
Image
Optimization
by Addy Osmani

Image
Optimization

by
Addy Osmani

Published 2021 by Smashing Media AG, Freiburg, Germany.
All rights reserved.
ISBN: 978-3-945749-94-4

Technical editing: Milica Mihajlija and Colin Bendell
Copyediting: Owen Gregory
Cover and section illustrations: Espen Brunborg
Interior full-page illustrations: Nadia Snopek
Book design and indexing: Ari Stiles
Ebook production: Cosima Mielke
Typefaces: Elena by Nicole Dotin, Mija by

Miguel Hernández and Andalé Mono by Steve Matteson

Image Optimization was written by Addy Osmani.
Reviewers and contributors include Colin Bendell,
Kornel Lesiński, Estelle Weyl, Jeremy Wagner,
Tim Kadlec, Nolan O’Brien, Pat Meenan, Kristofer Baxter,
Henri (Helvetica) Brisard, Houssein Djirdeh, Una Kravets,
Ilya Grigorik, Elle Osmani, Leena Sohoni, Katie Hempenius,
Jon Sneyers & Mathias Bynens.

This book is printed with material from
FSC® certified forests, recycled
material and other controlled sources.

Please send errors to: errata@smashingmagazine.com

	 Contents

		 Foreword by Colin Bendell vi

		 Introduction . . xix

	 1 	 The Humble Element 29

	 part one  image quality and performance

	 2 	 Optimizing Image Quality 43

	 3	 Comparing Image Formats 54

	 4	 Color Management 68

	 5	 Image Decoding Performance 80

	 6	 Measuring Image Performance 100

	 part two  current image formats

	 7	 JPEG . 115

	 8 	 PNG . 144

	 9 	 WebP . 170

	10	 SVG . 200

	 part three  images in browsers

	 11	 Responsive Images 223

	12	 Progressive Rendering Techniques 238

	 13	 Caching Image Assets 256

	14	 Lazy-Loading Images 290

	 15 	 Replacing Animated gifs 314

	16 	 Image Content Delivery Networks 337

	 part four  new & emerging image formats

	 17	 HEIF and HEIC 382

	18	 AVIF . 398

	19	 JPEG XL . 410

	20	 Comparing New Image Formats 433

	 part five  further optimization

	 21	 Data Saver 457

	22	 Optimize Images for Core Web Vitals 471

	23 	 Case Study: Twitter 490

		 Conclusion 505

Foreword
by Colin Bendell

Images and animations are an important part of the web
experience – arguably the most important part. Images
and animations can tell complex stories in just one

glance, they can attract and engage audiences, and they can
provide artistic expression in consistent and unique ways
that other web technologies cannot. Every web performance
strategy culminates in bringing the visual content to the
user. For this reason, even optimizing images, animations,
and video is an essential last link in the chain to ensuring
the success of our web pages.

Examining the data from the HTTP Archive’s Web Almanac,1
we can see both how important media is for the web, and
why image optimization can go a long way to lower the size
of media on the web.

We can measure how important media resources are in two
ways: by the sheer volume of bytes required to download for
a page, and how much of the web page layout we devote to
presenting these technologies.

From a pure bytes perspective, HTTP Archive has histori-
cally reported2 an average of two-thirds of resource bytes

1	 https://smashed.by/almanac
2	 https://smashed.by/bytesperpage

vi Image Optimization

associated with media. From a distribution perspective, we
can see that virtually every web page depends on images
and videos. Even at the tenth percentile, we see that 44%
of the bytes are from media and can rise to 91% of the total
bytes at the 90th percentile of pages.

Web Page Bytes: Media v. Other
Web Almanac 2019: Media

 Media Bytes Other Resources

44.1

52.7

67.0

81.7

91.2

p10

p25

p50

p75

p90

0% 25% 50% 75% 100%

Web page bytes: image and video versus other.

These bytes are important to render pixels on the screen.
As such, we can see the importance of the images and video
resources by also looking at the amount of pixels used per
page. Typically, we express this volume in megapixels, but
this can be a challenging metric to internalize because it is
largely abstract, and the number grows geometrically, which
is hard to easily compare.

viiForeword

One easy way to get a feel for the metric is to compare it to
devices we use. For example, the Samsung Galaxy S10 has
css dimensions of 360×740 pixels or 0.26 mp. But because
we use the devices closer to our eyes, the S10 packs more
pixels per css pixel (referred to as pixel density or device
pixel ratio) and has an actual screen display of 1,440×3,040
pixels or 4.2 mp.

There are three metrics to consider when looking at pixel
volume: css pixels, natural pixels, and screen pixels:

•	 CSS pixel volume is from the css perspective of
layout. This measure focuses on the bounding boxes
into which an image or video could be stretched or
squeezed. It also does not take into account the actual
file pixels nor the screen display pixels.

•	 Natural pixels refer to the logical pixels represented in a
file. If you were to load this image in gimp or Photoshop,
the pixel file dimensions would be the natural pixels.

•	 Screen pixels refer to the physical electronics on the
display. Prior to mobile phones and modern high-
resolution displays, there was a 1:1 relationship
between css pixels and led points on a screen.
However, because mobile devices are held closer to

viii Image Optimization

the eye, and laptop screens are closer than the old
mainframe terminals, modern screens have a higher
ratio of physical pixels to traditional css pixels. This
ratio is referred to as the device pixel ratio, or colloqui-
ally referred to as Retina™ displays.

In the same Web Almanac data we can see that the median
web page had a layout that would show (css) 0.65 mp. The
device used to collect data for the Web Almanac had a (css)
0.18 mp display (similar to the Samsung Galaxy S10 above,
with css 0.26 mp). This implies that images and media are
so important that more than 3.6 screens’ worth of content is
used on the median web page layout. At the 90th percentile,
web pages have 25 full displays’ worth of content!

