

Published 2019 by Smashing Media AG, Freiburg, Germany.

All rights reserved.

ISBN: 978-3-945749-82-1

Cover design: Heydon Pickering

Copyediting: Owen Gregory

Interior layout: Alex Clarke, Markus Seyfferth

Ebook production: Heydon Pickering

Inclusive Components was written by Heydon Pickering.

Please send errors to: errata@smashingmagazine.com

Contents

Introduction: A personal note

Toggle Buttons

A To-do List

Menus and Menu Buttons

Tooltips and Toggletips

A Theme Switcher

Tabbed Interfaces

Collapsible Sections

A Content Slider

Notifications

Data Tables

Modal Dialogs

Cards

0

1

2

3

4

5

6

7

8

9

10

11

12

4

8

37

70

105

127

143

166

196

233

253

282

301

Introduction: A personal note

I am not a computer scientist. I have no idea how to grow a

computer in a test tube, or how to convert the mysterious

breast-enlarging substance “silicone” into a semi-sentient

logic machine. Or whatever it is computer scientists do.

That’s not to say I haven’t been around computers since, well,

Lemmings. In fact, my Dad helped me build my first computer,

because building computers was a thing back then. It just

turns out I can use my computer without having to know the

entire history of computing, or by remembering where each

board and connector inside the beige metal box goes, or why.

Some very clever people — mostly women — gave us com-

puters. Good, thank you. Now let’s get to work.

It’s been a good decade since anyone assumed I would know

how to fix their computer just because I bought my computer

before they did theirs. Which leads me to think we’ve moved

away from that era where everyone was clumsily divided into

computery and not computery. But that makes it all the more

astonishing that the world of professional web development is

so fond of that binary.

4 Introduction

Me in, I don’t know, 1988 probably?

The ascendant Full Stack Developer is someone who does all

the code things. They are code’s gatekeepers. Considering the

sheer scale of our project to digitize the entirety of human

experience into multivarious simulacra, I think that’s rather a

lot for any individual to take on.

You can do all the code, but only if you don’t do it all well.

There’s just too much to learn to be an expert in everything.

So when we hire generalist coders, we create terrible products

and interfaces. The web isn’t inaccessible because web acces-

sibility is especially hard to learn or implement. It’s inaccessi-

ble because it’s about the code where humans and computers

meet, which is not a position most programmers care to be in,

or are taught how to deal with. But they’re the coders so it’s

their job, I guess.

A Personal Note 5

Like I said, I’m not a computer scientist, but I learned to code

because I started to work with the web. It was my respon-

sibility to learn how to code, because code is what the web

is made of. But the code of the web is not all the code of

classical computer science, and should not be judged on the

same terms. HTML is the code of writers, and CSS the code of

graphic designers. Writers and designers are best positioned

to write those kinds of code.

This book, an anthology of updated and expanded blog

posts originally written for inclusive-components.design,1

is designed to help you catch up on the kind of coding not

taught in Java 101: the code of communication, interaction,

and most of all accommodation. There’s a lot of code in this

book, but it’s all code bent towards one specific goal: making

interfaces more usable to more and different people. That’s

the only code I really know.

I dedicate this book to all the artists, designers, and humani-

ties scholars who contribute code to the web. I also dedicate

it to full stack developers, because you folks may have bitten

off more than you can chew. And it’s not your fault, it’s the

culture of expectation around you. Hopefully this will help to

keep your heads above water, at least in terms of inclusive

interface design.

1 https://smashed.by/inclusivecomponents

6 Introduction

http://inclusive-components.design
https://smashed.by/inclusivecomponents

Thank you to all the people who have read and shared the

articles from the blog, and especially to those who have

helped fund its writing. Writing is my favorite thing, whether

it’s natural language or code. I’m just lucky that English is

my first language, because it takes me forever to learn the

syntax of anything. If you wish to translate the book, please

contact me using heydon@heydonworks.com, find me on

Twitter as @heydonworks, or on Mastodon as

@heydon@mastodon.social.

Yours — Heydon

A Personal Note 7

Toggle Buttons

S ome things are either on or off and, when those things

aren’t on (or off), they are invariably off (or on). The

concept is so rudimentary that I’ve only complicated it

by trying to explain it, yet on/off switches (or toggle buttons)

are not all alike. Although their purpose is simple, their appli-

cations and forms vary greatly.

In this inaugural chapter, I’ll be exploring what it takes to

make toggle buttons inclusive. As with any component, there’s

no one way to go about this, especially when such controls

are examined under different contexts. However, there’s cer-

tainly plenty to forget to do or to otherwise screw up, so let’s

try to avoid any of that.

Changing state
If a web application did not change according to the instruc-

tions of its user, the resulting experience would be altogether

unsatisfactory. Nevertheless, the luxury of being able to make

web documents augment themselves instantaneously, without

recourse to a page refresh, has not always been present.

Unfortunately, somewhere along the way we decided that

accessible web pages were only those where very little

8 Chapter 1

happened — static documents, designed purely to be read.

Accordingly, we made little effort to make the richer, stateful

experiences of web applications inclusive.

A popular misconception has been that screen readers don’t

understand JavaScript. Not only is this entirely untrue — all

major screen readers react to changes in the DOM as they

occur — but basic state changes, communicated both visu-

ally and to assistive technology software, do not necessarily

depend on JavaScript to take place anyway.

Checkboxes and radio buttons
Form elements are the primitives of interactive web pages

and, where we’re not employing them directly, we should be

paying close attention to how they behave. Their handling

of state changes have established usability conventions we

would be foolish to ignore.

Arguably, an out-of-the-box input of the checkbox type is

a perfectly serviceable on/off switch all on its own. When

labelled correctly, it has all the fundamental ingredients of

an accessible control: it’s screen reader and keyboard acces-

sible between platforms and devices, and it communicates its

change of state (checked to unchecked or vice versa) without

needing to rebuild the entire document.

Toogle Buttons 9

In the following example, a checkbox serves as the toggle for

an email notifications setting.

<input type="checkbox" id="notify" name="notify"

value="on">

<label for="notify">Notify by email</label>

Screen reader software is fairly uniform in its interpretation of

this control. On focusing the control (moving to it using the

Tab key) something similar to, “Notify by email, checkbox,

unchecked” will be announced. That’s the label, role, and

state information all present.

On checking the checkbox, most screen reader software will

announce the changed state, “checked” (sometimes repeating

the label and role information too), immediately. Without

JavaScript, we’ve handled state, and screen reader software is

able to feed back to the user.

10 Chapter 1

SCREEN READERS ARE NOT JUST FOR
THE BLIND

Some operate screen readers to assist their understanding of

an interface. Others may be visually dyslexic or have low liter-

acy. There are even those who have little physical or cognitive

trouble understanding an interface who simply prefer to have

it read out to them sometimes.

Supporting screen reader software is supporting screen reader
software, not blind people. Screen readers are a tool a lot of

different people like to use. As with many so-called assistive

technologies, screen readers are just a tool anyone can add to

their toolset.

In this case, the on/off part of the switch is not communicated

by the label but the state. Instead, the label is for identifying

the thing that we are turning off or on. Should research show

that users benefit from a more explicit on/off metaphor, a

radio button group can be employed.

<fieldset>

 <legend>Notify by email</legend>

 <input type="radio" id="notify-on" name="notify"

value="on" checked>

 <label for="notify-on">on</label>

 <input type="radio" id="notify-off" name="notify"

value="off">

 <label for="notify-off">off</label>

</fieldset>

Group labels are a powerful tool. As their name suggests, they

can provide a single label to related (grouped) items. In this

case, the <fieldset> group element works together with

the <legend> element to provide the group label “Notify by

email” to the pair of radio buttons. These buttons are made a

pair by sharing a name attribute value, which makes it possible

to toggle between them using your arrow keys. HTML seman-

tics don’t just add information but also affect behavior.

In the Windows screen readers JAWS and NVDA, when the

user focuses the first control, the group label is prepended to

that control’s individual label and the grouped radio buttons

are enumerated. In NVDA, the term “grouping” is appended to

make things more explicit. In the example above, focusing the

first (checked by default) radio button elicits, “Notify by email,

grouping, on radio button, checked, one of two”.

12 Chapter 1

Now, even though the checked state (announced as “selected”

in some screen readers) is still being toggled, what we’re

really allowing the user to do is switch between “on” and “off”.

Those are the two possible lexical states, if you will, for the

composite control.

STYLING FORM ELEMENTS

Form elements are notoriously hard to style, but there are

well-supported CSS techniques for styling radio and check-

box controls, as I wrote in “Replacing Radio Buttons Without

Replacing Radio Buttons.”2 For tips on how to style select

elements and file inputs, consult “WTF Forms?”3 by Mark Otto.

THIS DOESN’T QUITE FEEL RIGHT
Both the checkbox and radio button implementations are

tenable as on/off controls. They are, after all, accessible by

mouse, touch, keyboard, and assistive technology software

across different devices, browsers, and operating systems.

2 https://smashed.by/radiobuttons
3 http://wtfforms.com/

Toogle Buttons 13

https://www.sitepoint.com/replacing-radio-buttons-without-replacing-radio-buttons/
https://www.sitepoint.com/replacing-radio-buttons-without-replacing-radio-buttons/
http://wtfforms.com/
https://smashed.by/radiobuttons
http://wtfforms.com/

But accessibility is only a part of inclusive design. These con-

trols also have to make sense to users; they have to play an

unambiguous role within the interface.

The trouble with using form elements is their longstanding

association with the collection of data. That is, checkboxes

and radio buttons are established as controls for designating

values. When a user checks a checkbox, they may just be

switching a state, but they may suspect they are also choosing

a value for submission.

Whether you’re a sighted user looking at a checkbox, a screen

reader user listening to its identity being announced, or both,

its etymology is problematic. We expect toggle buttons to be

buttons, but checkboxes and radio buttons are really inputs,

as their <input> elements suggest.

A true toggle button
Sometimes we use <button> elements to submit forms. To

be fully compliant and reliable these buttons should take the

type value of submit.

<button type="submit">Send</button>

14 Chapter 1

But these are only one variety of button, covering one use

case. In truth, <button> elements can be used for all sorts

of things, and not just in association with forms. They’re just

buttons. We remind ourselves of this by giving them the type

value of <button>.

<button type="button">Send</button>

The generic button is your go-to element for changing

anything within the interface (using JavaScript and without

reloading the page) except one’s location within and between

documents, which is the purview of links.

Next to links, buttons should be the interactive element you

use most prolifically in web applications. They come pre-

packaged with the “button” role and are keyboard and screen

reader accessible by default. Unlike some form elements, they

are also trivial to style.

So how do we make a <button> a toggle button? It’s a case

of using WAI-ARIA as a progressive enhancement. WAI-ARIA

offers states that are not available in basic HTML, such as the

pressed state. Imagine a power switch for a computer. When

it’s pressed — or pushed in — that denotes the computer is in

its “on” state. When it’s unpressed — poking out — the com-

puter must be off.

Toogle Buttons 15

<button type="button" aria-pressed="true">

 Notify by email

</button>

WAI-ARIA state attributes like aria-pressed behave like Bool-

eans but, unlike standard HTML state attributes like checked,

they must have an explicit value of true or false. Just adding

aria-pressed is not reliable. Also, the absence of the attri-

bute would mean the unpressed state would not be communi-

cated (a button without the attribute is just a generic button).

You can use this control inside a form, or outside, depend-

ing on your needs. But if you do use it inside a form, the

type="button" part is important. If it’s not there, some

browsers will default to an implicit type="submit"

and try to submit the form. You don’t have to use

event.preventDefault() on type="button" controls to

suppress form submission.

Switching the state from true (on) to false (off) can be done

via a simple click handler. Since we are using a <button>, this

event type can be triggered with a mouse click, a press of

either the Space or Enter keys, or by tapping the button

through a touchscreen. Being responsive to each of these

actions is something built into <button> elements

as standard.

16 Chapter 1

If you consult the HTMLButtonElement4 interface, you’ll see

that other properties, such as disabled, are also supported

out of the box. Where <button> elements are not used, these

behaviors have to be emulated with bespoke scripting.

const toggle = document.querySelector('[aria-pressed]');

toggle.addEventListener('click', () => {

 let pressed = toggle.getAttribute('aria-pressed')

=== 'true';

 toggle.setAttribute('aria-pressed', !pressed);

});

You can see the toggle button demo, using aria-pressed, over at
https://smashed.by/togglebuttonpressed

4 https://smashed.by/buttonelement

Toogle Buttons 17

https://developer.mozilla.org/en/docs/Web/API/HTMLButtonElement
https://heydon.github.io/inclusive-components-demos/toggle-buttons/aria-pressed.html
https://heydon.github.io/inclusive-components-demos/toggle-buttons/aria-pressed.html
https://smashed.by/buttonelement

THE TOGGLE BUTTON IN VUE.JS
As already explained, ARIA states need explicit “true” and

“false” values. Unfortunately, some frameworks like Vue.js will

magically (?) remove attributes supplied with false values.

To get around this, your Vue toggle button needs to stringify

the value so that false becomes “false”.

<button :aria-pressed="this.pressed.toString()">Press

me</button>

A CLEARER STATE
An interesting thing happens when a button with the

aria-pressed state is encountered by some screen readers:

it is identified as a “toggle button” or, in some cases, “push

button”. The presence of the state attribute changes the

button’s identity.

When focusing the example button with aria-pressed="true"

using NVDA, the screen reader announces, “Notify by email,

toggle button, pressed”. The “pressed” state is more apt than

“checked”, plus we eschew the form data input connotations.

When the button is clicked, immediate feedback is offered in

the form of “not pressed”.

18 Chapter 1

STYLING
The HTML we construct is an important part of the design

work we do and the things we create for the web. I’m a strong

believer in doing HTML First Prototyping™, making sure

there’s a solid foundation for the styled and branded product.

In the case of our toggle button, this foundation includes the

semantics and behavior to make the button interoperable

with various input (e.g. voice activation software) and output

(e.g. screen reader) devices. That’s possible using HTML, but

CSS is needed to make the control understandable visually.

Form should follow function, which is simple to achieve in

CSS: everything in our HTML that makes our simple toggle

button function can also be used to give it form.

• <button> → button element selector

• aria-pressed="true" → [aria-pressed="true"]
attribute selector

In a consistent and, therefore, easy to understand interface,

buttons should share a certain look. Buttons should all look

like buttons. So, our basic toggle button styles should proba-

bly inherit from the button element block:

Toogle Buttons 19

/* For example... */

button {

 color: white;

 background-color: #000;

 border-radius: 0.25rem;

 padding: 1em 1.5em;

}

There are a number of ways we could visually denote

“pressed”. Interpreted literally, we might make the button

look pressed in using some inset box-shadow. Let’s employ an

attribute selector for this:<div class="sourceCode" id="cb9">

[aria-pressed='true'] {

 box-shadow: inset 0 0 0 0.15rem #000, inset 0.25em

0.25em 0 #fff;

}

To complete the pressed/unpressed metaphor, we can use

some positioning and box-shadow to make the unpressed

button “poke out”. This block should appear above the

[aria-pressed="true"] block in the cascade.

20 Chapter 1

[aria-pressed] {

 position: relative;

 top: -0.25rem;

 left: -0.25rem;

 box-shadow: 0.125em 0.125em 0 #fff, 0.25em 0.25em

#000;

}

This styling method is offered just as one idea. You may find

that something more explicit, like the use of “on”/“off” labels

in an example to follow, is better understood by more users.

One issue with using box-shadow is that it is eliminated by

Windows’ High Contrast themes. You could remedy this by

detecting high contrast and inserting an explicit “�” mark for

buttons in their pressed state.

@media (-ms-high-contrast: active) {

 [aria-pressed="true"]::after {

 content: '\0020�';

 }

}

Generally, it’s better to choose techniques that work in

High Contrast Mode as well, saving you from having to fork

the design.

Toogle Buttons 21

DON’T RELY ON COLOR ALONE

“On” is often denoted by a green color, and “off” by red.

This is a well-established convention and there’s no harm in

incorporating it. However, be careful not to only use color to

describe the button’s two states. If you did, some color-blind

users would not be able to differentiate between them.

These versions of the control would fail WCAG 2.0 1.4.1 Use Of Color
(Level A).5

Focus styles

It’s important that buttons, along with all interactive com-

ponents, have focus styles. Otherwise, people navigating by

keyboard cannot see which element is in their control and

ready to be operated.

5 https://smashed.by/contrastwithoutcolor

22 Chapter 1

https://www.w3.org/TR/2008/REC-WCAG20-20081211/#visual-audio-contrast-without-color
https://www.w3.org/TR/2008/REC-WCAG20-20081211/#visual-audio-contrast-without-color
https://smashed.by/contrastwithoutcolor

The best focus styles do not affect layout (the interface

shouldn’t jiggle around distractingly when moving between

elements). Typically, one would use outline, but outline

only ever draws a box in most browsers. To fit a focus style

around the curved corners of our button, a box-shadow is bet-

ter. Since we are using box-shadow already, we have to be a

bit careful: note the two comma-separated box-shadow styles

in the pressed-and-also-focused state.

/* Remove the default outline and add the outset shadow */

[aria-pressed]:focus {

 outline: none;

 box-shadow: 0 0 0 0.25rem skyBlue;

}

[aria-pressed='true']:focus {

 box-shadow: 0 0 0 0.25rem skyBlue, inset 0 0 0

0.15rem #000, inset 0.25em 0.25em 0 #fff;

}

Note that box-shadows tend to be eliminated when using

Windows High Contrast Mode,6 so take that into consider-

ation. One trick is to use a transparent outline, which will

appear (become opaque) in place of the box-shadow styling

when High Contrast Mode is switched on.

6 https://smashed.by/highcontrastmode

Toogle Buttons 23

https://support.microsoft.com/en-gb/help/13862/windows-use-high-contrast-mode
https://smashed.by/highcontrastmode

[aria-pressed]:focus {

 outline: 2px solid transparent; /* for WHCM */

 box-shadow: 0 0 0 0.25rem skyBlue;

 outline: 2px solid transparent;

}

Changing labels
The previous toggle button design has a self-contained,

unique label and differentiates between its two states through

a change in attribution that elicits a style. What if we wanted

to create a button that changes its label from “on” to “off” or

“play” to “pause”?

It’s perfectly easy to do this in JavaScript, but there are a cou-

ple of things we need to be careful about.

1. If the label changes, what happens with the state?

2. If the label is just “on” or “off” (“play” or “pause”; “active”

or “inactive”) how do we know what the button actually

controls?

In the previous toggle button example, the label describes

what would be on or off. When the “what” part is not con-

sistent, confusion quickly ensues: once “off”/unpressed has

become “on”/pressed, I have to unpress the “on” button to turn

the “off” button back on. What?

24 Chapter 1

As a rule of thumb, you should never change pressed state

and label together. If the label changes, a change in state is

already communicated.

In the following example, just the label changes.

const button = document.querySelector('button');

button.addEventListener('click', e => {

 let text = e.target.textContent === 'Play' ?

'Pause' : 'Play';

 e.target.textContent = text;

});

The problem with this method is that the label change is not

announced as it happens. That is, when you click the play

button, feedback equivalent to “pressed” is absent. Instead,

you have to unfocus and refocus the button manually to hear

that it has changed. Not an issue for sighted users, but less

ergonomic for blind screen reader users.

Play/pause buttons usually switch between a play symbol (a

triangle on its side) and a pause symbol (two vertical lines).

We could do this while keeping a consistent non-visual label

and changing state.

Toogle Buttons 25

<!-- Paused state -->

<button type="button" aria-pressed="false" aria-

label="play">

 ▶

</button>

<!-- Playing state -->

<button type="button" aria-pressed="true" aria-

label="play">

 ⏸

</button>

Because aria-label overrides the Unicode symbol text

node, the paused button is announced as something similar

to, “Play button, not pressed” and the playing button as “Play

button, pressed”.

This works pretty well, except for where voice recognition and

activation is concerned. In voice recognition software, you typ-

ically need to identify buttons by vocalizing their labels. And if

a user sees a play symbol, their inclination is to say “play”, not

“pause”. For this reason, switching the label rather than the

state is more robust here.

26 Chapter 1

Never change label and state at the same time. In this example, that
would result in a paused button in the pressed state. Since the video
or audio would be playing at this point, the paused state cannot be
considered pressed, or on.

Note the translation issues7 with aria-label meaning that,

for an international audience — which is always the audience

of the web — using a visually hidden is preferable.

Text nodes are reliably translated by Google’s and Microsoft’s

translation services.

7 https://smashed.by/ariaxenophobe

Toogle Buttons 27

http://www.heydonworks.com/article/aria-label-is-a-xenophobe
https://smashed.by/ariaxenophobe

Where this is implemented, you have to manually hide the

Unicode points, using aria-hidden="true":

<!-- Paused state -->

<button type="button" aria-pressed="false">

 ▶

 play

</button>

<!-- Playing state -->

<button type="button" aria-pressed="true">

 ⏸

 play

</button>

The visually-hidden class is a special class that hides

content visually without removing it from screen reader

output. Note that display: none removes elements from the

visual interface and screen reader output, so would not be

appropriate here.

.visually-hidden {

 position: absolute !important;

 clip: rect(1px, 1px, 1px, 1px) !important;

 padding:0 !important;

 border:0 !important;

 height: 1px !important;

 width: 1px !important;

 overflow: hidden !important;

}

28 Chapter 1

AUXILIARY LABELING

In some circumstances, we may want to provide on/off

switches that actually read “on/off”. The trick with these is

making sure there is a clear association between each toggle

switch and a respective, auxiliary label.

Imagine the email notification setting is grouped alongside

other similar settings in a list. Each list item contains a

description of the setting followed by an on/off switch. The

on/off switch uses the terms “on” and “off” as part of its design.

Some elements are provided for styling.

<h2>Notifications</h2>

 Notify by email

 <button>

 on

 off

 </button>

 Notify by SMS

 <button>

 on

 off

 </button>

 <!-- others -->

Toogle Buttons 29

Demo: Switch controls, with auxiliary labeling using aria-labelledby8

The virtue of lists is that, both visually and non-visually, they

group items together, showing they are related. Not only does

this help comprehension, but lists also provide navigational

shortcuts in some screen readers. For example, JAWS provides

the L (list) and I (list item) quick keys for moving between

and through lists.

Each ‘label’ and button is associated by belonging to a com-

mon list item. However, not providing an explicit, unique label

is dangerous territory — especially where voice activation is

concerned. Using aria-labelledby, we can associate each

button with the list’s text:

8 https://smashed.by/togglebuttonsswitches

30 Chapter 1

https://heydon.github.io/inclusive-components-demos/toggle-buttons/switches.html
https://smashed.by/togglebuttonsswitches

<h2>Notifications</h2>

 Notify by email

 <button aria-labelledby="notify-email">

 on

 off

 </button>

 Notify by SMS

 <button aria-labelledby="notify-sms">

 on

 off

 </button>

 <!-- others -->

Each aria-labelledby value matches the appropriate span

id, forming the association and giving the button its unique

label. It works much like a <label> element’s for attribute

identifying a field’s id.

Toogle Buttons 31

The switch role

Importantly, the ARIA label overrides each button’s textual

content, meaning we can once again employ aria-pressed

to communicate state. However, since these buttons are

explicitly “on/off” switches, we can instead use the WAI-ARIA

switch role,9 which communicates state via aria-checked.

<h2>Notifications</h2>

Notify by email

<button role="switch" aria-checked="true" aria-

labelledby="notify-email">

 on

 off

</button>

Notify by SMS

<button role="switch" aria-checked="true" aria-

labelledby="notify-sms">

 on

 off

</button>

 <!-- others -->

9 https://smashed.by/switchrole

32 Chapter 1

https://www.w3.org/TR/wai-aria-1.1/#switch
https://www.w3.org/TR/wai-aria-1.1/#switch
https://smashed.by/switchrole

How you would style the active state is quite up to you, but

I’d personally save on writing class attributes to the s

with JavaScript. Instead, I’d write some CSS using pseudo-

classes to target the relevant span dependent on the state.

[role='switch'][aria-checked='true'] :first-child,

[role='switch'][aria-checked='false'] :last-child {

 background: #000;

 color: #fff;

}

Traversing the settings

Now let’s talk about navigating through this settings section

using two different strategies: by Tab key (jumping between

focusable elements only), and browsing by screen reader

(moving through each element).

Even when navigating by Tab key, it’s not only the identity

and state of the interactive elements you are focusing that

will be announced in screen readers. For example, when you

focus the first <button>, you’ll hear that it is a switch with the

label “Notify by email”, in its on state. “Switch” is the role and

aria-checked="true" is vocalized as “on” where this role

is present.

Toogle Buttons 33

Switch role support

The switch role is not quite as well supported as aria-pressed.

For example, it is not recognized by the ChromeVox screen

reader extension for Chrome, at the time of writing.

However, ChromeVox does support aria-checked. This

means that, instead of “Switch, Notify by email, on” being

announced, “Button, Notify by email, checked” is instead. This

isn’t as evocative, but it is adequate. More than likely, it will

simply be mistaken for a checkbox input.

Curiously, NVDA regards a button with role="switch" and

aria-checked="true" as a toggle button in its pressed state.

Since on/off and pressed/unpressed are equivalent, this is

acceptable (though slightly disappointing).

But in most screen readers you’ll also be told you’ve entered

a list of four items and that you’re on the first item — useful

contextual information that works a bit like the group label-

ling I covered earlier.

34 Chapter 1

Importantly, because we have used aria-labelledby to

associate the adjacent text to the button as its label, this infor-

mation is also available when navigating in this mode.

When browsing from item to item (for example, by pressing

the Down key when the NVDA screen reader is running),

everything you encounter is announced, including the heading

(“Notifications, heading level two”). Of course, browsing in

this fashion, “Notify by email” is announced on its own as well

as in association with the adjacent button. This is somewhat

repetitive, but makes sense: “Here’s the setting name, and

here’s the on/off switch for the setting of this name.”

How explicitly you need to associate controls to the things

they control is a finer point of UX design and worth consider-

ing. In this case we’ve preserved our classic on/off switches for

sighted users, without confusing or misleading either blind or

sighted screen reader users no matter which keyboard inter-

action mode they are using. It’s pretty robust.

Conclusion
How you design and implement your toggle buttons is quite

up to you, but I hope you’ll remember this chapter when it

comes to adding this particular component to your pattern

Toogle Buttons 35

library. There’s no reason why toggle buttons — or any inter-

face component for that matter — should marginalize the

number of people they often do.

You can take the basics explored here and add all sorts of

design nuances, including animation. It’s just important to lay

a solid foundation first.

CHECKLIST

• Use form elements such as checkboxes for on/off toggles

if you are certain the user won’t believe they are for

submitting data.

• Use <button> elements, not links, with aria-pressed

or aria-checked.

• Don’t change label and state together.

• When using visual “on” and “off” text labels (or

similar) you can override these with a unique label

via aria-labelledby.

• Be careful to make sure the contrast level between

the button’s text and background color meets WCAG

2.1 requirements.

36 Chapter 1

A To-do List

A ccording to tradition, each new JavaScript framework

is put through its paces in the implementation of a

simple to-do list app: an app for creating and delet-

ing to-do list entries. The first Angular example I ever read

was a to-do list. Adding and removing items from to-do lists

demonstrates the immediacy of the single-page application

view/model relationship.

TodoMVC10 compares and contrasts to-do app implementa-

tions of popular MV* frameworks including Vue.js, Angular,

and Ember.js. As a developer researching technology for a

new project, it enables you to find the most intuitive and ergo-

nomic choice for your needs.

The inclusive design of a to-do list interface is, however,

framework agnostic. Your user doesn’t care if it’s made with

Backbone.js or React; they just need the end product to be

accessible and easy to use. Unfortunately, each of the iden-

tical implementations in TodoMVC have some shortcomings.

Most notably, the delete functionality only appears on hover,

making it an entirely inaccessible feature by keyboard.

10 https://smashed.by/todomvc

A To-do List 37

http://todomvc.com/
http://todomvc.com/
https://smashed.by/todomvc

In this chapter, I’ll be building an integrated to-do list compo-

nent from the ground up. But what you learn doesn’t have to

apply just to to-do lists — we’re really exploring how to make

the basic creation and deletion of content inclusive.

Unlike the simple, single element toggle buttons of the pre-

vious chapter, managed lists have a few moving parts. This is

what we’re going to make:

This is the to-do app we’re going to make, which has a
number of moving parts.

38 Chapter 2

The heading
A great deal of usability is about labels. The <label> element

provides labels to form fields, of course. But simple text nodes

provided to buttons and links are also labels: they tell you

what those elements do when you press them.

Headings too are labels, giving names to the sections (regions,

areas, modules) that make up an interface. Whether you are

creating a static document, like a blog post, or an interactive

single-page application, each major section in the content of

that page should almost certainly be introduced by a heading.

Our to-do list’s name, “My To-do List” in this case, should be

marked up accordingly.

<h1>My To-do List</h1>

It’s a very on the nose way of demarcating an interface, but

on the nose is good. We don’t want our users having to do any

detective work to know what it is they’re dealing with.

A To-do List 39

HEADING LEVEL
Determining the correct level for the heading is often con-

sidered a question of importance, but it’s actually a question

of belonging. If our to-do list is the sole content within the

<main> content of the page, it should be level 1, as in the

previous example. There’s nothing surrounding it, so it’s at the

highest level in terms of depth.

If, instead, the to-do list is provided as supplementary content,

it should have a level which reflects that. For example, if the

page is about planning a holiday, a “Things to pack” to-do list

may be provided as a supplementary tool.

• Plan for my trip (<h1>)

• Places to get drunk (<h2>)

• Bars (<h3>)

• Clubs (<h3>)

• Things to pack (to-do list) (<h2>)

In the above example, both “Bars” and “Clubs” belong to

“Places to get drunk”, which belongs to “Plan for my trip”.

That’s three levels of belonging, hence the <h3>s.

40 Chapter 2

Even if you feel that your packing to-do list is less important

than establishing which bars are good to visit, it’s still on the

same level in terms of belonging, so it must have the same

heading level.

As well as establishing a good visual hierarchy, the structure

described by logically nested sections gives screen reader

users a good feel for the page. Headings are also harnessed as

navigational tools by screen readers. For example, in JAWS,

the 2 key will take you to the next section labeled by an

<h2> heading. The generic h key will take you to the next

heading of any level.

In modular design systems, it’s not known ahead of time

where certain components will be placed within the docu-

ment structure. And if that’s not known, it’s not known which

heading level will be appropriate. However, it is possible to

automate the appointment of heading levels using some nest-

ing logic. In “Managing Heading Levels In Design Systems”11 I

describe how this can be done using React’s Context API.

11 https://smashed.by/headinglevels

A To-do List 41

https://smashed.by/headinglevels

THE <SECTION> ELEMENT

With all this talk of sections, surely we should be using

<section> elements, right? Maybe. Here are a couple of

things to consider:

1. Heading elements already describe sections. That is, the

content that starts with a heading and ends just before a

heading of the same level is a de facto section.

2. If you do use a <section> element, you still need to pro-

vide a heading to it, otherwise it is an unlabeled section.

In practice, the value added by <section> elements is lim-

ited, but still worth noting:

1. Some screen readers will announce the start and end

of sections when their users are traversing the page

element-to-element.

2. Some screen readers provide region navigation. For

example, in JAWS, <section>s count as “regions” and

can be moved between using r and Shift + r .

3. They can make code organization clearer by providing

container elements for sections of the page.

To really make the most of <section>s you should label

them recursively; that is, by connecting their headings to the

<section> elements themselves using aria-labelledby:

<section aria-labelledby="todos-label">

 <h1 id="todos-label">My To-do List</h1>

 <!-- content -->

</section>

(Note that the aria-labelledby value must match the head-

ing’s id value.)

This effectively provides a group label to the section, meaning

the label will be announced in some screen reader software

on entering the section by focus. Running the NVDA screen

reader, when I enter the section and focus the first checkbox, I

hear “My To-do List region, list with three items, pick up kids

from school checkbox, checked.” It’s helpful to provide this

contextual information to users navigating by focus rather

than by region or heading.

