of this case study was published September 2021:
https://smashed.by/monoreposcasestudy

467Zoover: Using Monorepos Is Not That Bad

https://bit.ly/3ndbHCo
https://bit.ly/3ndbHCo
https://bit.ly/3ndbHCo
https://bit.ly/32xwlFq
https://bit.ly/32xwlFq
https://bit.ly/32xwlFq

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

I have been working for a company called Zoover since August 2019,
working in the travel industry, and shortly after that building our
booking system to turn into an online travel agency (ota). COVID-19
hit hard and governments stopped travel, and – obviously – we were
affected badly by that.

A few months later we were acquired by another company called
Vakanties, which means we (the development team) now had two
brands to support, and a lot of services and libraries were to be
shared. However, the tech stacks were not really matching, and this
was a problem.

As you can see, there’s some matching in the tech stack but a lot of
things are not easily reusable between the two websites. And since
we were now a single team developing and supporting two different
websites, we needed to minimize the time to create new features or
fix bugs for both brands.

The core functionality of the ota is the process of booking. On the
two websites this was almost identical, and we need to share that
part, at least in the beginning.

And a lot of challenges started to shine:

• Two big repositories with two large git history logs
• Different APIs within different pages and different

third-party libraries

Success at Scale468

https://zoover.nl/

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

• Different development stacks (state, routing, and so on)
• How to manage dependencies for shared parts
• Deployment: how/when/resources
• Deciding which one is going to be merged with the other
• And much more…

The goal or key metric for having this as a successful step is to have
more story points burned each sprint, and for it to be less effort
for developers to create or fix and change both brands at the same
time, and share services and common parts so we can use the same
third-party libraries in both brands.

First Thoughts About Solutions

I conducted research with people who had had a similar problem,
asking how they tried to fix it, and I found a significant amount of
people talking about different ways to overcome that problem.

1. USING MONOREPOS

First, what are monorepos?

Simply, a monorepo is one large repo that contains multiple apps in a
folder structure instead of a multiple repositories structure; not only
apps, but also libraries, documentation, tests, build files, back end,
and front end, and so on.

Who is using monorepos?

All FAANG companies and more (including X/Twitter, and Microsoft)
might make it a good solution for us too! if it works for all those giant
companies, most probably monorepos could work for us as well.

However, during my research, I hit some drawbacks of using
monorepos that intimidated me from the beginning of the
project – some very common issues that people who are against
monorepos have described:

469Zoover: Using Monorepos Is Not That Bad

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

• Git slowdown: Codebase growth might affect the performance
of simple git commands like git status.

• Broken master: As all apps are under the same repo then a
single mistake can affect all other teams’ work.

• No autonomy: All teams have to use the same tech stacks or, at
least, have limited options to change the tooling because of the
shared stuff.

• Long build time: Building the whole app will take too long
when compared with building only an updated service or
library.

Given these findings, I decided to park the idea of monorepo for now.

2. USING POLYREPOS AND DEPLOYING SHARED CODE

INTO PACKAGES (NPM/GPR)

Another solution was to use multiple repositories (polyrepos) and
build a small proof of concept to see how smooth it could be in shar-
ing code, assets, and apis between the two brands.

For the shared code, we could package it as a shared library and pub-
lish it on a private registry on npm or gpr (GitHub Package Regis-
try). Versioning each published library can support the two brands at
the same time.

I found some very good features and also some drawbacks.

Positive:

• Strong team ownership: Each team owns a specific part of a
separate repo, which might be useful for splitting responsibilities.

• Fast build time: Because the repos are separate, the build takes
a short time.

Success at Scale470

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

• Isolate master break: If someone broke master, that would
affect a single app or service, not others.

• Creating multiple versions of each library: Versioning could
be helpful.

Negative:

• Duplicate work: Some code cannot be shared, so copy/paste.

• Access to different repos: Every team member should have
access to each app/lib.

• Dependency hell: Diamond dependency problem.

• The overhead of publishing dependencies: On npm or gpr.

• Newcomers heavy setup: Onboarding process will take longer.

• Coding style/architecture silos: Each team will have a differ-
ent code standard and cannot enforce it for all codebases easily.

So I had to park using polyrepos too. There was one more solu-
tion to check.

3. USING GIT SUBMODULES

The third solution to fix our problems was to use Git submodules.
This is basically cloning a repository into a directory inside another
repository and running some git commands to make that subdirec-
tory a submodule from the parent Git repo. You can read more here.2
After researching the expected results and making a quick proof of
concept, here is a list of issues I found:

• No big efforts in setup: Almost no change in the current two
repositories, which could be used as they were without merging.

2 https://smashed.by/submodules

471Zoover: Using Monorepos Is Not That Bad

https://git-scm.com/book/en/v2/Git-Tools-Submodules

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

• Steep learning curve: Learning new Git commands that might
be a bit more difficult is a challenge for developers who are used
to the normal Git commands.

• Switching branches: It is a well-known issue in using Git
submodules, when you switch the branch in the parent repo you
have to run a command to switch it as well in the submodule,
which makes it error-prone.

• Complex to understand: The techniques of working with sub-
modules are a bit complex and hard to understand or explain.

Even for this solution, you have to compromise, and it was not an
easy decision to adopt, especially after discussing it with the team. I
then reconsidered the three solutions and compared their benefits,
as all of them have their own problems.

The benefits of monorepos vs. polyrepos vs. submodules

From the comparison, we found that the monorepo solution was the
one that fit our needs most – and we could work on finding ways to
avoid its problems.

Raise the Monorepo Solution “Again”

This time, I needed to make sure that we were picking the right
tooling and that the above-mentioned problems were as far from our

Success at Scale472

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

team as possible; we are a relatively small team and our app is less
scalable compared to the apps in the faang companies that have
these problems.

In my journey to find a good monorepo tool, I found a lot of solu-
tions from big companies, including: Pants by Twitter; Bazel by
Google; Buck by Facebook; Rush by Microsoft; and others made
especially for applications of our size like Nx, Bit, and Lerna.

NX

I started with Nx.3 I had read very good reviews about the tool and its
abilities, and I was very enthusiastic to try it out. Here are the good
things about using Nx:

• It can be used to manage projects with different stacks:
Given that we needed to refactor one app to use some new
stacks in the other one, this feature might be very good for us.

• Directed acyclic graph (dag): This is a tool that comes with Nx
to draw a graph out of your application dependencies and show
you who is going to be affected by your changes.

• Support is top-notch: I needed some support and they jumped
with me in a one-to-one call immediately, I’ll talk about that later.

Some bad things (at this point) that I found:

• Depending on angular cli releases of TypeScript: Means
that when we need to update the TypeScript version in our pro-
ject, we also need to update the version of Nx, which will wait for
the updated version of angular cli every six months (too long).

• Not ready to react: I faced many issues on the first try and
although jumping on a call helped me to work around it, I have

3 https://nx.dev/

473Zoover: Using Monorepos Is Not That Bad

https://www.pantsbuild.org/
https://bazel.build/
https://buck.build/
https://rushjs.io/
https://nx.dev/

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

a feeling that more of these issues are coming in the future and
we’ll need a lot of support.

BIT

Then I decided to give Bit4 a try. Here’s what I thought:

• Very easy to set up: It was kind of two steps to be in the game
and start sharing the code you want with your team.

• Very organized to use and host code: This is a great way to
try to preview the code running that could make us get rid of
Storybook.

• Very expensive: A very important factor is the cost. It costs
$200 per month which is a bit too much for our needs now.

LERNA

Finally, switching to the great combination: Lerna5 + Yarn workspac-
es. It is future-proof, used broadly with our stack, and I’d even used it
in a React library side project, so I had some good experience with it
– but no experience of usage with big projects. Here is a list of good
signals about using Lerna:

• Easy setup: Very easy and fast to set up with a few commands

• Guaranteed: Proven for our case and our stack

• Free: We got a lot of features without paying a cent

TURBOREPO

While we faced this issue and during my research for solutions
in 2020, Turborepo had not yet been released. If you don’t know
Turborepo, it’s a new build system introduced by Jared Palmer and

4 https://bit.dev/
5 https://lerna.js.org/

Success at Scale474

https://bit.dev/
https://lerna.js.org/
https://turbo.build/repo

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

acquired by Vercel6 in December 2021. I think it is a brilliant solution
that could have been a great option to pick if it had been available.
Here is my take:

• Easy setup: It just works, plug and go, no major changes, and
super clear docs.