Image Pixels Per Page (Mobile): CSS v. Actual
Web Almanac 2019: Media

 Actual Image Pixel Volume CSS Pixel Volume

15 mp

10 mp

5.0 mp

0.00 mp

M
eg

a
P

ix
el

s
(1

,0
0

0
 x

 1
,0

0
0

)

p10 p25 p50

1.6 mp

p75

5.1 mp

1.8 mp

p90

12 mp

4.6 mp

0.65 mp

Image pixels per page (mobile): css versus actual.

ixForeword

Media resources are critical for the user experience. While
media are critical for the visual experience, the impact of
this high volume of bytes has two side effects.

First, the network overhead required to download these
bytes can be large, and in cellular or slow network environ-
ments (like coffee shop Wi-Fi) can dramatically slow down
the page performance.3 Images represent a lower priority re-
quest by the browser but can easily block css and JavaScript
in the download. This by itself can delay the page rendering.
Yet at other times, the image content is the visual cue to the
user that the page is ready. Slow transfers of visual content,
therefore, can give the perception of a slow web page.

The second impact is on the financial cost to the user. This
is often an ignored aspect since it is not a burden on the
website owner but a burden to the user. It has been shared
anecdotally that some markets, like Japan,4 see a drop in
purchases by students near the end of the month when data
caps are reached, and users cannot see the visual content.

Further, the financial cost of visiting these websites in dif-
ferent parts of the world is disproportionate. At the median
and 90th percentile, the volume of image bytes is 1 mb and
1.9 mb respectively.

3	 https://smashed.by/imageperf
4	 https://smashed.by/datacaps

x Image Optimization

Using WhatDoesMySiteCost.com5 we can see that the gross
national income per capita cost to a user in Madagascar of a
single web page load at the 90th percentile would cost 2.6%
of daily gross income. By contrast, in Germany this would be
0.3% of daily gross income.

Total Image Bytes Per Web Page
Web Almanac 2019: Media

4.00 mb

2.00 mb

1.00 mb

0.00 kb
p10 p25

454.05 kb

p50

1.06 mb

p75

2.35 mb

p90

5.00 mb

3.00 mb

183.28 kb

4.86 mb

Total image bytes per web page (mobile).

This book covers managing and optimizing images to
help reduce the bytes and optimize the user experience.
It is an important and critical topic for many because it is
the creative media that define a brand experience. Opti-
mizing image and video content is a balancing act between
applying best practices that can help reduce the bytes
transferred over the network and preserving the fidelity
of the intended experience.

5	 https://smashed.by/gnicost

xiForeword

While the strategies for images, videos, and animations are
broadly similar, the specific approaches can be very differ-
ent. In general, these strategies boil down to:

•	 File formats: using the optimal file format.

•	 Responsive: applying responsive images techniques
to transfer only the pixels that will be shown on screen.

•	 Lazy loading: to transfer content only when a
human will see it.

•	 Accessibility: ensuring a consistent experience
for all people.

Image Format Usage Per Page
Web Almanac 2019: Media

 svg gif webp png jpeg

200

100

50

0
p10 p25 p50 p75 p90

250

150

p99

Image format usage per page.

xii Image Optimization

These strategies are not new, and many thousands of words
in books, blogs, and tutorials have been devoted to expand-
ing awareness on how to reduce the cost and improve the
performance of media. Yet, based on the Web Almanac data,
there is still a lot of unrealized opportunity to improve the
user experience through optimizing images.

Consider the following breakdown of image formats most
commonly used in web pages. Each site is unique and the
use of image content is not uniform. Some depend on im-
ages more than others. Look no further than the home page
of google.com and you will see very little imagery compared
with a typical news website. Indeed, the median website has

Percent of Pages Using At Least One Image
Web Almanac 2019: Media

90

89

9

37

22

jpg

png

webp

gif

svg

0% 25% 50% 75% 100%

Percentage of pages using at least one image. (The data collected by the
HTTP Archive uses a Chrome browser. This explains why jpeg 2000, jpeg
xr, heic, and avif are absent from the results.)

xiiiForeword

13 images, 61 images at the 90th percentile, and a whopping
229 images at the 99th percentile.

Most striking from this analysis is that the use of webp
does not materialize until the 99th percentile. WebP, as
this book describes in detail, is one of the new(er) image
formats that can dramatically reduce bytes per pixel and
is, therefore, the easiest way to optimize images. While the
median page has 9 jpegs and 4 pngs, and only in the top
25% of pages gifs were used, the 90th percentile does not
include any use of webp . Only at the 99th percentile do we
see webp. However, this doesn’t report the adoption rate.
Pivoting this data, we can see the adoption and use of each
format across all web pages.

This helps explain why – even at the 90th percentile of
pages – the frequency of webp is still zero; only 9% of web
pages have even one resource. Even 9% might be too gener-
ous considering that even one ad or third-party iframe that
includes a webp would be counted.

Adoption of webp is just one indicator of the pervasive-
ness of image optimization. Lighthouse6 is a tool for
auditing the quality of user experiences. The Lighthouse
data here provides simulated projections for encoding
optimization of jpegs.

6	 https://smashed.by/lighthouse

xiv Image Optimization

Projected Page Performance Improvement
Web Almanac 2019: Media (Lighthouse JPEG Optimisation)

1,460 ms

5,720 ms

p10

p25

p50

p75

p90

0 ms 2,000 ms 4,000 ms 6,000 ms

150 ms

0 ms

0 ms

Projected page performance improvements from image optimization
from Lighthouse.

Just re-encoding progressive jpeg images can save 150 mil-
liseconds at the median and nearly 6 seconds at p90. The
time savings from the Lighthouse tests indicate again that
there is a lot of untapped potential even
with existing images.