The list
I talk about the virtues of lists in Inclusive Design Patterns.12

Alongside headings, lists help to give pages structure. With-

out headings or lists, pages are featureless and monoto-

nous, making them very difficult to unpick, both visually

and non-visually.

Not all lists need to be bullet lists, showing a list-style, but

there should be some visual indication that the items within

the list are similar or equivalent; that they belong together.

Non-visually, using the or container means the list

is identified when encountered and its items are enumerated.

For our three-item to-do list, screen readers should announce

something like, “list of three items”.

A to-do list is, as the name suggests, a list. Since our particular

to-do list component makes no assertions about priority, an

unordered list is fine. Here’s the structure for a static version

of our to-do list (the adding, deleting, and checking function-

ality has not yet been added):

12 https://smashed.by/inclusivedesignpatterns

44 Chapter 2

https://shop.smashingmagazine.com/products/inclusive-design-patterns
https://smashed.by/inclusivedesignpatterns

<section aria-labelledby="todos-label">

 <h1 id="todos-label">My To-do List</h1>

 Pick up kids from school

 Learn Haskell

 Sleep

</section>

EMPTY STATE
Empty states are an aspect of UI design which you neglect at

your peril.13 Inclusive design has to take user life cycles into

consideration, and some of your most vulnerable users are

new ones. To them your interface is unfamiliar and, without

carefully leading them by the hand, that unfamiliarity can

be off-putting.

With our heading and “add” input present it may be obvious

to some how to proceed, even without example to-do items or

instructions. But your interface may be less familiar and more

13 https://smashed.by/emptystates

A To-do List 45

https://techcrunch.com/2015/11/22/the-most-overlooked-aspect-of-ux-design-could-be-the-most-important/
https://techcrunch.com/2015/11/22/the-most-overlooked-aspect-of-ux-design-could-be-the-most-important/
https://smashed.by/emptystates

complex than this simple to-do list, so let’s add an empty state

anyway — for practice.

Your own interface may be a little more complex than this to-do list, so
let’s add an empty state for practice.

Revealing the empty state

It’s quite possible, of course, to use our data to determine

whether the empty state should be present. In Vue.js, we

might use a v-if block:

<div class="empty-state" v-if="!todos.length">

 <p>Either you've done everything already or there

are still things to add to your list. Add your first

to-do ↓</p>

</div>

46 Chapter 2

But all the state information we need is actually already in the

DOM, meaning all we need to switch between showing the list

and showing the empty state is CSS.

.empty-state, ul:empty {

 display: none;

}

ul:empty + .empty-state {

 display: block;

}

This is more efficient because we don’t have to query the

data or change the markup. It’s also screen reader accessible:

display: none makes sure the element in question is hidden

both visually and from screen reader software.

All pseudo-classes pertain to implicit states. The :empty pseu-

do-class means the element is in an empty state; :checked

means it’s in a checked state; :first-child means it’s posi-

tioned at the start of a set. The more you leverage these, the

less DOM manipulation is required to add and change state

with JavaScript.

A To-do List 47

Adding a to-do item
We’ve come this far without discussing the adding of to-dos.

Let’s do that now. Beneath the list (or empty state if the list is

empty) is a text input and “add” button:

FORM OR NO FORM?
It’s quite valid in HTML to provide an <input> control outside

of a<form> element. The <input> will not succeed in provid-

ing data to the server without the help of JavaScript, but that’s

not a problem in an application using XHR.

But do <form> elements provide anything to users? When

users of screen readers like JAWS or NVDA encounter a

<form> element, they are automatically entered into a special

interaction mode variously called “forms mode” or “applica-

tion mode”. In this mode, some keystrokes that would other-

wise be used as special shortcuts are switched off, allowing

the user to fully interact with the form fields.

Fortunately, most input types — including type="text" here

— trigger forms mode themselves, on focus. For instance, if I

were to type h in the pictured input, it would enter “h” into

48 Chapter 2

the field, rather than navigating me to the nearest

heading element.

The real reason we need a <form> element is because we’ll

want to allow users to submit on Enter , and this only works

reliably where a <form> contains the input on which Enter is

being pressed. The presence of the <form> is not just for code

organization, or semantics, but affects browser behavior.

<form>

 <input type="text" placeholder="E.g. Adopt an owl">

 <button type="submit">Add</button>

</form>

(Note: Léonie Watson14 reports that range inputs are

non-functional in Firefox + JAWS unless a <form> is employed

or forms mode is entered manually, by the user.)

LABELING
Can you spot the deliberate mistake in the above code

snippet? The answer is: I haven’t provided a label. Only a

placeholder is provided and placeholders are intended

for supplementary information only, such as the “adopt an

owl” suggestion.

14 https://twitter.com/LeonieWatson

A To-do List 49

https://twitter.com/LeonieWatson

Placeholders are not reliable as labeling methods in assis-

tive technologies, so another method must be provided. The

question is: should that label be visible, or only accessible by

screen reader?

In almost all cases, a visible label should be placed above

or to the left of the input. Part of the reason for this is that

placeholders disappear on focus and can be eradicated by

autocomplete behavior, meaning sighted users lose their

labels. Filling out information or correcting autocompleted

information becomes guesswork.

However, ours is a bit of a special case because the “add”

label for the adjacent button is quite sufficient. Those look-

ing at the form know what the input does thanks to the

button alone.

All inputs should have labels, because screen reader users

don’t know to look ahead in the source to see if the sub-

mit button they’ve yet to reach gives them any clues about

the form’s purpose. But simple input/submit button pairs

like this and search regions can get away without visi-

ble labels. That is, so long as the submit button’s label is

sufficiently descriptive.

50 Chapter 2

In addition, make sure forms with multiple fields have visible labels for
each field. Otherwise the user does not know which field is for what.

There are a number of ways to provide an invisible label to

the input for screen reader users. One of the simpler and least

verbose is aria-label. However, since aria-label values

are not (as you’ll recall from the previous chapter) translat-

able strings, it’s better to use a visually-hidden <label>

element. This is also better supported by older user agents.

<form>

 <label for="add-todo" class="visually-hidden">Add a

to-do item</label>

 <input id="add-todo" type="text" placeholder="E.g.

Adopt an owl">

 <button type="submit">Add</button>

</form>

(Note: "E.g..." can be used as a standard prefix for placehold-

ers, making it clear they do not represent a pre-filled but pos-

sible value. Otherwise the user may be in danger of believing

no action needs to be taken.)

A To-do List 51

Placeholder styling

Be aware that some user agents (browsers) provide very faint

placeholder text, in gray, which can lead to a failure under

WCAG 1.4.3 Contrast (Minimum).15

I recommend you style placeholders to have a higher contrast

cross-browser and use an additional style — such as italiciza-

tion in the pictured example — to help differentiate it from

user-entered text.

::-webkit-input-placeholder {
 color: #444;
 font-style: italic;
}
::-moz-placeholder {
 color: #444;
 font-style: italic;
}
:-ms-input-placeholder {
 color: #444;
 font-style: italic;
}
:-moz-placeholder {
 color: #444;
 font-style: italic;

}

(Note: The independent blocks are regrettably necessary

because each browser has trouble parsing other browsers’

proprietary selectors.)

15 https://smashed.by/levelaaa

https://www.w3.org/TR/WCAG20/#visual-audio-contrast
https://smashed.by/levelaaa

SUBMISSION BEHAVIOR
One of the advantages of using a <form> with a button of the

submit type is that the user can submit by pressing the

button directly, or by hitting Enter . Even users who do not

rely exclusively on the keyboard to operate the interface may

like to hit Enter because it’s quicker. What makes interaction

possible for some, makes it better for others. That’s inclusion.

If the user tries to submit an invalid entry we need to stop

them. By disabling the <button> until the input is valid,

submission by click or by Enter is suppressed. In fact, the

type="submit" button stops being focusable by keyboard. In

addition to disabling the button, we provide

aria-invalid="true" to the input. Screen readers will tell

their users the input is invalid, letting them know they need to

change it.

Be wary of disabling buttons in this way. Although the context

and state make things clear in this case, making buttons

unfocusable can often mean they are missed — especially

since screen reader users will most likely be navigating by

Tab within a form. It’s usually better to let users focus and

press the button, then let them know if there are any errors.

A To-do List 53

<form>

 <input type="text" aria-invalid="true"

aria-label="Write a new to-do item"

placeholder="E.g. Adopt an owl">

 <button type="submit" disabled>Add</button>

</form>

FEEDBACK
The deal with human–computer interaction is that when one

party does something, the other party should respond. It’s

only polite. For most users, the response on the part of the

computer to adding an item is implicit: they simply see the

item being added to the page. If it’s possible to animate the

appearance of the new item, all the better: some movement

means its arrival is less likely to be missed.

For users who are not sighted or are not using the interface

visually, nothing would seem to happen. They remain focused

on the input, which offers nothing new to be announced in

screen reader software. Silence.

Moving focus to another part of the page — the newly added

to-do, say — would cause that element to be announced. But

we don’t want to move the user’s focus because they might

want to forge ahead writing more to-dos. Instead we can use a

live region.

54 Chapter 2

The feedback live region

Live regions are elements that tell screen readers to

announce their contents whenever those contents change.

With a live region, we can make screen readers talk to their

users without making those users perform any action (such as

moving focus).

Basic live regions are defined by role="status" or the

equivalent aria-live="polite". To maximize compatibility

with different screen readers, you should use both. It may feel

redundant, but it increases your audience.

<div role="status" aria-live="polite">

 <!-- add content to hear it spoken -->

</div>

(Note: A more complete introduction to ARIA live regions is

covered in chapter 9, Notifications.)

On the submit event, I can simply append the feedback to

the live region and it will be immediately announced to the

screen reader user. Here’s a very basic function that might do

that for us:

A To-do List 55

const liveRegion = document.

querySelector('[role="status"]');

function addedFeedback(todoName) {

 liveRegion.textContent = `${todoName} added.`;

}

One of the simplest ways to make your web application more

accessible is to wrap your status messages in a live region.

Then, when they appear visually, they are also announced to

screen reader users.

It’s conventional to color-code status messages. This “success” message
is green, for example. But it’s important to not rely on color, lest you let
down color-blind users. Hence, a supplemental tick icon is provided.

Inclusion is all about different users getting an equivalent
experience, not necessarily the same experience. Some-

times what works for one user is meaningless, redundant, or

obstructive to another.

In this case, the status message is not really needed visually

because the item can be seen joining the list. In fact, adding

the item to the list and revealing a status message at the same

56 Chapter 2

time would be to pull the user’s attention in two directions.

In other words: the visible appending of the item and the

announcement of “[item name] added” are already equivalent.

In which case, we can hide this particular messaging system

from view, with a visually-hidden class.

<div role="status" aria-live="polite" class="visually-

hidden">

 <!-- add content to hear it spoken -->

</div>

As explored previously, this utility class uses some magic to

make sure the elements in question are not visible or have

layout, but are still detected and announced in screen readers.

Here’s what it looks like:

.visually-hidden {

 position: absolute !important;

 clip: rect(1px, 1px, 1px, 1px) !important;

 padding:0 !important;

 border:0 !important;

 height: 1px !important;

 width: 1px !important;

 overflow: hidden !important;

}

A To-do List 57

It should be noted that live regions are a relatively new tech-

nology/feature. During usability testing at Bulb we discovered

that some users hearing a live region announcement think

they have had their focus moved to a new element. Other-

wise, how could it be they are hearing something new? Be

careful where you use live regions, and where you use focus

management. And be mindful that not all screen reader users

are power users, familiar with modern browser and screen

reader behaviors.

Checking off to-do items
Unlike in the previous toggle button chapter, this time

checkboxes feel like the semantically correct way to activate

and deactivate. You don’t press or switch off to-do items; you

check them off.

Luckily, checkboxes let us do that with ease — the behavior

comes out-of-the-box. We just need to remember to label

each instance. When iterating over the checkbox data, we can

write unique values to each for/id pairing using a for loop’s

current index and string interpolation. Here’s how it can be

done in Vue.js:

 <li v-for="(todo, index) in todos">

 <input type="checkbox" :id="`todo-${index}`"

58 Chapter 2

v-model="todo.done">

 <label :for="`todo-${index}`">{{todo.name}}</

label>

(Note: In this example, we imagine that each to-do has a done

property, hence v-model="todo.done" which automatically

checks the checkbox where it evaluates as true.)

THE LINE-THROUGH STYLE
Making robust and accessible components is easy when you

use semantic elements as they were intended. In my ver-

sion, I just add a minor enhancement: a line-through style

for checked items. This is applied to the <label> via the

:checked state using an adjacent sibling combinator.

:checked + label {

 text-decoration: line-through;

}

Once again, I’m leveraging implicit state to affect style.

No need for adding and removing class="crossed-out"

or similar.

(Note: If you want to style the checkbox controls themselves,

WTF Forms gives guidance on doing so without having to

create custom elements.)

A To-do List 59

http://wtfforms.com/

Deleting to-do items
Checking off and deleting to-do list items are distinct actions.

Because sometimes you want to see which items you’ve done,

and sometimes you add to-do items to your list that you didn’t

mean to, or which become non-applicable.

The functionality to delete to-dos can be provided via a sim-

ple button. No need for any special state information — the

label tells us everything we need to know.

In our case, a dustbin icon is provided using SVG. SVG is great

because it’s an image format that scales without degrading.

Many kinds of users often feel the need to scale/zoom inter-

faces, including the shortsighted and those with motor impair-

ments who are looking to create larger touch or click targets.

SVGs are not interpreted by screen readers unless they are

explicitly given a label. We just need to provide a label along-

side the SVG, again using a visually-hidden . Note

the use of focusable="false": some versions of Microsoft

Internet Explorer and Edge make SVGs focusable by default.

Elements that are not interactive should not be focusable by

the user.

60 Chapter 2

<button>

 <svg focusable="false">

 <use xlink:href="#bin-icon"></use>

 </svg>

 delete {{todo.name}}</

span>

</button>

To reduce bloat when using multiple instances of the same

inline SVG icon, we employ the <use> element, which refers

to a canonical version of the SVG, defined as a <symbol> at

the head of the document body:

<body>

 <svg style="display: none">

 <symbol id="bin-icon" viewBox="0 0 20 20">

 <path d="[path data here]">

 </symbol>

 </svg>

A bloated DOM can diminish the experience of many users

since many operations will take longer. Assistive technology

users especially may find their software unresponsive.

A To-do List 61

INCLUSIVE ICONS

The enhanced usability offered to interfaces by icons is

contested.16 Certainly, in combination with text, they can help

comprehension — especially for those who have low literacy

or who are not reading the interface in their first language.

However, any icons offered without supplementary text risk

being misapprehended.

Any icons without additional text may be misinterpreted.

Does my dustbin icon really say delete? Could I make a better

icon, which looks more like a dustbin? I could try something

different, like using a cross icon (as in TodoMVC’s implemen-

tation) but isn’t that more associated with a closing action?

There are no easy answers, so testing with real users is your

best bet.

16 https://smashed.by/mythicons

http://uxmyths.com/post/715009009/myth-icons-enhance-usability
http://uxmyths.com/post/715009009/myth-icons-enhance-usability
https://smashed.by/mythicons

Fortunately, the accidental deletion of a to-do item is not

really a critical mistake, so users can safely find out what the

icon means through trial and error. Where deletion is critical,

a confirmation dialog should be provided, acting as both an

explanation and a means to complete the action.

Note that the design of custom dialogs is not covered by this

chapter. See chapter 11 on Modal Dialogs for more informa-

tion on both native and custom dialog implementations.

FOCUS MANAGEMENT
When a user clicks the delete button for a to-do item, the

to-do item — including the checkbox, the label, and the
delete button itself — will be removed from the DOM. This

raises an interesting problem: what happens to focus when

you delete the currently focused element?

Unless you’re careful, the answer is something very annoying

for keyboard users, including screen reader users.

The truth is, browsers don’t know where to place focus when it

has been destroyed in this way. Some maintain a sort of ghost

focus where the item used to exist, while others jump to focus

the next focusable element. Some flip out completely and

default to focusing the outer document — meaning keyboard

users have to crawl through the DOM back to where the

removed element was.

For a consistent experience between users, we need to

be deliberate and focus() an appropriate element, but

which one?

64 Chapter 2

One option is to focus the first checkbox of the list. Not only

will this announce the checkbox’s label and state, but also

the total number of list items remaining: one fewer than a

moment ago. All useful context.

document.querySelector('ul input').focus();

(Note: querySelector returns the first element that matches

the selector. In our case: the first checkbox in the to-do list.)

But what if we just deleted the last to-do item in our list

and had returned to the empty state? There’s no checkbox

we can focus. Let’s try something else. Instead, I want to do

two things:

1. Focus the region’s “My To-do List” heading

2. Use the live region already instated to provide some

feedback

You should never make non-interactive elements like head-

ings focusable by users because the expectation is that, if

they’re focusable, they should actually do something. When

I’m testing an interface and there are such elements, I would

therefore fail it under WCAG 2.4.3 Focus Order.17

17 https://smashed.by/navmechanisms

A To-do List 65

https://www.w3.org/TR/WCAG20/#navigation-mechanisms
https://smashed.by/navmechanisms

However, sometimes you need to direct a user to a certain

part of the page, via a script. In order to move a user to a

heading and have it announced, you need to do two things:

1. Provide that heading with tabindex="-1"

2. Focus it using the focus() method in your script

<h1 tabindex="-1">My To-do List</h1>

The -1 value’s purpose is twofold: it makes elements unfocus-

able by users (including normally focusable elements) but

makes them focusable by JavaScript. In practice, we can move

a user to an inert element without it becoming a “tab stop” (an

element that can be moved to via the Tab key) among

focusable elements within the page.

In addition, focusing the heading will announce its text, role,

level, and (in some screen readers) contextual information

such as “region”. At the very least, you should hear “My To-do

List, heading, level 2”. Because it is in focus, pressing tab will

step the user back inside the list and onto the first checkbox.

In effect, we’re saying, “now that you’ve deleted that list item,

here’s the list again.”

66 Chapter 2

I typically do not supply focus styles to elements which are

focused programmatically in this way. Again, this is because

the target element is not interactive and should not appear to

be so.

[tabindex="-1"] { outline: none }

After the focused element (and with it its focus style) has been

removed, the heading is focused. A keyboard user can then

press Tab to find themselves on that first checkbox or — if

there are no items remaining — the text input at the foot of

the component.

The feedback

Arguably, we’ve provided enough information for the user and

placed them in a perfect position to continue. But it’s always

better to be explicit. Since we already have a live region

instated, why not use that to tell them the item has been

successfully removed?

function deletedFeedback(todoName) {

 liveRegion.textContent = `${todoName} deleted.`;

}

A To-do List 67

I appreciate that you probably wouldn’t be writing this in

vanilla JavaScript, but this is basically how it would work.

Now, because we’ve used role="status"

(aria-live="polite"), something neat happens in support-

ing screen readers: “My To-do List, heading, level 2” is read

first, followed by “[to-do item name] deleted”.

That’s because polite live regions wait until the interface

and the user have settled before making themselves known.

Had I used role="alert" (aria-live="assertive"), the

status message would override (or partially override) the

focus-invoked heading announcement. Instead, the user

knows both where they are, and that what they’ve tried to do

has succeeded.

Working demo
I’ve created a demo18 to demonstrate the techniques in this

post. It uses Vue.js, but could have been created with any

JavaScript framework. It’s offered for testing with different

screen reader and browser combinations.

18 https://smashed.by/todolistvuedemo

68 Chapter 2

https://heydon.github.io/inclusive-components-demos/todo-list/vue-demo.html
https://smashed.by/todolistvuedemo

Conclusion
Counting semantic structure, labeling, iconography, focus

management and feedback, there’s quite a lot to consider

when creating an inclusive to-do list component. If that

makes inclusive design seem dauntingly complex, consider

the following:

1. This is new stuff. Don’t worry, it’ll become second nature

soon enough.

2. Everything you’ve learned here is applicable to a wide

range of content management components, and many

other components.

3. You only need to build a rock solid component once. Then

it can live in your pattern library and be reused indefinitely.

CHECKLIST

• Give every major component, like this one, a

well-written heading.

• Only provide “screen reader only” input labels if

something else labels the input visually. Placeholders

don’t count.

• When you remove a focused element from the DOM,

focus an appropriate nearby element with focus().

• Consider the wording of empty states carefully. They

introduce new users to your functionality.

A To-do List 69

Menus and Menu Buttons

C lassification is hard. Take crabs, for example. Hermit

crabs, porcelain crabs, and horseshoe crabs are not —

taxonomically speaking — true crabs. But that doesn’t

stop us using the “crab” suffix. It gets more confusing when,

over time and thanks to a process called carcinisation, untrue

crabs evolve to resemble true crabs more closely. This is the

case with king crabs, which are believed to have been hermit

crabs in the past. Imagine the size of their shells!

In design, we often make the same mistake of giving different

things the same name. They appear similar, but appearances

can be deceptive. This can have an unfortunate effect on the

clarity of your component library. In terms of inclusion, it may

also lead you to repurpose a semantically and behaviorally

inappropriate component. Users will expect one thing and

get another.

The term “dropdown” names a classic example. Lots of things

drop down in interfaces, including the set of <option>s from

a <select> element, and the JavaScript-revealed list of links

that constitute a navigation submenu. Same name; quite dif-

ferent things. (Some people call these “pulldowns”, of course,

but let’s not get into that.)

70 Chapter 3

Dropdowns that constitute a set of options are often called

“menus”, and I want to talk about these here. We shall be

devising a true menu, but there’s plenty to be said about

not-really-true menus along the way.

Let’s start with a quiz. Is the box of links hanging down from

the navigation bar in the illustration a menu?

The answer is no, not a true menu.

It’s a longstanding convention that navigation schemas are

composed of lists of links. A convention nearly as longstand-

ing dictates that subnavigation should be provided as nested

lists of links. If I were to remove the CSS for the component

illustrated above, I should see something like the following,

except colored blue and in Times New Roman.

Menus & Menu Buttons 71

• Home

• About

• Shop

• Dog costumes

• Waffle irons

• Magical orbs

• Contact

Semantically speaking, nested lists of links are correct in this

context. Navigation systems are really tables of content and

this is how tables of content are structured. The only thing

that really makes us think “menu” is the styling of the nested

lists and the way they are revealed on hover or focus.

That’s where some go wrong and start adding WAI-ARIA

semantics: aria-haspopup="true", role="menu",

role="menuitem" etc. There is a place for these, as we’ll

cover, but not here. Here are two reasons why:

1. ARIA menus are not designated for navigation but for

application behavior. Imagine the menu system for a

desktop application.

2. The top-level link should be usable as a link, meaning it

does not behave like a menu button.

72 Chapter 3

Regarding (2): When traversing a navigation region with

submenus, one would expect each submenu to appear upon

hovering or focusing the “top level” link (“Shop” in the illustra-

tion). This both reveals the submenu and places its own links

in focus order. With a little help from JavaScript capturing

focus and blur events to persist the appearance of the sub-

menus while needed, someone using the keyboard should be

able to tab through each link of each tier, in turn.

Menu buttons which take the aria-haspopup="true" prop-

erty do not behave like this. They are activated on click and

have no other purpose than to reveal a secreted menu.

As pictured, whether that menu is open or closed should be

communicated with aria-expanded. You should only change

this state on click, not on focus. Users do not usually expect an

explicit change of state on a mere focus event. In our naviga-

tion system, state doesn’t really change; it’s just a styling trick.

Menus & Menu Buttons 73

Behaviorally, we can Tab through the navigation as if no

such show/hide trickery were occurring.

The problem with
navigation submenus
Navigation submenus (or “dropdowns” to some) work well

with a mouse or by keyboard, but they’re not so hot when it

comes to touch. When you press the top-level “Shop” link in

our example for the first time, you are telling it to both open

the submenu and follow the link.

There are two possible resolutions here:

1. Prevent the default behavior of top-level links

(e.preventDefault()) and script in full WAI-ARIA menu

semantics and behavior.

2. Make sure each top-level destination page has a table of

contents as an alternative to the submenu.

1) is unsatisfactory because, as I noted previously, these kinds

of semantics and behaviors are not expected in this context,

where links are the subject controls. Plus, users could no

longer navigate to a top-level page, if it exists.

74 Chapter 3

WHICH DEVICES ARE TOUCH DEVICES?

It’s tempting to think, “This isn’t a great solution, but I’ll only

add it for touch interfaces.” The problem is: how do you detect

if a device has a touchscreen?

You certainly shouldn’t equate “small screen” with “touch-ac-

tivated.” Having worked in the same office as folks making

touch displays for museums, I can assure you that some of the

largest screens around are touch screens. Dual keyboard and

touch-input laptops are becoming increasingly prolific too.

By the same token, many but not all smaller devices are

touch devices. In inclusive design, you cannot afford to

make assumptions.

Resolution (2) is more inclusive and robust in that it provides a

“fallback” for users of all inputs. But the scare quotes around

the fallback term here are quite deliberate because I actu-

ally think in-page tables of content are a superior way of

providing navigation.

The award winning Government Digital Services19 team would

appear to agree. You may also have seen them on Wikipedia.

19 https://smashed.by/contentorg

Menus & Menu Buttons 75

https://smashed.by/contentorg

Tables of content
Tables of content are navigation for related pages or page

sections and should be semantically similar to main site

navigation regions, using a <nav> element, a list, and a group

labeling mechanism.

<nav aria-labelledby="sections-heading">
 <h2 id="sections-heading">Products</h2>

 Dog costumes

 Waffle irons

 Magical orbs

</nav>
<!-- each section, in order, here -->

76 Chapter 3

NOTES

• In this example, we’re imagining that each section

is its own page, as it would have been in the

dropdown submenu.

• It’s important that each of these “Shop” pages has

the same structure, with this “Products” table of

content present in the same place. Consistency

supports understanding.

• The list groups the items and enumerates them in

assistive technology output, such as a screen reader’s

synthetic voice

• The <nav> is recursively labeled by the heading using

aria-labelledby. This means “products navigation” will

be announced in most screen readers upon entering the

region by Tab . It also means that “products navigation”

will be itemized in screen reader element interfaces,

from which users can navigate to regions directly.

ALL ON ONE PAGE
If you can fit all the sections onto one page without

it becoming too long and arduous to scroll, even better.

Just link to each section’s hash identifier. For example,

href="#waffle-irons" should point

to id="waffle-irons".

Menus & Menu Buttons 77

<nav aria-labelledby="sections-heading">
 <h2 id="sections-heading">Products</h2>

 Dog costumes
 Waffle irons
 Magical orbs

</nav>
<!-- dog costumes section here -->
<section id="waffle-irons" tabindex="-1">
 <h2>Waffle Irons</h2>

</section><!-- magical orbs section here -->

(Note: Some browsers are poor at actually sending focus to

linked page fragments. Placing tabindex="-1" on the target

fragment fixes this. Although tabindex="-1" is more typi-

cally used with JavaScript and the focus() method, it is not

needed in this case.)

Where a site has a lot of content, a carefully constructed

information architecture, expressed through the liberal use of

tables of content “menus” is infinitely preferable to a precar-

ious and unwieldy dropdown system. Not only is it easier to

make responsive, and requires less code to do so, but it makes

things clearer: where dropdown systems hide structure away,

tables of content lay it bare.

78 Chapter 3

Some sites, including the Government Digital Service’s

GOV.UK,20 include index (or “topic”) pages that are just tables

of content. It’s such a powerful concept that the popular static

site generator Hugo generates such pages by default.21

Information architecture is a big part of inclusion. A badly

organized site can be as technically compliant as you like, but

will still alienate lots of users — especially those with cogni-

tive impairments or those who are pressed for time.

Navigation menu buttons
While we’re on the subject of faux navigation-related menus,

it’d be remiss of me not to talk about navigation menu but-

tons. You’ve almost certainly seen these denoted by a three-

line “hamburger” or “navicon” icon.

20 https://www.gov.uk/
21 https://smashed.by/hugotemplates

Menus & Menu Buttons 79

http://GOV.UK
https://gohugo.io/templates/list/
https://www.gov.uk/
https://smashed.by/hugotemplates

Even with a pared down information architecture and only

one tier of navigation links, space on small screens is at a pre-

mium. Hiding navigation behind a button means there’s more

room for the main content in the viewport.

A navigation button is the closest thing we’ve studied so far to

a true menu button. Since it has the purpose of toggling the

availability of a menu on click, it should

1. Identify itself as a button, not a link;

2. Identify the expanded or collapsed state of its corre-

sponding menu (which, in strict terms, is just a list of links).

PROGRESSIVE ENHANCEMENT
But let’s not get ahead of ourselves. We ought to be mindful of

progressive enhancement and consider how this would work

without JavaScript.

In an unenhanced HTML document there’s not a lot you can

do with buttons (except submit buttons but that’s not even

closely related to what we want to achieve here). Instead,

perhaps we should start with just a link which takes us to

the navigation?

navigation
<!-- some content here perhaps -->
<nav id="navigation">

80 Chapter 3

 Home
 About
 Shop
 Content

</nav>

There’s not a lot of point in having the link unless there’s a

lot of content between the link and the navigation. Since site

navigation should almost always appear near the top of the

source order, there’s no need. So, really, a navigation menu in

the absence of JavaScript should just be… some navigation.

<nav id="navigation">

 Home
 About
 Shop
 Content

</nav>

You enhance this by adding the button, in its initial state, and

hiding the navigation (using the hidden attribute):

<nav id="navigation">
 <button aria-expanded="false">Menu</button>
 <ul hidden>
 Home

Menus & Menu Buttons 81

 About
 Shop
 Contact

</nav>

Some older browsers — you know which ones — don’t sup-

port hidden, so remember to put the following in your CSS.

It fixes the problem because display: none has the same

effect of hiding the menu from assistive technologies and

removing the links from focus order.

[hidden] {
 display: none;
}

Doing one’s best to support older software is, of course, an act

of inclusive design. Some are unable or unwilling to upgrade.

PLACEMENT
Where a lot of people go wrong is by placing the button

outside the region. This would mean screen reader users who

move to the <nav> using a shortcut would find it to be empty,

which isn’t very helpful. With the list hidden from screen read-

ers, they’d just encounter this:

82 Chapter 3

<nav id="navigation"></nav>

Here’s how we might toggle state:

const navButton = document.querySelector('nav
button');
navButton.addEventListener('click', function() {
 let expanded = this.getAttribute('aria-expanded')
=== '
true';
 this.setAttribute('aria-expanded', !expanded);
 let menu = this.nextElementSibling;
 menu.hidden = !menu.hidden;
});

(Note: We are not using an arrow function here, because we

don’t want this to refer to the parent context.)

ARIA-CONTROLS
As I wrote in “Aria-controls Is Poop,”22 the aria-controls

attribute, intended to help screen reader users navigate from

a controlling element to a controlled element, is only sup-

ported in the JAWS screen reader. So you simply can’t rely

on it.

22 https://smashed.by/ariacontrols

Menus & Menu Buttons 83

http://www.heydonworks.com/article/aria-controls-is-poop
https://smashed.by/ariacontrols

Without a good method for directing users between elements,

you should instead make sure one of the following is true:

1. The expanded list’s first link is next in focus order after

the button (as in the previous code example).

2. The first link is focused programmatically upon reveal-

ing the list.

In this case, I would recommend (1). It’s a lot simpler since you

don’t have to worry about moving focus back to the button

and on which event(s) to do so. Also, there’s currently nothing

in place to warn users that their focus will be moved to some-

where different. In the true menus we’ll be discussing shortly,

this is the job of aria-haspopup="true".

Employing aria-controls doesn’t really do much harm,

except that it makes readout in screen readers more verbose.