• Trusted creators: It was created by learning from other solu-
tions and by great creators powered by Vercel, which is power-
ing Next.js7, Turbopack8 as a successor to webpack, and more.
We have a history with the creators and the quality of software
they support and the ecosystem they make around it.

• Content awareness hashing and incremental builds:
Some of the features that caught my eye are content aware-
ness hashing and incremental builds. Any shared content or
libraries would not be rebuilt in another module if they had not
changed from the last build within any module in the monore-
po. Also useful is skipping the last built stuff so as not to rebuild
everything every round in an incremental way.

• Based on my research I didn’t find many problems in Turbore-
po. The only thing that people comment most about it is that it
might not be clearly ready for production. However, any major
problems are getting fixed super fast.

Challenges We Faced When
Using a Monorepo

Everything comes with its taxes, and having a monorepo is the same:
some challenges are well known in the community, and some others
are specific to our case.

6 https://vercel.com/
7 https://nextjs.org/
8 https://smashed.by/turborepo

475Zoover: Using Monorepos Is Not That Bad

https://vercel.com/

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

• New tools/commands learning curve: Whatever tool we
picked has some difference from what the team used to use.

• How to merge the two repos and retain git history: That is
a big hassle. I wrote my research and solution in an article here9
that you can check out: exciting solution!

• Cost of building monorepo setup: To build it in the first place,
we needed to decide on the service (GitHub, Bitbucket, and so
on) and then set up scripts for running and linking projects to
each other. That might be a one-time effort but it takes time.

• What do we need to share? Types, services, components…

• Global types: Any file *.d.ts has only the scope of the project and
is not shared with other apps.

• Jest doesn’t support ES modules out of the box: That is
something that I’d never faced before, and error messages were
not really helping much.

• Dependency versions: Decide what to stop hoisting and what
to hoist and the versions should be aligned in all apps.

• React-DOM errors: Multiple versions give a stupid hooks
error, which is not easy to detect.

• Bundle size: Tree shaking in webpack is not straightforward.

• Theming: Having two brands using the same components was
a new thing to the team and we needed a solution for theming.

• Deployments: A completely new method of deployment (so-
phisticated pipelines).

9 https://smashed.by/persistingcommit

Success at Scale476

https://www.medhat.dev/blog/merging-2-git-repos-with-persisting-commit-history

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

• Broken master: It’s true – any teammate can break the master
branch and ruin your day.

Well, all this was difficult, but we could manage it finally with some
steps and other tooling we decided to adopt.

Benefits We Gained from a Monorepo

Let’s talk first about the benefits we gained by having the monorepo
setup for the two brands we have and making the whole front-end
projects share a lot of code.

• Single source of truth: Yes, a monorepo has all the code in one
place, and dependencies for shared code are clear – finally.

• Automatic linking apps and packages: Very easy and
with one command

• Atomic commits: This is a very important feature in working
with a monorepo. Imagine that you need to change something
in a shared library. If you are not using a monorepo, you will
commit it to push and let someone review it and then deploy
it. After it is deployed, you start making the change in the two
brands, and you’d never know if the change in the library was
fulfilling the needs of the two brands. So to make any modi-
fications you need to redo the same process again and again.
But using atomic commits means that changes in the shared
library and for all consumers will be done in one go in the
same commit. All succeed or all fail, which is very handy and
saves a lot of time.

• Diamond dependency problem fix: No dependencies require
two different versions.

477Zoover: Using Monorepos Is Not That Bad

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

• Codebase modernization: We can now enforce code quality
across all codebases.

• Faster feedback loops: As we have an atomic commit, any
change in any part will give us short and fast feedback about if
it works or not in all clients.

• No need for permissions: To use different apps you need no
different permissions, and you get all code at once.

• Enforcing a workflow for the whole team: That helps in
avoiding deployment issues

• Easier to cross-build apps: We can now build multiple apps at
once with a single command or a single commit.

• Much easier to set up a newcomer’s environment: Only one
permission, one setup. It’s not complex at all.

We have managed to work around the common issues for mono-
repos in general:

• Git slowdown: Not the case yet, but you can use Mercurial

• Broken master: Use Git hooks (pre-push, pre-commit)

• Long build time: Split build (GitHub Actions, Lerna)

• Codebase complexity: Write more documentation and comments

• Bundle sizing: Use absolute paths and chunking

• Still enhancing every time something new appears

Success at Scale478

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

After all those trials and given the results we had, it is clear that
using monorepos is not that bad!

Are Monorepos for You?

Some of you might be very enthusiastic now about using a mon-
orepo in your next project – but are monorepos for you? The
answer is that they’re not the best for all projects or for all teams.
As always, it depends.

Here is a list of situations in which using a monorepo would
not be wise:

• If you don’t have a lot of shared code: The most crucial gain
of using a monorepo is sharing code easily and having atomic
commits or atomic deployments for projects asynchronously. If
you don’t have or need that, please don’t.

• If you have some private projects/code parts: In a monore-
po, anyone can access any project’s code. Some bigger com-
panies have their own ways and tools to limit that, but most
tools don’t, so be careful with private projects you don’t want to
share in a monorepo.

• If you don’t suffer from dependency hell with polyrepos:
Using polyrepos can come with great benefits. If you have mi-
croservices, for example, in different repositories, and you have
no problems with that, don’t hassle yourself with monorepos,
which would not bring a big benefit.

• If you or your team are not ready for it: It is important to have
everyone on the team capable of using the tools. Otherwise it will

479Zoover: Using Monorepos Is Not That Bad

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

turn to bad practices and jeopardize the whole project for noth-
ing but the bad decision of adopting a not useful enough tool.

• If you are going to have millions of lines of code later,
think twice: most of the common issues like slow git com-
mands or long time builds are very common. Think twice
before adopting a tool, and make sure you can live with the
issues that come with monorepos.

Zoover Key Takeaways

While there are challenges with using monorepos, they can

enhance developer productivity when used correctly.

 Monorepos can simplify dependency management and code
sharing across teams.

 With monorepos, tooling must be efficient to handle larger
codebases and maintain developer productivity.

 Enforcing coding standards and practices is easier within a
monorepo.

 Monorepos can enhance collaboration across teams as chang-
es can be seen and understood across the entire codebase.

 The decision to use monorepos should be balanced against the
scale and requirements of the organization.

Success at Scale480

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Rebuilding a Featured News Section
with Modern CSS: Vox News
By Ahmad Shadeed

Looking at a layout at first glance might imply that it’s easy
and straightforward to build.1 The moment you start build-
ing the initial layout, you will face challenges that you didn’t

think about in your initial look at the design.

In this case study, I will rethink how to build the featured news sec-
tion on Vox.com and try to see if modern css will be helpful or not.
For example, do we need to use container queries? Or fluid sizing?
That’s the goal of this case study. It’s a journey as I think aloud about
building a layout that seems simple.

Analyzing the Section

In the largest viewport, we have a 3-column layout. Two of the col-
umns take 25% of the width, and the middle one takes 50%. Here is a
visual that shows them.

1 The original version of this article was published April 2023:
https://smashed.by/voxnewscasestudy

481

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Now that we have an idea about the columns, let’s take a look at the
components within them.

It might look a bit confusing to spot the differences, but I will walk
you through each change so we can have an idea about what’s chang-
ing on each viewport size.

Changes From Large to Medium

Success at Scale482

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

• Featured section: almost the same, but with a different font size
that changes based on the viewport width.

• Blue section: the font size of each card title got smaller.

• Pink section:

• The first article’s thumb is hidden.
• Layout is changed from one column to three columns.
• Adding a separator at the top of the section.

Changes from Medium to Small

• All articles will switch to the horizontal style with the thumbnail
shown for each one.

• The featured article will become horizontal, but with a larger
thumbnail to differentiate it from the rest of the articles.

With that in mind, we have a basic outline of how the layout behaves
at different viewport sizes. The next step is to build the layout and
handle the ordering of the columns.

483Rebuilding a Featured News Section with Modern css: Vox News

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

BUILDING THE MAIN LAYOUT

In Vox.com, css Flexbox is used to handle the layout. I’m not a fan
of using flexbox for such a purpose as this feels more like a css grid
use case. I believe the Vox team used flexbox since it was better sup-
ported at the time of building the layout.