But don’t be discouraged by this low adoption of image
optimization techniques! It would be understandable to feel
dismayed that only 9% of the web has adopted this simple
image optimization strategy despite webp being readily
available for nearly ten years. Or that many jpegs are not
encoded optimally. Yet, the tools and services available today
are making it increasingly easier to adopt and maintain
great image optimization techniques.

xvForeword

The good news is that there is a lot of low-hanging fruit that
web developers can pick to improve image optimization
and increase user engagement For this reason, I am excited
about the advances in the tools, knowledge, and services
available to all web developers that make it easier to imple-
ment image optimizations.

Nearly all web pages use images and video to some degree
to enhance the user experience and create meaning. Adopt-
ing alternative formats, lazy loading, responsive images,
and image optimization can go a long way to lowering the
size of media on the web. Throughout this book you will
encounter many examples of each of these techniques, and
testimonials from different organizations that have adopted
these best practices.

You are not alone in this challenge to improve the user expe-
rience. We are in this together!

—Colin Bendell

xvi Image Optimization

Introduction

Images are an important part of any web experience.
They let us convey ideas much faster than text, help
us tell powerful stories and engage with our users in

ways that few other forms of content can. This is one rea-
son why high-quality images often help increase conver-
sions, raise user engagement, and add broader context to
any page. While images are critical for a satisfying visual
experience, delivering them to users efficiently isn’t easy.
The good news is this book will provide you with insights
and best practices shared by industry experts to guide
you towards success.

Gorgeous high-quality images have a cost. They first have
to be downloaded, requiring a network overhead that can be
large and, on slow internet connections (think coffee shops
or when you’re on the go), can significantly slow down how
quickly web pages load. Often, image content is a primary
visual cue that a page is ready to be used, so slow transfers
of images imply the page is slow – think of any page with
hero images, be it news articles or product pages.

Unoptimized images require massive amounts of band-
width because they often have large file sizes. According
to the HTTP Archive, 50% of the data transferred to fetch a
web page comprises images of various formats.1 Images also

1	 http://httparchive.org/

xviiIntroduction

account for a whopping 2 mb+2 of the content loaded for
websites at the 75th percentile. That’s a lot. Slow images can
also block css and JavaScript owing to network contention,
which itself can delay page rendering.

Adding images to a page and making existing images larger
have long been proved3 to increase conversion rates. Re-
search also shows that the quality and quantity of those im-
ages matters. Research undertaken by soasta and Google4
in 2016 highlighted that images were the second highest
predictor of conversions, with the best pages having 38%
fewer images than those that didn’t convert. The reason for
this might be the performance impact of all those images.
Faster websites often have higher conversion rates, so
investing in an efficient compression strategy to minimize
bloat from high-quality images is important. There’s plenty
of room for us to collectively optimize images better.

In the first part of the book, “Image Quality and Perfor-
mance,” we’ll explore the challenges involved in defining
image quality and improving how images perform. You
will get a foundation of knowledge in how image compres-
sion works to help you squeeze out each unnecessary byte
from your visuals.

2	 https://smashed.by/bytesperpage
3	 https://smashed.by/perfplanet
4	 https://smashed.by/soasta

xviii Image Optimization

Many image formats allow you to control quality. In formats
supporting lossy compression (where some image data is
lost), you can control the compression by setting a value,
usually between 0 and 100. Lower values mean greater com-
pression yielding potentially lower quality images. Just how
much lower, and whether this change can be noticed by the
human eye, really depends on the type of image. Many devel-
opers err on the side of caution when setting image quality
because they’re worried about degrading visual quality.

Effective compression reduces the size of an image while
still delivering a crisp level of detail . Adjusting quality
levels doesn’t have to reduce visual quality very much, and
you’ll leave this section understanding the trade-offs when
it comes to image quality and how to fine-tune encoding
settings to get the most out of image optimization tools.
Smaller image sizes bring smaller, faster downloads to help
retain users’ attention, but also reduce the cost of storing
and transferring these images.

This part of the book will also discuss color management. A
mastery of color allows you to control how image colors are
represented across a range of different contexts, like phone
screens, monitors, cameras, and printers. You’ll also be able
to adjust and simplify an image’s color palette to further
reduce file sizes.

xixIntroduction

Part 2 looks closely at the most widespread “Current Image
Formats” at our disposal: jpeg, png, webp, and svg.

Different formats are optimal for compressing different
kinds of images (detailed photographs, illustrations, decora-
tive content, and so on), and which format you choose has
an impact on the final size and experience. Different kinds
of images when saved to the same format with the same
quality and configuration will have very different file sizes.
This is because the content of an image can strongly affect
how effective each format is.

Different formats use compression strategies tuned for
specific types of content and this section will help you gain
a deep understanding of what formats like jpeg, png, webp,
and svg are most optimally used for. This section will also
cover the practical tools, tips, and tricks for effectively using
each of these formats in production.

Part 3, “Images in Browsers,” focuses on techniques to im-
prove how images are displayed in modern web browsers.

We’ll cover where images fit in responsive design, where
your site delivers an optimal visual experience on each
user’s device, irrespective of screen size or resolution. For
an image to adapt appropriately, it will often need to adjust
its resolution and sometimes even format, quality, or art
direction for the best experience.

xx Image Optimization

Sending the highest-resolution image and hoping the
browser will resize it appropriately is a waste of bandwidth
and can slow down the user experience. Instead, you’ll learn
how to prepare images for a variety of resolutions, so devic-
es requesting it only load what’s needed.

Sites that load fast prioritize the resources a user needs
when they need it. Images are no different, yet most sites
load all images even if users won’t see them until they
scroll down. This is where lazy loading can save the day
– and your users’ time, bandwidth, and cpu cycles. Lazy
loading defers loading images that aren’t needed right
away. When done right, it can ensure that images not visi-
ble to users are never loaded.