However, some JAWS users may expect it. Here is how it

would be applied, using the list’s id as the cipher:

<nav id="navigation">
 <button aria-expanded="false" aria-controls="menu-
list">Menu</button>
 <ul id="menu-list" hidden>
 Home
 About
 Shop
 Contact

</nav>

84 Chapter 3

THE MENU AND MENUITEM ROLES
A true menu (in the WAI-ARIA sense) should identify itself as

such using the menu role (for the container) and, typically,

menuitem children (other child roles may apply23). These par-

ent and child roles work together to provide information to

assistive technologies. Here’s how a list might be augmented

to have menu semantics:

<ul role="menu">
 <li role="menuitem">Item 1
 <li role="menuitem">Item 2
 <li role="menuitem">Item 3

Since our navigation menu is beginning to behave somewhat

like a “true” menu, should these not be present?

The short answer is: no. The long answer is: no, because

our list items contain links and menuitem elements are not

intended to have interactive descendants.24 That is, they are

the controls in a menu.

We could, of course, suppress the list semantics of the s

using role="presentation"25 or role="none" (which are

equivalent) and place the menuitem role on each link.

23 https://smashed.by/ariarolesmenu
24 https://smashed.by/ariamenuitem
25 https://smashed.by/ariarolespresentation

Menus & Menu Buttons 85

https://www.w3.org/TR/wai-aria/roles#menu
https://w3c.github.io/html-aria/#index-aria-menuitem
https://w3c.github.io/html-aria/#index-aria-menuitem
https://www.w3.org/TR/wai-aria/roles#presentation
https://smashed.by/ariarolesmenu
https://smashed.by/ariamenuitem
https://smashed.by/ariarolespresentation

However, this would suppress the implicit link role. In other

words, the example to follow would be announced as “Home,

menu item”, not “Home, link” or “Home, menu item, link.” ARIA

roles simply override HTML roles.

<!-- will be read as "Home, menu item" -->
<li role="presentation">
 Home

We want the user to know that they are using a link and can

expect link behavior, so this is no good. Like I said, true menus

are for (JavaScript-driven) application behavior.

What we’re left with is a kind of hybrid component, which isn’t

quite a true menu but at least tells users whether the list of

links is open, thanks to the aria-expanded state. This is a

perfectly satisfactory pattern for navigation menus.

THE <SELECT> ELEMENT

If you’ve been involved in responsive design from the begin-

ning, you may remember a pattern whereby navigation was

condensed into a <select> element for narrow viewports.

86 Chapter 3

As with the checkbox-based toggle buttons we discussed,

using a native element that behaves somewhat as intended

without additional scripting is a good choice for efficiency

and — especially on mobile — performance. And <select>

elements are menus of sorts, with similar semantics to the

button-triggered menu we shall soon be constructing.

However, just as with the checkbox toggle button, we’re

using an element associated with entering input, not simply

making a choice. This is likely to cause confusion for many

users — especially since this pattern uses JavaScript to make

the selected <option> behave like a link. The unexpected

change of context this elicits is considered a failure according

to WCAG’s 3.2.2 On Input (Level A)26 criterion.

26 https://smashed.by/consistentbehaviour

Menus & Menu Buttons 87

https://www.w3.org/TR/WCAG20/#consistent-behavior-unpredictable-change
https://smashed.by/consistentbehaviour

True menus
Now that we’ve had the discussion about false menus and

quasi-menus, the time has arrived to create a true menu,

as opened and closed by a true menu button. From here on

in I will refer to the button and menu together as simply a

“menu button.”

But in what respects will our menu button be true? Well,

it’ll be a menu component intended for choosing options in

the subject application, which implements all the expected

semantics and corresponding behaviors to be considered

conventional for such a tool.

As mentioned already, these conventions come from desktop

application design. ARIA attribution and JavaScript governed

focus management are needed to imitate them fully. Part of

the purpose of ARIA is to help web developers create rich

web experiences without breaking with usability conventions

forged in the native world. If your project does not closely

imitate a desktop application, it’s very unlikely you should be

using an ARIA menu system of any kind.

In this example, we’ll imagine our application is some sort of

game or quiz. Our menu button will let the user choose a dif-

ficulty level. With all the semantics in place, the menu looks

like this:

88 Chapter 3

<button aria-haspopup="true" aria-expanded="false">
 Difficulty
 ▾
</button>
<div role="menu">
 <button role="menuitem">Easy</button>
 <button role="menuitem">Medium</button>
 <button role="menuitem">Incredibly Hard</button>
</div>

NOTES

• The aria-haspopup property simply indicates that the

button secretes a menu. It acts as warning that, when

pressed, the user will be moved to the “popup” menu

(we’ll cover focus behavior shortly). Its value does not

change — it remains as true at all times.

• The inside the button contains the Unicode point

for a black down-pointing small triangle. This convention

indicates visually what aria-haspopup does non-visually

— that pressing the button will reveal something below

it. The aria-hidden="true" attribution prevents screen

readers from announcing “down-pointing triangle” or

similar. Thanks to aria-haspopup, it’s not needed in the

non-visual context.

Menus & Menu Buttons 89

• The aria-haspopup property is complemented by

aria-expanded. This tells the user whether the menu

is currently in an open (expanded) or closed (collapsed)

state by toggling between true and false values.

• The menu itself takes the (aptly named) menu role. It

takes descendants with the menuitem role. They do not

need to be direct children of the menu element, but they

are in this case — for simplicity.

Keyboard and focus behavior
When it comes to making interactive controls keyboard-

accessible, the best thing you can do is use the right elements.

Because we’re using <button> elements here, we can be

assured that click events will fire on Enter and Space

keystrokes, as specified in the HTMLButtonElement inter-

face.27 It also means that we can disable the menu items using

the button-associated disabled property.

There’s a lot more to menu button keyboard interaction,

though. Here’s a summary of all the focus and keyboard

behavior we’re going to implement, based on WAI-ARIA

Authoring Practices 1.1:28

27 https://smashed.by/htmlbutton
28 https://smashed.by/menubutton

90 Chapter 3

https://developer.mozilla.org/en/docs/Web/API/HTMLButtonElement
https://developer.mozilla.org/en/docs/Web/API/HTMLButtonElement
https://www.w3.org/TR/wai-aria-practices-1.1/#menubutton
https://www.w3.org/TR/wai-aria-practices-1.1/#menubutton
https://smashed.by/htmlbutton
https://smashed.by/menubutton

Enter , Space or ↓ on the

menu button
Opens the menu

↓ on a menu item
Moves focus to the next

menu item, or the first menu

item if you’re on the last one

↑ on a menu item
Moves focus to the previous

menu item, or the last menu

item if you’re on the first one

↑ on the menu button Closes the menu if open

Esc on a menu item
Closes the menu and focuses

the menu button

The advantage of moving focus between menu items using

the arrow keys is that Tab is preserved for moving out of the

menu. In practice, this means users don’t have to move

through every menu item to exit the menu — a huge improve-

ment for usability, especially where there are many

menu items.

The application of tabindex="-1" makes the menu items

unfocusable by Tab but preserves the ability to focus the

elements programmatically, upon capturing keystrokes on the

arrow keys.

Menus & Menu Buttons 91

<button aria-haspopup="true" aria-expanded="false">
 Difficulty
 ▾
</button>
<div role="menu">
 <button role="menuitem" tabindex="-1">Easy</button>
 <button role="menuitem" tabindex="-1">Medium</
button>
 <button role="menuitem" tabindex="-1">Incredibly
Hard</button>
</div>

The open method
As part of a robust API design, we can construct methods for

handling the various events.

For example, the open method needs to switch the

aria-expanded value to true, change the menu’s hidden

property to false, and focus the first menuitem in the menu

that isn’t disabled:

MenuButton.prototype.open = function() {
 this.button.setAttribute('aria-expanded', true);
 this.menu.hidden = false;
 this.menu.querySelector(':not([disabled])').focus();
 return this;
};

92 Chapter 3

We can execute this method where the user presses the down

key on a focused menu button instance:

this.button.addEventListener(
 'keydown',
 function(e) {
 if (e.keyCode === 40) {
 this.open();
 }
 }.bind(this)
);

In addition, a developer using this script will now be able to

open the menu programmatically:

exampleMenuButton = new MenuButton(document.
querySelector('[aria-haspopup]'));

exampleMenuButton.open();

Menus & Menu Buttons 93

THE CHECKBOX HACK

As much as possible, it’s better not to use JavaScript unless

you need to. Involving a third technology on top of HTML and

CSS is necessarily an increase in systemic complexity and frag-

ility. However, not all components can be satisfactorily built

without JavaScript in the mix.

In the case of menu buttons, an enthusiasm for making them

“work without JavaScript” has led to something called the

checkbox hack. This is where the checked (or unchecked)

state of a hidden checkbox is used to toggle the visibility of a

menu element using CSS.

/* menu closed */
[type="checkbox"] + [role="menu"] {
 display: none;
}
/* menu open */
[type="checkbox"]:checked + [role="menu"] {
 display: block;
}

To screen reader users, the checkbox role and checked state

are nonsensical in this context. This can be partly overcome

by adding role="button" to the checkbox.

<input type="checkbox" role="button" aria
haspopup="true" id="toggle">

Unfortunately, this suppresses the implicit checked state

communication, depriving us of JavaScript-free state feedback

(poor though it would have been as “checked” in this context).

But it is possible to spoof aria-expanded. We just need to

supply our label with two spans as below.

<input type="checkbox" role="button" aria-
haspopup="true" id="toggle" class="visually-hidden">
<label for="toggle" data-opens-menu>
 Difficulty
 <span class="visually-hidden expanded-
text">expanded
 <span class="visually-hidden collapsed-
text">collapsed
 ▾
</label>

These are both visually hidden using the visually-hidden

class,29 but — depending on which state we’re in — only

one is hidden to screen readers as well. That is, only one has

display: none, and this is determined by the extant (but not

communicated) checked state:

29 https://smashed.by/hidecontent

http://a11yproject.com/posts/how-to-hide-content/
http://a11yproject.com/posts/how-to-hide-content/
https://smashed.by/hidecontent

/* class to hide spans visually */
.visually-hidden {
 position: absolute;
 clip: rect(1px, 1px, 1px, 1px);
 clip-path: inset(100%);
 padding: 0;
 border: 0;
 height: 1px
 width: 1px;
 overflow: hidden;
}

/* reveal the correct state wording to screen readers
based on state */
[type='checkbox']:checked + label .expanded-text {
 display: inline;
}

[type='checkbox']:checked + label .collapsed-text {
 display: none;
}

[type='checkbox']:not(:checked) + label .expanded-text
{
 display: none;
}

[type='checkbox']:not(:checked) + label .collapsed-text
 {
 display: inline;
}

This is clever and all, but our menu button is still incomplete

since the expected focus behaviors we’ve been discussing

simply cannot be implemented without JavaScript.

These behaviors are conventional and expected, making the

button more usable. However, if you really need to imple-

ment a menu button without JavaScript, this is about as close

as you can get. Considering the cut-down navigation menu

button I covered previously offers menu content that is not

JavaScript-dependent itself (i.e. links), this approach may be a

suitable option.

Demo: Just for fun, here’s a demo of a hamburger

menu that works without JavaScript.30

(Note: Only Space opens the menu.)

30 https://smashed.by/hamburgerwithoutjs

https://heydon.github.io/inclusive-components-demos/menus-and-menu-buttons/hamburger-without-js.html
https://heydon.github.io/inclusive-components-demos/menus-and-menu-buttons/hamburger-without-js.html
https://smashed.by/hamburgerwithoutjs

The “choose” event
Executing some methods should emit events so that we can

set up listeners. For example, we can emit a choose event

when a user clicks a menu item. We can set this up using

CustomEvent, which lets us pass an argument to the event’s

detail property. In this case, the argument (“choice”) would

be the chosen menu item’s DOM node.

MenuButton.prototype.choose = function(choice) {
 // Define the 'choose' event
 var chooseEvent = new CustomEvent('choose', {
 detail: {
 choice: choice
 }
 });
 // Dispatch the event
 this.button.dispatchEvent(chooseEvent);
 return this;
};

There are all sorts of things we can do with this mech-

anism. Perhaps we have a live region set up with an id

of menuFeedback:

<div role="alert" id="menuFeedback"></div>

98 Chapter 3

Now we can set up a listener and populate the live region

with the information secreted inside the event:

// Save a reference to the live region
const liveRegion = document.
getElementById('menuFeedback');

exampleMenuButton.addEventListener('choose', e => {
 // Get the node’s text content (label)
 let choiceLabel = e.details.choice.textContent;

 // Populate the live region
 liveRegion.textContent = `Your difficulty level is
${choiceLabel}`;
}):

When a user chooses an option, the menu closes and focus is returned
to the menu button. It’s important users are returned to the triggering
element after the menu is closed.

Menus & Menu Buttons 99

When a menu item is selected, the screen reader user will

hear, “You chose [menu item’s label].” A live region (defined

here with the role="alert" attribution) announces its con-

tent in screen readers whenever that content changes. The

live region isn’t mandatory, but it is an example of what might

happen in the interface as a response to the user making a

menu choice.

Persisting choices
Not all menu items are for choosing persistent settings. Many

just act like standard buttons which make something in the

interface happen when pressed. However, in the case of our

difficulty menu button, we’d like to indicate which is the cur-

rent difficulty setting — the one chosen last.

The aria-checked="true" attribute works for items that,

instead of menuitem, take the menuitemradio role. The

enhanced markup, with the second item checked (set) looks

like this:

<button aria-haspopup="true" aria-expanded="false">
 Difficulty
 ▾
</button>

100 Chapter 3

<div role="menu">
 <button role="menuitemradio" tabindex="-1">Easy</
button>
 <button role="menuitemradio" aria-checked="true"
tabindex="-1">Medium</button>
 <button role="menuitemradio" tabindex="-
1">Incredibly Hard</button>
</div>

Native menus on many platforms indicate chosen items using

check marks. We can do that with no trouble using a little

extra CSS:

[role='menuitem'][aria-checked='true']::before {
 content: '\2713\0020';
}

While traversing the menu with a screen reader running,

focusing this checked item will prompt an announcement like

“check mark, Medium menu item, checked.”

The behavior on opening a menu with a checked

menuitemradio differs slightly. Instead of focusing the

first (enabled) item in the menu, the checked item is

focused instead.

Menus & Menu Buttons 101

What’s the benefit of this behavior? The user (any user) is

reminded of their previously selected option. In menus with

numerous incremental options (for example, a set of zoom

levels), people operating by keyboard are placed in the opti-

mal position to make their adjustment.

Using the menu button with a
screen reader

Video: I’ll show you what it’s like to use the

menu button31 with the VoiceOver screen reader

and Chrome. The example uses items with

menuitemradio, aria-checked and the focus

behavior discussed. Similar experiences can be

expected across the gamut of popular screen

reader software.

31 https://smashed.by/menubuttonvoiceover

102 Chapter 3

https://www.youtube.com/watch?v=Aw_HMHdId88
https://www.youtube.com/watch?v=Aw_HMHdId88
https://smashed.by/menubuttonvoiceover

Inclusive Menu Button on GitHub
Hugo Giraudel32 and I have worked together on creating

a menu button component with the API features I have

described, and more. You have Hugo to thank for many of

these features, since they were based on the work they did on

a11y-dialog — an accessible modal dialog. It is available on

GitHub and NPM.

npm i inclusive-menu-button --save

In addition, Hugo has created a React version33 for

your delectation.

32 https://twitter.com/HugoGiraudel
33 https://smashed.by/reactmenubutton

Menus & Menu Buttons 103

https://twitter.com/HugoGiraudel
https://github.com/HugoGiraudel/react-menu-button
https://twitter.com/HugoGiraudel
https://smashed.by/reactmenubutton

Checklist

• Don’t use ARIA menu semantics in navigation

menu systems.

• On content-heavy sites, don’t hide structure away in

nested dropdown-powered navigation menus.

• Use aria-expanded to indicate the open/closed state of

a button-activated navigation menu.

• Make sure said navigation menu is next in focus order

after the button that opens/closes it.

• Never sacrifice usability in the pursuit of JavaScript-free

solutions. It’s vanity.

104 Chapter 3

Tooltips and Toggletips

T ooltips — affectionately misnomered as “tootlips”

by my friend Steve34 — are a precariously longstand-

ing interface pattern. Literally “tips for tools”, they

are little bubbles of information that clarify the purpose of

otherwise ambiguous controls/tools. A common example is a

control that is only represented by a cryptic icon, the meaning

of which the user has yet to learn.

When and how these bubbles transpire is apparently up for

debate, since I’ve encountered many a tooltip and they all

seem to behave slightly differently. I’ve come to the conclu-

sion that these numerous implementations fall into two dis-

tinct groups: true tooltips, and a pattern I’m hesitantly calling

the “toggletip”, coined by the aforementioned Steve in some

research and experimentation35 he did not long ago.

Inclusive design is often about providing the user with the

right tool for the job, and the right kind of tooltip to go with

that tool. In this chapter, I’ll be looking at situations which

might call for a tooltip or else a toggletip, and formulating

inclusive implementations for each.

34 https://twitter.com/stevefaulkner
35 https://smashed.by/toggletip

Tooltips & Toggletips 105

https://twitter.com/stevefaulkner
https://www.paciellogroup.com/blog/2016/01/simple-standalone-toggletip-widget-pattern/
https://twitter.com/stevefaulkner
https://smashed.by/toggletip

The title attribute
We can’t talk about tooltips without bringing up the title

attribute: the HTML standard for providing contextual

information bubbles. The Paciello Group blog pulls no

punches in describing the title attribute’s contribution to

web interfaces:

“If you want to hide content from mobile and tablet users

as well as assistive tech users and keyboard only users, use

the title attribute.” — The Paciello Group blog36

That’s pretty bad in terms of inclusion. In fact, the only place

I can think of where the title attribute works reliably in

screen reader software is on form elements like <input>s.

Even then, touch and keyboard users won’t get to see the

title message appear. In short: just provide a clearly worded,

permanently visible label.

36 https://smashed.by/titleattribute

106 Chapter 4

https://smashed.by/titleattribute

I’m a big supporter of using standard HTML elements and

attributes wherever they’re available. It’s the most efficient

and performant way to build usable web interfaces. But,

despite being a specification mainstay, the title attribute

really isn’t fit for purpose.

Then again, we’ve yet to define that purpose. What should

tooltips be used for? And even if we can design them to be

usable by the many, do we need them at all?

A case for tooltips
As we already established, tooltips are for clarification; they

are for providing missing information. But why should that

information be missing in the first place? As I wrote in

Inclusive Design Patterns,37 icons can accelerate the under-

standing of an interface, and help to internationalize it. But

icons provided in isolation are always in danger of completely

confounding a user — because they don’t spell anything out.

To users who don’t recognize or can’t decipher the icon, infor-

mation is missing.

Most of the time, you should simply provide text alongside

icons. Like the perma-visible field labels I just mentioned,

textual labels are the most straightforward way of labeling

37 https://smashed.by/idp

Tooltips & Toggletips 107

https://shop.smashingmagazine.com/products/inclusive-design-patterns
https://smashed.by/idp

things and they’re automatically screen reader accessible if

provided as real text (not images of text).

The usual excuse for not providing textual labels is, “there’s

no space.” And there likely isn’t, if you set out not to include

textual labels in the first place. If you treat them as important

from the beginning, you will find a way.

There’s always room for text if you make it, but some configurations
leave more space for text than others.

Tooltips are a last resort, where space really is at a premium

— perhaps due to the sheer number of controls, like in the

toolbar for a WYSIWYG editor. So, how would we go about

designing them to be as inclusive as possible?

Inclusive tooltips
The first thing to get right is making the text in the tooltip

accessible to assistive technologies. There are a couple of

different methods for associating the tooltip to the focused

108 Chapter 4

control, and we choose between them based on the specific

role of that tooltip: Is the tooltip there to provide a primary

label or an auxiliary clarification?

A notifications control with a tooltip reading “Notifications”

treats the tooltip as a primary label. Alternatively, a tool-

tip that reads “View notifications and manage settings”

is supplementary.

TOOLTIP AS PRIMARY LABEL
To associate one element with another as its primary label,

you can use aria-labelledby. The relationship is forged

by the aria-labelledby and id attributes sharing the

same value.

<button class="notifications" aria-
labelledby="notifications-label">
 <svg><use xlink:href="#notifications-icon"></use></
svg>

Tooltips & Toggletips 109

</button>
<div role="tooltip" id="notifications-
label">Notifications</div>

• Note the use of the tooltip role. In practical terms, all

this role offers is an assurance that aria-labelledby

works reliably where supported. As Léonie Watson writes,

ARIA labels and descriptions sometimes don’t work with

all elements38 unless you incorporate an appropriate

role. In this case, the most important role is the implicit

button role of the subject <button> element, but

role="tooltip" may extend support for this labeling

method in some software.

• Whatever text content is in the linked SVG, it won’t be

read out. The aria-labelledby association supersedes

the text content of the button as the label.

To a screen reader — and its user — the above is now func-

tionally similar to using a simple text label, like this:

<button class="notifications">Notifications</button>

38 https://smashed.by/arialabelledby

110 Chapter 4

https://www.paciellogroup.com/blog/2017/07/short-note-on-aria-label-aria-labelledby-and-aria-describedby/
https://www.paciellogroup.com/blog/2017/07/short-note-on-aria-label-aria-labelledby-and-aria-describedby/
https://smashed.by/arialabelledby

Remember that text nodes are translatable by Google’s and

Microsoft’s translation services, so using aria-labelledby

to connect a text node to an element is better than using

aria-label as an attribute with its own value.

The tooltip text is available on focus, just as it would be on

hover for sighted users. In fact, if all text appeared only on

hover, a sighted mouse user’s experience of an interface

would be somewhat analogous to that of a blind screen

reader user.

REDUNDANT TOOLTIPS

All the time as an interface design consultant, I see people

providing title attributes to links with identical text nodes.

<a href="/some/path" title="Heydon’s special
page">Heydon’s special page

Since the text node is already perfectly visible, this is com-

pletely redundant. It doesn’t even add anything for screen

readers except — in some cases — repetition.

Tooltips & Toggletips 111

Including notification count

What if the notifications button showed a count of unread

notifications, as these things often do? (I’m thinking, of course,

of Twitter.)

Fortunately, aria-labelledby can accept multiple, space

separated ids.

<button class="notifications" aria-
labelledby="notifications-count notifications-label">
 <svg><use xlink:href="#notifications-icon"></use></
svg>
 3
</button>
<div role="tooltip" id="notifications-
label">Notifications</div>

Despite the #notifications-count element appearing

inside the <button>, it does not form the label by itself: It

forms the first part of the label as the first id listed in the

aria-labelledby value. It is placed where it is so that the

designer can take advantage of relative and absolute posi-

tioning to arrange the element visually.

112 Chapter 4

To screen reader users, the label is now “3 notifications.” This

succinctly acts as both a current count of notifications and a

reminder that this is the notifications control.

TOOLTIP AS AUXILIARY DESCRIPTION
Now let’s try setting up the tooltip as a supplementary

description, which is the archetypal form. Like <input>

placeholders, tooltips should be for added information

and clarification.

Some interactive elements may have accessible descrip-

tions, but all interactive elements need accessible labels. If

we’re using aria-describedby to connect the tooltip text,

we’ll need another method for providing the “Notifications”

label. Instead of aria-labelledby we can add a visually

hidden span to the button’s text node, alongside the existing

“3” counter.

<button class="notifications" aria-
describedby="notifications-desc">
 <svg><use xlink:href="#notifications-icon"></use></
svg>
 3
 Notifications
</button>
<div role="tooltip" id="notifications-desc">View and
manage notifications settings</div>

Tooltips & Toggletips 113

The visually-hidden class corresponds to some special CSS

we’ve discussed before in this book. It hides the visu-

ally without stopping it from being read out in screen readers:

.visually-hidden {
 clip-path: inset(100%);
 clip: rect(1px, 1px, 1px, 1px);
 height: 1px;
 overflow: hidden;
 position: absolute;
 white-space: nowrap;
 width: 1px;

}

The prescribed behavior of aria-describedby is to be

announced as the last piece of information for the control,

after the label and role. In this case: “Notifications button…

View and manage notifications settings” (most screen readers

will leave a pause before the description).

INTERACTION
To improve upon the notoriously awful title attribute, our

custom tooltips should appear on focus as well as hover. By

supplying the tooltip in an element adjacent to the button, we

can do this with just CSS:

114 Chapter 4

[role='tooltip'] {
 display: none;
}

button:hover + [role='tooltip'],
button:focus + [role='tooltip'] {
 display: block;
}

However, we may need to wrap the button and tooltip in a

container element for positioning purposes:

.button-and-tooltip {
 position: relative;
}
[role='tooltip'] {
 position: absolute;

 /* left/top/right/bottom values as required */
}

Touch interaction
So far this simply doesn’t work so well for touchscreen users

because the focus and active states happen simultaneously.

In practice, this means you’ll see the tooltip, but only as the

button is being pressed.

Tooltips & Toggletips 115

How much of a problem this is depends on the nature of the

app to which the control belongs. How bad is it if the user

presses the control without really knowing what it does the

first time? How easily can they recover?

There are other things you could try, of course. One might

be to suppress the button’s action on the first press so it just

shows the tooltip that time around. You could take this “tuto-

rial mode” idea further still and show the tooltips as inline

text for newcomers, but streamline the interface to just show

icons for established users. By then, they should have learned

what the icons represent.

In either case, the landing screen for each of the options should have a
clear (<h1>) heading with the same wording as the labels. Then at least
the user knows where the icon took them on arrival.

This would be to do away with tooltips altogether, which is

probably for the best anyway. However, the tooltip’s sister

component — the toggletip — can work for mouse, keyboard

and touch users.

116 Chapter 4

Inclusive toggletips
Toggletips are like tooltips in the sense that they can provide

supplementary or clarifying information. However, they differ

by making the control itself supplementary: toggletips exist to

reveal information balloons, and serve no other purpose.

Often they take the form of little “i” icons:

To work by touch just as well as by mouse or keyboard, tog-

gletips are revealed by click rather than by hover and focus.

Crucially, this means the aria-describedby association is no

longer appropriate. Why? Because a screen reader user would

have access to the information before pressing the button, so

pressing it would appear not to do anything. Technically, they

have access to the information, making the control “accessi-

ble” — but the control simply wouldn’t make sense. In other

words, it’s a user experience issue more than a strict accessi-

bility one, but it’s important.

Tooltips & Toggletips 117

TOGGLETIPS WITH LIVE REGIONS
The trick is to make screen readers announce the informa-

tion after the click event. This is a perfect use case for a live

region.39 We can supply an empty live region, and populate it

with the toggletip “bubble” when it is invoked. This will both

make the bubble appear visually and cause the live region to

announce the tooltip’s information.

To follow is the markup with the live region unpopu-

lated. Note the .tooltip-container element, which is

provided to help positioning. This element would have

position: relative, allowing for absolutely positioning the

generated .toggletip-bubble element nearby.

 <button type="button" data-toggletip-content="This
clarifies whatever needs clarifying">
 i
 More info
 </button>

As in previous examples, I am silencing the “i” in screen read-

ers with aria-hidden, and including a visually hidden span as

a more descriptive label for non-visual users.

39 https://smashed.by/liveregions

118 Chapter 4

https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Live_Regions
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Live_Regions
https://smashed.by/liveregions

Note the type="button" attribution which is to stop some

browsers mistaking the button as a submit button when

placed inside forms. Here is the markup with the live region

populated (after the toggletip button is clicked):

 <button type="button" data-toggletip-content="This
clarifies whatever needs clarifying">
 i
 More info
 </button>

 This clarifies
whatever needs clarifying

The accompanying script and demo, with notes to follow:

(function() {
 // Get all the toggletip buttons
 const toggletips = document.querySelectorAll('[data-
toggletip-content]');

 // Iterate over them
 Array.prototype.forEach.call(toggletips, toggletip
=> {
 // Get the message from the data-content element
 var message = toggletip.getAttribute('data-
toggletip-content');

Tooltips & Toggletips 119

 // Get the live region element
 var liveRegion = toggletip.nextElementSibling;

 // Toggle the message
 toggletip.addEventListener('click', () => {
 liveRegion.innerHTML = '';
 window.setTimeout(function() {
 liveRegion.innerHTML =
 '' + message
+ '';
 }, 100);
 });

 // Close on outside click
 document.addEventListener('click', e => {
 if (toggletip !== e.target) liveRegion.inne
rHTML = '';
 });

 // Close on blur
 toggletip.addEventListener('blur', e => {
 liveRegion.innerHTML = '';

 });

 // Remove toggletip on ESC
 toggletip.addEventListener('keydown', e => {
 if ((e.keyCode || e.which) === 27) liveRegion.
innerHTML = '';
 });
 });
})();

120 Chapter 4

Demo: Basic toggletip with live region.40

Notes

1. Our button is not a toggle button — at least, not in the

usual sense. Instead of clicking the button showing or

hiding the bubble, it only shows it. Hiding the bubble is

achieved by unfocusing the button, mouse-clicking away

from the button or pressing Esc .

2. When the button is clicked for a second time (or third,

fourth, etc.), the live region is repopulated after a dis-

crete interval, reannouncing the content in screen read-

ers. This is simpler and more intuitive than implementing

toggle states (a “message in on” state makes little sense,

especially once it has already been read out).

3. The “discrete interval” (see last item) is implemented

using setTimeout. Without it, some setups are not able

to register the repopulation of the live region and do not

reannounce the contents.

4. The role="tooltip" attribution is not applicable since

we are using role="status" for the live region.

40 https://smashed.by/basictoggletip

Tooltips & Toggletips 121

https://heydon.github.io/inclusive-components-demos/tooltips-and-toggletips/basic-toggletip.html
https://smashed.by/basictoggletip

PROGRESSIVELY ENHANCING TITLE
As discussed, the title attribute is really flaky. But it

does at least provide an accessible label to some assis-

tive technologies, available when the button is focused.

We could provide the bubble content via title and use

this to build the data-toggletip-content attribute

on page load. Our script’s initial hook now becomes the

Boolean data-toggletip:

<button data-toggletip title="This clarifies whatever
needs clarifying">
 i
 More info
</button>

In the script, we need to take the value from title to build

data-tooltip-content, then destroy title because we

don’t need it and it might still appear or get announced if

left festering.

var toggletips = document.querySelectorAll('[data-
toggletip][title]');
Array.prototype.forEach(toggletips, toggletip => {
 var message = toggletip.getAttribute('title');
 toggletip.setAttribute('data-tooltip-content',
message);
 toggletip.removeAttribute('title');
});

122 Chapter 4

BETTER PROGRESSIVE ENHANCEMENT
A button that doesn’t do anything and happens to have a title

attribute isn’t really a very good baseline. Instead, I would

recommend displaying the toggletip’s content inline and then

enhancing by creating the toggletip button dynamically.

Demo: Toggletip with progressive enhancement41

Tests and error messages
Something I haven’t talked about in this book is writing tests,

so let’s do a little of that here. Don’t worry, I don’t mean

unit tests.

If our toggletip component is to belong to a design system,

it may be borrowed and used by lots of different people. By

writing tests and including warnings, we can try to ensure it

isn’t being used improperly.

A toggletip button that isn’t a <button> provides a deceptive

role to assistive technologies and is not focusable by key-

board (unless it’s another, inappropriate focusable element

like a hyperlink). In our script, we can detect the element

nodeName and return an error message if it is not BUTTON.

41 https://smashed.by/progtoggletip

Tooltips & Toggletips 123

https://heydon.github.io/inclusive-components-demos/tooltips-and-toggletips/progressive-toggletip.html
https://smashed.by/progtoggletip

We use return to stop the remainder of the IIFE (Immediately

Invoked Function Expression) from executing.

if (toggletip.nodeName !== 'BUTTON') {
 console.error('Toggletip buttons need to be <button>
 elements.');
 return;
}

CSS TESTS AND ERROR MESSAGES
In Inclusive Design Patterns,42 I write about creating deliber-

ate visual regressions to highlight code errors, and providing

error messages in the developer tools CSS inspector.