@media (min-width: 880px)
 .c-newspaper__column {
 width: 22.5%;
 padding: 0 16px;
 }
}

The css above is responsible for the following:

• Setting the width of the column. Using the width property for
that works fine, but we can also use the flex property.

• Adding padding on the left and right sides is an old way to intro-
duce a gap between columns. Now we have the gap property!

We can use the flex property like this:

Success at Scale484

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

@media (min-width: 880px)
 .c-newspaper__column {
 flex: 0 0 22.5%;
 padding: 0 16px;
 }
}

But the good news is that we don’t have to use Flexbox.

Nowadays, css Grid has excellent browser support and it’s easier to
deal with the sizing and spacing. Also, I’m an advocate of using Grid
for layouts and Flexbox for components.2

Consider the following html markup:

<div class="c-newspaper">
 <!-- Featured column -->
 <div class="c-newspaper__col">1</div>
 <!-- Other columns -->
 <div class="c-newspaper__col">2</div>
 <div class="c-newspaper__col">3</div>
</div>

I added numbers for illustrating how each layout column will be
reordered on different viewport sizes.

CSS Grid sounds perfect for the above, right?

2 https://smashed.by/flexcomponents

485Rebuilding a Featured News Section with Modern css: Vox News

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

First, we need to set up the grid for all sizes.

.c-newspaper {
 display: grid;
 grid-template-columns: 1fr;
 gap: 1rem;
}
@media (min-width: 550px) {
 .c-newspaper {
 grid-template-columns: 1fr 1fr 1fr;
 }
}
@media (min-width: 880px) {
 .c-newspaper {
 grid-template-columns: 1fr 2fr 1fr;
 }
}

A few things to keep in mind:

• Initially, the grid has only one column. I used css Grid to get the
benefit of the gap property for spacing.

• When the viewport width is 550px or larger, the grid will have
three columns. The same happens on the larger viewport 880px,
but the second column is double the size of its sibling columns.

The Vox.com styles for the columns are built with the order proper-
ty to reposition the columns on different sizes.

@media (min-width: 880px) {
 .c-newspaper__column:first-child {
 order: 1;
 }
 .c-newspaper__column:last-child {
 order: 3;
 }
}

Success at Scale486

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

With css Grid, the above isn’t needed at all as we can reorder the layout
by positioning an element on any grid lines we want. Let’s explore how
to place the layout columns with css Grid.

THE MEDIUM VIEWPORT SIZE

We need to position the columns as per the viewport width. For the
medium size:

• The first column is placed from line 2 to line 4.

• The second column is placed from line 1 to line 2.

• The third column is placed from line 1 to line 4 (spanning the
full width).

@media (min-width: 550px) {
 .c-newspaper {
 grid-template-columns: 1fr 1fr 1fr;
 }
 .c-newspaper__col:first-child {
 grid-column: 2/4;
 }
 .c-newspaper__col:nth-child(2) {
 grid-column: 1/2;
 grid-row: 1;
 }
 .c-newspaper__col:last-child {
 display: flex;
 grid-column: 1/4;
 }
}

487Rebuilding a Featured News Section with Modern css: Vox News

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

THE LARGE VIEWPORT SIZE

And for the large size, remember that the second column is now 2fr,
so it will have to double the size of the side column.

• The first column is placed from line 2 to line 3.

• The second line stays within the same placement.

• The last column is placed from line 3 to line 4.

@media (min-width: 880px) {
 .c-newspaper {
 grid-template-columns: 1fr 2fr 1fr;
 }
 .c-newspaper__col:first-child {
 grid-column: 2/3;
 }
 .c-newspaper__col:last-child {
 grid-column: 3/4;
 }
}

Now that we have a working grid, we can start thinking about the
inner components and how to build them.

Success at Scale488

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Card Component

This is the core focus of this article, the card component. I compiled
a visual of all the variations we have:

All of those can live within the featured section but with a dif-
ferent design variation for each card. Let’s take the default card
as an example:

489Rebuilding a Featured News Section with Modern css: Vox News

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

In Vox.com html, the card has the following css classes:

<div
 class=”c-entry-box--compact c-entry-box--compact--article
c-entry-box--compact--hero c-entry-box--compact--2”
></div>

That is a long list of css classes, and the class name itself is
lengthy, too.

A Look at a Few Details on Vox Layout

CARD THUMBNAIL

The card component is built in a way that uses a lot of variation
classes. For example, here is how the thumbnail is hidden in the
plain card:

.c-entry-box--compact--7 .c-entry-box--compact__image-wrapper
{
 display: none;
}

Success at Scale490

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

A custom variation class is used for every single card in the fea-
tured section. In total, the css looks like this:

That is too much, I think.

CARD TITLE SIZE

The title size for the default card is '20px' and '16px' for the plain
card (without a thumbnail).

Here is how that is handled on Vox.com:

@media (min-width: 880px)
 .c-newspaper .c-entry-box--compact__title {
 font-size: .9em;
 }
}

491Rebuilding a Featured News Section with Modern css: Vox News

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

The .c-newspaper is the main element that contains all the cards,
so using it like that to tag the title element doesn’t look right to me.
What if that needs to be used in another container that doesn’t have
the class .c-newspaper?

SEPARATOR

There is a line separate between cards. It’s being handled in the
CSS like this:

.c-newspaper .c-entry-box--compact {
 border-bottom: 1px solid #d1d1d1;
}

Two things that don’t look good to me here:

• Using .c-newspaper element to select the card.

• Adding the separator directly to the card itself. This is a condi-
tional style that isn’t related to the card.

Success at Scale492

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Rethinking the Card with Modern CSS

The main motivation for this article is the card component.
When I started thinking about it, I got the idea to use some or all
of these features:

• CSS Grid
• aspect-ratio
• text wrap: balance
• CSS :has
• Fluid sizing and spacing
• Size container queries
• Style container queries

I already explored using css grid for the main layout. Here is what
the html markup looks like:

<div class="c-newspaper">
 <div class="c-newspaper__col">
 <div class="c-newspaper__item">
 <article class="c-card">
 <!-- Card component -->

493Rebuilding a Featured News Section with Modern css: Vox News

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

 </article>
 </div>
 <div class="c-newspaper__item"></div>
 <div class="c-newspaper__item"></div>
 </div>
 <!-- Other columns -->
</div>

The card component lives within the .c-newspaper__item, which
acts as the card container.

Generally speaking, I like to wrap the component in an abstract
container. This is useful for:

• adding borders,
• controlling the spacing, and it
• works well for size container queries.

CARD META FONT FAMILY

When the card component is within the featured section, the
font family of the author’s name is different. To do that, we can
check if the following container query works, and if yes, the font
will be applied.

@container main (min-width: 1px) {
 .c-card__meta {
 font-family: "Playfair Display", serif;
 }
}

Success at Scale494

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

DEFAULT CARD STYLE

We need to set a default card style that we can style. In this case, both
the horizontal and stacked styles are used equally, but I will assume
that the stacked card is used more, just for the sake of the article.

<article class="c-card">
 <div class="c-card__thumb"></div>
 <div class="c-card__content">
 <h3 class="c-card__title"></h3>
 <p class="c-card__tease"></p>
 <p class="c-card__meta”></p>
 </div>
</article>

Cool! Let’s go from there for the rest of the variations.

HORIZONTAL STYLE

The card will flip to the horizontal style when its container is larger
than 300px and the css variable --horizontal: true has been set
on the container.

<div class=”c-newspaper__item” style=”--horizontal: true;”>
 <article class=”c-card”></article>
</div>

495Rebuilding a Featured News Section with Modern css: Vox News

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

.c-newspaper__item {
 container-type: inline-size;
 container-name: card;
}
@container card (min-width: 300px) and style(--horizontal:
true) {
 .c-card {
 display: flex;
 gap: 1rem;
 }
}

Notice that I combined a size and a style container query. The size
query works based on the container width, while the style query
works by checking if the css variable is there.

We also have the same variation but with the card thumbnail posi-
tioned being flipped. We can do that via the order property.

To query that, we need to add the variable --flipped: true.

<div
 class="c-newspaper__item"
 style="--horizontal: true;
 --flipped: true"
></div>

Success at Scale496

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

At first, I tried the following css but it didn’t work as expected. It’s
not possible to merge two container queries for different containers.
In my case, the containers are main and card.