We’ll cover how to use browsers’ native image lazy-loading
features, JavaScript libraries for lazy loading (for browsers
that don’t support it yet), as well as advanced techniques,
like displaying low-quality placeholders as final images are
loaded in.

Throughout the book, you’ll learn how to automate image
optimization through modern tools. While these tools are
great, staying on top of image optimization best practices
and regularly updating your toolchains can be time-con-
suming. These tools are also often focused on optimizing
static images at build time (like logos, or site assets known
ahead of time), while your site may also need to support

xxiIntroduction

user-generated content, where users upload often large,
uncompressed images from their phones or desktops.

There is where content delivery networks (cdns) focused on
image delivery can be a great option. Using an image cdn can
result in 40–80% savings5 in image file sizes, and many image
cdns support automatic selection of the best quality and
format , image transformation, and media management.

This section will cover how to set up a self-managed cdn as
well as third-party image cdns, which offer image opti-
mization and delivery as a service. Both options have their
trade-offs, but we’ll equip you with the knowledge to pick
what makes sense.

In Part 4, we survey “New Image Formats” that are
emerging online: avif, jpeg xl, and heif. These next-
generation formats typically deliver far better quality and
compression than traditional formats. Delivering modern
image formats to users whose browsers support them (and
fallbacks to those that do not) allows you to optimize for
image quality and storage while ensuring images can be
viewed by all of your users. One such example is delivering
avif to modern browsers and webp or jpeg everywhere else.
In this section, we cover the main features, pros, and cons of
new image formats.

5	 https://smashed.by/savings

xxii Image Optimization

The final part moves into “Further Optimization” and
includes tips and tricks for optimizing Google’s Core Web
Vitals, adaptive image delivery with Data Saver mode, and
a production case study of how Twitter improved its image
optimization pipelines at scale.

Core Web Vitals is an initiative by Google to encourage sites
to identify opportunities to improve user experience. In this
section, we’ll cover image-specific guidance to improve your
Core Web Vitals to ensure things like your largest content-
ful elements load fast and don’t cause layout shifts. Google’s
research shows that when sites meet the Core Web Vitals
thresholds, users are 24% less likely to leave a page before
any content has been painted.

Users with slow connections deserve a beautiful user
experience too. If a user has opted into a browser’s Data
Saver mode, you can use this as a signal to fine-tune
image delivery to serve fewer image bytes so pages still
load fast for them.

We’ll cover adaptive image delivery using Data Saver,
where sites can remove unnecessary images, switch to
lower-resolution images, lower-quality images or vid-
eos, or simply trigger a “lite” experience by checking the
browser’s data-savings hints.

xxiiiIntroduction

Finally, bringing it all together we will take a look at a
production case study of Twitter’s image optimization
pipeline. With a huge user base spread across a number of
platforms, form factors, and network conditions, Twitter
has evolved its ability to handle image delivery in a num-
ber of ways that improve user experience.

We cover device pixel ratio (dpr) capping to provide
high-resolution responsive images that account for details
the human eye can see, without serving more bytes when
it can’t. We’ll also look at how Twitter optimizes image up-
loads, supports special cases like pixel art, and implements
a Data Saver mode for maximal image savings.

Images help us tell a story and engage with our users at
a deep level. They also have a low barrier to access, with
anyone being able to drop an element into a page and
begin building more beautiful experiences. Let’s begin our
journey to faster-loading images by first looking at some
of the superpowers that have recently come to – you
might be surprised at how much the browser can now do
out of the box.

xxiv Image Optimization

chapter one

The Humble Element

The humble element has gained some super-
powers over the years. Given how central it is to
image optimization on the web, let’s catch up on

what it can do.

The Basics

To place an image on a web page, we use the ele-
ment. This is an empty element – it has no closing tag –
requiring a minimum of one attribute to be helpful: src,
the source. If an image is called donut.jpg and it exists in
the same location as your html document, it can be em-
bedded as follows:

To ensure our image is accessible, we add the alt attribute.
The value of this attribute should be a textual description of
the image, and is used as an alternative to the image when
it can’t be displayed or seen; for example, a user accessing

25introduction  The Humble Element

HOW IMPORTANT
IS SPEED?

Users rated speed highest in the UX hierarchy

according to Google’s Speed Matters Vol. 3

 75% The speed it takes to load the page

 66% How easy it is to find what I’m looking for

 61% How well the site fits my screen

 58% How simple the site is to use

 25% How attractive the site looks

your page via a screen reader. The above code with an alt
specified looks as follows:

<img src="donut.jpg"
 alt="A delicious pink donut.">

Next, we add width and height attributes to specify the
width and height of the image. The dimensions of an image
can usually be found by looking at this information via your
operating system’s file explorer (Cmd + I on macOS).

<img src="donut.jpg"
 alt="A delicious pink donut."
 width="400"
 height="400">

When width and height are specified on an image, the
browser knows how much space to reserve for the image
until it is downloaded. Forgetting to include the image’s
dimensions can cause layout shifts, as the browser is unsure
how much space the image will need.

Modern browsers now set the default aspect ratio of images
based on an image’s width and height attributes, so it’s
valuable to set them to prevent such layout shifts.

27introduction  The Humble Element

Hovering over an image in the Chrome DevTools Elements panel displays
the dimensions of the image as well as the image’s intrinsic size.

Swapping Out Images

What about switching image resolution? A standard
only allows us to supply a single source file to the browser.
But with the srcset and sizes attributes we can provide
many additional source images (and hints) so the browser
can pick the most appropriate one. This allows us to supply
images that are smaller or larger.

<img src="donut-800w.jpg"
 alt="A delicious pink donut."
 width="400"

28 Image Optimization  getting started

 height="400"
 srcset="donut-400w.jpg 400w,
 donut-800w.jpg 800w"
 sizes="(max-width: 640px) 400px,
 800px">

The srcset attribute defines the set of images the brows-
er can select from, as well as the size of each image. Each
image string is separated by a comma and includes: a
source filename (donut-400w.jpg); a space; and the image’s
intrinsic width specified in pixels (400w), or a pixel density
descriptor (1x, 1.5x, 2x, etc.).