The error we caught with JavaScript earlier can be caught

using the CSS selector [data-tooltip]:not(button). We

can highlight the erroneous element with a red outline, and

provide an error message using the made-up ERROR property:

[data-tooltip]:not(button) {

outline: red solid 0.5em;
 error: Toggletip buttons need to be <button>
 elements.;
}

42 https://smashed.by/idp

124 Chapter 4

https://shop.smashingmagazine.com/products/inclusive-design-patterns
https://smashed.by/idp

Despite being an invalid property, the ERROR will appear in

dev tools when the element is inspected.

The clear red outline shows there is an error present and guides the

developer’s DOM inspector cursor.

Conclusion
Most of the time, tooltips shouldn't be needed if you provide

clear textual labeling and familiar iconography. Most of the

time toggletips are a complex way of providing information

that could just be part of the document’s prose content.

Remember that inclusive design is about choosing what you

need to implement before how you need to implement it. It

may not be beneficial to use either tooltips or toggletips. But

since I see them being implemented all the time regardless, I

wanted to talk about how to at least do them justice.

Tooltips & Toggletips 125

CHECKLIST

• If you have space, don’t use tooltips or toggletips. Just

provide clear labels and sufficient body text.

• If it’s a tooltip you are looking to use, decide whether

the tip’s content should be provided as the label or

description and choose ARIA properties accordingly.

• Don’t rely on title attributes. They are not keyboard

accessible and are not supported in many screen

reader setups.

• Don’t describe toggletips with aria-describedby. It

makes the subject button’s action redundant to screen

reader users.

• Don’t put interactive content such as close and confirm

buttons or links in tooltips or toggletips. This is the job of

more complex menu and dialog components.

126 Chapter 4

A Theme Switcher

My mantra for building web interfaces is, “If it can’t

be done efficiently, don’t do it at all.” In fact, I’ve

preached about writing less damned code43 around

the UK, Europe, and China. If a feature can only be achieved

by taking a significant performance hit, the net effect is nega-

tive and the feature should be abandoned. That’s how critical

performance is on the web.

Offering users choices over the display of your interface is

friendly, so long as it isn’t intrusive. It helps to satisfy the “offer

choice”44 inclusive design principle. However, choices such as

theme options are nice-to-haves and should only be imple-

mented if it’s possible to do so efficiently.

Typically, alternative themes are offered as separate

stylesheets that can be switched between using JavaScript. In

some cases they represent a performance issue (because an

override theme requires loading a lot of additional CSS) and

in most cases they represent a maintenance issue (because

separate stylesheets have to be kept up to date as the site is

further developed).

43 https://smashed.by/lesscodevideo
44 https://smashed.by/offerchoice

127A Theme Switcher

https://vimeo.com/190834530
http://inclusivedesignprinciples.org/#offer-choice
http://inclusivedesignprinciples.org/#offer-choice
https://smashed.by/lesscodevideo
https://smashed.by/offerchoice

One of the few types of alternative theme that adds real

value to users is a low light intensity “night mode” theme.

Not only is it easier on the eyes when reading in the dark, but

it also reduces the likelihood of migraine and the irritation

of other light sensitivity disorders. As a migraine sufferer,

I’m interested!

In this chapter, I’ll be covering how to make an efficient and

portable React component that allows users to switch a

default light theme into “dark mode” and persist this setting

using the localStorage API.

Given a light theme (predominantly dark text on light back-

grounds), the most efficient course of action is not to provide

a completely alternative stylesheet, but to augment the

existing styles directly, as tersely as possible. Fortunately,

CSS provides the filter property, which allows you to invert

colors. Although this property is often associated with image

elements, it can be used on any elements, including the root

<html> element:

:root {
 filter: invert(100%);
}

(Note: Some browsers support invert() as a shorthand, but

not all, so write out 100% for better support.)

128 Chapter 5

The only trouble is that filter can only invert stated colors.

Therefore, if the element has no background color, the text

will invert but the implicit (white) background will remain the

same. The result? Light text on a light background.

This is easily fixed by stating a light background-color.

:root {
 background-color: #fefefe;
 filter: invert(100%);
}

But we may still run into problems with child elements that

also have no stated background color. This is where CSS’s

inherit keyword comes in handy.

:root {
 background-color: #fefefe;
 filter: invert(100%);
}
* {
 background-color: inherit;
}

At first glance, this might seem like we’re wielding a lot of

power, but never fear: the * selector has very low specificity,

meaning it only provides a background-color to elements

for which one isn’t already stated. In practice, #fefefe is just

a fallback.

129A Theme Switcher

Preserving raster images
While we are intent on inverting the theme, we’re probably

not going to want to invert raster images or videos, otherwise

the design will become filled with spooky looking negatives.

The trick here is to double-invert tags. The selector

I’m using excludes SVG images, because — typically presented

as flat color diagrams — they should invert successfully

and pleasantly.

:root {
 background-color: #fefefe;
 filter: invert(100%);
}

* {
 background-color: inherit;
}

img:not([src*='.png']),
video {
 filter: invert(100%);
}

Clocking in at 153 bytes uncompressed, that’s dark theme sup-

port pretty much taken care of. If you’re not convinced, here’s

the CSS applied to some popular news sites:

130 Chapter 5

The Boston Globe and The Independent

The New York Times and Private Eye

The theme switch component
Since the switch between light (default) and dark (inverted)

themes is just an on/off, we can use something simple like the

toggle buttons we explored in an earlier chapter. However,

this time we’ll implement the toggle button as part of a

React45 component. There are a few reasons for this:

45 https://smashed.by/reactcomponent

131A Theme Switcher

https://smashed.by/reactcomponent

• Maximum reusability between the React-based projects

many of you are used to working in.

• Ability to take advantage of React’s props

and defaultProps.

• Some people think frameworks like React and Angular

preclude you from writing accessible HTML somehow,

and that falsehood needs to die.

We're also going to incorporate some progressive enhance-

ment, only showing the component if the browser supports

filter: invert(100%).

THE SKELETON COMPONENT FILE
We’ll be working on a file called ThemeSwitch.js, placed

in a new components folder, so you’ll need to create both

the folder and the file. The skeleton for ThemeSwitch looks

like this:

import React, { Fragment, useRef, useEffect, useState
} from 'react';

const ThemeSwitch = ({ preserveRasters = true,
storeKey = 'ThemeSwitch' }) => {
 // ThemeSwitch code here
};

export default ThemeSwitch;

132 Chapter 5

The rendered markup for the switch, imagined in a default/

inactive state, would look like this (notes to follow):

<div>
 <button aria-pressed="false">
 dark theme:
 off
 </button>
 <style media="none">
 html { filter: invert(100%); background: #fefefe }
 * { background-color: inherit }
 img:not([src*=".png"]), video { filter:
invert(100%) }
 </style>
</div>

• Not all toggle buttons are created the same. In this

case, we’re using aria-pressed to toggle accessible

state and an explicit "on"/"off" for sighted users. So that

the "on" or "off" part is not read out to contradict the

state, it is suppressed from assistive technologies with

aria-hidden. Screen reader users will hear "dark theme

toggle button, not pressed" or "dark theme toggle button,

pressed" or similar.

• The CSS is so terse, we’re going to provide it as an

embedded stylesheet. This is set to media="none" — or

media="screen" when the dark theme is activated

This markup will get very messy shortly, as we convert it

to JSX.

133A Theme Switcher

SWITCHING STATE
Our component will be stateful, allowing the user to toggle

the dark theme between inactive and active. Note that

localStorage will be used to persist the user’s preference.

const [css, setCss] = useState(cssString);
const [active, setActive] = useState(
 localStorage.getItem(storeKey) === 'true'
);

To bring things to life, a toggle() function that actually tog-

gles the state:

toggle() {
 this.setState(
 {
 active: !this.state.active
 },
 () => {
 localStorage.setItem(this.props.storeKey, this.
state.active)
 }
)
}

In the render function for the component, we can use

this.state.active to determine the aria-pressed

value, the button text, and the value of the stylesheet’s

media attribute:

134 Chapter 5

<button aria-pressed={active} onClick={toggle}>
 Inverted theme:{' '}
 {active ? 'On' : 'Off'}</
span>
</button>
<style media={active ? 'screen' : 'none'}>
 {active ? css.trim() : css}
</style>

Of course, when the dark theme is on, the button itself is also inverted.

Note the {active ? css.trim() : css} part. JSX doesn't

support embedding CSS directly, so we have to enter it

dynamically, via useEffect and the setCss function:

useEffect(() => {
 if (preserveRasters) {
 setCss(`${cssString} ${rasterCss}`);
 }
 return () => {
 setCss(cssString);
 };
}, [preserveRasters]);

135A Theme Switcher

Overcoming browser issues

Unfortunately, just switching between media="none" and

media="screen" does not apply the styles to the page in all

browsers. To force a repaint, it turns out we have to rewrite

the text content of the <style> tag. The easiest way I found of

doing this was to incorporate the trim() method. Curiously,

this only seemed to be needed in Chrome.

<style media={this.state.active ? 'screen' : 'none'}>
 {this.state.active ? this.css.trim() : this.css}
</style>

PERSISTING THE THEME PREFERENCE
To persist the user’s choice of theme, we incorporate

localStorage. If a the storeKey prop isn't set, ES6 syntax

defaults it to 'ThemeSwitch'. Hence, at the start of the

component definition:

const ThemeSwitch = ({ preserveRasters = true,
storeKey = 'ThemeSwitch' }) => {
 // ThemeSwitch code here
};

An effect hook handles setting the storage item:

136 Chapter 5

useEffect(() => {
 localStorage.setItem(storeKey, active);
}, [active, storeKey]);

PROGRESSIVE ENHANCEMENT IN REACT?
Some browsers are yet to support filter: invert(100%).

For those browsers, we will hide our theme switch altogether.

It’s better that it is not available than it is available and

doesn't work. With a special isDeclarationSupported func-

tion, we can query support to set a supported state.

If you’ve ever used Modernizr46 you might have used a similar

CSS property/value test. However, we don’t want to use

Modernizr because we don’t want our component to rely on

any dependencies unless completely necessary.

const isDeclarationSupported = (property, value) => {
 const prop = property + ':',
 el = document.createElement('test'),
 mStyle = el.style;
 el.style.cssText = prop + value;
 return mStyle[property];
};
// Flag set as the default value of a ref on
instantiation
const supported =
useRef(!!isDeclarationSupported('filter',
'invert(100%)'));

46 https://smashed.by/modernizr

137A Theme Switcher

https://modernizr.com/
https://smashed.by/modernizr

The most efficient thing to do if the critical feature here isn't

supported is to not render the component at all. We can use

an expression for this inside our render function:

return (
 supported.current && (
 <Fragment>
 <button aria-pressed={active} onClick={toggle}>
 Inverted theme:{' '}
 {active ? 'On' :
'Off'}
 </button>
 <style media={active ? 'screen' : 'none'}>
 {active ? css.trim() : css}
 </style>
 </Fragment>
)
);

DARK MODE AT THE OS-LEVEL

What if the user has already chosen dark mode at the operat-

ing system level? We should support their decision by default,

by honoring the prefers-color-scheme: dark @media

query. This is possible by amending the default value for

active in the useState definition:

138 Chapter 5

WINDOWS HIGH CONTRAST MODE

Windows users are offered a number of high contrast themes

at the operating system level — some light-on-dark like our

inverted theme. In addition to supplying our theme switcher

feature, it’s important to make sure WHCM is supported as well

as possible. Here are some tips:

• Do not use background images as content. Not only will this

invert the images in our inverted dark theme, but they’ll be

eliminated entirely in most Windows high contrast themes.

Provide salient, non-decorative images in tags with

descriptive alt text values

• For inline SVG icons, use the currentColor value for fill

and stroke. This way, the icon color will change along with

the surrounding text color when the high contrast theme

is activated.

• Buttons may lose their background-color styles in high

contrast mode, and end up appearing like plain text. To give

them shape, one trick is to add a transparent border in the

CSS. This will appear only when WHCM is switched on.

• If you need to detect WHCM to make special amendments,

you can use the following media query:

@media (-ms-high-contrast: active) {
 /* WHCM-specific code here */

}

const [active, setActive] = useState(
 localStorage.getItem(storeKey) === 'true'
|| (!localStorage.getItem(storeKey) &&
matchMedia('(prefers-color-scheme: dark)').matches)
);

Now, if no localStorage value is already set and

prefers-color-scheme: dark is matched, the default/ini-

tial value will be true (and saved in localStorage as such).

You can enable dark mode in settings on macOS Mojave.

DEMO
A working version of this code is available to download and

run from the React Theme Switch repository.47

PLAIN JAVASCRIPT VERSION

Demo: A standalone and framework-independent

version of the theme switcher.48

(Just for experimentation; localStorage persistence not

implemented here.)

47 https://smashed.by/reactthemeswitch
48 https://smashed.by/themeswitcher

140 Chapter 5

https://heydon.github.io/inclusive-components-demos/theme-switcher/theme-switcher-plain.html
https://heydon.github.io/inclusive-components-demos/theme-switcher/theme-switcher-plain.html
https://smashed.by/reactthemeswitch
https://smashed.by/themeswitcher

PLACEMENT
The only thing left to do is decide where you're going to put

the component in the document. As a rule of thumb, utilities

like theme options should be found in a landmark region —

just not the <main> region, because the screen reader user

expects this content to change between pages. The <header>

(role="banner") or <footer> (role="contentinfo") are

both acceptable.

The switch should appear in the same place on all pages so

that once the user has located it the first time, they can easily

find it again. Take note of the “be consistent”49 inclusive design

principle, which applies here.

49 https://smashed.by/beconsistent

141A Theme Switcher

https://smashed.by/beconsistent

CHECKLIST

• Only implement nice-to-have features if the performance

hit is minimal and the resulting interface does not

increase significantly in complexity

• Only provide interfaces for supported features. Use

feature detection.

• Use semantic HTML in your React components — they’ll

still work!

• Use props to make your components more configurable

and reusable.

142 Chapter 5

Tabbed Interfaces

W hen you think about it, most of your basic inter-

actions are showing or hiding something some-

how. I’ve already covered popup menu buttons

and the simpler and less assuming tooltips and toggletips.

You can add simple disclosure widgets, compound “accordi-

ons”, and their sister component the tabbed interface to that

list. It’s also worth noting that routed single-page applica-

tions emulate the showing and hiding of entire web pages

using JavaScript.

As we shall explore, the conceptual boundaries between tab

panels, application views, and simple document fragments are

not as clearly defined as we might like to pretend. Nonethe-

less, we need to assert with confidence precisely what kind of

interface we are providing the user, otherwise they won’t find

the confidence to successfully operate it.

Proponents of progressive enhancement conceive interfaces

in terms of structured static content before contemplating

how those interfaces may become enhanced with additional

JavaScript-enabled interactivity. Even if you are happy to con-

cede a JavaScript dependency early in an interface’s design,

it’s beneficial to build a robust foundation using semantic

HTML, capitalizing on standard browser behaviors. Sometimes

you may even find JavaScript enhancement is a step you

needn’t take.

Tabbed Interfaces 143

For my money, an embryonic tabbed interface is just a table of

content with same-page links pointing at different sections of

the page. Both a table of content and a list of tabs allow the

user to choose between distinct sections of content.

• Table of contents ↬ tab list

• Same-page links ↬ tabs

• Sections ↬ tab panels

Enhancement
What if I used some CSS to make just the chosen section from

my table of contents visible? This is certainly possible using

the :target pseudo-class.

144 Chapter 6

section:not(:target) {
 display: none;
}

By placing the disclosure of content under the user’s control,

our CSS-enhanced TOC interface moves towards being a

tabbed interface in one critical regard. Since display: none

hides content from assistive technologies, this enhancement

affects screen reader users as much as anyone else.

But this modestly enhanced version of the interface already

has an issue. If you link to a subsection inside a section, the

parent section isn’t the target and won’t become unhidden.

To fix this, we would need some JavaScript. In fact, it’s quite

involved. We need:

• A way to extract and interpret hash fragments

• A way to determine if a hash fragment either corresponds

to a section or a subsection within a section

• To focus sections and subsections with JavaScript,

because same-page linking becomes broken when

there’s hidden content

• DOMContentLoaded and hashchange events to read and

act on URLs at appropriate intervals

Tabbed Interfaces 145

Demo: Table of contents with hash tracking.50

This demo is provided for curiosity only. A table of contents

does not conventionally control the visibility of individual sec-

tions, and should be avoided. Only in a true tabbed interface is

this kind of behavior expected. It’s important that the behav-

ior of your components is consistent with their appearance.

True tabbed interfaces
The advantage of using lists of same-page links and the stan-

dard browser behaviors they invoke is that they are simple

and easy to understand — especially since the behavior of

links is peculiar to the web.

Tabbed interfaces, on the other hand, are a paradigm

imported from desktop applications. If they are understood

by users in the context of web pages at all it is only through

very careful and deliberate exposition of visual design and

ARIA semantics.

What makes a tabbed interface a tabbed interface is in the

ergonomics of its keyboard behavior. Really the only reason

50 https://smashed.by/hashupdating

146 Chapter 6

https://smashed.by/hashupdating

the ARIA semantics need be present is to alert screen reader

users to the keyboard behaviors they should expect. Here is

the basic semantic structure with notes to follow:

<ul role="tablist">
 <li role="presentation">
 <a role="tab" href="#section1" id="tab1" aria-
selected="true">Section 1

 <li role="presentation">
 Section
2

 <li role="presentation">
 Section
3

<section role="tabpanel" id="section1" aria-
labelledby="tab1">
 ...
</section>
<section role="tabpanel" id="section2" aria-
labelledby="tab2" hidden>
 ...
</section>
<section role="tabpanel" id="section3" aria-
 ...
</section>

Tabbed Interfaces 147

• This tabbed interface is progressively enhanced from a

table of content and corresponding document sections.

In some cases this means adding (aria-selected)

or overriding (role="tab") semantics. In others

(role="presentation") it means removing semantics

that are no longer applicable or helpful. You don’t want a

set of tabs to also be announced as a plain list.

• role="tablist" does not delegate semantics to its

children automatically. It must be used in conjunction

with individual tab roles in order for tabs to be identified

and enumerated in assistive technologies.

• The tabpanel elements which do not correspond

to the selected tab are hidden using the

hidden attribute/property.

• Users who enter a tabpanel should be assured of its

identity. Hence, aria-labelledby is used to label the

panel via the tab name. In practice, this means a screen

reader user entering a panel and focusing a link will hear

something like “Section 1 tab panel, [link label] link.”

Keyboard behavior
Unlike a same-page link, a tab does not move the user to the

associated section/panel of content. It just reveals the content

visually. This is advantageous to sighted users (including

sighted screen reader users) who wish to flit between different

148 Chapter 6

sections without having to wade back up the page each time

they want to choose a new one.

This comes with an unfortunate side effect: if the user wishes

to move to a section by keyboard and interact with its internal

content, they have to step through any tabs to the right of the

current tab, which are in focus order.

This problem is solved by delegating tab selection to arrow

keys. The user is able to select and activate tabs using the

arrow keys, while the Tab key is preserved for focusing

contents within and below the active tab panel. To put it

another way: Tab is not for tabs, which I concede is a bit

confusing. I wish the key and the control had different names,

but alas.

Tabbed Interfaces 149

It’s equally important that pressing Shift + Tab returns the

user to the selected tab. This is all possible by giving each tab

but the selected tab tabindex="-1", which removes the

inactive tabs from focus order but allows focus via a script. In

the following example, the second tab is the selected tab, as

denoted by the aria-selected state being set to true.

<ul role="tablist">
 <li role="presentation">
 <a role="tab" tabindex="-1"
href="#section1">Section 1

 <li role="presentation">
 <a role="tab" href="#section2" aria-
selected="true">Section 2

 <li role="presentation">
 <a role="tab" tabindex="-1"

150 Chapter 6

href="#section2">Section 3

With tabindex="-1" in place for the remaining tabs, I can

capture the keydown event for the left or right arrow keys to

make the desired inactive tab active.

tab.addEventListener('keydown', e => {
 // Get the index of the current tab in the tabs node
 list
 let index = Array.prototype.indexOf.call(tabs,
e.currentTarget);

 // Determine key pressed
 var dir = e.which === 37 ? index - 1 : e.which ===
39 ? index + 1 : null;

 // Switch to the new tab if it exists
 if (dir !== null) {
 e.preventDefault();

 // Find correct tab to focus
 let newIndex;
 if (tabs[dir]) {
 newIndex = dir;
 } else {
 // Loop around if adjacent tab doesn't exist
 newIndex = dir === index - 1 ? tabs.length - 1 :
0;
 }

Tabbed Interfaces 151

 switchTab(e.currentTarget, tabs[newIndex]);
 tabs[newIndex].focus();
 }

});

Each time a user selects a new tab, the corresponding tab

panel is revealed. When the second of four tabs is selected,

any screen reader running will say something similar to “[tab

label], selected, tab, 2 of 4.” Plentiful information.

Note the “loop around” feature which is outlined in the WAI-

ARIA authoring practices section on keyboard behavior:51

Left arrow (←) Moves focus to the previous
tab. If focus is on the first tab,
moves focus to the last tab.

Right arrow (→) Moves focus to the next tab. If
focus is on the last tab, moves
focus to the first tab.

Demo: A true tabbed interface.52

51 https://smashed.by/keyboardinteraction
52 https://smashed.by/tabbedinterfacedemo

152 Chapter 6

https://smashed.by/keyboardinteraction
https://smashed.by/tabbedinterfacedemo

A PROBLEM READING PANELS
Now that pressing Tab bypasses the tabs, it’s trivial for

keyboard users to move focus to the first of any links or other

interactive elements in the open panel.

The experience for screen reader users is not currently as opti-

mal. Although they too can focus elements inside the panel

directly from the selected tab, blind users cannot see any

content that comes before or after that interactivity. If there is

no interactive content in the panel at all, they will unwittingly

focus the first interactive element outside and below the

tabbed interface.

In the operation of screen readers like NVDA and JAWS, the

down arrow moves the user to the next element53 (focusable

or otherwise) and reads it out. Without intervention, this

would be the next tab in the tablist. Instead, we can inter-

cept the down arrow key press and move focus programmat-

ically to the open panel itself, making sure it isn’t missed. See

panels[i].focus() in the following snippet:

tab.addEventListener(‘keydown’, e => {
 // Get the index of the current tab in the tabs node
list
 let index = Array.prototype.indexOf.call(tabs,
e.currentTarget);

53 https://smashed.by/nvda

Tabbed Interfaces 153

https://smashed.by/nvda

 // If down arrow is pressed handle that
 if (e.which === 40) {
 panels[index].focus();
 return;
 }

 // Handle other key presses here
});”

Since tab panels are labeled by their tabs, when the down

arrow is pressed and the relevant tab panel focused, a screen

reader will announce, “[tab label], tab panel”, thereby

assuring the user of their new location within the interface.

From there, they can continue to browse down through the

tab panel’s descendant elements or press Shift + Tab to

return to the tablist and the selected tab.

Although sighted keyboard users are less likely to use the

down arrow key, it’s important the focused tab panel has a

focus style to indicate a change of focus location. This

focusable panel provision does not impede operation for

sighted keyboard users, who can do everything they need with

just the Tab and left and right arrow keys.

Note that this technique is not from the official W3C doc-

umentation on tabbed interfaces. It is a small, unintrusive

enhancement I created drawing on experience with testing.

While following conventions is important for establishing

familiar, easy-to-use interfaces, you still have to adapt and

improve where there’s room.

154 Chapter 6

The focus of non-interactive elements

In this implementation we are technically making a non-in-

teractive element focusable by the user, albeit via an

atypical key.

The general rule is not to allow the focus of non-interactive

elements by the user because the expectation is that focus-

able elements will each actually do something. Accordingly,

code like the following would fail WCAG’s 2.4.3 Focus Order54

success criterion. It offers an unusable element to be used.

<h2 tabindex=”0”>Section 3</h2>

However, directing focus to an element using a script is

acceptable where the user has chosen that change of context.

In some single-page application implementations, when a

user chooses a new “view”, the newly constructed view ele-

ment or its main heading is focused.

<h2 tabindex=”-1”>Application View</h2>

Focusing the heading will announce the heading content,

which doubles as the view’s label. This lets screen reader

users know about their change of context. Note the use of

tabindex="-1". As with our arrow key-controlled tabs, this

54 https://smashed.by/focusorder

Tabbed Interfaces 155

https://smashed.by/focusorder

allows focus by script but not directly by the user (unless a

custom key is assigned). In practice, it lets us move focus with-

out adding the focused element to the user’s tab order — as

tabindex="0" would.

Demo: A true tabbed interface.55

The tabbed interface I devised for BBC’s GEL56 uses a mix-

ture of ARIA semantics and same-page link-like behavior.

Although this may seem like heresy, it was necessary to

address concerns raised in extensive user testing. People

perceive and understand interfaces like tabs in very different

ways, and sometimes you have to make compromises to meet

different needs.

RESPONSIVE DESIGN
Responsive design is inclusive design. Not only is a responsive

design compatible with a maximal number of devices, but it’s

also sensitive to a user’s zoom settings. Full-page zoom trig-

gers @media breakpoints just as narrowing the viewport does.

55 https://smashed.by/tabbedinterfacedemo
56 https://smashed.by/bbctabs

156 Chapter 6

https://smashed.by/tabbedinterfacedemo
https://smashed.by/bbctabs

A tabbed interface needs a breakpoint where there is insuf-

ficient room to lay out all the tabs horizontally. The quickest

way to deal with this is to reconfigure the content into a

single column.

This can no longer be considered a “tabbed interface” visually

because the tabs no longer look like tabs. This is not neces-

sarily a problem so long as the selected tab (well, option) is

clearly marked. Non-visually, via screen readers, it presents

and behaves the same.

Accordions for small viewports?

Some have made noble attempts to reconfigure tabbed

interfaces into accordion interfaces for small viewports. Given

that accordions are structured, attributed, and operated com-

pletely differently to tabs, I would recommend against this.

Tabbed Interfaces 157

Accordions do have the advantage of pairing each heading/

button with its content in the source, which is arguably a bet-

ter browsing experience in a one-column configuration. But

the sheer complexity of a responsive tabbed interface/accor-

dion hybrid is just not worth it in performance terms.

Where there are very many tabs or the number of tabs are

an unknown quantity, an accordion at all screen widths is a

safe bet. Single-column layouts are responsive regardless of

content quantity.

My preference for narrower viewports is not to enhance

into an accordion or a tabbed interface. Since we are using

progressive enhancement anyway, we can simply refuse to

run the script and leave the interface as a table of contents

linking to sections. Still a perfectly servicable way to consume

the content, and saves on CPU.

158 Chapter 6

Using matchMedia, fork the logic. But we first need to detect

if matchMedia is supported. In the following version, we only

run the enhancement script above 400px.

if (typeof window.matchMedia !== ‘undefined’) {
 if (window.matchMedia(‘(min-width: 400px)’).matches)
{
 // Enhance into tabbed interface
 }
}

You have to think very carefully about whether the enhance-

ment is really an enhancement. Do your users’ really need a

tabbed interface at any viewport width?

When panels are views
You’ll recall my note from earlier that making the set of links

in site navigation appear like a set of tabs is deceptive: a user

should expect the keyboard behaviors of a tabbed interface,

as well as focus remaining on a tab in the current page. A link

pointing to a different page will load that page and move

focus to its document (body) element.

What about the “views” in single-page applications: the dif-

ferent screens found at different routes? Technically, they are

closer to the panels of our tabbed interface than whole web

Tabbed Interfaces 159

pages. But that’s not to say they should be communicated as

tab panels, because that’s not what a user is likely to expect.

Single-page application views are typically intended to seem

like distinct web pages or regions in a web page, so that is the

story that should be told. Here are some provisions to make:

USE LINKS!
Make sure the links that allow users to choose between views

are indeed links — whether or not those links return false

and use JavaScript to switch to the new view. Since these con-

trols will navigate the user (by changing their focus location;

see below) the link role is the most appropriate for the behav-

ior. Link elements do not need the link ARIA role attribute;

they are communicated as “link” by default.

In Xiao,57 a progressive enhancement-based router system for

single-page applications, standard hash fragments are used

to denote views. The links to these fragments will be commu-

nicated as “same page links” in most assistive software. By

capitalizing on standard browser behavior, the user will be

made aware they are being redirected to a new, distinct part

of the page/application.

Some route

57 https://smashed.by/xiaohome

160 Chapter 6

https://smashed.by/xiaohome

MANAGE FOCUS
Just replacing some content on the page does not automat-

ically move the user to that content or (in the case of blind

assistive technology users) alert them to its existence. As

covered under “The focus of non-interactive elements” on

page 155, you can focus the principle heading of the new

route view, or the outer view element. If you are focusing the

outer view element, it is recommended it is labeled either

directly using aria-label or by the principle heading using

aria-labelledby. The aria-labelledby method is pre-

ferred because it reduces redundancy — and the danger of

things going out of sync — while also ensuring the label, as a

text node, is translatable.

<div aria-labelledby=”heading” role=”region”
tabindex=”-1”>
 <h1 id=”heading”>Home</h1>
 ...
</div>

When used in conjunction with the region role (as in the

above code snippet), when the element is focused the con-

textual information “Home, region” will be announced in

screen readers.

Using Xiao, no region is focused on initial page load. This

means focus defaults to the body/document element and the

<title> is announced in screen readers (see below).

Tabbed Interfaces 161

UPDATE THE <TITLE>
The application name should be appended by the label for

the specific view. This conforms to the recommended pat-

tern for static sites where the site name is appended by the

page name.

<title>[Application name]: [View name]</title>

You can load a Xiao-routed application at any route by simply

including the route’s hash fragment in the URL. On the load

event, the <title> takes that route’s label and screen readers

identify the application and the specific route within it.

IN REACT
You can achieve the same ends in React on a per-component

basis, by tapping into each route’s component’s component-

DidMount() method. The best way is probably to create a ref

for the target element.

class Home extends React.Component {
 constructor(props) {
 super(props);
 this.focusTarget = React.createRef();
 }

 componentDidMount() {
 // Change the <title>
 document.title = ‘My App: Home’;
 // Focus the view
 this.focusTarget.focus();
 }

162 Chapter 6

 render() {
 return (
 <div aria-labelledby=”heading” role=”region”
tabindex=”-1” ref={this.focusTarget}>
 <h1 id=”heading”>Home</h1>
 // Content here
 </div>
)
 }
}

Having to include all this for each route component is a pain,

so looking to manage focus centrally, from the router itself, is

a better solution. It’s possible to achieve this in React Router 4

by wrapping the app in the withRouter HOC (Higher-Order

Component) and listening to history changes.

class App extends Component {
 componentWillMount() {
 this.unlisten = this.props.history.
listen((location, action) => {
 // Focus and <title> change here
 });
 }
 componentWillUnmount() {
 this.unlisten();
 }
 render() {
 return (
 <div>{this.props.children}</div>
);
 }
}
export default withRouter(App);

Tabbed Interfaces 163

Alternatively, Reach Router58 uses some heuristics to manage

focus for you automatically, and comes highly recommended.

Conclusion
JavaScript can show and hide or create and destroy content

with ease, but these DOM events can have different purposes

and meanings depending on the context. In this chapter, we

facilitated the basic show/hide ability of JavaScript to create

two quite different interfaces: a tabbed interface and sin-

gle-page application navigation.

There’s really no right or wrong in inclusive design. It’s just

about trying your hardest to provide a valuable experience to

as many people as you can. A large part of this is pairing your

presentation and behavior in ways that users — no matter

how they are operating or reading your interface — would

expect for the task in hand.

58 https://smashed.by/router

164 Chapter 6

https://smashed.by/router

CHECKLIST

• Don’t provide tabbed interfaces unless they are suited

to the use case and are likely to be understood and

appreciated by the user. Just because you can doesn’t

mean you should.