/* That didn’t work */
@container main (min-width: 550px) and card style(--flipped:
true) {
}

After reading the spec3 I noticed the following:

While it is not possible to query multiple containers
in a single container query, that can be achieved by
nesting multiple queries

I nested the style query inside another container query. In plain
words, that is like saying:

When the container main width is equal to or larger than
550px and the css variable --flipped is set on the cards
container, apply the following css.

.wrapper {
 max-width: 1120px;
 margin: 1rem auto;
 padding-inline: 1rem;
 container-name: main;
 container-type: inline-size;
}
@container main (min-width: 550px) {
 @container card style(--flipped: true) {
 .c-card__thumb {
 order: 2;
 }
 }
}

3 https://smashed.by/containerrule

497Rebuilding a Featured News Section with Modern css: Vox News

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

To learn more about container queries, here are a few write-ups
on the topic:

• Say Hello To css Container Queries
https://ishadeed.com/article/say-hello-to-css-container-queries/

• CSS Style Queries
https://ishadeed.com/article/css-container-style-queries/

CARD THUMBNAIL ASPECT RATIO

The current way of implementing the card thumbnail doesn’t ac-
count for when there is an image with a different aspect ratio. We
can use the css aspect-ratio property to force the card thumb to
have the same aspect ratio.

Let’s assume that I added a large image that has a different aspect
ratio. We’ll end up with something like this:

Success at Scale498

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

To avoid that, we can define an aspect ratio:

.c-card__thumb img {
 aspect-ratio: 5/3;
 object-fit: cover;
}

CARD HORIZONTAL STYLE

On Vox.com, the horizontal card style was built in a way that feels a
bit unnecessary.

/* css from vox.com */
.c-entry-box--compact__image-wrapper {
 width: 30%;
}
.c-entry-box--compact__body {
 flex-grow: 1;
 width: 70%;
}

499Rebuilding a Featured News Section with Modern css: Vox News

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Why is that? I guess that is to avoid having such a UI behavior:

Notice that I mentioned “UI behavior,” not a bug. The above is a de-
fault behavior for flexbox. We need to force the image to have a fixed
and consistent size.

.c-entry-box--compact__image-wrapper {
 flex: 0 0 30%;
}
.c-entry-box--compact__body {
 flex-grow: 1;
}

We can fix that by simply using the flex property. No need to
use the width.

FEATURED STYLE

The featured card is displayed horizontally when the container width
is small and will change to the stacked styles on larger sizes. In this
case, the thumbnail becomes larger and takes 50% of the width.

Success at Scale500

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Here is a comparison between a default horizontal style and the
featured one.

When the container width becomes larger, the card style will
become stacked.

To implement that, I used the --featured variable on the card’s
container.

<div class="c-newspaper__item" style="--featured: true;">
</div>

501Rebuilding a Featured News Section with Modern css: Vox News

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Firstly, I added the horizontal style as default.

• Added flex to turn on the horizontal design.

• The card thumb takes 50% of the available width.

Changed the font family to a serif font and a larger size, as
per the design.

@container style(--featured: true) {
 .c-card {
 display: flex;
 gap: 1rem;
 }
 .c-card__thumb {
 flex: 0 0 50%;
 }
 .c-card__tease {
 font-family: "Playfair Display", serif;
 font-size: 19px;
 }
}

When the container size gets larger, the browser will apply the
stacked styling to the card.

@container main (min-width: 550px) {
 @container card style(--featured: true) {
 .c-card {
 flex-direction: column;
 gap: 0;
 }
 .c-card__title {
 font-size: calc(1rem + 2.5cqw);
 }
 .c-card__content {
 text-align: center;
 }

Success at Scale502

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

 .c-card__thumb {
 flex: initial;
 }
 }
}

PLAIN CARD

In this variation, the font size gets smaller. That happens when the
image is hidden. At first, I thought about using css :has to check if
the card thumb is displayed or not.

In Vox.com, the card thumb is hidden via css, so it’s not possible to
use :has as it will be valid even if the thumb is hidden.

<article class="c-card">
 <div class="c-card__thumb"></div>
 <div class="c-card__content"></div>
</article>

.c-card__thumb {
 display: none;
}
/* This will always work. */
.c-card:has(.c-card__thumb) .c-card__title {
 font-size: 19px;
}

503Rebuilding a Featured News Section with Modern css: Vox News

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

If the image can be conditionally added via JavaScript, then we can
use :has. Otherwise, I will default to a style query.

@container main (min-width: 550px) {
 @container card style(--compact: 2) {
 .c-card__title {
 font-size: 19px;
 }
 }
}

SPACING AND SEPARATORS

The current way in Vox.com to handle the spacing is by adding pad-
ding directly to the card. I don’t prefer that. The card styles shouldn’t
depend on where it lives. The spacing should be added to the card’s
wrapper instead.

Success at Scale504

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

To make things easier, I added a css variable --gap to each column.

.c-newspaper__col {
 --gap: 20px;
 display: flex;
 flex-direction: column;
}

I added a margin-block to each card wrapper.

• On small viewports, there are no separators.

• When the size is medium, there are separates for the first two
columns, and one border for the last one.

The css property margin-block is a logical property that means both
margin-top and margin-bottom.

@media (min-width: 550px) {
 .c-newspaper__item:not(:last-child):after {
 content: "";
 display: block;
 height: 1px;
 background-color: lightgrey;
 margin-block: var(--gap);
 }
 .c-newspaper__col:last-child {
 border-top: 1px solid lightgrey;
 padding-top: var(--gap);
 }
}
@media (min-width: 880px) {
 .c-newspaper__col:last-child {
 padding-top: 0;
 border-top: 0;
 }
 /* Add separators to the last column */
 .c-newspaper__col:last-child
 .c-newspaper__item:not(:last-child):after {
 content: "";

505Rebuilding a Featured News Section with Modern css: Vox News

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

 display: block;
 height: 1px;
 background-color: lightgrey;
 margin-block: var(--gap);
 }
}

You might be thinking, why not use gap? The reason is that I won’t
use modern css for the sake of using it. It’s not useful here because:

• It only works for one part of the spacing, and I have to use
margin-top with it.

• I wish there was a native css way to add borders, just like the
css property column-rule in css columns.4

CONTAINER UNITS

One thing that I like about container queries is the ability to use con-
tainer units. They are like viewport units but for a specific container.
Isn’t that powerful?

4 https://smashed.by/columnrule

Success at Scale506

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

@container main (min-width: 550px) {
 @container card style(--featured: true) {
 .c-card__title {
 font-size: clamp(1rem, 6cqw, 2rem);
 }
 }
}

Learn more about container query units.5

TEXT BALANCING

Recently, I wrote about the new css feature text-wrap: balance,
which is almost fully supported at the time of this writing. Safari has
yet to adopt it, but has implemented it in Safari Technology Preview,
meaning it could release at any time.

5 https://smashed.by/queryunits

507Rebuilding a Featured News Section with Modern css: Vox News

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

In the layout that I’m building, we can leverage that for all the text
content. It can make the layout look more organized.

{% include video.html
 url=”../../assets/featured-section/text-wrap-balance.mp4”
 caption = “”
%}

Learn more about text wrap balancing.6

The final demo for this case study is available on CodePen.7

Disclaimer: The design isn’t identical to Vox, this demo focuses more on the
layout and components implementation.

6 https://smashed.by/textwrapbalance
7 https://smashed.by/voxnewscodepen

Vox News Key Takeaways
Embracing modern css techniques can lead to more efficient,

responsive, and visually appealing designs.

 Modern css techniques like Flexbox and Grid can greatly sim-
plify complex layouts.

 Features like css variables and custom properties can en-
hance reusability and maintainability.

 Building a responsive design becomes more straightforward
with modern css features.

 Embracing modern css can improve performance because of
reduced reliance on JavaScript for layout and design tasks.

 Careful planning, testing, and iteration are required to ensure
designs are robust across different devices and browsers.

Success at Scale508

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Auto Trader: Around the
Artifacts of Design Systems
By Dan Donald

It can be easy to assume that everyone needs a design system,1
that you can pick one off the shelf or put one together pretty
quickly, and your problems are over. As with many things on

the web, your mileage may vary. What I want to share with you are
some observations from the last few years, not just from myself but
from people that have been part of our design systems journey at
Auto Trader.

We started in a very different place to where we find ourselves to-
day: loads of inconsistencies, duplication, communication that need-
ed to be improved, and ultimately the quality and speed of output
weren’t what they should be. Our practices today have dramatically
improved on so many fronts, one aspect being our design system.