The sizes attribute specifies a set of conditions, such as
screen widths, and what image size is best to select when
those conditions are met. Above, (max-width:640px) is a
media condition asking “if the viewport width is 640 pixels
or less,” and 400px is the width the image is going to fill
when the media condition is true.

Even those images which are responsive (that is, sized
relative to the viewport) should have width and height
set. In modern browsers, these attributes establish an
aspect ratio that helps prevent layout shifts, even if the
absolute sizes are overridden by css. (Chapter 11 covers
responsive images.)

29introduction  The Humble Element

Image Loading

What about offscreen images that are not visible until a
user scrolls down the page? In the example below, all the
images on the page are “eagerly loaded” (the default in
browsers today), causing the user to download 1.1 mb of
images. This can cause users’ data plans to take a hit in
addition to affecting performance.

An image gallery eagerly loading all the images it needs up front, as shown
in the Chrome DevTools Network panel. 1.1 mb of images have been
downloaded, despite only a small number being visible when the user first
lands on the page.

Using the loading attribute on , we can control the
behavior of image loading. loading="lazy" lazy-loads
images, deferring them loading until they reach a calculated
distance from the viewport. loading="eager" loads images

30 Image Optimization  getting started

right away, regardless of their visibility in the viewport.
eager is the default and can be ignored (that is, just use
 for eager loading).

Below is an example of lazy-loading an with
a single source:

<img src="donut.jpg"
 alt="A delicious pink donut."
 loading="lazy"
 width="400"
 height="400">

An image gallery using native image lazy-loading on images outside of the
viewport. As seen in the Chrome DevTools Network panel, the page now
only downloads the bare minimum of images users need up front. The rest of
the images are loaded in as users scroll down the page.

31introduction  The Humble Element

With native lazy-loading, the earlier example now
downloads only about 90 kb of images! Just adding
loading="lazy" to our offscreen images has a huge impact.

Lazy loading also works with images that include srcset, as
 is what drives image loading:

<img src="donut-800w.jpg"
 alt="A delicious donut"
 width="400"
 height="400"
 srcset="donut-400w.jpg 400w,
 donut-800w.jpg 800w"
 sizes="(max-width: 640px) 400px,
 800px"
 loading="lazy">

We’ll cover lazy loading in full in chapter 14.

Image Decoding

Browsers need to decode the images they download in order
to turn them into pixels on your screen. However, how
browsers handle deferring images can vary. At the time of
writing, Chrome and Safari present images and text togeth-
er – synchronously – if possible. This looks correct visually,
but images have to be decoded, which can mean text isn’t

32 Image Optimization  getting started

shown until this work is done. The decoding attribute on
 allows you to signal a preference between synchro-
nous and asynchronous image decoding.

<img src="donut-800w.jpg"
 alt="A delicious donut"
 width="400"
 height="400"
 srcset="donut-400w.jpg 400w,
 donut-800w.jpg 800w"
 sizes="(max-width: 640px) 400px,
 800px"
 loading="lazy"
 decoding="async">

decoding="async" suggests it’s ok for image decoding to
be deferred, meaning the browser can rasterize and display
content without images while scheduling an asynchronous
decode that is off the critical path.

 As soon as image decoding is complete, the browser can
update the presentation to include images. decoding=
"sync" hints that the decode for an image should not be
deferred, and decoding="auto" lets the browser do what
it determines is best. (There’s more on the decoding attri-
bute in chapter 5.)

33introduction  The Humble Element

Placeholders

What if you would like to show the user a placeholder
while the image loads? The background-image css property
allows us to set background images on an element, includ-
ing the tag or any parent container elements. We can
combine background-image with background-size: cover
to set the size of an element’s background image and scale
the image as large as possible without stretching the image.

Placeholders are often inline, Base64-encoded data urls
which are low-quality image placeholders (lqip) or svg im-
age placeholders (sqip). This allows users to get a very quick
preview of the image, even on slow network connections,
before the sharper final image loads in to replace it.

<img src="donut-800w.jpg"
 alt="A delicious donut"
 width="400"
 height="400"
 srcset="donut-400w.jpg 400w,
 donut-800w.jpg 800w"
 sizes="(max-width: 640px) 400px,
 800px"
 loading="lazy"

34 Image Optimization  getting started

 decoding="async"
 style="background-size: cover;
 background-image:
 URL(data:image/svg+xml;base64,[svg
text]);">

Note: Given that Base64 data urls can be quite long, [svg
text] is denoted in the example above to improve readability.

With an inline svg placeholder, here is how the example
from earlier now looks when loaded on a very slow connec-
tion. Notice how users are shown a preview right away prior
to any full-size images being downloaded:

Images loaded on a simulated slow connection, displaying a placeholder
approximating the final image as it loads in. This can improve perceived
performance in certain cases.

35introduction  The Humble Element

Chapter 12 has much more on progressive rendering tech-
niques, including placeholder images.

Lazy-Render Offscreen Content

Next, let’s discuss the css content-visibility prop-
erty, which allows the browser to skip rendering, layout,
and paint for elements until they are needed. This can
help optimize page load performance if a large quantity
of your page’s content is offscreen, including content
which uses elements.

section {
 content-visibility: auto;
}

The content-visibility property1 can take a number
of values; auto is the one that offers performance benefits.
Sections of the page with content-visibility:auto
get containment for layout, paint, and style. Should the
element be offscreen, it would also get size containment.

1	 https://web.dev/content-visibility/

36 Image Optimization  getting started

When chunking up a page into sections with content-visibility:auto,
developers have observed a 7–10x improvement in rendering times as
a result. Note the reduction in rendering times above of 937ms to 37ms
for a long html document.