• Tables of content and same-page links are a simpler and

more robust approach to many of the ostensible use

cases for tabbed interfaces. If you want to show/hide

content, accordions are more responsive and simpler to

implement. The next chapter will look at the collapsible

sections that make up accordions.

• Make sure interfaces that appear as tabbed interfaces

have the semantics and behaviors expected of them.

• Single-page applications should not present or behave as

tabbed interfaces, despite their shared use of JavaScript

to switch between and/or populate content panes.

Tabbed Interfaces 165

Collapsible Sections

C ollapsible sections are perhaps the most rudimentary

of interactive design patterns on the web. All they do

is let you toggle the visibility of content by clicking

that content’s label. Big whoop.

Although the interaction is simple, it’s an interaction that does

not have a consistent native implementation across brows-

ers59 — despite movement to standardize it. It is therefore

a great “hello world” entry point into accessible interaction

design using JavaScript and WAI-ARIA.

So why am I talking about it now, after covering more com-

plex components? Because this chapter will focus on devel-

oper and author experience: we’re going to make our collaps-

ible regions web components, so they are easy to include as

part of larger patterns and in content files.

As we did when approaching tab interfaces, it helps to

consider what our component would be in the absence of

JavaScript enhancement and why that enhancement actually

makes things better. In this case, a collapsible section without

JavaScript is simply a section. That is, a subheading introduc-

ing some content — prose, media, whatever.

59 https://smashed.by/caniusedetails

166 Chapter 7

https://smashed.by/caniusedetails

<h2>My section</h2>

<p>Lorem ipsum dolor sit amet, consectetur adipiscing

elit. Cras efficitur laoreet massa. Nam eu porta

dolor. Vestibulum pulvinar lorem et nisl tempor

lacinia.</p>

<p>Cras mi #nisl, semper ut gravida sed, vulputate vel

mauris. In dignissim aliquet fermentum. Donec arcu

nunc, tempor sed nunc id, dapibus ornare dolor.</p>

One advantage of collapsing the content is that the headings

become adjacent elements, giving the user an overview of

the content available without having to scroll nearly so much.

Expanding the content is choosing to see it.

Collapsible Sections 167

Another advantage is that keyboard users do not have to step

through all of the focusable elements on the page to get to

where they want to go: hidden content is not focusable.

The adapted markup
Just attaching a click handler to the heading for the purposes

of expanding the associated content is foolhardy, because

it is not an interaction communicated to assistive software

or achievable by keyboard. Instead, we need to adapt the

markup by providing a standard button element.

<h2><button>My section</button></h2>

<div>

 <p>Lorem ipsum dolor sit amet, consectetur

adipiscing elit. Cras efficitur laoreet massa. Nam eu

porta dolor. Vestibulum pulvinar lorem et nisl tempor

lacinia.</p>

 <p>Cras mi nisl, semper ut gravida sed, vulputate

vel mauris. In dignissim aliquet fermentum. Donec arcu

nunc, tempor sed nunc id, dapibus ornare dolor.</p>

</div>

(Note: I have wrapped the content in a <div>, in preparation

for showing and hiding it using the script to follow.)

168 Chapter 7

The button is provided as a child of the heading. This means

that, when a screen reader user focuses the <button>, the

button itself is identified but also the presence of its parent:

“My section, button, heading level 2” (or similar, depending

on the screen reader).

Had we instead converted the heading into a button using

ARIA’s role="button" we would be overriding the heading

semantics. Screen reader users would lose the heading as a

structural and navigational cue.

In addition, we would have to custom-code all of the browser

behaviors <button> gives us for free, such as focus (see

tabindex in the example below) and key bindings to actually

activate our custom control.

<!-- DON'T do this -->

<h2 role="button" tabindex="0">My section</h2>

Collapsible Sections 169

STATE
Our component can be in one of two mutually exclusive

states: collapsed or expanded. This state can be suggested

visually, but also needs to be communicated non-visually. We

can do this by applying aria-expanded to the button, initially

in the false (collapsed) state. Accordingly, we need to hide

the associated <div> — in this case, with hidden.

<h2><button aria-expanded="false">My section</

button></h2>

<div hidden>

 <p>Lorem ipsum dolor sit amet, consectetur

adipiscing elit. Cras efficitur laoreet massa. Nam eu

porta dolor. Vestibulum pulvinar lorem et nisl tempor

lacinia.</p>

 <p>Cras mi nisl, semper ut gravida sed, vulputate

vel mauris. In dignissim aliquet fermentum. Donec arcu

nunc, tempor sed nunc id, dapibus ornare dolor.</p>

</div>

Some make the mistake of placing aria-expanded on the

target element rather than the control itself. This is under-

standable since it is the content that actually switches state.

But, if you think about it, this wouldn’t be any good: the user

would have to find the expanded content — which is only

possible if it’s actually expanded! — and then look around for

an element that might control it. State is, therefore, communi-

cated through the control that one uses to switch it.

170 Chapter 7

IS THAT ALL THE BUTTON ARIA?

Why yes. We don’t need to add role=“button” because the

<button> element implicitly has that role (the ARIA role is

just for imitating the native role). And unlike menu buttons, we

are not instigating an immediate change of context by moving

focus. Therefore, aria-haspopup is not applicable.

Some folks add aria-controls and point it to the content

container’s id. Be warned that aria-controls only works in

JAWS60 at the time of writing. So long as the section’s content

follows the heading/button in the source order, it isn’t needed.

The user will (immediately) encounter the expanded content

as they move down the page.

STYLING THE BUTTON
We’ve created a situation wherein we’ve employed a button,

but a button that should look like an enhanced version of the

heading it populates. The most efficient way to do this is to

eradicate any user agent and author styles for buttons, forcing

this button to inherit from its heading parent.

h2 button {

 all: inherit;

}

60 https://smashed.by/ariacontrols

Collapsible Sections 171

https://smashed.by/ariacontrols

Great, but now the button has no affordance.61 It doesn’t look

like it can be activated. This is where, conventionally, a plus/

minus symbol is incorporated. Plus indicates that the section

can be expanded, and minus that it may be collapsed.

The text label and/or icon for a button should always show what press-
ing that button will do, hence the minus sign in the expanded state
indicating that the button will take the section content away.

61 https://smashed.by/affordances

172 Chapter 7

https://smashed.by/affordances

The question is: how do we render the icon? The answer: as

efficiently and accessibly as possible. Simple shapes such as

rectangles (<rect>) are a highly efficient way to create icons

with SVG, so let’s do that.

<svg viewBox="0 0 10 10">

 <rect height="8" width="2" y="1" x="4"/>

 <rect height="2" width="8" y="4" x="1"/>

</svg>

There, that’s small enough to fit in a tweet. Since the

parent button is the control, we don’t need this graphic

to be interactive. In which case, we need to add the

focusable="false" attribute, which prevents Internet

Explorer and early versions of Edge from putting the SVG in

focus order.

<button aria-expanded="false">

 My section

 <svg viewBox="0 0 10 10" focusable="false">

 <rect class="vert" height="8" width="2" y="1"

x="4"

 />

 <rect height="2" width="8" y="4" x="1" />

 </svg>

</button>

Collapsible Sections 173

Note the class of “vert” for the rectangle that represents the

vertical strut. We’re going to target this with CSS to show and

hide it depending on the state, transforming the icon between

a plus and minus shape.

[aria-expanded="true"] .vert {

 display: none;

}

Tying state and its visual representation together is a very

good thing. It ensures that state changes are communicated

interoperably. Do not listen to those who advocate the

absolute separation of HTML semantics and CSS styles. Form

should follow function, and directly is most reliable. It’s also

more efficient, because there’s one less attribute to augment.

button.setAttribute('aria-expanded', !expanded);

// Not needed ↓

button.classList.toggle('expanded');

Note that the default focus style was removed with

inherit: all. We can delegate a focus style to the SVG with

the following:

174 Chapter 7

h2 button:focus svg {

 outline: 2px solid;

}

High contrast themes

One more thing: we can ensure the <rect> elements respect

high contrast themes. By applying a fill of currentColor to

the <rect> elements, they change color with the surrounding

text when it is affected by the theme change.

[aria-expanded] rect {

 fill: currentColor;

}

To test high contrast themes against your design on Windows,

search for High contrast settings and apply a theme from

Choose a theme. Many high contrast themes invert colors to

reduce light intensity. This helps folks who suffer migraines

or photophobia, as well as making elements clearer to those

with vision impairments.

Collapsible Sections 175

Why not use <use>?

If we had many collapsible regions on the page, reusing the

same SVG <pattern> definition via <use> elements62 and

xlink:href would reduce redundancy.

<button aria-expanded="false">

 My section

 <svg viewBox="0 0 10 10 aria-hidden="true"

focusable="false">

 <use xlink:href="#plusminus" />

 </svg>

</button>

Unfortunately, this would mean we could no longer target the

specific .vert rectangle to show and hide it. By using little

code to define each identical SVG, bloat is not a big problem

in our case.

62 https://smashed.by/uselement

https://smashed.by/uselement

A SMALL SCRIPT
Given the simplicity of the interaction and all the elements

and semantics being in place, we need only write a very

terse script:

(function() {

 const headings = document.querySelectorAll('h2');

 Array.prototype.forEach.call(headings, h => {

 let btn = h.querySelector('button');

 btn.onclick = () => {

 let expanded = btn.getAttribute('aria-expanded')

 === 'true';

 btn.setAttribute('aria-expanded', !expanded);

 target.hidden = expanded;

 }

 })

})()

Demo: Basic collapsible sections63

63 https://smashed.by/collapsiblesectionsdemo

Collapsible Sections 177

https://smashed.by/collapsiblesectionsdemo

PROGRESSIVE ENHANCEMENT
The trouble with the script above is that it requires the HTML

to be adapted manually for the collapsible sections to work.

Implemented by an engineer as a component via a template

or JSX, this is expected. However, for largely static sites like

blogs there are two avoidable issues:

• If JavaScript is unavailable, there are interactive

elements in the DOM that don’t do anything, with

semantics that therefore make no sense.

• The onus is on the author/editor to construct the

complex HTML.

Instead, we can take basic prose input (say, written in

Markdown or in a WYSIWYG) and enhance it after the

fact with the script. This is quite trivial in jQuery given the

nextUntil and wrapAll methods, but in plain JavaScript we

need to do some iteration. Here’s another demo that automat-

ically adds the toggle button and groups the section content

for toggling. It targets all <h2>s found in the <main> part of

the page.

Demo: Progressive collapsible sections64

64 https://smashed.by/progcollapsiblesections

178 Chapter 7

https://smashed.by/progcollapsiblesections

Why write it in plain JavaScript? Because modern browsers

support Web API methods very consistently now, and because

small interactions should not depend on large libraries.

A progressive web component
The last example meant we didn’t have to think about our

collapsible sections during editorial; they’d just appear

automatically. But what we gained in convenience, we lost

in control. Instead, what if there was a compromise wherein

there was very little markup to write, but what we did write

let us choose which sections should be collapsible and what

state they should be in on page load?

Web components could be the answer. Consider the following:

<toggle-section open="false">

 <h2>My section</h2>

 <p>Lorem ipsum dolor sit amet, consectetur

adipiscing elit. Cras efficitur laoreet massa. Nam eu

porta dolor. Vestibulum pulvinar lorem et nisl tempor

lacinia.</p>

 <p>Cras mi nisl, semper ut gravida sed, vulputate

vel mauris. In dignissim aliquet fermentum. Donec arcu

nunc, tempor sed nunc id, dapibus ornare dolor.</p>

</toggle-section>

Collapsible Sections 179

The custom element name is easy to remember, and the open

attribute has obvious implications. Better still, where Java-

Script is unavailable, this outer element is treated like a mere

<div> and the collapsible section remains a simple section.

No real harm done.

In fact, if we detect support for the <template> element and

attachShadow within our script, the same fallback will be

presented to browsers not supporting these features.

if ('content' in document.createElement('template')) {

 // Define the <template> for the web component

 if (document.head.attachShadow) {

 // Define the web component using the v1 syntax

 }

}

Frameworks or web components?

The promise of web components is that you should be able

to create components like you would in React or Vue, but in

native code. Fewer dependencies, and faster to run.

180 Chapter 7

However, as noted in “The Case for React-like Web Compo-

nents,”65 web components are limited when in comes to data

binding and state.

Nonetheless, there’s a good case for writing at least your

functional components as web components. The more of your

design system that’s written in native code, the more interop-

erable, reusable, and future-proof it is.

THE TEMPLATE
We could place a template element in the markup and refer-

ence it, or create one on the fly. I’m going to do the latter.

tmpl.innerHTML = `

 <h2>

 <button aria-expanded="false">

 <svg aria-hidden="true" focusable="false"

viewBox="0 0 10 10">

 <rect class="vert" height="8" width="2" y="1"

x="4"/>

 <rect height="2" width="8" y="4" x="1"/>

 </svg>

 </button>

 </h2>

 <div class="content" hidden>

 <slot></slot>

 </div>

65 https://smashed.by/reactwebcomponents

Collapsible Sections 181

https://smashed.by/reactwebcomponents

 <style>

 h2 {

 margin: 0;

 }

 h2 button {

 all: inherit;

 box-sizing: border-box;

 display: flex;

 justify-content: space-between;

 width: 100%;

 padding: 0.5em 0;

 }

 button svg {

 height: 1em;

 margin-left: 0.5em;

 }

 [aria-expanded="true"] .vert {

 display: none;

 }

 [aria-expanded] rect {

 fill: currentColor;

 }

 </style>

This template content will become the Shadow DOM subtree

for the component.

182 Chapter 7

By styling the collapsible section from within its own

Shadow DOM, the styles do not affect elements in Light

DOM (the standard, outer DOM). Not only that, but they are

not applied unless the browser supports <template> and

custom elements.

DEFINING THE COMPONENT
Note the <slot> element in the template HTML, which is a

window to our Light DOM. This makes it much easier to wrap

the content provided by the author than in the previous pro-

gressive enhancement demo.66

Inside the component definition, this.innerHTML refers to

this Light DOM content. We shall create a shadowRoot and

populate it with the template’s content. The Shadow DOM

markup is instead found with this.shadowRoot.innerHTML.

class ToggleSection extends HTMLElement {

 constructor() {

 super()

 this.attachShadow({ mode: 'open' })

 this.shadowRoot.appendChild(tmpl.content.

cloneNode(true))

 }

}

66 https://smashed.by/progcollapsiblesections

Collapsible Sections 183

https://smashed.by/progcollapsiblesections

With these references, we can move Light DOM to Shadow

DOM. Which means we can repurpose the Light DOM <h2>’s

label and eliminate the now superfluous element. It probably

seems dirty doing this DOM manipulation — especially when

you're used to simple, declarative (React) components. But it’s

what makes the web component progressive.

this.btn = this.shadowRoot.querySelector('h2 button');

var oldHeading = this.querySelector('h2');

var label = oldHeading.textContent;

this.btn.innerHTML = label + this.btn.innerHTML;

oldHeading.parentNode.removeChild(oldHeading);

Actually, we can do one better and support different introduc-

tory heading levels. Instead of targeting headings at all, we

can just get the first element in the Light DOM. Making sure

the first element is a heading would be a matter for editorial

184 Chapter 7

guidance. However, if it’s not a heading, we can make good of

any element — as I shall demonstrate.

var oldHeading = this.querySelector(':first-child')

Now we just need to make sure the level for the Shadow DOM

heading is faithful to the Light DOM original. I can query the

tagName of the Light DOM heading and augment the Shadow

DOM level with aria-level accordingly.

let level = parseInt(oldHeading.tagName.substr(1));

this.heading = this.shadowRoot.querySelector('h2');

if (level && level !== 2) {

 this.heading.setAttribute('aria-level', level);

}

The second character of tagName is parsed as an integer.

If this is a true integer (NaN is falsey) and isn't the 2 offered

implicitly by <h2>, aria-level is applied. As a fallback, a

non-heading element still gives up its textContent as the

label for the extant Shadow DOM <h2>. This can be accompa-

nied by a polite console.warn, advising developers to use a

heading element as a preference.

Collapsible Sections 185

if (!level) {

 console.warn('The first element inside each <toggle-

section> should be a heading of an appropriate

level.');

}

One advantage of using aria-level is that, in our case, it is

not being used as a styling hook — so the appearance of the

heading/button remains unchanged.

<h2 aria-level="3">

 <button aria-expanded="false">

 <svg aria-hidden="true" focusable="false"

viewBox="0 0 10 10">

 <rect class="vert" height="8" width="2" y="1"

x="4"/>

 <rect height="2" width="8" y="4" x="1"/>

 </svg>

 </button>

</h2>

If you wanted your collapsible section headings to reflect

their level, you could include something like the following in

your CSS:

186 Chapter 7

toggle-section [aria-level="2"] {

 font-size: 2rem;

}

toggle-section [aria-level="3"] {

 font-size: 1.5rem;

}

/* etc */

The region role

Any content that is introduced by a heading is a de facto

(sub)section within the page. But, as I covered in chapter 2,

“A To-do List”, you can create explicit sectional container

elements in the form of <section>. You get the same effect

by applying role="region" to an element, such as our

custom <toggle-section> (which otherwise offers no such

accessible semantics).

<toggle-section role="region">

 ...

</toggle-section>

Screen reader users are more likely to traverse a document

by heading than region67 but many screen readers do provide

region shortcuts. Adding role="region" gives us quite a bit:

67 https://smashed.by/screenreadersurvey

Collapsible Sections 187

https://smashed.by/screenreadersurvey

• It provides a fallback navigation cue for screen reader

users where the Light DOM does not include a heading.

• It elicits the announcement of "region" when the

screen reader user enters that section, which acts as a

structural cue.

• It gives us a styling hook in the form toggle-

button[role="region"]. This lets us add styles we only

want to see if the script has run and web components

are supported.

TETHERING OPEN AND ARIA-EXPANDED
When the component’s open attribute (a Boolean) is

added or removed, we want the appearance of the con-

tent to toggle. By harnessing observedAttributes() and

attributeChangedCallback() we can do this directly. We

place this code after the component’s constructor:

get open() {

 return this.hasAttribute('open');

}

set open(val) {

 if (val) {

 this.setAttribute('open', '');

 } else {

 this.removeAttribute('open');

 }

188 Chapter 7

}

static get observedAttributes() {

 return ['open']

}

attributeChangedCallback(name) {

 if (name === 'open') {

 this.switchState();

 }

}

• observedAttributes() takes an array of all the

attributes on the parent <toggle-section> that we wish

to watch

• attributeChangedCallback(name) lets us execute

our switchState() function in the event of a change

to open

The advantage here is that we can toggle state using a script

that simply adds or removes open, from outside the com-

ponent. For users to change the state, we can just flip open

inside a click function:

this.btn.onclick = () => {

 this.toggleAttribute('open');

}

Collapsible Sections 189

Since the switchState() function augments the

aria-expanded value, we have tethered open to

aria-expanded, making sure the state change is accessible.

this.switchState = () => {

 let expanded = this.hasAttribute('open');

 this.btn.setAttribute('aria-expanded', expanded);

 this.shadowRoot.querySelector('.content').hidden =

!expanded;

}

Demo: Web component with additional expand/

collapse all functionalities.68

EXPAND/COLLAPSE ALL
Since we toggle <toggle-section> elements via their open

attribute, it’s trivial to afford users an ‘expand/collapse all’

behavior. One advantage of such a provision is that users who

have opened multiple sections independently can reset to an

initial, compact state for a better overview of the content. By

the same token, users who find fiddling with interactive ele-

ments distracting or tiresome can revert to scrolling through

open sections.

68 https://smashed.by/expandcollapseall

190 Chapter 7

https://smashed.by/expandcollapseall

It’s tempting to implement ‘expand/collapse all’ as a single

toggle button. But we don’t know how many sections will

initially be in either state. Nor do we know, at any given time,

how many sections the user has opened or closed manually.

Instead, we should group two alternative controls.

<ul class="controls">

 <button id="expand">expand all</button>

 <button id="collapse">collapse all</button>

It’s important to group related controls together, and lists are

the standard markup for doing so. (See also chapter 3 “Menus

and Menu Buttons” on page 70.) Lists and list items tell screen

reader users when they are interacting with related elements

and how many of these elements there are.

Some compound ARIA widgets have their own grouping

mechanisms, like role="menu" grouping role="menuitem"

elements, or role="tablist" grouping role="tab"

elements. Our use case does not suit either of these

paradigms, and a simple list suffices.

Arguably, a group label should be provided to the con-

trols as well. I don’t believe it’s necessary here because

the individual labels are sufficiently descriptive. It is possi-

ble, to use aria-label and aria-labelledby with

elements, however.

Collapsible Sections 191

TRACKING THE URL
One final refinement.

Conventionally, and in the absence of JavaScript enhance-

ment, users are able to follow and share links to specific

page sections by their hash. This is expected, and part of the

generic UX of the web.

Most parsers add id attributes for this purpose to heading

elements. As the heading element for a target section in our

enhanced interface may be inside a collapsed/unfocusable

section, we need to open that to reveal the content and move

focus to it. The connectedCallback() life cycle lets us do

this when the component is ready. It’s like DOMContentLoaded

but for web components.

connectedCallback() {

 if (window.location.hash.substr(1) === this.heading.

id) {

 this.setAttribute('open', 'true');

 this.btn.focus();

 }

}

192 Chapter 7

Note that we focus the button inside the component’s head-

ing. This takes keyboard users to the pertinent component

ready for interaction. In screen readers, the parent heading

level will be announced along with the button label.

Further to this, we should be updating the hash each time the

user opens successive sections. Then they can share the spe-

cific URL without needing to dig into dev tools (if they know

how!) to copy/paste the heading’s id. Let’s use pushState to

dynamically change the URL without reloading the page:

this.btn.onclick = () => {

 let open = this.getAttribute('open') === 'true';

 this.setAttribute('open', open ? 'false' : 'true');

 if (this.heading.id && !open) {

 history.pushState(null, null, '#' + this.heading.

id);

 }

}

Demo: Final version, with history (hash tracking)69

(Note that the presence of the open property will mean the

section is open, regardless of whether it matches the URL #)

69 https://smashed.by/withhistory

Collapsible Sections 193

https://smashed.by/withhistory

Conclusion
Your role as an interface designer and developer (yes, you

can be both at the same time) is to serve the needs of the

people receiving your content and using your functionality.

These needs encompass both those of end users and fellow

contributors. The product should, of course, be accessible

and performant, but maintaining and expanding the product

should be possible without esoteric technical knowledge.

Whether implemented through web components or not, pro-

gressive enhancement not only ensures the interface is well

structured and robust. As we’ve seen here, it can also simplify

the editorial process. This makes developing the application

and its content more inclusive.

194 Chapter 7

CHECKLIST

• Don’t depend on large libraries for small interactions,

unless the library in question is likely to be used for

multiple other interactive enhancements.

• Do not override important element roles. See the second

rule of ARIA use.70

• Support high contrast themes in your SVG icons

with currentColor.

• If the content is already otherwise static, there is

a good case for basing your web component on

progressive enhancement.

• Do please come up with more descriptive labels for

your sections than “Section 1”, “Section 2” etc. Those are

just placeholders!

70 https://smashed.by/2ndrule

Collapsible Sections 195

https://smashed.by/2ndrule

A Content Slider

Carousels (or content sliders) are like men. They are not

literally all bad — some are even helpful and consid-

erate. But I don’t trust anyone unwilling to acknowl-

edge a glaring pattern of awfulness. Also like men, I appre-

ciate that many of you would rather just avoid dealing with

carousels, but often don’t have the choice. Hence this chapter.

Carousels don’t have to be bad, but we have a culture of

making them bad. It is usually the features of carousels, rather

than the underlying concept, that is at fault. As with many

things inclusive, the right solution is often not what you do but

what you don’t do in the composition of the component.

Here, we shall be creating something that fulfills the basic

purpose of a carousel — to allow the traversal of content

along a horizontal axis — without being too reverential about

the characteristics of past implementations.

Control
In the broadest terms, any inclusive component should be:

• Clear and easy to use

• Interoperable with different inputs and outputs

196 Chapter 8

• Responsive and device-agnostic

• Performant

• Under the user’s control

That last point is one I have been considering a lot lately, and

it’s why I added “Do not include third parties that compro-

mise user privacy” to the inclusive web design checklist.71 As

well as nefarious activities, users should also be protected

from unexpected or unsolicited ones. This is why WCAG pre-

scribes the 2.2.2 Pause, Stop, Hide72 criterion, mandating the

ability to cease unwanted animations. In carousel terms, we’re

talking about the ability to cease the automatic cycling of

content slides by providing a pause or stop button.

71 https://smashed.by/inclusivedesignchecklist
72 https://smashed.by/pausehide

A Content Slider 197

https://smashed.by/inclusivedesignchecklist
https://smashed.by/pausehide

It’s something, but I don’t think it’s good enough. You’re not

truly giving control,73 you’re taking it away then handing it

back later. For people with vestibular disorders for whom

animations can cause nausea, by the time the pause button is

located, the damage will have been done.

For this reason, I believe a truly inclusive carousel is one that

never moves without the user’s say-so. This is why I prefer the

term content slider — accepting that the operative slider is

the user, not a script. Content sliders start and stop moving as

the user sees fit.

Our slider will not slide except when slid. But how is

sliding instigated?

Multimodal interaction
Multimodal means “can be operated in different ways.”

Supporting different modes of operation may sound like a lot

of work, but browsers are multimodal by default. Unless you

screw up, all interactive content can be operated by mouse,

keyboard, and (where the device supports it) touch.

By deferring to standard browser behavior, we can support

multimodality in our content slider with very little effort.

73 https://smashed.by/givecontrol

198 Chapter 8

https://smashed.by/givecontrol

HORIZONTAL SCROLLING
The simplest conceivable content slider is a region con-

taining unwrapped content laid out on a horizontal axis,

traversable by scrolling the region horizontally. The declara-

tion overflow-x: scroll does the heavy lifting.

.slider {

 overflow-x: scroll;

}

.slider li {

 display: inline-block;

 white-space: nowrap;

}

Save for some margins and borders to improve the appear-

ance of the slider, this is a serviceable MVP (Minimum Via-

ble Product) for mouse users. They can scroll by pulling at

a visible scroll bar, or by hovering over the slider and using

trackpad gestures. And that animation is smooth too, because

it’s the browser doing it, not a JavaScript function fired every

five milliseconds.

A Content Slider 199

(Where no scroll bar is visible, affordance74 is not so obvious.

Don’t worry, I’ll deal with that shortly.)

KEYBOARD SUPPORT
For mouse users on most platforms, hovering their cursor over

the slider is enough to enable scrolling of the hovered ele-

ment. For touch users, simply swiping left and right does the

trick. This is the kind of effortless multimodality that makes

the web great.

For those using the keyboard, only when the slider is focused

can it be interacted with.

Under normal circumstances, most elements do not receive

focus by default — only designated interactive elements such

as links and <button>s. Elements that are not interactive

should not be directly focusable by the user and, if they are, it

74 https://smashed.by/idaffordances

200 Chapter 8

https://smashed.by/idaffordances

is a violation of WCAG 2.4.3 Focus Order.75 The reason being

that focus should precede activation, and if activation is not

possible then why put the element in the user’s hand?

To make our slider element focusable by the user, we need to

add tabindex="0". Since the (focused) element will now be

announced in screen readers, we ought to give it a role and

label, identifying it. In the demos to follow, we’ll be using the

slider to show artworks, so “gallery” seems apt.

<div role="region" aria-label="gallery" tabindex="0">

 <!-- list of gallery pictures -->

</div>

The region role is fairly generic, but is suitable for sizable

areas of content and its presence ensures that aria-label is

supported correctly and announced. You can’t just go put-

ting aria-label on any inert <div> or . Note that

there are translation issues76 with aria-label, so a visually

hidden span is preferable in many cases. However, since this

is effectively a group label, we can’t just secrete a .

We would have to connect a to the element with

aria-labelledby like so:

75 https://smashed.by/focusorder
76 https://smashed.by/xenophobe

A Content Slider 201

https://smashed.by/focusorder
https://smashed.by/xenophobe

<div role="region" aria-labelledby="gallery-label"

tabindex="0">

 <span id="gallery-label" aria-hidden="true"

class="visually-hidden">Gallery

 <!-- list of gallery pictures -->

</div>

For brevity, the examples to follow use aria-label, but

always use text nodes where you can.

Now that focus is attainable, the standard behavior of being

able to scroll the element using the left and right arrow keys

is possible. We just need a focus style to show sighted users

that the slider is actionable:

[aria-label="gallery"]:focus {

 outline: 4px solid skyBlue;

}

Demo: A basic content slider (no JavaScript)77

77 https://smashed.by/contentsliderdemo

202 Chapter 8

https://smashed.by/contentsliderdemo

Affordance
There are already a couple of things that tell the user this is

a slidable region: the focus style; and the fact that the right-

most image is usually cut off, suggesting there is more to see.

Depending on how critical it is for users to see the hidden

content, you may deem this enough — plus it keeps things

terse code-wise.

THE SCROLL BAR
For elements that are scrollable, some operating systems and

user agents provide a visible scroll bar. Others tidy the scroll

bar away. Since a visible scroll bar gives added affordance, it

would be better to show it wherever possible.

For WebKit browsers, we can create a custom scroll bar and

handle. This both reveals the scroll bar, and gives us an oppor-

tunity to style it as we wish.

[aria-label="gallery"]::-webkit-scrollbar {

 height: 0.75rem;

}

[aria-label="gallery"]::-webkit-scrollbar-track {

 background-color: #eee;

}

A Content Slider 203

[aria-label="gallery"]::-webkit-scrollbar-thumb {

 background-color: #000;

}

The standard way to style scroll bars is with the scrollbar-

color and scrollbar-width properties. Note that the

scrollbar-color settings only take effect on macOS where

Show scroll bars is set to Always (in Settings ↬ General).

These properties are supported in Firefox as of version 64. The

effect they have is limited, but that’s okay. Non-WebKit users

will have a different experience, but not a broken one. That’s

the beauty of progressive enhancement.

css [aria-label="gallery"] {

/* Space separated: the thumb color followed by the

track color */

scrollbar-color: #000 #eee;

/* Keywords: none, thin, or auto */

scrollbar-width: thin; }

It’s possible to mimic a scroll bar using custom elements and

JavaScript, but it’s a notoriously hacky and heavyweight affair.

By simply enhancing the standard browser scroll bar, the solu-

tion is more efficient and reliable.

204 Chapter 8

INSTRUCTIONS
We can take things one step further and literally spell out

how the gallery content slider can be used. Inclusive design

mantra: If in doubt, spell it out.

We can do this by creating an instructions element after the

slider to reveal messages depending on the state of the slider

itself. For instance, we could reveal a :hover-specific mes-

sage of “scroll for more.” The adjacent sibling combinator (+)

transcribes the :hover style to the .instructions element.

#hover {

 display: none;

}

[aria-label="gallery"]:hover + .instructions #hover {

 display: block;

}

A Content Slider 205

The :focus message can be done in much the same way.

But we’ll also want to associate this message with the slider

region for people running screen readers. Whether or not the

region is of interest to any one screen reader user is irrelevant.

The message helps clarify what the slider is, and helps the

user make a more informed choice about whether they wish

to interact with it.

For this we can use our faithful aria-describedby prop-

erty. We point it at the focus message element using its id as

the value:

<div role="region" aria-label="gallery" tabindex="0"

aria-describedby="focus">

 <!-- list of gallery pictures -->

</div>

<div class="instructions">

 <p id="hover">scroll for more</p>

 <p id="focus">Use your arrow keys to explore</p>

</div>

Now, when focusing the gallery slider, screen readers will

announce something similar to “gallery, region, Use your

arrow keys to explore.” As a further note on multimodality,

be assured that screen reader users in “browse mode” (step-

ping through each element) will simply enter the region and

traverse through each image in turn. In other words, the slider

is multimodal even for screen reader users.

206 Chapter 8

The path of a screen reader user in browse mode is much the same as
a keyboard user’s path given linked/interactive slides. In either case,
the browser/reader will slide the container to bring the focused items
into view.