The Problem Space

There are so many really great articles out there about design systems,
how to design and code them; but let’s step back to the beginning.

• What problems do you feel that a design system might address?

• Why do you think a design system might ameliorate them?

If you’re clear on your specific issues, it helps not only to inform
your solution but also provides a narrative that might resonate
with stakeholders.

1 The original version of this case study was published in April 2022:
https://smashed.by/autotradercasestudy

509Auto Trader: Around the Artifacts of Design Systems

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Even at this early stage, language matters. What do you think a de-
sign system is? As part of your proposed solution, is it actually a style
guide, a component library, a design library, or a more well-rounded
system? You might not need something all singing and dancing for
your project or organization. Starting with one aspect doesn’t mean
you can’t evolve into something else later!

So, you have a sense at this stage that you may be on a greenfield
project – or as we were, adding in the foundations to a large traffic
site that already existed – and you may have a view on what form
your design system might take. Before diving in and starting to plan
anything out, we can be clearer with ourselves about where the ben-
efits and the risks might be.

You could start as simply as making lists.

Potential benefits

• Encourages greater communication between disciplines.
• Greater quality and consistency of our output.
• Should be able to get new content or features to market quicker.

Potential risks

• Other colleagues might not want to use it.
• It takes too much time to get it to a place where

it produces value.
• We use the wrong tooling or software.

You could take this further if, in your organization, you need a
business case and use a SWOT analysis2 as a way to form some-
thing robust. This allows you to look at the strengths, weaknesses,
opportunities, and threats, and it is often used in business planning.
It doesn’t have to be a laborious task, but it can help to look at your
potential system from other viewpoints.

2 https://smashed.by/swotanalysis

Success at Scale510

https://en.wikipedia.org/wiki/SWOT_analysis
https://en.wikipedia.org/wiki/SWOT_analysis
https://en.wikipedia.org/wiki/SWOT_analysis

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Mitigating avoidable risks is important. Being clear with yourself
about what could go wrong, and what you can do about it helps to
make your solution more robust. On the flip side, the potential ben-
efits can lead us into thinking about what our definition of success
might look like – our “North Star”. What might good look like for
your system?

From the vision piece, you need to be able to start somewhere, which
leads us to more avenues of questioning:

• What kind of a system helps you to progress in a sustainable
way for the needs and resources you have?

• Could a style guide be all you need?

• Is some form of a component library enough to get you working
in a better way?

• What current and potential audiences might the system have?

You may start with it being a design project to address consistency
across a design team, but acknowledging that for it to evolve it needs
a wider range of skills, which is a kind of debt that will be built-in.
In some cases, much as we did, it might make sense for an initial
solution to be replaced by something else further down the line. Not
being wedded to a particular solution can be hard, especially if it’s
your baby, but going back to that North Star and the purpose of the
system gives us a healthy reminder of when it can be time to let go.

What to Measure?

Many things may be measurable, from the sentiment of attitudes
towards the system and experience using it, through to the number

511Auto Trader: Around the Artifacts of Design Systems

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

of components in the system and what’s actually used on the site (or
in your app). Actually, looking at where a given component is used
can have some useful benefits when it comes to later stages of work-
ing with your system, as it helps you to gauge the risk of a proposed
change and where you might see some impact.

From your picture of what success looks like, are there measurables
that can help tell your story to stakeholders or that give you a sense
of how well you’re doing? While in our scenario we didn’t set out a
list of kpis, we were clear that it should power the majority of the
consumer website and look into how or when our native apps may
work with it. On the back of our refresh project, we’d be taking care
of most of the site outside the focus of consumer journeys where our
team would act more as support for the teams around us. That gave
us confidence that if we were able to deliver output to the site on a
regular basis, we would be able to meet that vision we’d set out.

You might often hear the “fail fast, fail often” mantra thrown around,
but in the early days of validating how your design system might
work, this can be invaluable.

Assuming that you have a well-rounded design system, you may
have designers, content designers, test engineers, front-end and
back-end developers, product people, and delivery folks all poten-
tially finding this as a part of their lives. Again, the language we use
matters to ensure there’s a shared understanding across domains.

What’s in a Name?

One key thing that helped us was naming things clearly across disci-
plines, so we referred to the same thing and were clear on its intent.

Success at Scale512

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

That purpose transcends specialisms and helps give clarity to what an
object in your design system is for, what problem it solves, and what
role it plays. That clarity of purpose pays off in many ways over time.

Using a well-worn example, a button is a button, isn’t it?
Well, not always.

While the visual asset may have the appearance of a button, when
it comes to applying it to code, is this a button tag? Is it a link that
looks like a button (which is a debate in itself!)? In your framework,
is it an internal router link?

There is room for debate, but we ended up in a place where the
visual asset gave us the language to talk about it, and the technical
execution might differ based on a use case. We’re all now talking
about buttons, even when the actual code differs.

We have a component, originally called the “Promo Section”; it was
intended for calling out key parts of a value proposition. The fol-
lowing example shows where intent and language differ, as it’s now
become a more generic content block. The work now is to look at
use cases in the wild and choose as a team: whether we accept that’s
what it is and capture it or look at whether it needs to be more than
one component based on those use cases.

A link that looks like a button

513Auto Trader: Around the Artifacts of Design Systems

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Here again, what looks like a button isn’t really one.

There’s a lot to think about, and we’ve not even touched on the de-
sign files or what your code might look like yet!

People-Powered

You might start as a team of one or have a group around you to
make this happen, but defining roles and responsibilities early on
is important. Having an amazing Figma library is great, but if it
doesn’t at some point become code and have a release process, it’s
a collection of pictures of what could be. Underneath a lot of what
a design system appears to be is a mechanism for fostering better
communication and understanding. A new system might start from
any discipline, but it needs others to be truly impactful.

Not everyone is fortunate enough to have dedicated time or resourc-
es to make a design system, so there’s often a balance to be struck
between the value it might offer and how much time it might need
to produce that value. You might not be able to start with the ideal
system you have in mind but can find a way of communicating the
value proposition you believe the design system has. Going back
to the problem space, what might be a great example to start with?
Looking at your “North Star”, what demonstrates the potential
through a hack or experiment?

Success at Scale514

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Ownership and Community

I’ve felt less like an owner of the system and increasingly more like
a shepherd. The system isn’t mine – it’s shared. The responsibility of
ensuring it persists shouldn’t rest on any individual, as if things go
well, this design system will be a major asset to your organization.

Designing the “people bit” and structures around the system itself
pays off. Initially, we kept those directly involved to a minimum,
through availability and, in part, through choice. There were some
fundamental decisions to make and test out and try to break.

With some great support from our engineering colleagues, we
worked on both output (making the first landing pages) and
road-testing (and breaking) the design system mechanism itself.
Alongside, we’d started talking more broadly around the business
about what the design system was, how it was different from previ-
ous projects, and to set and manage some expectations.

As we weren’t just making the design system but working through
refreshing the site, we worked in the open, with our plan and
breakdown on a board, so whenever people came by our area of the
office, we could talk them through it and get some initial feedback.
At that early stage, we also talked through the refresh of the site
(and so the design system) with departments that might not nor-
mally be in the loop.

Outreach

Taking time to explain to different audiences, in their domain lan-
guage, what the design system is and why it matters can help you to

515Auto Trader: Around the Artifacts of Design Systems

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

gain advocates, and the advocacy model can help foster a communi-
ty around the system as it grows and matures.

Having people who aren’t a part of the immediate team enthuse
about it helps spread that word on your behalf.

In the earlier days, having “good news stories” or case studies around
what the design system has helped us to achieve amplified the
messaging we were trying to spread. We were able to be far more
reactive with content, because our design system had solved prob-
lems that mapped to that kind of project. We could then have quick
conversations focused on what the content was trying to achieve,
and we were able to get something live far quicker than previously
and to the same quality as other parts of the site.

Creating a community around the design system can’t be forced.
Communities don’t just arise, and they can take time to nurture.
Part of helping it along is that sense of shared ownership, which can
mean many things, including being able to actively contribute or
participate. How can people outside the immediate team around the
system propose new additions or changes? Is there a clear feedback
mechanism? One of the best examples I remember seeing was in
gds (the gov.uk Design System3).

There’s some inherent tension, as there has to be a balance between
community and engagement, contribution, and a governance
process that has rules and processes. How this coalesces around
something that works for you and your circumstances will differ.
Governance (how you define responsibilities and workflows) can
become as much established through the community as imposed on
it. Having something as a starting point that can be critiqued is often
easier than a blank canvas!