Browsers don’t paint the image content for
content-visibility affected images, so this approach
may introduce some savings.

section {
 content-visibility: auto;
 contain-intrinsic-size: 700px;
}

37introduction  The Humble Element

One option is to pair content-visibility with
contain-intrinsic-size, which provides the natural size
of the element if it is affected by size containment. The
700px value in this example approximates the width and
height of each chunked section.

Maintain a Consistent Aspect-Ratio

The aspect ratio of an image is the ratio of its width to
its height. This is often represented by two numbers
separated by a colon (such as 4:3 or 16:9). Maintaining a
consistent aspect ratio can be important in responsive
web design where the dimensions of images can vary and
introduce layout shifts depending on how much space is
available in the page.

In our image gallery, we might wish to create responsive
space for images that vary by dimension, are in more
complex elements like cards, or require a placeholder
container to avoid layout shifts when the images load
and occupy space.

Historically, developers have used the padding-top hack to
maintain aspect ratio using an image’s width. This involves

38 Image Optimization  getting started

using two containers: a parent container, and a child con-
tainer that gets absolutely positioned. The aspect ratio is
then computed as a percentage for the padding-top value.

For example, a 16:9 aspect ratio = 9 ÷ 16 = 0.5625 = css
padding-top: 56.25% . For the following container:

<div class='container'>

</div>

This is the css for the padding-top hack to maintain
aspect ratio:

.container {
 position: relative;
 padding-top: 56.25%; /* Aspect ratio of 16:9 */
 width: 100%;
}

Thanks to the new css aspect-ratio property,2 a more intui-
tive alternative to the padding-top hack is now available.3 This
enables replacing padding-top:56.25% with aspect-
ratio:16/9 to clearly specify the width to height ratio.

2	 https://web.dev/aspect-ratio/
3	 https://css-tricks.com/aspect-ratio-boxes/

39introduction  The Humble Element

The new css aspect-ratio property, available in modern browsers,
is clearer than the padding-top hack and doesn’t involve more manual
calculation for positioning. In the example above, a 3:2 aspect ratio = 2 ÷ 3
= 0.66666 = padding-top:66.67% . Thanks to the css aspect-ratio
property, this can just be defined as aspect-ratio: 3 / 2.

Throughout this book, we will cover advanced image opti-
mization techniques, as well as how to best use elements
like and <picture> to make your images on the
web shine. Now that we’ve covered the foundations of the
modern tag, let’s turn our attention to understanding
image quality and how it affects web performance.

40 Image Optimization  getting started

Image Quality
and Performance

Part One

	 chapter 2	 	 Optimizing Image Quality . . . 43

	 chapter 3	 	 Comparing Image Formats. . . 54

	 chapter 4	 	 Color Management 68

	 chapter 5	 	 Image Decoding
			 Performance 80

	 chapter 6	 	 Measuring Image
			 Performance. 100

chapter 2

Optimizing Image Quality

Most optimization tools allow you to set the level
of quality you’re happy with. Lower quality
reduces file size but can introduce artifacts,

halos, or blocky degrading.

Squoosh.app1 is a free, web-based tool that reduces image
size through modern image compression techniques.
It supports many of the formats discussed in this book.
If you need to compress multiple images, ImageOptim2
and the ImageOptim plug-in for Sketch3 are also both free
and are equally excellent.

Tools like Squoosh and ImageOptim can compress images with savings of
over 50% without a perceivable loss in quality.

1	 https://squoosh.app
2	 https://imageoptim.com
3	 https://smashed.by/optimsketch

44 Image Optimization  part one

The quality index4 you choose informs the level of compres-
sion that the optimization tool will use.

JPEG compression artifacts can be increasingly perceived as we shift from
best quality to lowest.

Perceived image quality is subjective and depends on
things such as image content, screen size, resolution, and
the person observing the image. It’s possible we sometimes
overestimate the image quality that our users need. For best
performance results, remember that less is more.

When choosing the quality setting, consider which quality
bucket your images fall into:

•	 Best quality: when quality matters more than band-
width. This may be because the image has high promi-
nence in your design or is displayed at full resolution.

•	 Good quality: when you care about shipping smaller
file sizes but don’t want to negatively impact image
quality too much. Users still care about some level
of image quality.

4	 https://smashed.by/qualityindex

http://www.imagemagick.org/script/command-line-options.php#quality
http://www.imagemagick.org/script/command-line-options.php#quality
http://www.imagemagick.org/script/command-line-options.php#quality

45image quality & performance  Optimizing Image Quality

•	 Low quality: when you care enough about bandwidth
that image degradation is OK. These images are suita-
ble for spotty or poor network conditions.

•	 Lowest quality: bandwidth savings are paramount.
Users want a decent experience but will accept
pretty degraded images for the benefit of pages
loading more quickly.

Audit Your Images

Perform a site audit through WebPageTest5 and it will
highlight opportunities to better optimize your images
(see “Compress Images”).

WebPageTest supports auditing for image compression via the “Compress

Images” section.

The “Compress Images” section of a WebPageTest report
lists images that can be compressed more efficiently and the
estimated file-size savings of doing so.

5	 https://www.webpagetest.org/

https://www.webpagetest.org/

Image compression recommendations from WebPageTest

Use Lighthouse6 audits for performance best practices. It
includes audits for image optimization that suggest which
images could be compressed further and which images are
off-screen and could be lazy-loaded. In Chrome 60 and above,
Lighthouse powers the Audits panel7 in Chrome DevTools.
(Lighthouse audits are discussed in more detail in chapter 6.)

Lighthouse audit for HBO.com, displaying image optimization
recommendations.

Other popular performance auditing tools are PageSpeed
Insights8 and Website Speed Test9 by Cloudinary which
includes a detailed image analysis audit.