HOVER AND FOCUS?
It’s interesting sometimes what you find in testing. In my case,

I noticed that when I both hovered and focused the slider,

both messages appeared. Of course.

As a refinement, I discovered I could concatenate the states

(:hover:focus) and reveal a message that addresses both

use cases at once.

[aria-label="gallery"]:hover:focus + .instructions

#hover-and-focus {

 display: block;

 }

A Content Slider 207

Using the general sibling combinator (~) I was able to make

sure the other two messages were hidden (otherwise I’d see

all three!):

[aria-label="gallery"]:hover:focus + .instructions

#hover-and-focus ~ * {

 display: none;

}

This is all very clever, but do we really need special messages

for each interaction mode? After all, scrolling is the end, not

the means, so “scroll for more” is probably adequate for both

hover and focus. See it implemented in this demo:

Demo: A basic content slider with instructions78

HANDLING THE TOUCH CASE
So far the touch experience is poor: no instructions are

provided by default and there’s no way to elicit the instruc-

tions without first operating the slider. Handling the touch

interaction case means first detecting if the user is operating

by touch.

78 https://smashed.by/contentsliderinstructions

208 Chapter 8

https://smashed.by/contentsliderinstructions

Critically, we don’t want to detect touch support at a device

level, because so many devices support touch alongside other

input methods. Instead, we just want to know if the user hap-

pens to be interacting by touch. This is possible by detecting

a single touchstart event. Here’s a tiny script (all the best

scripts are!):

window.addEventListener('touchstart', function

touched() {

 document.body.classList.add('touch');

 window.removeEventListener('touchstart', touched,

false);

}, false)

All the script does is detect an initial touchstart event, use

it to add a class to the <body> element, and remove the

listener. With the class in place, we can make our “scroll for

more” message a permanent fixture.

[aria-label="gallery"]:hover + #instructions,

[aria-label="gallery"]:focus + #instructions,

.touch #instructions {

 display: block;

}

A Content Slider 209

Slides
Depending on your use case and content, you could just stop

and call the slider good here, satisfied that we have some-

thing interoperable and multimodal that only uses about 100

bytes of JavaScript. That’s the advantage of choosing to make

something simple, from scratch, rather than depending on a

one-size-fits-all library.

But so far our slider doesn’t really do slides, which typically

take up the full width of their container. If we handle this

responsively, folks can admire each artwork in isolation,

across different viewports. It would also be nice to be able

to add some captions, so we’re going to use <figure> and

<figcaption> from now on.

 <figure>

 <figcaption>[Title of artwork]</figcaption>

 </figure>

Let’s switch to Flexbox for layout.

[aria-label="gallery"] ul {

 display: flex;

}

210 Chapter 8

[aria-label="gallery"] li {

 list-style: none;

 flex: 0 0 100%;

}

• Just display: flex is all we need on the container

because flex-wrap defaults to nowrap .

• The 100% in the flex shorthand is the flex-basis,

making each item take up 100% of the container.

• I’m making the <figure> a flex context too, so that I can

center each figure’s contents along both the vertical and

horizontal axes.

[aria-label="gallery"] figure {

 display: flex;

 align-items: center;

 justify-content: center;

 width: 100%;

 height: 50vh;

}

That 50vh value is the only fixed(ish) dimension I am using. It’s

to make sure the slider has a reasonable height, but fits within

the viewport. For the image and <figcaption> to always

fit within the container, we make the image scale propor-

tionately, but compensate for the predictable height of the

<figcaption>. For this we can use calc:

A Content Slider 211

[aria-label="gallery"] figcaption {

 height: 2rem;

 line-height: 2rem;

}

[aria-label="gallery"] img {

 display: block;

 margin: 2rem auto 0;

 max-width: 100%;

 max-height: calc(100% - 2rem);

}

The <figcaption> is set to a 2rem height. This is removed

from the flexible image’s height using calc. A margin-top of

2rem then re-centers the image.

212 Chapter 8

Demo: Full width slides with captioned artworks.79

One of the most striking observations noted in the classic

shouldiuseacarousel.com80 is that, of carousels that contain

linked content, “1% clicked a feature. Of those, 89% were the

first position.” Even for auto-rotating carousels, the research81

shows that the number of clicks on slides following the initial

slide drops off dramatically.

It is entirely likely that the first image in our content slider is

the only one that most readers will ever see. In which case, we

should treat it as the only image, and load subsequent images

if the user chooses to view them.

We can use IntersectionObserver, where supported, to

load each image as each slide begins to scroll into view.

79 https://smashed.by/contentslidercaptioned
80 https://smashed.by/shouldiuseacarousel
81 https://smashed.by/carouselstats

A Content Slider 213

http://shouldiuseacarousel.com
https://smashed.by/contentslidercaptioned
https://smashed.by/shouldiuseacarousel
https://smashed.by/carouselstats

Here’s the script, with notes to follow:

const observerSettings = {

 root: document.querySelector('[aria-

label="gallery"]')

}

if ('IntersectionObserver' in window) {

 Array.prototype.forEach.call(slides, function

(slide) {

 let img = slide.querySelector('figure > img');

 });

 const callback = (slides, observer) => {

 Array.prototype.forEach.call(slides, function

(entry) {

 if (!entry.isIntersecting) {

 return;

 }

 let img = entry.target.querySelector('img');

 img.onload = () => img.classList.remove('dots');

 img.setAttribute('src', img.dataset.src);

 observer.unobserve(entry.target);

 })

 }

 const observer = new IntersectionObserver(callback,

observerSettings);

 Array.prototype.forEach.call(slides, t => observer.

observe(t));

} else {

 Array.prototype.forEach.call(slides, function (s) {

214 Chapter 8

 let img = s.querySelector('img');

 img.setAttribute('src', img.getAttribute('data-

src'));

 img.classList.remove('dots');

 })

}

• In observerSettings we define the outer gallery

element as the root. When elements become visible

within it, that’s when we take action.

• We feature-detect with'IntersectionObserver' in window

and just load the images straight away if not. Sorry, old

browser users, but that’s the best we can offer here — at

least you get the content.

• For each slide that intersects, we set its src from the

dummy data-src attribute in typical lazy-

loading fashion.

• In this implementation, the placeholder src is a loading

indicator. I add a flashing animation style to this

indicator via the .dots class and remove this class on the

image’s onload event. This is the only way to ensure the

animation styling only affects the indicator and not the

artwork that replaces it. In other words, it gets around

the race condition that changing the class takes less time

that loading the image.

A Content Slider 215

img.onload = () => img.classList.remove('dots');

The indicator is provided as a data URL, meaning it is not itself

a resource that needs to be waited upon. I use UTF encoding

to describe an SVG:

src='data:image/svg+xml;utf8,<svg xmlns="http://www.

w3.org/2000/svg" viewBox="0 0 6 2"

stroke="currentColor" stroke-dasharray="1,0.5"><path

d="M1,1 5,1" /></svg>'

The inline stroke styles are necessary because I can’t target

the SVG’s DOM from the parent page.

Demo: Content slider with lazy loading images82

(To see the effect, try throttling the network in Chrome’s devel-

oper tools by setting to Mid-tier or Low-end mobile).

(Note: It’s not necessary to know the gallery image’s dimen-

sions ahead of time to stop the page jumping as they load in

our case, because the gallery has a set height anyway.)

82 https://smashed.by/contentsliderlazy

216 Chapter 8

https://smashed.by/contentsliderlazy

NO JAVASCRIPT
Currently, users with no JavaScript running are bereft

of images because the data-src /src switching can-

not occur. The simplest solution seems to be to provide

<noscript> tags containing the images with their true src

values already in place.

<noscript>

</noscript>

In addition, we need to hide the loading indicator image. I

placed a no-js class on the gallery container and add the

following CSS. There’s some other wrangling for <noscript>

styling which I’ll leave for you to discover in the demo.

.no-js .dots {

 display: none;

}

Since our slider is operable without JavaScript, we’re pretty

good. However, this only handles the “no JavaScript” case —

which is rare — and not the “broken/failed JavaScript” case

which is distressingly common.

A Content Slider 217

Rik Schennink has solved this problem by placing a

mutationObserver in the head of the document.83 A demo84

is available for this technique, which initially swaps src to

data-src and, in testing, fairly reliably prevents the fetching

of the image resources on first run.

Previous and next buttons
Typical sliders have buttons on either side of them for moving

backwards or forwards through the slides. This is a convention

that might be worth embracing for two reasons:

• The mere presence of the buttons makes the slider more

slider-like, increasing its affordance.

• The buttons allow the user to snap slides into place. No

more scrolling back and forth to get the desired slide

centered exactly.

The trick is in building on the functionality we’ve already

designed, rather than replacing it. Our buttons should be

aware of and able to respond to scrolling and swiping actions

that may already have taken place.

By adapting our IntersectionObserver script, we can add

and remove a .visible class to our slides:

83 https://smashed.by/mutationobserver
84 https://smashed.by/lazydemo

218 Chapter 8

https://smashed.by/mutationobserver
https://smashed.by/lazydemo

slides.forEach(entry => {

 entry.target.classList.remove('visible')

 if (!entry.isIntersecting) {

 return;

 }

 let img = entry.target.querySelector('img');

 if (img.dataset.src) {

 img.setAttribute('src', img.dataset.src);

 img.removeAttribute('data-src');

 }

 entry.target.classList.add('visible');

})

Not only does this mean we’ll find class="visible" on any

slide that’s fully in view (such as the initial slide), but in the

case that the user has scrolled to a position between two

slides, they’ll both carry that class.

To move the correct slide fully into view when the user

presses one of the buttons, we need to know just three things:

A Content Slider 219

1. How wide the container is

2. How many slides there are

3. Which direction the user wants to go

If two slides are partially visible and the user presses next, we

identify the requested slide as the second of the .visible

node list. We then change the container’s scrollLeft value

based on the following formula:

requested slide index × (container width ÷ number of slides)

Note the size of the previous and next buttons in the following

demo — optimized for easy touch interaction without hinder-

ing the desktop experience.

THE BUTTON GROUP
By placing the two buttons in a list, they are treated as

grouped items and enumerated. Since implicitly

supports aria-label we can provide a helpful group

label of “gallery controls” to further identify the purpose of

the buttons.

<ul aria-label="gallery controls">

<button class="previous" aria-label="previous

 artwork">

220 Chapter 8

 <svg aria-hidden="true" focusable="false"><use

xlink:href="#arrow-left"></use></svg>

 </button>

 <button class="next" aria-label="next artwork">

 <svg aria-hidden="true" focusable="false"><use

xlink:href="#arrow-right"/></svg>

 </button>

Each button, of course, must have an independent label,

administered with aria-label for brevity in this case, but be

aware of the translation issues stated earlier in the chapter

and throughout the book. When a screen reader user encoun-

ters the first button, they will hear something similar to “previ-

ous button, list, gallery controls, two items.”

We only provide the controls if the browser supports

IntesectionObserver. For browsers that don’t support it, the

content slider still renders and is still mouse, keyboard, and

touch accessible.

gallery.parentNode.insertBefore(controls, gallery);

A Content Slider 221

SCROLLING ENHANCEMENTS
A couple of final enhancements to improve the scrolling

experience: the first is to add scroll-behavior: smooth to

the scrollable element. Although not supported everywhere,

this is a highly efficient way to animate the button-

activated scrolling. Without it, artworks seem to just appear

and disappear, meaning users may not be aware there is a

linear continuum.

The second is to support “snap points.” Some browsers —

Safari and Firefox included — support a simple CSS method

of snapping slides into place as you scroll or use your arrow

keys. Since Safari doesn’t support IntersectionObserver,

this is one way to improve the UX for users of that browser.

The following mess of proprietary and standard properties is

what worked in this case.

[aria-label="gallery"] {

 -webkit-overflow-scrolling: touch;

 -webkit-scroll-snap-type: mandatory;

 -ms-scroll-snap-type: mandatory;

 scroll-snap-type: mandatory;

 -webkit-scroll-snap-points-x: repeat(100%);

 -ms-scroll-snap-points-x: repeat(100%);

 scroll-snap-points-x: repeat(100%);

}

222 Chapter 8

Tip: the repeat(100%) part refers to the 100% width of

each slide.

Demo: Content slider with buttons, scroll-

behavior: smooth and snap points85

With the buttons now in place, it’s tempting to remove the

ability to scroll the region directly. In fact, if your preferred

method is using the buttons, then the tabindex="0" on the

container could be considered an obstructive extra tab stop.

However, different people like to interact with things in differ-

ent ways — hence erring on the side of multimodality.

DISABLING BUTTONS
If the scroll position of the gallery element is right at the start

or all the way to the end, the previous or next button isn’t

going to do anything. You may want to consider disabling the

redundant button under these circumstances. But there are a

few things to consider:

Disabled buttons (buttons with the disabled attribute/prop-

erty) are not focusable. When a button the user is currently

operating becomes disabled, things may therefore get

confusing. The user may tab away, then tab back only to find

85 https://smashed.by/contentsliderbuttons

A Content Slider 223

https://smashed.by/contentsliderbuttons

the button isn’t there anymore. Screen reader users can still

reach it by moving their virtual cursor to the element, but they

wouldn’t know to do this in the context, since Tab worked

perfectly well before.

• Disabled styles can be problematic. By default, disabled

buttons are just grayed out which doesn’t necessarily

say “disabled” to some people — especially if they

are color-blind.

• To keep things consistent, we would need to disable

buttons in response the clicking the buttons and scrolling

the gallery directly. This means listening to the scroll

event, which has an inherent performance impact.

The performance issues can be overcome using debouncing.86

Many authors reach for a library like Lodash87 for this kind of

thing, but we can implement a simple debounce in a couple

of lines.

var debounced;

gallery.addEventListener('scroll', function () {

 window.clearTimeout(debounced);

 debounced = setTimeout(disable, 200);

});

86 https://smashed.by/jsdebounce
87 https://smashed.by/lodash

224 Chapter 8

https://smashed.by/jsdebounce
https://smashed.by/lodash

We simply assign the debounced variable, then use it to create

and clear a setTimeout. The upshot is that the function only

fires if the user’s scrolling has been idle for over 200 millisec-

onds. Operation becomes much less janky.

The disable function just tests to see if the scroll position is

at the start or end and sets disabled where applicable:

function disable() {

 prev.disabled = gallery.scrollLeft < 1;

 next.disabled = gallery.scrollLeft === list.

scrollWidth - list.offsetWidth;

}

In terms of styling, we’d rather not rely on color. In this case,

the clearest and simplest interpretation to my mind is the

removal of the SVG icon. The button then becomes an inert

border, with little affordance.

.gallery-controls button[disabled] svg {

 display: none;

}

A Content Slider 225

Finally, we have to disable the previous button on page load:

prev.disabled = true;

Demo: Content slider with buttons that disable,

via a debouncing function88

Whether disabling the buttons explicitly like this is a good

idea or not is difficult to know. On the one hand, having a

button that doesn’t do anything in focus order is redundant.

On the other hand, bringing buttons in and out of focus order

may be disorienting. The best way to know if it’s a good idea is

to test the component in context and with real content. There

are any number of contextual factors regarding the user’s and

the application’s overall state that may exacerbate issues on

either side.

One thing to consider from a technical standpoint is that

tabindex="0" will not reinstate the ability to focus buttons

with the disabled property. Which is a shame, because

being able to focus a disabled button (and hear “dimmed” or

“disabled”) may be instructive to the user. Instead, to support

keyboard and screen reader users of all kinds, you would

have to use a combination of tabindex and ARIA. In the

following example, tabindex="-1" removes the button from

focus order.

88 https://smashed.by/buttonsdisabled

226 Chapter 8

https://smashed.by/buttonsdisabled

<!-- enabled -->

<button

 class="previous"

 aria-label="previous artwork">

</button>

<!-- disabled -->

<button

 class="previous"

 aria-label="previous artwork"

 aria-disabled="true"

 tabindex="-1">

</button>

Handling linked content
Focus order is currently very simple in our slider: the button

controls receive focus first, followed by the scrollable region.

But what if the content of each slide were linked? After you

focused the button controls, the first slide would take focus

no matter whether it is currently visible or not. That is, if

the user has scrolled the region to view the third item, they

would expect that item to be the one that receives focus next.

Instead, the first item takes focus and the slider is slung back

to the start, bringing that first item into view.

A Content Slider 227

This is no disaster. In fact, items receiving focus being auto-

matically brought into view, without JavaScript, stands us in

good stead. Invisible content should never become focusable.

But where IntersectionObserver is supported and our

button controls have been rendered, having only the currently

visible item(s) in the focus order makes for a good enhance-

ment. We can amend our script so that links in items that are

not intersecting take tabindex="-1", making them unfocus-

able. See the lines commented (1) and (2) in the following.

Array.prototype.forEach.call(slides, entry => {

 entry.target.classList.remove('visible');

 let a = entry.target.querySelector('a');

 a.setAttribute('tabindex', '-1'); // (1)

 if (!entry.intersectionRatio > 0) {

 return;

 }

 let img = entry.target.querySelector('img');

 img.onload = () => img.classList.remove('dots');

 img.setAttribute('src', img.dataset.src);

 entry.target.classList.add('visible');

 a.removeAttribute('tabindex', '-1'); // (2)

})

228 Chapter 8

Arguably, slides that are not visible should not be perceiv-

able to screen readers either. This is eminently achievable by

adding and removing the aria-hidden state. However, in the

interest of multimodality, it’s better to let screen reader users

traverse the list directly using their virtual cursor.

The virtual cursor lets screen reader users navigate around

web pages without having to rely on interactive elements

and focus. It lets them move from element to element. Most

screen readers superimpose their own quasi-focus ring to

show sighted operators where there virtual cursor is situated.

In the case of our conent slider, moving the virtual cursor

to a currently invisible slide scrolls it into view and, there-

fore, removes tabindex="-1" from its link. Note that with

slide s taking up 100% of the container width, applying

aria-hidden="true" to each invisible one would mean

screen reader users always encounter a list of just one (or

two) list items. This would be confusing since numerous items

would be revealed through interaction.

A Content Slider 229

The complete script for this content slider is less than 2KB

minified. The first result when searching for “carousel plugin”

using Google is 41.9KB minified and uses incorrect WAI-ARIA

attribution, in some cases hiding focusable content from

screen reader software using aria-hidden.

Beware the fourth rule of ARIA use.89 In this final demo,

a Flexbox image scaling bug was suppressed by using

min-width: 1px and min-height: 1px on the images.

Demo: Content slider with focus management for

links90

Conclusion
Inclusive design is not about giving everyone the same expe-

rience. It’s about giving as many people as possible a decent

experience. Our slider isn’t the fanciest implementation out

there, but that’s just as well: it’s the content that should be

wowing people, not the interface. I hope you enjoyed my gen-

erative artworks used in the demonstration. You can generate

your own at Mutable Gallery.91

89 https://smashed.by/4thrule
90 https://smashed.by/contentsliderlinked
91 https://smashed.by/mutablegallery

230 Chapter 8

https://smashed.by/4thrule
https://smashed.by/contentsliderlinked
https://smashed.by/mutablegallery

In my conference talk “Writing Less Damned Code,”92 I

introduce the concept of unprogressive non-enhancement

— the idea that the flow content from which we construct

tab interfaces, carousels and similar, should often be

left unreconstructed.

No enhancement can be better than enhancement. But, when

used judiciously and with care, augmented presentations of

content such as content sliders can be quite compelling ways

of consuming information. There’d just better be a good,

well-researched reason to take that leap.

Since the writing of this chapter, I have coded and docu-

mented a carousel component for the BBC. It is similar, but

eschews the concept of (full width) slides. As such, it is more

suited to displaying sets of card components.

92 https://smashed.by/lesscodevideo

A Content Slider 231

https://smashed.by/lesscodevideo

CHECKLIST

• Use list markup to group the slides together. Then screen

reader users in browse mode can use list navigation

shortcuts to traverse them.

• Provide a reasonable experience in HTML with CSS, then

feature-detect when enhancing with JavaScript.

• Don’t preload content users are not likely to see. Defer

until they perform an action to see it.

• Provide generous touch targets for touch users on mobile

or small screens.

• If in doubt of a control’s (or widget’s) affordance, spell it

out with instructions.

• If you are a man and got past the first paragraph without

being personally offended: Congratulations! You do not

see men and women as competing teams.

232 Chapter 8

Notifications

T he key difference between a website and a web app

is… highly contested. On the whole, I’d say the more

links there are, the more site-like; and the more but-

tons, the more app-like. If it includes a page with a form, it’s

probably a kind of site. If it essentially is a form, you might call

it an app. In any case, your web product is really just inter-

active content, consumed and transmitted by an app we call

a browser.

One thing that certainly makes a web page feel more like a

desktop app is statefulness. Web pages that undergo changes

as you are operating them are something quite unlike web

pages that just load and unload as you click hyperlinks.

Sometimes the user might instigate a change in state. Some-

times another user might affect the app remotely, in real time.

Occasionally, the app might be subject to environmental and

time-based events independent of user interaction. In each

case, it’s important users are kept abreast of changing state,

which is a question of notifying them.

In this chapter, I’ll be looking at notification components and

how they can increase confidence in the use of web applica-

tions, in an inclusive way.

Notifications 233

Drawing attention
One of the biggest challenges in creating usable interfaces is

knowing when to draw attention to something. Oversharing

may be considered a nuisance, but undersharing might make

the user feel they are missing critical information. This makes

some hesitant, even when there is really nothing they “need to

know” at the time.

Then there’s the how. Broadly speaking, there are two

kinds of messages which need two different approaches to

be accessible:

1. Messages asking users to take action

2. Just FYI messages

Typically, a message asking a user to do something would

form the content of a dialog window (or inline disclosure), and

be accompanied by a choice of action buttons. Because the

keyboard operator will need to access those buttons, focus

must be moved into the dialog.

For the purpose of this chapter, what I mean by “notification”

is a message that just lets you know what’s going on. This

may be so you can choose to take action later, or it may be to

assure you of an event having taken place already.

234 Chapter 9

In screen reader and keyboard accessibility terms, it’s import-

ant that focus is not moved to such messages. If there is

nothing to be done with the tool, you don’t put the tool in the

person’s hand. Despite this, moving focus has endured as a

best practice. Why? Because focusing an element has, tradi-

tionally, been the most reliable way to get that element and

its contents announced in screen readers.

“Okay, great. But where am I? What do I do now?”

Fortunately, we have live regions to help us break this habit.

Live regions 101
We've used live regions before in this book but I’m going to

take the time to give you a broad overview here.

A live region is just a container element that sets a perimeter

around “live” content: content that will be announced — by

screen reader software — without user interaction, under

certain conditions. By default, a live region will announce

anything that is added or changed inside it.

Notifications 235

Somewhat perplexingly, there are two equivalent APIs for live

regions: the aria-live attribute and live region ARIA roles.

In most cases, you will want to use one of role="status"

or aria-live="polite". Using both simultaneously max-

imizes compatibility with different browser and assistive

technology pairings:

<div role="status" aria-live="polite">

</div>

Adding “Take a short break!” to this live region (as illustrated

below) will trigger announcement immediately after the text

node is inserted. It doesn’t have to be a text node; it can be

any markup.

<div role="status" aria-live="polite">

 Take a short break!

</div>

Now the “Take a short break!” message’s arrival in the inter-

face can be seen and heard simultaneously, creating a parity

between the visual and (screen reader assisted) aural expe-

rience. It is not the same experience, but it is a comparable93

one: it serves the same purpose.

And everyone should take a periodic screen break.

93 https://smashed.by/comparableexperience

236 Chapter 9

https://smashed.by/comparableexperience

INVISIBLE LIVE REGIONS
Sometimes, to create an overall comparable experience, a

little extra aural information may be needed as a supplement.

For example, when a user clicks an ‘add to cart’ button, the

interface’s response may be to animate the product moving

into the cart. A direct translation of this may be a whooshing

and clunking sound, but I suspect a visually hidden live region

stating “product added successfully” (or similar) would be a

lot clearer.

Adding a live region to a page already containing the content

you wish to be announced is not reliable. There should be at

least some time between the live region being appended to

the DOM and the content being appended to the live region.

For simply making screen readers say things alongside events

in your scripts, I have created a small module.94 Here’s a hypo-

thetical instantiation, using default settings:

94 https://smashed.by/liveregion

Notifications 237

https://smashed.by/liveregion

const liveRegion = new OnDemandLiveRegion();

liveRegion.say('Take a short break!');

Since the script creates hidden ARIA live regions and pop-

ulates them on the fly, it makes communicating to screen

readers procedurally trivial. However, in most cases — and

in the case of status messages especially — we want to be

communicating to users. Not users running screen readers

or users not running screen readers; just users. Live regions

make it easy to communicate through visual and aural

channels simultaneously.

A chat application
In a chat application (something like Slack, say, where most

everything happens in real time) there are a number of oppor-

tunities for status messages. For example:

• Users coming online

• Users being added to channels

• Users replying to your messages

• Users reacting to your messages

All of these types of messages coming in all the time is going

to quickly become distracting and irritating, especially in their

aural form. You can avert your eyes, but not your ears.

238 Chapter 9

We would need to do a couple of things to make the experi-

ence more tolerable:

• Restrict messages only to suitable contexts and situations

• Give the user control over messaging verbosity

RESTRICTING MESSAGES TO CONTEXTS
Something I noticed recently while running a screen reader

on one browser tab was that I could hear live regions rattling

off updates from another open tab, not visible to me. The only

solution was to close down the hidden tab. Not ideal, because

I would have liked to switch back and forth between them.

For a sighted user, unseen is unknown. It doesn’t matter if the

messages keep getting displayed. But, for screen reader users

(blind or otherwise), we need to silence output for hidden

tabs. We can do this by querying document.hidden within the

visibilitychange event from the Page Visibility API95 and

switching the live region between active and inactive. Inactive

live regions take role="none" and/or aria-live="off".

95 https://smashed.by/visibilityapi

Notifications 239

https://smashed.by/visibilityapi

Here’s how that would work:

const notifications = document.

getElementById('notifications');

document.addEventListener('visibilitychange', () => {

 let setting = document.hidden ? ['none', 'off'] :

['status', 'polite'];

 notification.setAttribute('role', setting[0]);

 notification.setAttribute('aria-live', setting[1]);

});

Your setup may vary

It’s worth noting that some combinations of screen reader

software and browser automatically silence at least some

types of live region for hidden or unfocused tabs and windows.

However, you can’t rely on all your users having these setups

and — where they don’t — the experience is very off-putting.

Conversations

Even when inside the open tab for the chat application, you

won’t want to be inundated by a flurry of any and all noti-

fications. Visually, it could get irritating; aurally it almost

certainly will.

240 Chapter 9

Knowing when to notify the user is a question of determining

what activity they are currently engaged in. For example,

users probably aren’t interested in the messages of users not

posting in the current thread, or the arrival online of users

they have no history of engaging with in the past.

On the other hand, if the user is focused on the text input for

a thread and a new message pops in, they’re probably going

to want to know about it. In this case, the message would

just appear if you’re a sighted user. For a blind screen reader

user, you make the new message its own notification with a

live region.

The aria-relevant attribute controls which kinds of changes

to the live region are considered worthy of readout. In this

case, only newly added messages are really of interest so we

set aria-relevant="additions" on the parent element for

the message stream.

When the new mesage, in gray, appears, only its contents — and
not the contents of the other messages — are announced in
screen readers.

Notifications 241

Removed or edited messages would not be reannounced,

but edited messages should remain discoverable. Hence, the

markup for messages should be well formed and semantically

clear, using a list () structure to group them together.

<h1>Self care chat</h1>

<div role="status" aria-live="polite" aria-

relevant="additions">

 <ul class="messages">

 <h2>Heydon, <small>22 minutes ago</small>:</h2>

 <p>Take a screen break. It’s been 15 hours.</p>

 <h2>Heydon:</h2>

 <p>Oh, I guess you are already.</p>

<div>

<form>

 <label for="message">Your message</label>

 <textarea id="message"></textarea>

 <button type="submit">Post</button>

</form>

When that last item is appended to the master list, screen

reader users hear “Heydon: Oh, I guess you are already.” Argu-

ably, you should append each message with the word

“message” to differentiate messages from other notifications.

242 Chapter 9

We’ll come to those shortly.

One refinement might be that, if the screen reader user is not

focused on the text input, they should only hear a new mes-

sage being announced if it addresses them directly — using

an “@”, say. We’re not depriving these users; we’re just not

interrupting them during a different task, unless it’s a specific

“Hey, I need you.”

Here’s some rough pseudo-code for how that logic

might work:

if (message.includesMention()) {

 message.alert = true;

}

FLASH MESSAGES
Flash messages — little colored strips of text that appear

above the action of the page — are often employed to keep

users abreast of changing state. A single ARIA live region will

suffice for these non-actionable notifications.

I’ll come to how these should be designed shortly, but first we

need to make sure they can be switched off. The first thing I

do when I install an app like Skype is switch off the notifica-

tion sounds, and for good reason: I find them very distracting.

Notifications 243

THE SETTINGS SCREEN
Designing a page that houses application settings does not

require a feat of engineering. It’s just headings, subheadings,

and form controls. But, through lack of care, you can botch the

information architecture and terminology.

“General” and “Content” don’t really mean anything as cate-

gory names, for example. And hiding what you subjectively

consider ‘advanced’ settings behind a tiny, hard to locate link

doesn’t help either.

Word everything descriptively, and structure everything

logically. Use standard form controls such as checkboxes,

radio buttons, and sliders. The settings screen gives users

control96 over how they use the application; don’t make it

an afterthought.

Note that turning off a notification type would mean it no

longer occurs visually or aurally (in screen reader output). It’s

likely that certain notifications would be much less desirable

to many screen reader users, and they’re more likely to turn

them off. But everyone has the same control and can make

decisions for themselves. We’re not making assumptions

for them.

96 https://smashed.by/givecontrol

244 Chapter 9

https://smashed.by/givecontrol

Headings inside legends

When structuring (long) forms, it often helps to group related

controls together inside <fieldset> elements. Then <legend>

elements can be employed to provide group labels. These are

announced when screen reader users enter the fieldset and focus

the first control. They give contextual information.

<legend>s tend to supplant headings, because otherwise you’d be

labeling sections of the form twice. The trouble is, headings have

their own advantages for screen reader navigation.

Fortunately, a recent change to the HTML spec97 now allows you

to author pages with headings inside your <legend>s: the best of

both worlds. Here’s the sort of structure, we should be going for:

97 https://smashed.by/legendelement

https://smashed.by/legendelement

DIFFERENTIATING MESSAGE TYPES
Our singular live region may play host to a variety of notifica-

tion types. Basic information will probably be most common,

but there may be warnings, errors, and messages of congratu-

lation — perhaps the user can earn awards for being a helpful

member of the community.

The general rule is that any part of an interface differentiated
only by style and not content will be inaccessible. Things like

shape, color, and position are just not enough on their own to

define something inclusively. In this case, the MVP for differ-

entiating messages is therefore to preface with terms like

“Error:”, “Info:”, “Congratulations:” or whatever is suitable. A

bold style is typical.

Should you wish to supplant the text with icons you’ll have to

be careful they are visually comprehensible, include alterna-

tive text for screen reader users, and are still visible where

Windows High Contrast Mode is running.

Try an optimized, inline SVG with a fill set to currentColor

to honor high contrast mode. For alternative text, aria-label

246 Chapter 9

is not recommended because it is not picked up by translation

services like Google’s. The same, unfortunately, applies to any

text (<title> or <text>, say) inside SVGs. The best we can do

is insert some visually hidden98 text just for assistive software.

<div role="status" aria-live="polite">

 <div class="message award">

 <p>

 <svg viewBox="0 0 20 20" focusable="false">

 <use xlink:href="#star"></use>

 </svg>

 Congratulations!

 You’ve been awarded 6 fake internet points

 </p>

 </div>

</div>

The hidden span would of course be completely invisible. The outline is
shown here just to indicate its whereabouts.