3 https://smashed.by/govukdesignsystem

Success at Scale516

https://design-system.service.gov.uk/community/
https://design-system.service.gov.uk/community/
https://design-system.service.gov.uk/community/
https://design-system.service.gov.uk/community/

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Note: Although it’s a few years old, it’s worth checking out Brad
Frost’s article, “A Design System Governance Process,” from 2019.4

While there’s a huge amount of care and effort involved in creating
and maintaining, everything in the design system needs to be up for
debate and a challenge from the community you aim to form around
it. All of this helps with engagement, but it also helps make what’s
in the system more robust, whether that’s through design changes,
code improvements, or just providing better documentation.

It’s about supporting people to understand that the design system is
not something set in stone but a way of describing and facilitating
solutions to problems.

Workflow, Communication, and Evolution

This flex between what a specialism needs within its domain and
what allows for broad communication is really important. How your
work goes from inception to somehow appearing on a live website is
big stuff. This workflow doesn’t yet dictate the tooling or presenta-
tion of your system but underpins its value.

You might start mapping out a workflow like this:

• A need emerges.

• The team (tbs) discusses it, and the outcome of this forms a
proposal.

• This proposal is worked on and taken to a critique session.

• Once complete, the component is reviewed and made available
to the system.

4 https://smashed.by/governance

517Auto Trader: Around the Artifacts of Design Systems

https://bradfrost.com/blog/post/a-design-system-governance-process/)
https://bradfrost.com/blog/post/a-design-system-governance-process/)
https://bradfrost.com/blog/post/a-design-system-governance-process/)
https://bradfrost.com/blog/post/a-design-system-governance-process/)
https://bradfrost.com/blog/post/a-design-system-governance-process/)
https://bradfrost.com/blog/post/a-design-system-governance-process/)
https://bradfrost.com/blog/post/a-design-system-governance-process/)
https://bradfrost.com/blog/post/a-design-system-governance-process/)
https://bradfrost.com/blog/post/a-design-system-governance-process/)
https://bradfrost.com/blog/post/a-design-system-governance-process/)
https://bradfrost.com/blog/post/a-design-system-governance-process/)
https://bradfrost.com/blog/post/a-design-system-governance-process/)
https://bradfrost.com/blog/post/a-design-system-governance-process/)
https://bradfrost.com/blog/post/a-design-system-governance-process/)
https://bradfrost.com/blog/post/a-design-system-governance-process/)
https://bradfrost.com/blog/post/a-design-system-governance-process/)
https://bradfrost.com/blog/post/a-design-system-governance-process/)
https://bradfrost.com/blog/post/a-design-system-governance-process/)
https://bradfrost.com/blog/post/a-design-system-governance-process/)
https://bradfrost.com/blog/post/a-design-system-governance-process/)
https://bradfrost.com/blog/post/a-design-system-governance-process/)

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

• Once tested, it can be used.

• When used in situ, gather feedback and see how it performs
in the wild.

Considering how to manage change isn’t always easy. We chose
to start our components in an opinionated way: they’d do one job
and wouldn’t include much logic. While you could craft them in a
more futureproof way, you can’t predict what change is needed, but
enabling and facilitating change is an important part of any design
system. A new bit of content needs to be passed in a different style
of a call to action.

How should we update not just the component itself but its uses all
over the site? Baking in some assumptions that changes are not just
possible but actually desirable is really important. How do you roll
out a breaking change across your codebase? If you update your com-
ponent in your design tool of choice, what knock-on effects are there?

Each item in a proposed workflow might have the depth to be
explored. For us, we wanted to make it feel like a “push” when we
updated a component, so the live site would always be up to date –
every change would be versioned and released immediately to the
site like we “pushed” it out. Under the hood, we use conventional
commits5 to automatically trigger versioning of our code, which
runs our build processes that include automated tests.

Once pulled into an app in one of our React apps, future builds of
the design system would trigger upstream builds for that app, so
every intentional change is pushed out to the site and, in theory, the
components should always be up to date, unless a developer specif-
ically needs otherwise. Explaining that process hopes to illustrate
the simple workflow intent; to “feel like a push” actually involved a
chunk of engineering to ensure pipelines and build process worked

5 https://smashed.by/commits

Success at Scale518

https://www.conventionalcommits.org/en/v1.0.0/
https://www.conventionalcommits.org/en/v1.0.0/
https://www.conventionalcommits.org/en/v1.0.0/

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

as we’d expect. We also have the ability to flag a potentially breaking
change as a beta release to manually pull into apps to validate before
making that change permanent.

Understanding Change and Evolution

Some components might start off looking or functioning in similar
ways, but how might this play out over time? It might make sense to
build them from a shared look and feel or set of functionality. A bet-
ter way to solve a given problem emerges, and so that link to another
component no longer makes sense.

There’s an element of understanding that we bake potential tech or
design debt into the components we create. While there’s a contract
in the code between your component and its context of use that
needs to be preserved, the way it’s constructed can change. So, the
balance lies between not over-engineering every component when
it’s created and considering how change might happen with a sense
of how scenarios might play out.

Back to our example of the “Promo Section” I mentioned earlier. This
has been used for more than its initial intent, but we can learn from
that. There are some options we can explore:

• Do we keep it as it is and expand on its intended purpose?

• Do we look at what use cases have emerged and split this into
multiple components?

• Is it something that needs reevaluating entirely?

That second option is worth exploring. Maybe this split into two
components means that they still look the same? If they do, maybe

519Auto Trader: Around the Artifacts of Design Systems

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

they use some of the same mark-up and styles and share that com-
mon base. Following this through, we might have better or different
ways of solving problems these components cause today. Using the
same base is a practical short-term solution and, realistically, we
can’t know if we’ll ever change them in the future. If one diverges its
presentation, have we baked in some debt, or do we accept that and
factor it into future changes?

The Source of Truth and Making Proposals

One early principle we had was that live code trumps the design.
That’s a controversial statement in some circles, so I’ll explain: our
users are actively using and experiencing our design system com-
ponents. As good as the work and thinking are in your design tool,
until it makes its way through to the live website, it’s unrealized po-
tential. Keeping naming, structure, and change tight prevents design
work from diverging too far too soon for the system. That doesn’t
mean that play and experimentation are in any way limited, just that
they should exist outside of the system until the concept is ready to
be promoted. And so there’s another aspect of change, when change
is needed or new components are required.

We’ve done some work around our proposal structure (which as I
write is in its early days), but so far, so good. A proposal starts by
recognizing the component’s purpose: that is, what problem it was
created to solve. That actually starts the basics of the documentation
for it too, and capturing that early. We have regular open-invite de-
sign system-focused sessions, where proposals can be discussed and
challenged, and from that designs can be critiqued, and code could
be submitted as pull requests. As a collective, we try not to make the
process too labored but also hold a proposal to some level of rigor.

Success at Scale520

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

A proposal might include some of these:

• Purpose/Intent
What problem does the suggested component solve?

• Use Cases
Often a component would be proposed to the design system if
it was needed in more than one place. What use(s) does it have,
and how does the use case map to its intended purpose?

• Anatomy
What are the elements, spacing units, and typography that make
the component? (Early experiments with this seem useful for us.)

• Related Components
If this isn’t a fit for what you want, what others do similar jobs?

An example of a design system component’s anatomy with spacing
units and typography

What we’ve found is that this actually becomes part of the documen-
tation, before a component is actually added to the system!

521Auto Trader: Around the Artifacts of Design Systems

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

In the early days or thinking about our approach, we also had the
notion of “lenses” to look at components and design patterns –
different ways to turn the work around in your mind and see
them from different angles. Some might be reminders, some
technical, some not.

Testing What kinds of testing give us confidence in this component?
Visual regression (vrt), automated tests, manual testing?

Tracking Is this something that should be tracked in some way?
What should we be tracking? Is tracking dependent on
a state or interaction?

Accessibility How much can we bake in to ensure that everything is as
inclusive as we can make it? Is the mark-up semantic?
Does it need to provide options to ensure it is based on
context of use?

Content What do our content designers need from this component? Is
there guidance we can add with how to get the best use of it?

SEO Is there anything this component should do to consider
how it can support search engines beyond the content and
accessibility lenses? Is there a relevant schema that may be
worth including?