6	 https://smashed.by/lighthouse
7	 https://smashed.by/auditspanel
8	 https://smashed.by/pagespeedinsights
9	 https://smashed.by/speedtest

46 Image Optimization  part one

https://developers.google.com/web/tools/lighthouse/
https://developers.google.com/web/updates/2017/05/devtools-release-notes#lighthouse
https://developers.google.com/web/updates/2017/05/devtools-release-notes#lighthouse
https://developers.google.com/web/updates/2017/05/devtools-release-notes#lighthouse
https://developers.google.com/speed/pagespeed/insights/
https://developers.google.com/speed/pagespeed/insights/
https://developers.google.com/speed/pagespeed/insights/
https://webspeedtest.cloudinary.com/
https://webspeedtest.cloudinary.com/
https://webspeedtest.cloudinary.com/
https://webspeedtest.cloudinary.com/
https://webspeedtest.cloudinary.com/

Measuring Image Quality

The image quality indexes you see in optimization tools are
approximations of human perception. And quality index in
one tool can be very different to quality index in another,
and often they cannot be compared directly. Some tools, like
ImageMagick,10 for example, use a 0–100 scale, while Photo-
shop uses a 0–12 scale.

Quality index doesn’t map directly to compression levels,
and the mapping equations are different for different image
formats. If you set the quality of a jpeg and a png image to
75 in ImageMagick, the compression levels and perceived
image quality will differ.

To make a fair comparison11 between images, you can’t rely
on quality index alone. Be sure to compare images in the
same format, convert both from high-quality sources and
pay attention to encoder settings.

Quality measurements in encoding tools often aren’t very
consistent between images or proportional to quality per-
ceived by humans. There is no ideal image quality measure-
ment, however, but some, such as the structural similarity
index measure (ssim) and Butteraugli, stand out.

10	 https://www.imagemagick.org/
11	 https://smashed.by/faircomparison

47image quality & performance  Optimizing Image Quality

https://www.imagemagick.org/
https://kornel.ski/en/faircomparison
https://kornel.ski/en/faircomparison
https://kornel.ski/en/faircomparison

SSIM

The structural similarity index measure12 is a method for
measuring the similarity between two images. It does not
judge which of the two is better; it just tells us how far away
in quality an image is from its original reference image.

The ssim algorithm considers three key components of our
visual system: luminance, contrast, and structure.

Increasing degrees of distortion and associated ssim values.

Open-source tools, like dssim13 by Kornel Lesiński, and
the Node.js module img-ssim14 are available for comparing
images using ssim.

12	 https://smashed.by/structuralsimilarity
13	 https://smashed.by/dssim
14	 https://smashed.by/imagessim

48 Image Optimization  part one

https://en.wikipedia.org/wiki/Structural_similarity
https://en.wikipedia.org/wiki/Structural_similarity
https://en.wikipedia.org/wiki/Structural_similarity
https://en.wikipedia.org/wiki/Structural_similarity
https://en.wikipedia.org/wiki/Structural_similarity
https://en.wikipedia.org/wiki/Structural_similarity
https://en.wikipedia.org/wiki/Structural_similarity
https://en.wikipedia.org/wiki/Structural_similarity
https://en.wikipedia.org/wiki/Structural_similarity
https://en.wikipedia.org/wiki/Structural_similarity
https://github.com/pornel/dssim
https://www.npmjs.com/package/img-ssim
https://www.npmjs.com/package/img-ssim
https://www.npmjs.com/package/img-ssim

BUTTERAUGLI

Butteraugli15 is a tool developed by Google for measuring
perceived differences between images. It estimates the
point when a person might notice visual image degradation
(the psychovisual similarity) between two images, and gives
a score for the images that is reliable in the domain of barely
noticeable differences. Butteraugli provides both a scalar
score as well as a spatial map of the level of difference.

While ssim looks at the aggregate of errors from an image,
Butteraugli looks at the worst part.

Butteraugli validating an image of a parrot.

15	 https://smashed.by/butter

49image quality & performance  Optimizing Image Quality

https://opensource.google/projects/butteraugli

Above is an example that used Butteraugli to find the min-
imal jpeg quality threshold before visual degradation was
bad enough for a user to notice something wasn’t clear. It
resulted in a 65% reduction in total file size.

In practice, you would define a target goal for visual
quality, and then run through a number of different image
optimization strategies, looking at your Butteraugli scores,
before choosing something that fits the best balance of file
size and level.

Butteraugli being run from the command line.

All in all, it took me about half an hour to set up Butter-
augli locally after installing Bazel16 and getting a build of
the C++ sources to correctly compile on my Mac. Using
it is relatively straightforward: specify the two images to

16	 https://smashed.by/bazel

50 Image Optimization  part one

https://bazel.build/

51image quality & performance  Optimizing Image Quality

compare (a source and a compressed version) and it will
give you a score to work from.

A comment17 from a Guetzli project member suggests
Guetzli (a jpeg encoder from Google; see chapter 7 on jpeg
for more details) scores best on Butteraugli, worst on ssim,
and mozjpeg (Mozilla’s jpeg encoder) scores about as well
on both. This is in line with the research I’ve put into my
own image optimization strategy. I run Butteraugli and a
Node module like img-ssim over images comparing the
source with their ssim scores before and after Guetzli
and mozjpeg processing.

Avoid Recompressing Images
with Lossy Codecs

Recompressing images has consequences. For best results,
always compress from the original image.

Let’s say you take a jpeg that’s already been compressed
with a quality of 60. If you recompress this image with lossy
encoding,18 it will look worse. Each additional round of com-
pression is going to introduce generational loss – informa-
tion will be lost and compression artifacts will start to build
up – even if you’re recompressing at a high quality setting.