98 https://smashed.by/vishiddencontent

Notifications 247

https://smashed.by/vishiddencontent

DISMISSING NOTIFICATIONS
Working as a design consultant, I often see notification mes-

sages include little “x” buttons to dismiss them.

While I always want to applaud efforts to put users in control

of the interface, I’m not so sure in this case. I just don’t think

the ability to manually dismiss notifications is important

enough to bother users with; it’s not something worth encoun-

tering or having to think about. (There’s also the issue of man-

aging focus when the close button is removed from the DOM

after being pressed, covered in chapter 2, “A To-do List.”)

Instead, it’s better the messages just disappear by themselves

— after an appropriate amount of time. Here’s a small script

that lets you create notifications regions by type (“error”,

“award”, or “info”, say) and inject/remove notification mes-

sages after a chosen amount of time.

function Notifier(regionEl, duration, type) {

 this.regionEl = regionEl;

 this.duration = duration || 10000;

 // Info type as default

 this.type = type || 'info';

}

248 Chapter 9

Notifier.prototype.notify = function(message) {

 let note = document.createElement('p');

 note.innerHTML = `

 <svg viewBox="0 0 20 20" focusable="false">

 <use xlink:href="#${this.type}"></use>

 </svg>

 ${this.type}:

 ${message}

 `;

 this.regionEl.appendChild(note);

 // Remove after set amount of time

 window.setTimeout(() => {

 this.regionEl.removeChild(note)

 }, this.duration);

}

// Initialize

const infoNotifications = new Notifier(

 document.getElementById('notifications'),

 5000

);

// Call the notify method with a message

infoNotifications.notify('Heydon666 has joined this

group.');

(Note: The “type” string is used both for the inline SVG refer-

ence and as the alternative text for the icon.)

Notifications 249

But what if the user misses that notifications come and go?

Not a problem. Notifications should only refer to things that

are discoverable elsewhere in the updated interface.

A couple of examples: if the notification refers to

@Heydon666 coming online, you’ll be able to discover they’re

around because they have appeared in the list of active

users, or have their status updated. For the “awards” example,

the interface should keep track in the user’s profile page. A

chronology of awards is typical.

Conclusion
Thanks to the marvelous “You add it, I say it” nature of ARIA

live regions, the technical implementation of inclusive notifi-

cation could hardly be simpler. That leaves you to perfect the

clarity of form and language.

250 Chapter 9

The biggest and most important task actually has nothing to

do with the notification component itself. It’s all in the struc-

ture and presentation of the permanent history into which

each notification message only offers a fleeting glimpse. As

ever, structuring content is paramount, even where it pertains

to dynamic events inside real-time web applications.

CHECKLIST

• Don’t use aria-atomic="true"99 unless you want all the

contents of a live region announced whenever there’s

any change within it.

• Be judicious in your use of visually hidden live regions.

Most content should be seen and heard.

• Distinguish parts of your interface in content or with

content and style, but never just with style.

• Do not announce everything that changes on the page. A

very popular carousel plugin that shall remain nameless

announces the arrival of each slide as it comes into

view. A huge irritant, and only comparable to a sighted

user’s experience if the carousel is set to track their

eye movements and always remain at the center of

their gaze.

99 https://smashed.by/liveregionsupdated

Notifications 251

https://smashed.by/liveregionsupdated

• Be very wary of Desktop notifications100 for your site. I

have never come across a site for which I wanted these

needy and obstructive messages to be permitted.

• Be aware that live regions are a relatively new

technology. In testing, I’ve found some users assume

their focus has been moved by the application when

they hear their screen readers announce new content.

Although it’s easy enough for the user to discover their

context has not changed, be clear about notifications by

using terminology like ‘notification’, ‘update’, or ‘alert’

if necessary.

100 https://smashed.by/notification

252 Chapter 9

https://smashed.by/notification

Data Tables

T he first thing I was told when I embarked on learning

web standards about twelve years ago was, “Don’t

use tables for layout.” This was sound advice in spirit,

but not very well qualified. As a result, there have been some

unfortunate interpretations. Using table markup inevitably

results in a visual layout, which has led some to abandon

HTML tables altogether. Tables: bad.

The lesson in “Don’t use tables for layout” is not to use HTML

elements in ways for which they were not intended. Twelve

years ago, the idea that I would be coding HTML wrong was

enough to put me off making such classic blunders. Vanity is

not a real reason, though.

The real reason — the reason it’s a bad practice — is how

it affects the user. Table markup, starting at <table> and

including <th>, <td> et al, tells browsers to pass on certain

information and produce certain behaviors. Someone using

assistive software such as a screen reader will become subject

to this information and behavior.

When table markup contains non-tabular content, it messes

with blind users’ expectations. It’s not a page layout to them;

it’s a data table that doesn’t make sense. If they’re sighted or

partially sighted and running a screen reader it’s both, which

is arguably even more confusing.

Data Tables 253

Our way of judging web technologies is oddly epochal. We

believe that one epoch — the epoch of CSS Flexbox, for exam-

ple — should end as it ushers in the new epoch of CSS Grid.

But like <div>-based page layouts and data tables, these are

actually complementary things that can coexist. You just need

to know where to use one, and where the other.

In this chapter, I’ll be exploring how to create inclusive data

tables: ones that are screen reader accessible, responsive, and

as ergonomic as possible for everyone. First, though, I want to

show you a trick for fixing an old layout table.

The presentation role
WAI-ARIA can be a helpful tool because it allows you to add

and extend semantic information in HTML. For example,

adding aria-pressed to a standard button makes it a toggle

button to browsers and, therefore, assistive software. But did

you know you can also use WAI-ARIA to take semantics away?

That is, the following two elements are each semantically

indeterminate to a screen reader. Neither are a button.

<button role="presentation">Press me</button>

Press me

254 Chapter 10

Most of the time you’ll only want to add semantics where they

are useful, rather than choosing elements for their appear-

ance and removing the semantics where they aren’t needed.

But sometimes reverse engineering accessibility information

is the most efficient way to make good of a bad decision like a

layout table.

Applying role="presentation" to a <table> element

removes all of that table’s semantics, and therefore elicited

behaviors, in screen readers. It is as if it was constructed using

semantically unassuming <div>s all along.

Note that role="presentation" and role="none" are syn-

onymous. The first is more longstanding and better supported.

In 2018, there are much better layout solutions than <table>s

anyway, so there’s no advantage in using them for any new

layout you’re trying out.

Data Tables 255

True data tables
A typical layout table consists of a <table> container, some

<tr>s, and some <td>s inside them.

<table>
 <tr>
 <td></td>
 <td>Lorem ipsum dolor sit amet.</td>
 </tr>
 <tr>
 <td></td>
 <td>Integer vitae blandit nisi.</td>
 </tr>
</table>

The semantics issue to one side, these are all the elements

you really need to achieve a visual layout. You have your rows

and columns, like a grid.

Unfortunately, even where our intention is to manufacture

a data table, we still tend to think visually only: “If it looks

like a table, it’s fine.” But the following does not make an

accessible table.

<table>
 <tr>
 <td>Column header 1</td>
 <td>Column header 2</td>

256 Chapter 10

 </tr>
 <tr>
 <td>Row one, first cell</td>
 <td>Row one, second cell</td>
 </tr>
</table>

Why? Because our column headers — semantically speaking

— are just bog standard table elements. There’s nothing here

to explicitly say they are headers except the text (which is

likely to be less clear in a real example than “Column header

1”). Instead, we need to make them <th> elements.

<table>
 <tr>
 <th>Column header 1</th>
 <th>Column header 2</th>
 </tr>
 <tr>
 <td>Row one, first cell</td>
 <td>Row one, second cell</td>
 </tr>
</table>

Using column headers in this way is not just to be seman-

tically correct. There is a manifest effect on screen reader

behavior. Now, if I use my screen reader to navigate to a row

cell, it will read out the header under which it sits, letting me

know which column I am currently in.

Data Tables 257

ROW HEADERS
It’s possible to have both column and row headers in data

tables. I can’t think of any kind of data for which row headers

are strictly necessary for comprehension, but sometimes it

feels like the key value for a table row should be on the left,

and highlighted as such.

The trouble is, unless you state it explicitly, it isn’t clear

whether a header labels cells below it or to its right. That’s

where the scope attribute comes in. For column headers you

use scope="col" and for row headers you use scope="row".

Here’s an example for fuel prices that I was working on for

Bulb101 recently.

101 https://smashed.by/bulb

258 Chapter 10

https://smashed.by/bulb

<table>
 <tbody>
 <tr>
 <th scope="col">Region</th>
 <th scope="col">Electricity</th>
 <th scope="col">Gas</th>
 </tr>
 <tr>
 <th scope="row">East England</th>
 <td>10.40</td>
 <td>2.31</td>
 </tr>
 <tr>
 <th scope="row">East Midlands</th>
 <td>2.77</td>
 </tr>
 <tr>
 <th scope="row">London</th>
 <td>10.10</td>
 <td>2.48</td>
 </tr>
 </tbody>
</table>

Note that not setting row headers does not make a nonsense

of the data; it just adds extra clarity and context. For a table

that uses both column and row headers, some screen readers

will announce both the column and row labels for each of the

data cells.

Data Tables 259

Using tables with screen readers

Complex interfaces and widgets tend to have special behav-

iors and associated keyboard shortcuts in screen readers, and

tables are no different.

JAWS, NVDA, and VoiceOver each provide the T key to move

between tables on the page. To navigate between table cells,

you use your arrow keys. When arriving at a table, you are

typically informed of how many columns and rows it contains.

The <caption>, if present, is also read out.

When you switch between cells across columns, the new

column header is announced, along with the numeric place-

ment of the column (e.g. “column 3 of 4”), and the content of

the cell itself. When you switch between cells across rows,

the new row header is announced, along with the numeric

placement of the row (e.g. “row 5 of 8”), and the content of the

cell itself.

Video: Demonstration of traversing a data table

with VoiceOver on macOS with Safari.102

102 https://smashed.by/datatablevoiceover

https://smashed.by/datatablevoiceover

Captions
There used to be two ways to provide descriptive information

directly to tables: <caption> and <summary>. The <summary>

element was deprecated in HTML5, so should be avoided. The

<caption> element is superior regardless, because it provides

a visual and screen reader accessible label. The <summary>

element works more like an alt attribute and is not visible.

Since the table itself provides textual information, such a

summary should not be necessary.

Not all tables necessarily need captions, but it’s recom-

mended you either provide a caption or precede the

table with a heading. That is, unless the table is inside a

<figure> with a <figcaption>. As the name suggests, the

<figcaption> is a kind of caption on its own, and will suffice.

The advantage of a caption over a heading is that it is read

out when a screen reader user encounters the table directly,

using the T shortcut key. Fortunately, HTML5 lets you place

headings inside captions,103 which is the best of both worlds

and highly recommended where you know what level the

heading should be ahead of time.

103 https://smashed.by/captionheadings

Data Tables 261

https://smashed.by/captionheadings

By using a heading inside the table <caption>, there are now three
ways to discover the table: by table shortcut, heading shortcut, or just
by browsing downwards.

A data-driven table component
That pretty much covers basic tables and how to make them

accessible. The trouble is, they’re such a pain to code by

hand, and most WYSIWYG tools for creating tables do not

output decent markup, with the necessary headers in the

correct places.

Instead, let’s create a component that accepts data and

outputs an accessible table automatically. In React, we can

supply the headers and rows as props. In the headers’ case

we just need an array. For the rows: an array of arrays (or

“two-dimensional” array).

262 Chapter 10

const headers = ['Band', 'Singer', 'Inception',
'Label']

const rows = [
 ['Napalm Death', 'Barney Greenway', '1981',
 'Century Media'],
 ['Carcass', 'Jeff Walker', '1985', 'Earache'],
 ['Extreme Noise Terror', 'Dean Jones', '1985',
'Candlelight'],
 ['Discordance Axis', 'Jon Chang', '1992',
'Hydrahead']
];

Now the Table component just needs those consts passed in.

<Table rows={rows} headers={headers} />

One of the best and worst things about HTML is that it’s

forgiving. You can write badly formed, inaccessible HTML

and the browser will still render it without error. This makes

the web platform inclusive of beginners, and those creating

rule-breaking experiments. But it doesn’t hold us to account

when we’re trying to create well-formed code that’s compati-

ble with all parsers, including assistive technologies.

By deferring the well-formed part to arrays, which expect a

very specific structure, we can catch errors there. Where the

arrays are well formed, we can generate accessible markup

from them, automatically.

Data Tables 263

Here’s how the basic component that handles this might look:

class Table extends React.Component {
 render() {
 return (
 <table>
 <tr>
 {this.props.headers.map((header, i) =>
 <th scope="col" key={i}>{header}</th>
)}
 </tr>
 {this.props.rows.map((row, i) =>
 <tr key={i}>
 {row.map((cell, i) =>
 <td key={i}>{cell}</td>
)}
 </tr>

)}
 </table>
);
 }
}

If you don’t supply arrays for the headers and rows props

things are going to go spectacularly wrong, so if you dig “not a

function” errors, you’re in for a fun time.

Perhaps, though, it would be better to catch those errors early

and output a more helpful message. That’s where “prop types”

can be useful.

264 Chapter 10

Table.propTypes = {
 headers: PropTypes.array.required,
 rows: PropTypes.array.required
};

Of course, if you’re using TypeScript, you’ll probably be

handing this with an interface104 instead. I personally find the

extreme rigidity and perplexing syntax of TypeScript in React

a bit much. I’m told it’s great for when you’re writing complex

enterprise software, but if you mostly deal with small projects

and codebases, life is probably too short.

SUPPORTING ROW HEADERS
Supporting the option of row headers is a cinch. We just

need to know if the author has included a rowHeaders prop.

Then we can transform the first cell of each row into a <th>

with scope="row".

<tr key={i}>
 {row.map((cell, i) =>
 (this.props.rowHeaders && i < 1) ? (
 <th scope="row" key={i}>{cell}</th>
) : (
 <td key={i}>{cell}</td>
)
)}
</tr>

104 https://smashed.by/rowheaders

Data Tables 265

https://smashed.by/rowheaders

In my table about grindcore bands, this makes a lot of sense

since the bands named down the left-hand side are the basis

for all the other information.

Here’s the full script for the basic table component, coming in

at just 25 lines. Use it however you wish.

export default class Table extends React.Component {
 render() {
 return (
 <table>
 <caption>{this.props.caption}</caption>
 <tr>
 {this.props.headers.map((header, i) =>
 <th scope="col" key={i}>{header}</th>

)}
 </tr>
 {this.props.rows.map((row, i) =>
 <tr key={i}>
 {row.map((cell, i) =>
 (this.props.rowHeaders && i < 1) ? (
 <th scope="row" key={i}>{cell}</th>
) : (
 <td key={i}>{cell}</td>
)
)}
 </tr>
)}
 </table>
);
 }
}

266 Chapter 10

// Data

const headers = ['Band', 'Singer', 'Inception',
'Label'];

const rows = [
 ['Napalm Death', 'Barney Greenway', '1981',
 'Century Media'],
 ['Carcass', 'Jeff Walker', '1985', 'Earache'],

 ['Extreme Noise Terror', 'Dean Jones', '1985',
'Candlelight'],
 ['Discordance Axis', 'Jon Chang', '1992',
'Hydrahead']
];

// Initialization
<Table rows={rows} headers={headers} rowHeaders
caption="Grindcore bands" />

Going responsive
Responsive tables are one of those areas where the accessible

solution is more about what you don’t do than what you do. As

Adrian Roselli recently noted,105 using CSS display properties

to change table layout has a tendency to remove the underly-

ing table semantics. This probably shouldn’t happen, because

it messes with the separation of concerns principle.106 But it
happens anyway.

105 https://smashed.by/tabledisplay
106 https://smashed.by/soc

Data Tables 267

https://smashed.by/tabledisplay
https://smashed.by/soc

This isn’t the only reason it’s a bad idea to change the way

tables are displayed. Visually speaking, it’s not really the same

table — or much of a table at all — if the columns and rows

collapse on top of one another. Instead, we want to provide

access to the same visual and semantic structure regardless of

the space available.

It’s as simple as letting the table’s parent element

scroll horizontally.

.table-container {

 overflow-x: auto;

}

KEYBOARD SUPPORT
OK, it’s not quite that simple. As you may recall from chapter

8, “A Content Slider”, we need we need to make the scrollable

element focusable so it can be operated by keyboard. That’s

just a case of adding tabindex="0". But since screen reader

users will be able to focus it too, we need to provide some

context for them.

In this case, I’ll use the table’s <caption> to label the scroll-

able region using aria-labelledby.

268 Chapter 10

<div class="table-container" tabindex="0" role="group"
aria-labelledby="caption">
 <table>
 <caption id="caption">Grindcore bands</caption>
 <!-- table content -->
 </table>
</div>

You can’t use aria-labelledby just anywhere. The ele-

ment has to have an appropriate role. Here I’m using the

fairly generic group role for this purpose. From the spec

on group107: “A set of user interface objects which are not

intended to be included in a page summary or table of con-

tents by assistive technologies.”

ONLY FOCUSABLE WHERE SCROLLABLE
Of course, we don’t want to make the table container focus-

able unless its contents overflow. Otherwise, we’re adding a

tab stop to the focus order which doesn’t do anything. In my

opinion, that would be a fail under WCAG 2.4.3: Focus Order.108

Giving keyboard users elements to focus which don’t actually

do anything is confusing and obstructive.

107 https://smashed.by/rolesgroup
108 https://smashed.by/focusorder

Data Tables 269

https://smashed.by/rolesgroup
https://smashed.by/focusorder

What we can do is detect whether the content overflows

by adding tabindex="0" only if scrollWidth exceeds

clientWidth for the container. We can use a ref (container)

for this purpose.

const container = useRef(null);

useEffect(() => {
 const { scrollWidth, clientWidth } = container.
current;
 let scrollable = scrollWidth > clientWidth;
 setTabIndex(scrollable ? '0' : null);

}, []);

PERCEIVED AFFORDANCE
It’s not enough that

users can scroll the

table. They also need

to know they can

scroll the table. Fortu-

nately, given our table

cell border style, it

should be obvious

when the table is cut

off, indicating that

some content is out

of view.

270 Chapter 10

We can do one better, just to be safe, and hook into the state

to display a message in the caption:

{tabIndex === '0' &&
 <div>
 <small>(scroll to see more)</small>
 </div>
}

This text will also form

part of the scrollable

container’s label (via

the aria-labelledby

association discussed

earlier). In a screen

reader, when the

scrollable container is

focused you will hear

something similar to

“Grindcore bands,

open parenthesis,

scroll to see more,

close parenthesis,

group.” In other words,

this extra message adds clarification non-visually too.

Data Tables 271

VERY NARROW VIEWPORTS
The preceding works for wide tables (with many columns) or

narrow viewports. Very narrow viewports might want some-

thing a bit more radical, though. If you can barely see one

column at a time, the viewing experience is pretty terrible —

even if you can physically scroll the other columns into view

by touch.

Instead, for very narrow (one-column) viewports, we can

present the data using a different structure, with headings and

definition lists.

• <caption> → <h2>

• <th scope="row"> → <h3>

• <th scope="col"> → <dt>

• <td> → <dd>

This structure is much more suited

to mobile, where users are more

accustomed to scrolling verti-

cally. It’s also accessible, just in a

different way.

272 Chapter 10

Here’s what the JSX might look like:

<div className="lists-container">
 <h2>{caption}</h2>
 {sortedRows.map((row, i) => (
 <div key={i}>
 <h3>{row[0]}</h3>
 <dl>
 {headers.map(
 (header, i) =>
 i > 0 && (
 <Fragment key={i}>
 <dt>{header}</dt>
 <dd>{row[i]}</dd>
 </Fragment>
)
)}
 </dl>
 </div>
))}
</div>

Note the use of Fragment. This allows us to output the

unwrapped sibling <dt> and <dd> elements for our <dl>

structure. A recent change to the spec109 has made it permis-

sible to wrap <dt>/<dd> pairs in <div>s (thanks to Gunnar110

for contacting me about this). But we can’t be sure it won’t

cause parsing issues for now, and we don’t need the wrappers

here anyway.

109 https://smashed.by/htmlissues
110 https://smashed.by/gunnar

Data Tables 273

https://smashed.by/htmlissues
https://smashed.by/gunnar

All that’s left to do is show/hide the equivalent interfaces at

the appropriate viewport widths. For example:

@media (min-width: 400px) {

 .table-container {

 display: block;

 }

 .lists-container {

 display: none;

 }

}

For extremely large datasets, having both interfaces in the

DOM will bloat an already large DOM tree. However, in

most cases this is the more performant solution compared

with dynamically reconstituting the DOM via matchMedia or

(worse still) listening to the resize event.

If you’re loading dynamic data, you don’t have to worry about

the two interfaces staying in sync: they are based directly on

the same source.

274 Chapter 10

Sortable tables
Let’s give users some control111 over how the content is sorted.

After all, we already have the data in a sortable format — a

two-dimensional array.

Of course, with such a small dataset, just for demonstration

purposes, sorting is not really needed. But let’s implement it

anyway, for cases where it does make things easier. The great

thing about React props is we can easily turn the functionality

on or off.

Inside each column header we can provide a sorting button:

These can toggle between sorting the data by the column

in either an ascending or descending order. Communicating

the sorting method is the job of the aria-sort property.

Note that it works most reliably in conjunction with an

explicit role="columnheader".

Here’s the inception column, communicating an ascending

sort (lowest value top) to screen readers. The other possible

values are descending and none.

111 https://smashed.by/givecontrol

Data Tables 275

https://smashed.by/givecontrol

<th scope="col" role="columnheader" aria-
sort="ascending">
 Inception
 <button>sort</button>
</th>

Not all screen readers support aria-sort, but a sorting

button label of “sort by [column label]” makes things clear

enough to those who do not have the sorting state reported.

You could go one better by adapting the label to “sort by [col-

umn label] in [‘ascending’|‘descending’] order.”

<button onClick={() => sortBy(i)}>
 <Arrow sortDir={sortDir} isCurrent={sortedBy === i}
/>

 sort by {header} in
 {sortDir !== 'ascending' ? 'ascending' :
'descending'}
 order

</button>

ICONOGRAPHY
Visually, the sort order should be fairly clear by glancing down

the column in hand, but we can go one better by providing

icons that communicate one of three states:

276 Chapter 10

• ↑↓ = it’s sortable, but not sorted

• ↑ = It’s sorted by this column, in ascending order

• ↓ = It’s sorted by this column, is descending order

• As ever, it’s advantageous to use an SVG.

• SVGs scale without degredation, making zoom

more pleasant.

• SVGs using currentColor respect Windows High

Contrast settings.

• SVGs can be constructed efficiently from shape and

line elements.

• SVGs are markup and their different parts can be

targeted individually.

That last advantage is not something I’ve explored in this

book before, but is ideal here because each arrow is made of

two or more lines. Consider the following Arrow component.

const Arrow = ({ sortDir, isCurrent }) => {
 let ascending = sortDir === 'ascending';
 return (
 <svg viewBox="0 0 100 200" width="100"
height="200">
 {!(!ascending && isCurrent) && <polyline
points="20 50, 50 20, 80 50" />}
 <line x1="50" y1="20" x2="50" y2="180" />
 {!(ascending && isCurrent) && (

Data Tables 277

 <polyline points="20 150, 50 180, 80 150" />
)}
 </svg>
);
};

Logic is passed in from the parent component via props

(sortDir and current) to conditionally show the different

polyline arrow heads. For example, the final polyline is

only shown if the following are true.

• The sort order isn’t ascending

• This isn’t the current sorting column

Warning: Technically, here I am using the arrow to express the

button’s current state, not the state pressing it will achieve. In

many circumstances (discussed in chapter 1, “Toggle Buttons”)

this is a mistake. The important thing here is the change in

arrow direction as one toggles, communicating the switch

in polarity.

A note on the grid role

WAI-ARIA provides a role, grid, that is closely associated with

tables. This role is intended to be paired with specific key-

board behavior, letting keyboard users navigate table cells

as they would be able via screen reader software (using their

arrow keys).

278 Chapter 10

You do not need to use the grid role to make most tables

accessible to screen readers. The grid-related behavior

should only be implemented where users not running screen

reader software need to easily access each cell to interact

with it. One example might be a date picker where each date

is clickable within a grid representation of a calendar month.

PERFORMANCE
The sorting function itself should look something like this,

and uses the sort method. Note that the Edge browser does

not support returning Booleans for sort methods, hence the

explicit 1, -1, or 0 return values.

const sortBy = i => {
 let updatedSortDir;
 let ascending = sortDir === 'ascending';
 if (i === sortedBy) {
 updatedSortDir = !ascending ? 'ascending' :
'descending';
 } else {
 updatedSortDir = 'ascending';
 }
 setSortedBy(i);
 setSortDir(updatedSortDir);
};

Note the use of slice(0). If this were not present, the sort

method would augment the original data directly (which

Data Tables 279

is an unusual characteristic peculiar to sort). This would

mean both the table and the mobile-width list structure

would be rebuilt in the DOM. Since there are no sorting

controls provided for the list structure, this is an unnecessary

performance hit.

Demo: The complete demo,112 including row

headers, selective scrolling, the alternative

representation for mobile, and the sorting

functionality is available on GitHub.113

Conclusion
Yes, it’s still OK to use tables.114 Just don’t use them if you don’t

need them and, when you do need them, structure them in a

logical and expected way.

I have created an alternative implementation of sortable data

tables for the BBC. It is written in plain JavaScript, and uses

ResizeObserver (where supported) to handle overflow and

conditional keyboard focus.

112 https://smashed.by/reacttabledemo
113 https://smashed.by/reacttablegit
114 https://smashed.by/oktables

280 Chapter 10

https://smashed.by/reacttabledemo
https://smashed.by/reacttablegit
https://smashed.by/oktables

CHECKLIST

• Don’t use tables just for layout or, to be more clear, don’t
use tables for anything but tabular data.

• Always include at least column headers or row headers.

• Sorting functionality is nice, but don’t include it if it isn’t

needed. The Grindcore bands example doesn’t really

need sorting because there’s not much data in total.

Allow switching it on or off with a sortable prop.

• Make sure the visual design of the table is clear, with

obvious divisions between cells, and highlighted headers.

To make it easier to scan rows, you may want to consider

alternating row colors for a zebra effect.

Data Tables 281

Modal Dialogs

One component I get asked to write about a lot is

the modal dialog. I have mixed feelings about this,

because the proliferation of dialogs in web user

interface design is something of a scourge. In my talk “Writing

Less Damned Code”115 I joke that the fewer dialogs you use in

your project, the more there are available for Twitter’s web UI

— an interface almost entirely made of dialogs.

As with the tabbed interface and content slider components,

it’s important to address dialogs because they’re contentious

and problematic. Pretending they don’t exist isn’t going to

make them go away, and it isn’t doing anything to improve the

ones that inevitably stick around. The three main things I want

to focus on here are:

1. Strong cases against dialogs, for many of the popular

use cases

2. Strong alternatives for these vetoed use cases

3. Strong dialogs, for the remaining cases (or for when you

lose the argument in point 1)

I’ve written about the technical implementation of accessible

ARIA dialogs before, in Apps For All.116 Here, I’ll explore some

115 https://smashed.by/heydontalk
116 https://smashed.by/appsforall

282 Chapter 11

https://smashed.by/heydontalk
https://smashed.by/appsforall

alternative takes in light of recent advancements in the web

platform, performance considerations, and in the context of

inclusive design thinking and process.

Dialogs and modal dialogs
Put simply, a modal dialog is one that changes the inter-

face mode to prioritize itself. To achieve this, it temporarily

disables the rest of the interface. Here’s Therese Fessenden of

the Nielsen Norman Group on modal dialogs:117

“A modal dialog is like my cat, Emma — who meows at 7am

every morning to prompt me to feed her. I might be trying

to sleep or get ready for the day, but my cat will place her-

self in front of me, then meow louder and incessantly until I

look at her.”

And here they are on non-modal dialogs, by way comparison:

“A non-modal dialog is like a kitty who patiently sits near

the dinner table during a meal, waiting on the off-chance

that food scraps may fall from the table. When Emma is

doing this, I can eat, have a conversation, and enjoy dinner

without much interruption.”

117 https://smashed.by/modaldialog

Modal Dialogs 283

https://smashed.by/modaldialog

It’s a cute and pretty serviceable analogy I think, but it makes

an important assumption: in either case, the dialog in question

has not been invoked by the user. Where this is the case, the

modal dialog would indeed be more intrusive and irritating. It

creates an impasse and forces you to deal with it. The “Please

turn off your ad blocker to view our ad-ridden content or

please leave” modal is an infamous example.

That’s not to say the uninvited non-modal dialog isn’t irritating

as well. Have you ever been happy to continue reading and

operating an interface with dialogs floating around on top of

it? Of course not: you curse as you close them all first, and

hope they don’t come back.

284 Chapter 11

Dialogs should only be invoked as the direct result of a user

action or critical change in system state. And they should

only be invoked if that action or change of state necessitates

immediate further action (such as a confirmation or critical

choice). To ensure this further action is taken immediately, all

other functionality in the interface must be put on hold.

If you’re joining up the dots, you should have already reached

an important conclusion: there’s never any need for non-
modal dialogs. Don’t use them, unless you’re looking for

disgruntled and distrusting users.

Note that the draggable boxes of applications like

make8bitart.com118 are not dialogs in terms of purpose, and

would not, therefore, take ARIA’s role="dialog" or associ-

ated behaviors. They may float, have close buttons, and be

draggable, but they’re really just positionable sidebars.

118 https://make8bitart.com/

Modal Dialogs 285

http://make8bitart.com
https://make8bitart.com/

The confirm() method
As I’ve already attested, modal dialogs are only suitable when

the application needs urgent input from the user. This makes

a strong case for using the confirm() method, which pro-

vides this functionality natively. When you use native controls

and features, your interface is more efficient, reliable, and

familiar. You sacrifice a branding opportunity, since these

interfaces are not styleable, but does that really matter?

confirm() has all the expected semantics and behaviors of

an accessible modal out of the box, which are as follows:

• Focus is moved from the last focused element to the

dialog when it is opened.

• The dialog content is announced immediately and the

controls are identified.

• Both clicking ‘Cancel’ and hitting Esc close the dialog.

• On closing the dialog, focus is moved back to the

element that had focus before the dialog opened.

• While the dialog is open, no content on the page is

identifiable to assistive technologies.

• While the dialog is open, no interactive content outside

of the dialog is focusable.

286 Chapter 11

You may recall I mentioned the possibility of implementing

confirmation dialogs for the to-do list chapter. Well, let’s do

that now. It doesn’t take much to adapt the Vue script. All I

need to do is intervene within the remove() method:

remove(index, name) {
 if (window.confirm(`Are you sure you want to delete
"${name}"?`)) {
 this.todos.splice(index, 1);
 this.feedback = `${name} deleted`;
 document.getElementById('todos-label').focus();
 }
}

(Note: Default behavior is to move focus back to the invoking

control when the confirm() closes. In our case, that control

will have disappeared. As in the original A To-do List demo,

focus is moved back to the heading above the list.)

Demo: A to-do list, with confirmation dialogs for

deletion.119

119 https://smashed.by/todolistconfirm

Modal Dialogs 287

https://smashed.by/todolistconfirm

Questions, not statements
Although you can write anything as your message in a

confirm() modal, the provision of OK and Cancel buttons

implies that a question is being asked: “Do you want to do

this, or not?” Of course, it doesn’t have to be phrased as a

question (“You are about to delete the [x] to-do item”) but it’s

still soliciting for an answer. That’s why it exists.

In short, if your dialog is just some text and a close button,

it probably shouldn’t be a dialog. For updates and status

messages, I have you covered in chapter 9, “Notifications”. As

I explain there, diverting the user’s focus and forcing them to

take action is a jarring way to simply inform them of some-

thing that has already happened.