Performance Is there anything we need to consider about how this per-
forms? Does it use a third party or assets that aren’t already
present? How can we moderate its impact? What is the com-
ponent’s responsibility or that of the app it’s consumed in?

Motion Should it have any animations or transitions in the
component or a state of it? Ensure it works without
(prefers-reduced-motion)

States Loading/unloading.
Interaction states (focus, hover, disabled, etc.).
View states (is it in or out of the visible viewport?
See Intersection Observer).

Triggers and
actions

Should some functionality be triggered? Often this would
be linked to an interaction state but could be more open
than that.

Viewport
events

Has the resize or orientation change event been triggered on
the viewport?

Coding
defensively

What if we don’t have the data or content we expect to be
passed to it? What if we have too much? Can the component
fail in a graceful way?

Success at Scale522

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

By no means is this an exhaustive list, but it might help with how
you can think about your components differently. Think of some
useful prompts of your own, based on how your site works – form-
ing that together might be a great way to bring some different
disciplines together!

Conclusion

There’s a lot to consider, but it doesn’t have to all be done at the
beginning. Governance, workflow, communication, and commu-
nity are all really important and, more often than not, need to
be considered as a part of the design system itself. These are the
things that enable con-
tributions and manage
change. It allows for a
challenge to establish
patterns as much as it
helps roll out work using
a raft of solved prob-
lems. Acknowledging when decisions will lead to technical design
debt and being clear on what level of debt is acceptable might not
be something that’s clear from the beginning, but discussing it
helps with making informed decisions.

Some form of design system might be a part of your work, from a
freelancer to a massive multi-department organization, so your mile-
age may vary, but hopefully you’ll look a little further when starting
a design system. The aspects around the community and the kinds
of debt you can accrue might resonate across all kinds of systems.

Like many things, a design system isn’t ever a finished thing – it’s
a journey. How we go about that journey can affect the things we

Governance, workflow,

communication, and community are

all really important and, more often

than not, need to be considered as

a part of the design system itself.

523Auto Trader: Around the Artifacts of Design Systems

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Auto Trader Key Takeaways

produce along the way. While we’ve learned a lot, there’s still a lot
further to go. There will always be new challenges, and change is
good. As Ryan DeBeasi said in his article:

A design system isn’t just code, or designs, or documentation.
It’s all of these things, plus relationships between the people
who make the system and the people who use it
— Ryan DeBeasi, “Design Systems Are About Relationships”6

6 https://smashed.by/relationships

A well-executed design system can significantly enhance the

developer experience by increasing efficiency and ensuring

consistency across products.

 A design system helps maintain visual and functional consist-
ency across the product suite.

 Developers can work more efficiently by reusing components
and styles, reducing duplicate efforts.

 Regular audits and maintenance of the design system are vital
to keep it relevant and useful.

 A design system should be accompanied by comprehensive
documentation and style guides.

 The design system should be built with scalability and
future growth in mind, allowing easy addition and
modification of components.

Success at Scale524

https://www.smashingmagazine.com/2019/10/design-systems-relationships/
https://www.smashingmagazine.com/2019/10/design-systems-relationships/
https://www.smashingmagazine.com/2019/10/design-systems-relationships/
https://www.smashingmagazine.com/2019/10/design-systems-relationships/
https://www.smashingmagazine.com/2019/10/design-systems-relationships/
https://www.smashingmagazine.com/2019/10/design-systems-relationships/
https://www.smashingmagazine.com/2019/10/design-systems-relationships/
https://www.smashingmagazine.com/2019/10/design-systems-relationships/
https://www.smashingmagazine.com/2019/10/design-systems-relationships/

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Wix: When Life Gives You Lemons,
Write Better Error Messages
By Jenni Nadler

Error messages are part of our daily lives online.1 Every time a
server is down or we don’t have an internet connection, or we
forget to add some info in a form, we get an error message.

“Something went wrong” is the classic. But what went wrong? What
happened? And, most importantly, how can I fix it?

We encounter error messages all the time, but how often do they actually help us
understand what went wrong and how to fix it?

About a year ago at Wix, we abruptly realized that too often we were
not giving users the answers to these questions. When we got this
wake-up call, we felt compelled to act swiftly, and not just to address
the one error message that woke us up.

Welcome, folks, to Errorgate 2021. Or, that time we changed
thousands of error messages across Wix in just a month.

1 The original version of this case study was published September 2022:
https://smashed.by/bettererrormessages

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

To complete this effort, we first had to define what counted as a bad
error message and what counted as a good error message.

What Makes a Bad Error Message

This is an example of a bad error message. It uses an inappropriate tone, passes
the blame, speaks in technical jargon, and is too generic.

Inappropriate tone: Imagine a doctor performing a procedure and
then suddenly saying “Oops! Something went wrong.” That is the
last thing anyone wants to hear when the stakes are high, whether
it’s surgery or someone’s source of income. That is not the time to be
cutesy or fluffy. We want to show the users that we know it’s serious
and we understand it’s important to them.

Technical jargon: Even in today’s world of user-centered design,
technical jargon still sneaks its way into error messages. You couldn’t
fetch my data? My credentials were denied? What? The technical
stuff is not important to the user; they just want to know what went
wrong and how to fix it.

Passing the blame: Try to focus on the problem, rather than the
action that led to the problem. We don’t want to shame users, even if
something they did is why they’re seeing a certain error message.

Success at Scale526

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

We also made the decision not to pass blame on to third parties
because it makes us look unprofessional, even if it would have taken
some of the burden off of Wix. The user came to Wix as a trusted
platform; they don’t want to think about other platforms. While we
can say something like, “We’re having trouble connecting to Z”, we
wouldn’t say something like, “Z isn’t responding right now.”

Generic for no reason: Sometimes we don’t know what caused the
error… and sometimes we do. If we know what caused it and we’re
not telling them, we’re doing our users the ultimate disservice.

What Makes a Good Error Message

This is an example of a good error message. It explains what happened and why,
provides reassurance, is empathetic, helps the user fix the issue, and gives the
user a way out.

Say what happened and why: Make it super clear what did or
didn’t happen. This can be done with a combination of visuals and
text. Explain why the user got this error, even if the only explanation
is that there was a technical issue. At Wix, we made the decision to
say “an issue on our end” if we have the space, to really reiterate that
it’s not the user’s fault.

527Wix: When Life Gives You Lemons, Write Better Error Messages

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Provide reassurance: Where possible, let them know what was not
affected by the error. For example, were their changes still saved as a
draft, even though their email wasn’t sent?

Be empathetic: While we don’t want to be overly apologetic, we de-
cided that we did still want to use “please” if the situation warrants
it. Maybe it’s a really dire situation, or it’s something that we abso-
lutely can’t help the user solve. In that case, we might use “please” to
empathize even more.

Help them fix it: Tell them exactly what to do if there’s a way to possi-
bly fix it. Short on space? Send them to a knowledge base article with a
descriptive link like, “Learn how to resolve this” or “How do I fix this?”

Always give a way out: If they can’t fix the problem, or if it’s pos-
sible the issue could keep happening, provide them with a way to
contact customer care.

Now that we had defined what made a good or a bad error message,
we had to start getting rid of the bad ones.

How We Tackled Removing
Bad Error Messages

We searched our content management system and found that there
were 7,643 keys with the word “error” in the key or value. That’s 7,643
pieces of content that – at the very least – needed to be reviewed.

The task seemed monumental.

But we did it. We reviewed every single piece of content related to
errors and decided if it was relevant for this effort. Once we had a
list of all the errors we considered “generic” or “not helpful”, we sent
everything to developers.

Success at Scale528

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

This was just one of the Monday.com boards that we used to categorize every
single piece of content related to errors. Boards like these helped us set priorities
and due dates, and keep all disciplines in the loop.

Developers went message by message and mapped where each was
being triggered in the code. They looked at what was causing the
message to show, how frequently it occurred, and what could be
done to resolve the issue.

Based on that error mapping, the product managers, UX designers,
and writers sat down and came up with solutions. We started by
transferring everything from a spreadsheet to a Monday board,
where we could easily track the status of things and what needed to
be done. Sometimes, it was just a simple content change. In other
cases, it required brand new error messages. And in lots of other
instances, there was additional development work that needed to be
done to fix things behind the scenes.

Then we prioritized which errors to work on first. To set priorities,
we focused on how often the error was happening and if it blocked
the user from completing the flow. After that, we set milestones of
one to four weeks so that things didn’t fall by the wayside.