Oh, and if your dialog has explicit OK and Cancel buttons, or

similar, it doesn’t need a close button as well. As ubiquitous

as they are, those little x buttons are a sign of your modal

dialog’s obsolescence.

288 Chapter 11

Modals or screens?
One of the nice things in the last confirm() example is how

I can write imperatively. By using just a simple if clause, I

invoke a complete — and quite accessible! — intermediary UI.

But what if I wanted to customize my modal and make

it do more? I wouldn’t be the first. I’ve seen whole forms

placed inside modal dialogs — even 10,000-word terms

and conditions statements, complete with the necessary

overflow-y: scroll styling.

Just don’t. If the content is long or complex, it needs its own

page or screen. Placing a whole page’s worth of content in a

positioned box above another page is, frankly, dysfunctional

behavior. It’s ugly, awkward to cram into small screens, and

completely unnecessary.

Modal Dialogs 289

One arguable advantage of having a modal is that the

(dimmed) content behind the modal indicates that the user is

still on that page, and will be returned to it once the modal

has been attended to. But too often the modal takes the user

elsewhere anyway, so it might as well be an intermediary

page instead.

In single-page applications especially, it is trivial to route the

user between screens according to their decision-making and

the resultant changes to state. A timeline showing steps to

complete and an accessible indicator of the current location

is how we solved this problem at Bulb.120 The markup (with

a few Styled Components121 classes removed for brevity) is

like this:

<aside aria-labelledby="your-progress">
 <h2 id="your-progress" class="visually-hidden">Your
progress</h2>

 <li class="current">
 Quote
 (you are here)</
span>

 My Information
 Payment Details

</aside>

120 https://smashed.by/bulb
121 https://smashed.by/styledcomponents

290 Chapter 11

https://smashed.by/bulb
https://smashed.by/styledcomponents

• The container is an <aside>, meaning it’s listed

among the page’s landmarks and is easily

discoverable non-visually.

• The <h2> is not visible because it is only really needed

for clarification (and as a navigational target) in a

non-visual medium.

• The steps are an ordered list, indicating a

linear continuum.

• The current step has some additional visually hidden text

reading “(you are here).” The ARIA alternative would be

to include the attribution aria-current="step", but we

found this to be less well supported.

I think we can agree this is better than a succession of modal

dialogs stacking up. But that’s not to say others haven’t taken

that approach in the past. I’ve seen it in client websites, for

example. Chances are you will need a modal dialog as part of

your design system. Just don’t use it for more than it should

have to handle.

CUSTOM MODALS
Well, it’s happened: a requirement for the design system to

include a custom modal dialog has arrived (that was quick).

So let’s set about making one as efficiently and accessibly as

possible. The implementation to follow will closely resemble

the behavior (and brevity) of a confirm(), but using my own

HTML, CSS, and JavaScript.

Modal Dialogs 291

There are a number of problems to solve in order to make the

custom modal dialog similarly robust as confirm() and I’ll

attend to these in turn.

THE MARKUP
The markup for a straightforward dialog is quite simple.

The container needs role="dialog" and the buttons have

to be — you guessed it — <button> elements. The text

acts as a label for the container by connecting it up with

aria-labelledby. I’m creating the dialog on the fly with

JavaScript, because we don’t need it until we need it.

// Unique identifier for the text’s `id`
const unique = +new Date();

// Create the dialog
const dialog = document.createElement('div');
dialog.setAttribute('role', 'dialog');
dialog.setAttribute('aria-labelledby', `q-${unique}`);
dialog.innerHTML = `
 <p id="q-${unique}">${question}</p>
 <div class="buttons">
 <button class="okay">OK</button>
 <button class="cancel">Cancel</button>
 </div>
`;

// Append the dialog to the <body>

document.body.appendChild(dialog);

292 Chapter 11

MODALITY
This next part can be tricky, depending on your approach.

We need to disable the rest of the page when the modal is

active. But that doesn’t just mean fading the page out (or

applying a similar effect). It needs to be unidentifiable to

assistive technologies, and none of the interactive contents

can be clickable.

The first part is easy. By applying aria-hidden="true" to a

container, all of its contents become undetectable by assistive

technologies. That is, it affects the whole subtree of the DOM.

<div class="wrapper" aria-hidden="true">
 <!-- all of the page contents -->
</div>
<div role="dialog" aria-labelledby="q-1234">
 <p id="q-1234">${question}</p>
 <div class="buttons">
 <button class="okay">OK</button>
 <button class="cancel">Cancel</button>
 </div>
</div>

Of course, there needs to be an element that wraps lit-

erally everything apart from the dialog. That might be a

problem. The focus issue is a lot harder, though. You need

to be able to identify all the interactive elements and

apply tabindex="-1".

Modal Dialogs 293

document.querySelectorAll('a, button, input, select,
textarea, [contenteditable]');

The trouble is, some of these elements might have

tabindex="-1" already, and when it comes to reactivate the

elements you’d end up making elements supposed to be inac-

tive active. So you use :not([tabindex="-1"]) with each of

the selectors. It’s a bit hacky, and there are still mouse users

to worry about. You need to apply an overlay by positioning

an element over the contents but under the dialog to act as a

barrier for clicks.

Another way to go about it is to keep the overlay element, but

trap focus within the dialog so it’s not possible to reach the

other focusable elements by keyboard.

294 Chapter 11

This too is a bit of a cludge. You need to listen for Tab and

Shift + Tab key presses and programmatically reroute

focus between the buttons. It’s also a substandard approach,

because it makes reaching browser chrome like the address

bar impossible by Tab . This is not the case when using a

native confirm().

The inert attribute
There is a better way. The inert attribute122 acts like

aria-hidden="true" but takes care of disabling each ele-

ment from both mouse and keyboard interaction. In effect, it

does all of the messy stuff discussed just now but in one go. It

is only supported in Chrome at the time of writing, but there’s

a small polyfill available123 that does everything we need.

By targeting all direct children of <body> before creating

and appending the dialog element, we can make everything

outside the dialog inert. With this collection of nodes saved

to memory, we can easily reactivate the content when the

dialog closes.

const elems = document.querySelectorAll('body > *');
Array.prototype.forEach.call(elems, elem => {
 elem.setAttribute('inert', 'inert');

});

122 https://smashed.by/inertattribute
123 https://smashed.by/inertgit

Modal Dialogs 295

https://smashed.by/inertattribute
https://smashed.by/inertgit

FOCUS
The demo implementation124 lets you provide a callback

function as the second argument. This function fires after the

close() function if OK has been pressed. As with confirm(),

Esc also closes the dialog.

okay.onclick = () => {
 close();
 func();
}
cancel.onclick = () => close();
dialog.addEventListener('keydown', e => {
 if (e.keyCode == 27) {
 e.preventDefault();
 close();
 }
});

To trigger announcement of the dialog when it is opened, and

to place the keyboard user within the dialog, the OK button is

focused. This works because OK is inside the dialog, and the

dialog is labeled (using aria-labelledby).

const trigger = document.activeElement;
okay.focus();

296 Chapter 11

Importantly, the element that invoked the dialog in the first

place (const trigger) is saved in memory so it can be refo-

cused when the dialog is closed again.

That’s the default behavior; but it happens that, in the to-do

list demo with this custom modal dialog,124 the invoking ele-

ment cannot be refocused when OK is pressed: the element

has been removed from the DOM. As in the confirm() ver-

sion, focus is redirected to the heading labeling the list: a

reassuring affirmation of context followed by the ARIA live

region announcement “[item name] deleted.”

remove(index, name) {
 this.dialog(`Are you sure you want to delete
"${name}"?`,
 () => {
 this.todos.splice(index, 1);
 document.getElementById('todos-label').focus();
 this.feedback = `${name} deleted`;
 }
);
}

Demo: A to-do list, with custom confirmation

dialogs.124

124 https://smashed.by/todolistconfirmcustom

Modal Dialogs 297

https://smashed.by/todolistconfirmcustom

THE CSS
While the confirm() emerges from the top of the viewport,

our custom dialog can appear wherever we like. Good ol’ CSS

Tricks125 offers a clever solution using transform to center

the dialog regardless of its size.

[role="dialog"] {

 position: fixed;

 top: 50%;

 left: 50%;

 transform: translate(-50%, -50%);

}

I finesse this in just one regard. I give the content element a

max-height and overflow-y: auto. This way, the dialog

is not allowed to grow larger than the viewport and become

obscured. The text should be concise, so this should never be

a problem anyway. But better safe than sorry.

[role="dialog"] .message {

 max-width: 50ch;

 max-height: 50vh;

 overflow-y: auto;

}

125 https://smashed.by/stylingmodal

298 Chapter 11

https://smashed.by/stylingmodal

As you can see, it also has a max-width to prevent lines

becoming too long and difficult to read. It’s set in ch because

1 ch is roughly the width of one character, and measure (line

width) is a question of characters.

CONCLUSION
One of the first painful lessons I learned from usability testing

was that giving people lots of freedom to explore and dis-

cover interfaces is not actually very popular. People don’t

want to be misled or forced to do things they don’t want to,

but they do like you (and your interface) to be clear and asser-

tive about what’s needed to get the task in hand done.

You’d hope that the relationship between your interface

and your user wouldn’t have to resort to a dialog. The to-do

list example doesn’t really need it because deleting a to-do

item you didn’t mean to is hardly the end of the world. But

when a dialog really is needed, there should be no ambiguity.

Make it as straightforward and bold as possible. Let the user

know that, for once, you really do need their input right there

and then.

Modal Dialogs 299

CHECKLIST

• Don’t use a dialog unless you are asking the user to

resolve something critical and urgent.

• So don’t use non-modal dialogs.

• Keep dialogs brief; if the information is rich or the actions

many, direct the user to a new page/screen.

• Use native methods like confirm() for

maximum efficiency.

• Don’t stray far from confirm() behavior if you intend on

creating a custom modal dialog.

300 Chapter 11

Cards

Some of the components I’ve explored here have spe-

cific standardized requirements in order to work as

expected. Tab interfaces, for example, have a pre-

scribed structure and a set of interaction behaviors as man-

dated by the WAI-ARIA specification.

It’s at your discretion how closely you follow these require-

ments. Research may show that your audience doesn’t do well

with a tab interface precisely as recommended. Nonetheless,

those requirements are there.

Other components, like the ubiquitous but multivarious card,

do not have a standard to follow. There’s no <card> element,

nor an “ARIA card” design pattern. These are some of the more

interesting components to work on. The card component is

the last of the components in this book because it requires the

most invention.

Each potential barrier to inclusion needs to be identified and

addressed in turn. These barriers differ in line with the card’s

purpose and content. Some cards are just illustrated introduc-

tions to permalinks like blog posts; others are more auton-

omous and offer a lot of functionality. In this chapter, I’ll be

looking into a few permutations of a simple card component,

emphasizing a balance between sound HTML structure and

ergonomic interaction.

Cards 301

Let’s imagine a basic card. It has an illustration, a title, a

description, and an attribution. Importantly, it belongs to a list

item because — like playing cards — you rarely see one card

on its own. Other component articles have already explored

the advantages of using lists to enhance assistive technology

users’ experience. Briefly:

• Screen readers provide shortcuts to lists and between

list items

• Screen readers enumerate the items so users know how

many are available

In this case, let’s say the card is a teaser for a blog post. Note

the heading: like the list markup, headings provide navigation

cues to screen reader users. Each card has a heading of the

same level — <h2> in this case — because they belong to a

flat list hierarchy. Also note that the image is treated as deco-

302 Chapter 12

rative in this example, and is silenced in screen reader output

using an empty alt value. I’ll tackle positive alt text later in

the chapter.

 <h2>Card design woes</h2>
 <p>Ten common pitfalls to avoid when designing card
components.</p>
 <small>By Heydon Pickering</small>

The question is: where do I place the link to that blog post?

Which part of the card is interactive? One reasonable answer

is “the whole card.” And by wrapping the card contents in an a

tag, it’s quite possible.

 <h2>Card design woes</h2>
 <p>Ten common pitfalls to avoid when designing
card components.</p>
 <small>By Heydon Pickering</small>

This is not without its problems. Now, all of the card contents

form the label of the link. So when a screen reader encounters

Cards 303

it, the announcement might be something link “Card design

woes, ten common pitfalls to avoid when designing card

components, by Heydon Pickering, link.”

It’s not disastrous in terms of comprehension, but verbose —

especially if the card evolves to contain more content. It’s also

quite unexpected to find a block element like an <h2> inside

an inline element like an <a>, even though it’s technically

permissible in HTML5.126

If I were to start adding interactivity, like linking the author

name, things start to get even more confusing. Some

screen readers only read out the first element of a “block

link”, reducing verbosity but making it easy to miss the

additional functionality.

 <h2>Card design woes</h2>
 <p>Ten common pitfalls to avoid when designing
card components.</p>
 <small>By Heydon
Pickering</small>

126 https://smashed.by/blocklevel

304 Chapter 12

https://smashed.by/blocklevel

Many an inclusive design conundrum stems from the tension

between logical document structure, compelling visual layout,

and intuitive interaction. Where we dispense with any one of

these, someone somewhere will have a diminished experi-

ence. Compromise is inevitable, but it should be an equitable

sort of compromise.

I find the best approach is to start with a sound document

structure, then use CSS to solve visual layout issues and Java-

Script to enhance behavior — if beneficial. For this simple

card, the title/heading is the name of the article for which the

card acts as a teaser. It makes sense, then, to use its text as the

primary link.

 <h2>
 Card design woes
 </h2>
 <p>Ten common pitfalls to avoid when designing card
components.</p>
 <small>By Heydon Pickering</small>

The advantage here over having “read more” calls to action is

that each link has a unique and descriptive label, which is

useful when users are searching through aggregated lists of

links. For example, pressing Insert + F7 in NVDA gives the

user access to all links on the page.

Cards 305

However, I’d still like the card itself to be clickable. In the

absence of a clear “read more” call to action in this case, it’s

not obvious where to click, so “anywhere” solves the problem.

It also makes the link easier to target by touch and mouse.

There are a couple of ways to solve this.

The pseudo-content trick
By taking the following steps, I can make the whole card click-

able without altering the markup we’ve established.

1. Give the card container element position: relative

2. Give the link’s ::after pseudo-content

position: absolute

3. Give each of the link’s ::after pseudo-content left,

top, right, and bottom properties a value of 0

This stretches the link’s layout over the whole card, making it

clickable like a button.

On the one hand this is a sound solution because it doesn’t

rely on JavaScript (and why use JavaScript on a static site

like a blog if you can avoid it?) On the other hand, it’s not

ideal because it’s now difficult to select the text within the

card (the link acts as a mask over the top of it). You can

selectively raise elements like the description by giving them

position: relative, but their layout then becomes a gap in

the card’s overall clickable area.

306 Chapter 12

Demo: The pseudo-content trick.127

The redundant click event
Alternatively, we can employ JavaScript and use the card

container as a proxy for the link. A click handler on the card’s

container element simply triggers the click method on the

link inside it. This does not affect the keyboard user, who

remains content with the original link.

card.addEventListener('click', () => link.click());

127 https://smashed.by/pseudocontent

Cards 307

https://smashed.by/pseudocontent

Technically, because of event bubbling, if I click the link

directly (making it the event’s target) the event fires twice.

Although no side effects were found in testing, you can sup-

press this like so:

card.addEventListener('click', e => {
 if (link !== e.target) {
 link.click();
 }
});

Now selecting the text is possible, but the click event is still

fired and the link followed. We need to detect how long the

user is taking between mousedown and mouseup and suppress

the event if it’s “likely-to-be-selecting-text” territory.

Here’s the whole script used in the demo to follow. I found

that a 200-millisecond threshold was about right. In any

case, an unusually ponderous click is recoverable with a

second attempt.

const cards = [...document.querySelectorAll('.card')];
cards.forEach(card => {
 let down, up, link = card.querySelector('h2 a');
 card.onmousedown = () => down = +new Date();
 card.onmouseup = () => {
 up = +new Date();
 if ((up - down) < 200) {
 link.click();
 }
 }
});

308 Chapter 12

Demo: The redundant click solution.128

It’s not highly probable the user would choose to select text

from a card/teaser when they have access to the full content

to which the card/teaser is pointing. But it may be discon-

certing to them to find they cannot select the text. If it’s not

seemingly important, I recommend you use the pseudo-

content trick, because this approach means the link’s context

menu appears wherever the user right-clicks on the card:

a nice feature.

Affordance
If the whole card is interactive, the user should know about it.

We need to support perceived affordance.

Using the pseudo-content trick, the entire card already takes

the pointer cursor style, because the card has the link

stretched over it. This will have to be added manually for the

redundant click event solution. We should add it with Java-

Script because, if JavaScript fails, the style would be deceptive.

card.style.cursor = 'pointer';

128 https://smashed.by/redundantclick

Cards 309

https://smashed.by/redundantclick

In addition to the rounded, button-like design I’ve given my

cards, a hover style makes things clearer still. I like to use

box-shadow because — unlike outline — it respects the

curves of the corners.

.card:hover {

 box-shadow: 0 0 0 0.25rem;

}

Where there are hover styles there should also be focus styles,

which presents us with an interesting problem. Using :focus,

we can only apply a style to the link itself. This isn’t a big

issue, but it would be nice if sighted keyboard users saw that

nice big, card-sized style that mouse users see. Fortunately,

this is possible using :focus-within:

310 Chapter 12

.card a:focus {

 text-decoration: underline;

}

.card:focus-within {

 box-shadow: 0 0 0 0.25rem;

 outline: 2px solid transparent;

}

.card:focus-within a:focus {

 text-decoration: none;

}

I’ve progressively enhanced focus styles here using CSS’s

cascade. First I apply a basic focus style, to the link. Then

I use :focus-within to match the :hover style. Finally,

I remove the unnecessary basic :focus style only where

:focus-within is supported. That is, if :focus-within is not

supported, both the second and last blocks will be ignored.

The upshot is that users of older browsers that do not support

:focus-within will still see the fallback focus style.

Note I’ve also included a transparent outline style, because

Windows High Contrast Mode suppresses box-shadow. The

transparent color will change to become visible when high

contrast mode is switched on.

Cards 311

Warning: do not include the :hover style in the same blocks

as :focus-within. The whole block will be rejected where

:focus-within is not supported, and you’ll lose the hover

style along with it.

Content tolerance
One unsung aspect of inclusive design is the art of making

interfaces tolerant of different levels of content. Wherever an

interface breaks when too much or too little content is pro-

vided, we are restricting what contributors can say.

Our cards need to be able to accept different lengths of title

and description without the design become ugly or difficult

to scan. First, I add some <div> containers for convenience

(.img and .text):

<li class="card">
 <div class="img">

 </div>
 <div class="text">
 <h2>
 Card design woes
 </h2>
 <p>Ten common pitfalls to avoid when designing
card components.</p>
 <small>By Heydon Pickering</small>
 </div>

312 Chapter 12

Then I make both the .card container and the .text wrapper

inside it Flexbox contexts, using flex-direction: column.

.card, .card .text {

 display: flex;

 flex-direction: column;

}

Next, I force the textual elements to take up all the available

space with flex-grow: 1:

.card .text {

 flex-grow: 1;

}

Finally, to give some balance, I take the last textual element

and give it a top margin of auto:

.card .text :last-child {

 margin-top: auto;

}

This pushes the attribution element in the demo to the bottom

of the card, regardless of its height.

Cards 313

All that’s left to do is add a bottom margin to the second-last

element, to ensure a minimum level of separation. Using

the owl selector129 to inject a common margin, it all comes

together like this:

.card, .card .text {

 display: flex;

 flex-direction: column;

}

.card .text {

 flex-grow: 1;

}

.card .text > * + * {

 margin-top: 0.75rem;

}

.card .text :last-child {

 margin-top: auto;

}

.card .text :nth-last-child(2) {

 margin-bottom: 0.75rem;

}

129 https://smashed.by/lobotomizedowls

314 Chapter 12

https://smashed.by/lobotomizedowls

Note that we are managing margins in an algorithmic way

here, using position and context rather than specific element

properties. No matter what the elements we place in this text

container, the effect will be the same.

PROGRESSIVE GRID ENHANCEMENT
All that’s left to do is place the cards in a CSS Flexbox or CSS

Grid context wherein the cards will stretch to share the same

height: the height of the card with the most content.

Grid and Flexbox can both have this effect, but I prefer Grid’s

wrapping algorithm and grid-gap is the easiest way to dis-

tribute cards without having to use negative margin hacks.

By using @supports I can implement a simple, one-column

layout then enhance it with Grid where supported:

.card .text {

 max-width: 60ch;

}

.card + .card {

 margin-top: 1.5rem;

}

@supports (display: grid) {

 .cards > ul {

 display: grid;

 grid-template-columns: repeat(auto-fill,

minmax(15rem, 1fr));

Cards 315

 grid-gap: 1.5rem;

 }

 .card + .card {

 margin-top: 0;

 }

}

Note the max-width of (approximately) 60 characters on the

text container. This prevents the line length for cards on large

screens not supporting Grid from becoming too long. They

won’t really look like cards in these conditions, of course, but

at least they’ll be readable.

Fortunately, support for Grid is fairly extensive now.130

THE IMAGE DIMENSIONS
In addition to allowing flexible text content, we should

handle different uploaded image dimensions. The

130 https://smashed.by/caniusecssgrid

316 Chapter 12

https://smashed.by/caniusecssgrid

object-fit: cover declaration makes light work of this

when combined with a width and height of 100%. This allows

us to adjust the height of the image container to our liking

without gaps showing or the image becoming squished.

.card .img {

 height: 5rem;

}

.card .img img {

 object-fit: cover;

 height: 100%;

 width: 100%;

}

The slight slant given to the image box is achieved using clip-path.
This is a progressive enhancement too. No content is obscured where
clip-path is not supported.

Cards 317

There’s an inherent compromise in using

object-fit: cover: To maintain the correct aspect

ratio, the image will become cropped along two or more

edges. Since the image is always centered within its

container, it helps to curate images for which the cen-

ter is the focus. The positioning can be adjusted using

object-position, however.

The author link
What about that author link? The first thing to consider is

whether it’s necessary or desirable to make this link interac-

tive within the card. Especially if the author’s page is linked

from the permalink to which the card is pointing. Only add tab

stops where beneficial, because too many make navigation by

keyboard slow and arduous.

For argument’s sake, let’s say there is a use case for linking

the author within the card. This is viable alongside both the

pseudo-content and JavaScript techniques described above. A

declaration of position:relative will raise the link above

the pseudo-content in the first example. Contrary to popu-

lar belief, just the positioning is needed, and no z-index,

because the author link is after the primary link in the source.

.card small a {

 position: relative;

}

318 Chapter 12

Demo: Author links demo (using pseudo-

content).131

(Note: The links are just dummy links pointing to hash

fragments. Check the address bar to see which one

you’ve pressed.)

An issue for some users will be trouble targeting the author

link. In most scenarios, a couple of inaccurate clicks or taps

are relatively harmless, but where the desired link is placed

over another interactive element, the other element might

get activated. In this case, that would mean loading the

wrong page.

So, why don’t we increase the hit area of the author link to

mitigate this? We can use padding. The left padding remains

unaffected because this would push the link away from the

preceding text.

.card small a {

 position: relative;

 padding: 0.5rem 0.5rem 0.5rem 0;

}

131 https://smashed.by/cardsauthorlink

Cards 319

https://smashed.by/cardsauthorlink

Many people find they have low accuracy when targeting

items by touch, including those with Parkinson’s disease and

rheumatism. So it’s also wise to increase the gap between

single-column cards on small screens, meaning it’s easier to

avoid activating a card while scrolling.

@media (max-width: 400px) {

 .cards > ul {

 grid-gap: 4.5rem;

 }

}

320 Chapter 12

Calls to action
As I said already, multiple “read more” links are useless when

taken out of context and aggregated into a glossary. Best

to avoid that. However, it may prove instructive to have an

explicit call to action. Without it, users may not be aware

cards are interactive. Being obvious is usually the best

approach in interface design.

So, how do we supply these buttons but keep the descrip-

tive link text? One possibility is to keep the title/heading

as the primary link, and add a decorative “read more”

button separately.

 <h2>
 Card design woes
 </h2>
 <p>Ten common pitfalls to avoid when designing card
components.</p>
 read more </
span>
 <small>By Heydon Pickering</small>

Cards 321

Had I set the call to action as a link as well, I’d be creating

redundant functionality and an extra tab stop. Instead, the

button is just for show, and hidden from assistive technologies

using aria-hidden. The trick is to make it appear the button

is the interactive element: another job for :focus-within.

I look for focus within the <h2>, and use the general sib-

ling combinator132 to delegate the focus style to the

call-to-action button.

.card h2 a:focus {

 text-decoration: underline;

}

.card h2:focus-within ~ .cta {

 box-shadow: 0 0 0 0.125rem;

 outline: 2px solid transparent;

}

.card:focus-within h2 a:focus {

 text-decoration: none;

}

Visual focus order remains logical between the title (call to

action) and author link:

132 https://smashed.by/siblingselectors

322 Chapter 12

https://smashed.by/siblingselectors

For sighted screen reader users there’s potential for a little

confusion here, since “read more” will not be announced

despite the element appearing to take focus. Fortunately,

we can attach “read more” to the link as a description, using

aria-describedby. Now users will hear “Card design woes,

link, read more.” The description is always read last.

 <h2>
 <a href="/card-design-woes" aria-describedby="desc-
card-design-woes">Card design woes
 </h2>
 <p>Ten common pitfalls to avoid when designing card
components.</p>
 <span class="cta" aria-hidden="true" id="desc-card-
design-woes">read more
 <small>By Heydon Pickering</small>

Cards 323

It works because, even where aria-hidden="true" is

applied, the relationship created is still intact and the descrip-

tion available to the link. This is useful when you want to use

an element for your description, but don’t want assistive tech-

nologies to acknowledge the element directly. It would have

been confusing to a screen reader user to be able to browse

to the call to action and hear the imperative “read more” with-

out the element having a role or being interactive.

Note that, since the call to action says “read more” in each

case, only one of the call-to-action elements needs to be

referenced by each of the cards’ links. Within a templating

loop, this is likely to be hard to implement, though.

Demo: Calls-to-action demo.133

UNIQUE STRINGS

When creating dynamic content by iterating over data, there

are certain things we can’t do. One of these is to manually

create id values.

For relationships built using ids to work (like the

aria-describedby association in the previous example)

those id ciphers need to be consistent and unique. There are

a couple of ways you can do this.

133 https://smashed.by/clickreadmore

324 Chapter 12

https://smashed.by/clickreadmore

The first is to create a unique string using some pseudo-

randomization. The following snippet, based on a gist by

Gordon Brander,134 is a neat solution and has been used

already in this book:

const uniq = Math.random().toString(36).substr(2, 9);

Another solution is to stringify Date using the + operator,

which is terser. Note that, unlike the above solution, this does

result in a number — so it must prefixed with some alphabetic

characters to make it a valid id.

const uniq = +new Date();
Using Vue.js, I can apply this unique string like so:
<!-- the id attribute -->
:id="'desc-' + uniq"
<!-- the aria-describedby attribute -->
:aria-describedby="'desc-' + uniq"

One disadvantage of this approach is that testing snapshots

will be constantly out of sync, because a new unique string is

generated for each build. It’s for this reason that I prefer to

use a simple “slugify” function, based on a string already in the

page. In this case, the title for the card seems apt.

134 https://smashed.by/idjs

Cards 325

https://smashed.by/idjs

Here’s that function as a small utility module. It would convert

“My card component!” to my-card-component:

export default text => {
 return text
 .toString()
 .toLowerCase()
 .replace(/\s+/g, '-')
 .replace(/[^\w\-]+/g, '')
 .replace(/\-\-+/g, '-')
 .replace(/^-+/, '')
 .replace(/-+$/, '');
};

Alternative text
So far, I’ve been working with the assumption that the card’s

image is decorative and doesn’t need alternative text, hence

alt="". If this empty alt was omitted, screen readers would

identify the image and read (part of) the src attribute as a

fallback, which is not what anyone wants here.

If the image were considered pertinent in terms of content

(for example, the appearance of a product that’s for sale) we

should, of course, supply a suitable value to alt. But we have

a problem, and one anticipated by Andy Kirk135 who contacted

me about it on Patreon.

135 https://smashed.by/andykirk

326 Chapter 12

https://smashed.by/andykirk

Currently, the image appears before the text. Since head-

ings, like the <h2> here, introduce sections, having the image

before the heading suggests that it does not belong to the

section. On one hand, you could argue that the groups

the image with the text, but not all users would consume the

structure this way. When a screen reader user operating NVDA

presses 2 to go to the next <h2>, they would skip over the

image and miss it.

THE ORDER PROPERTY
Fortunately, Flexbox’s order property allows us to manipulate

the source order, then correct for visual appearance.

First, I switch the image and text containers around…

Cards 327

<li class="card">
 <div class="text">
 <h2>
 A great product
 </h2>
 <p>Description of the great product</p>
 <small>By Great Products(TM)</small>
 </div>
 <div class="img">
 <img src="/path/to/image.png" alt="Description of
the great product’s appearance">
 </div>

…then I just promote the image container to the top of

the layout:

.card .text {

 order: 1;

}

Manipulating the order of elements using CSS can cause

accessibility issues, especially where it means the focus

order136 contradicts the visual layout. This can be confusing.

136 https://smashed.by/focusorder

328 Chapter 12

https://smashed.by/focusorder

In this case, the focus order is not applicable because

the image is not focusable. The experience for sighted

screen reader users is a little odd but unlikely to cause

major comprehension problems since each card is

visually self-contained.

Screen readers like VoiceOver provide a visible ring, like a

focus style, for each element the user browses — including

non-focusable elements. This ring shows the user which ele-

ment they are on, wherever they are.

Demo: Alternative text demo.137

Conclusion
Some of the ideas and techniques explored here may not be

applicable to your particular card designs; others will. I’m not

here to tell you exactly how to design a card because I don’t

know your requirements. But I hope I’ve given you some ideas

about how to solve problems you might encounter, and how

to enhance the interface in ways that are sensitive to a broad

range of users.

137 https://smashed.by/cardsalttext

Cards 329

https://smashed.by/cardsalttext

In fact, none of the components in this book are offered as

perfect, just-copy-and-paste exemplars. My real aim has

been to show you how to think inclusively as you approach

interface design. Please do take the ideas and the code here,

because I’ve done my best to solve many of the common

problems. But look out for other problems with these compo-

nents, and with the new and different components you make

in the future.

Checklist

• Use list markup to group your cards.

• Make sure your cards don’t break when lines of

content wrap or images don’t meet specific aspect

ratio requirements.

• Avoid too much functionality and reduce tab stops. Cards

shouldn’t be miniature web pages.

• Remember that headings should begin sections. Most

everything that belongs to the section should follow the

heading in the source.

That’s it. Go make a better web.

330 Chapter 12

The world is a miracle. So are you.

Thanks for being smashing.

More From Smashing Magazine

• Apps For All: Coding Accessible Web Applications

by Heydon Pickering

• Art Direction For The Web

by Andy Clarke

• Design Systems

by Alla Kholmatova

• Digital Adaptation

by Paul Boag

• Form Design Patterns

by Adam Silver

• Inclusive Design Patterns

by Heydon Pickering

• Smashing Book #6: New Frontiers in Web Design

by Laura Elizabeth, Marcy Sutton, Rachel Andrew, Mike

Riethmueller, Harry Roberts, and others.

• The Sketch Handbook

by Christian Krammer

• User Experience Revolution

by Paul Boag

Visit smashingmagazine.com/printed-books/ for our full

list of titles.

http://smashingmagazine.com/printed-books/

	Contents
	Introduction: A personal note
	Toggle Buttons
	A To-do List
	Menus and Menu Buttons
	Tooltips and Toggletips
	A Theme Switcher
	Tabbed Interfaces
	Collapsible Sections
	A Content Slider
	Notifications
	Data Tables
	Modal Dialogs
	Cards