529Wix: When Life Gives You Lemons, Write Better Error Messages

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

What We Learned

There’s a difference between generic and unclear messages.
While there were certainly a lot of generic “Something went wrong”
messages, there were also a lot of unclear messages. These are just as
bad as generic messages and deserve the same amount of attention.

An example of a generic message compared to a message that is unclear. In
the generic message, we’re simply not telling the user anything other than
something went wrong. In the unclear message, we tried to explain what went
wrong, but it used confusing language.

It’s not a content issue most of the time. Avishai Abrahami, our
CEO and the reason this project got started, put it best in his email to
all employees.

“Generic errors are the result of bad development and
product. We must all care about it together.”

Truly everyone in Wix had to come together across all disciplines to
fix these messages. Developers had to investigate and map. Product
managers had to prioritize and create tasks. Designers had to pro-
vide new designs for new flows. And we, the UX writers, had to write
and rewrite thousands of error messages.

We should be asking more questions. It used to be really com-
mon for a developer to say to us, “Hey, we need a generic error
message here. Can you add one?” And we would say yes, thinking
it would be a fallback or rare message. We didn’t often stop to ask

Success at Scale530

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

questions like, “Why are users seeing this?” and “What is happen-
ing in the background?”

We missed a learning opportunity. Unfortunately, we were re-
active instead of proactive here. If this effort had been strategically
planned, it could have been an amazing learning opportunity for
junior writers in particular. Instead, we were scrambling to write
and rewrite messages without much strategic thought.

We were being a bad friend. At Wix, we have the mantra, “Write it
like you’re talking to a friend.” We really believe in empathizing with
the user, and being a friend with them throughout their process. But
it turns out that we were more like that friend who loves to gossip
but doesn’t pick up the phone when life gets hard. That is not the
friend we want to be, so we had to really dig deep and admit that we
weren’t doing the best we could.

When we work together, we build better products. It’s cheesy,
but it’s true.

What We’ve Changed in Our Process

Established a cross-functional team to focus on error handling.
This team is made up of senior product managers, front-end and
back-end developers, UX designers, and UX writers. Their goal is
to make sure proper error handling is part of the product life cycle,
not an afterthought.

View it as a shared responsibility. Everyone is responsible for
making sure we’re handling errors properly. Product managers
are expected to place more emphasis on errors and edge cases,

531Wix: When Life Gives You Lemons, Write Better Error Messages

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

not just happy flows. Developers are expected to investigate and
document errors according to platform-specific guidelines. Data
scientists are expected to do better analysis on errors so we can
track the events properly.

Wix Key Takeaways
Effective error handling requires clear, empathetic, and ac-

tionable error messages, and it’s a collaborative effort that

involves the entire team to enhance user experience.

 Avoid bad practices in error messages: Bad error messages use
inappropriate tone, technical jargon, pass blame, or are too
generic. These practices can confuse or frustrate users.

 Characteristics of good error messages: Good error messages
explain what happened and why, provide reassurance, display
empathy, help users fix the issue, and offer a way to contact
customer care if needed.

 Cross-functional collaboration: Changing thousands of error
messages at Wix required collaboration across disciplines, in-
cluding developers, product managers, designers, and writers.

 Learning from mistakes: The reactive approach to changing
error messages was a missed learning opportunity. Being pro-
active and strategic could have provided valuable experience,
especially for junior writers.

 Ongoing review and empowerment: Wix established ongoing
review processes and empowered UX writers to challenge ge-
neric errors, viewing error handling as a shared responsibility
and part of the product life cycle

Success at Scale532

D
E

V
E

LO
P

E
R

 E
X

P
E

R
IE

N
C

E
D

E
V

E
LO

P
E

R
 E

X
P

E
R

IE
N

C
E

Review errors one month after launch. Sometimes, especial-
ly with a brand new product, we don’t even know what errors to
expect. So we might have to launch with generic errors, but now we
have a procedure where we review the errors occurring one month
after launch. This allows us to see what really are the biggest errors
and write content specifically for those.

Ongoing review process. As writers, we know everything can
always be optimized. So we’re constantly reviewing our errors, even
the ones we just updated recently.

UX writers are empowered to challenge generic errors. In case
a product manager or developer ever says, “Let’s just use this gener-
ic error message in all
cases,” we now have the
power to say no. The
CEO of the company has
said generic errors are
not acceptable, so we’re
not going to write them without more investigation and understand-
ing of the problem. The power lies with us!

All in all, we changed thousands of error messages by working togeth-
er with our colleagues. It was hard work and we all had a drink or two
at the end of it. But it was the right thing to do for our users, and the
only way to truly live up to our value of putting the user first.

As writers, we know everything

can always be optimized. So we’re

constantly reviewing our errors, even

the ones we just updated recently.

533Wix: When Life Gives You Lemons, Write Better Error Messages

Our Latest Books
Crafted with care for you, and for the Web!

Smashing LibrarySmashing Library
Expert authors & timely topics
for truly Smashing Readers.

See all of our titles at smashed.by/library

TypeScript in
50 Lessons

by Stefan Baumgartner

The Ethical
Design Handbook

by Trine Falbe,
Martin Michael Frederiksen
and Kim Andersen

Click!
How to Encourage
Clicks Without
Shady Tricks

by Paul Boag

Inclusive
Components

by Heydon Pickering

Image
Optimization

by Addy Osmani

How to Encourage Clicks

Without Shady Tricks

by Paul Boag

b
y P

aul B
oag

H
o

w
 to

 E
n

c
o

u
ra

g
e

 C
lic

ks

W
ith

o
u

t S
h

a
d

y Tric
ks

Paul Boag has been working in the web since 1993. He is a user

experience strategist who helps companies make use of digital to better

serve connected consumers. Paul also hosts the award-winning user

experience podcast at boagworld.com. He is a regular speaker at

conferences and author of four other books including Digital Adaptation.

This is a gentle and timeless journey through the

tenets of TypeScript. If you’re a JavaScript programmer

looking for a clear primer text to help you become

immediately productive with TypeScript, this is the

book you’re looking for. It’s filled with practical

examples and clear technical explanations.”

—Natalie Marleny
Natalie Marleny, Application Engineer

Stefan walks you through everything from basic types

to advanced concepts like the infer keyword in a clear

and easy to understand way. The book is packed with

many real-world examples and great tips, transforming

you into a TypeScript expert by the end of it.

Highly recommended read!”

—Marvin Hagemeister

Marvin Hagemeister, Creator of Preact-Devtools

Stefan Baumgartner is a software architect

based in Austria. He has published online

since the late 1990s, writing for Manning,

Smashing Magazine, and A List Apart.

He organizes ScriptConf, TSConf:EU, and

DevOne in Linz, and co-hosts the German-

language Working Draft podcast.

9 78394
5 74990

6

“

“

Trine Falbe Kim Andersen Martin Michael Frederiksen

Touch Design
for Mobile
Interfaces

by Steven Hoober

The world is a miracle. So are you.

Thanks for being smashing.

Case studies from the web’s finest products
Curated by Addy Osmani

A
ddy

O
sm

ani

“It's rare to find one resource with this many real-world case studies.
I highly recommend the book for any web developer. A true gem!”

– Ahmad Shadeed, Design Engineer

Provide an inclusive
web experience.

ACCESSIBILITY

Optimize and sustain
high site speeds.

PERFORMANCE
Build reliable, installable,
feature- rich applications.

CAPABILITIES

Create a culture where
people and projects thrive.

DEVELOPER EXPERIENCE

SUCCESS AT SCALE

Addy Osmani is an engineering leader
working on Google Chrome. He leads up
Chrome’s Developer Experience organization,
helping reduce the friction for developers to
build great user experiences.

9 783910 835009

is a curated collection of case studies from

successful large-scale web projects.

Discover practical takeaways and insights to

achieve great results for projects large and small.

SUCCESS AT SCALE

Provide an inclusive
web experience.

ACCESSIBILITY

Optimize and sustain
high site speeds.

PERFORMANCE
Build reliable, installable,
feature- rich applications.

CAPABILITIES

Create a culture where
people and projects thrive.

DEVELOPER EXPERIENCE

	SAS-paginated-cover.pdf
	SAS-Front-Matter.pdf
	SAS-Performance.pdf
	SAS-Capabilities.pdf
	SAS-Accessibility.pdf
	SAS-DevEx.pdf
	SAS-paginated-back-cover.pdf