17	 https://smashed.by/guetzliissue
18	 https://smashed.by/lossy

https://github.com/google/guetzli/issues/10#issuecomment-276295265
https://github.com/google/guetzli/issues/10#issuecomment-276295265
https://en.wikipedia.org/wiki/Lossy_compression
https://en.wikipedia.org/wiki/Lossy_compression
https://en.wikipedia.org/wiki/Lossy_compression

To avoid this trap, set the lowest good quality you’re will-
ing to accept in the first place and you’ll get maximum file
savings from the start. Re-encoding a lossy file will almost
always give you a smaller file, but this doesn’t mean you’re
getting as much quality out of it as you may think.

Generational loss when re-encoding an image multiple times.

The example above,19 from Jon Sneyers’ “Why jpeg is like a
photocopier,”20 shows the generational loss impact of recom-
pression using several formats. You may have run into this
problem when saving (already compressed) images from
social networks and re-uploading them, causing recompres-
sion and quality-loss buildup.

MozJPEG (perhaps accidentally) has a better resistance to
recompression degradation thanks to trellis quantization.21

19	 https://smashed.by/genloss
20	 https://smashed.by/photocopier
21	 https://smashed.by/trellis

52 Image Optimization  part one

https://www.youtube.com/watch?v=w7vXJbLhTyI
https://www.youtube.com/watch?v=w7vXJbLhTyI
https://www.youtube.com/watch?v=w7vXJbLhTyI
http://cloudinary.com/blog/why_jpeg_is_like_a_photocopier
http://cloudinary.com/blog/why_jpeg_is_like_a_photocopier
http://cloudinary.com/blog/why_jpeg_is_like_a_photocopier
http://cloudinary.com/blog/why_jpeg_is_like_a_photocopier
http://cloudinary.com/blog/why_jpeg_is_like_a_photocopier
http://cloudinary.com/blog/why_jpeg_is_like_a_photocopier
http://cloudinary.com/blog/why_jpeg_is_like_a_photocopier
http://cloudinary.com/blog/why_jpeg_is_like_a_photocopier
http://cloudinary.com/blog/why_jpeg_is_like_a_photocopier
http://cloudinary.com/blog/why_jpeg_is_like_a_photocopier
http://cloudinary.com/blog/why_jpeg_is_like_a_photocopier
https://en.wikipedia.org/wiki/Trellis_quantization
https://en.wikipedia.org/wiki/Trellis_quantization
https://en.wikipedia.org/wiki/Trellis_quantization

(Quantization is the process of mapping continuous infinite
values, like colors or light levels, to a smaller set of discrete
finite values,
thereby reducing
the amount of
data.) Instead of
compressing all
discrete cosine
transform (dct)
values as they
are exactly, it can
check close values
within a +1 to −1
range to see if similar values compress to fewer bits. (dct
is a process that compresses images by breaking them into
different visual frequencies.)

Lossy flif22 (free lossless image format) has a hack similar to
lossy png in that prior to (re)compression, it can look at the
data and decide what to throw away.

When editing your source files, store them in a lossless for-
mat like png or baseline tiff v6, so you preserve as much
quality as possible. Your build tools or image compression
service can then output the compressed version you serve
to users with minimal loss in quality.

22	 https://smashed.by/flif

trivia  ImageMagick is often recom-

mended for image optimization. It’s a

fine tool, but its output generally re-

quires further optimization, and other

tools can offer better output. Image-

Magick has also historically had secu-

rity vulnerabilities you may want to be

aware of. We recommend trying libvips

instead. It is lower-level, however, and

requires more technical skill to use.

53image quality & performance  Optimizing Image Quality

https://flif.info/lossy.html
https://flif.info/lossy.html
https://flif.info/lossy.html

chapter 3

Comparing Image Formats

It is easy to declare that webp is 30% smaller23 than jpeg.
This is a great headline, but it glosses over real-world
experiences. In truth, each new format has a range

of effectiveness if you compare and align on a consistent
“quality” of experience. There are two fallacies when con-
verting and comparing image formats:

1.	 That quality is a consistent term that means the
same thing across all formats.

2.	 That your eyes have the same composition of
photoreceptor cells (cones and rods) and that your
perception of “same” and “different” is the same
as everyone else’s.

To address the second fallacy, we can use math to compare
the differences between images. Some of the more common
algorithms that can produce an experience score include peak
signal-to-noise ratio (psnr), structural dissimilarity (dssim),
Butteraugli, and ssimulacra24 (developed by Cloudinary).

Each comparison algorithm is slightly different and focus-
es on different aspects of how humans perceive images.

23	 https://smashed.by/webp
24	 https://smashed.by/ssimulacra

54 Image Optimization  part one

https://developers.google.com/speed/webp/gallery1
https://developers.google.com/speed/webp/gallery1

Traditionally, these algorithms are color-blind and focus on
the structure of pixels in luma (the brightness in an image).
Butteraugli and ssimulacra differ by attempting to also
consider the chroma (color) channels.

In this section we will explore the challenge of defining
quality and setting expectations when converting between
formats. As with every technology involving humans, it’s
complicated and messy. The data provided in this chapter
comes from an image comparison study conducted by
Cloudinary that was used to tune its own algorithms for
better image optimization.

Image Context

Choosing the optimal image format for lowest bytes has
three dimensions:

•	 Does the format have the functionality required (such
as transparency or animation)?

•	 Can the target audience view the file?

•	 Is the format effective at optimizing this specific
image content?

55image quality & performance  Comparing Image Formats

Is that image really needed? Fewer images can create
more conversions according to research by Google/SOASTA

LESS IS MORE

Each format uses algorithms and compression, and quanti-
zation strategies that are tuned for specific types of image
content. Additionally, each format has many different
switches and features that can change the total number of
bytes and final experience of the image. This is why two
different images, saved to the same image format with the
same settings will have different byte sizes. The content and
context of the image will dramatically impact the effective-
ness of each format.

To distill this, there are two dimensions that predominantly
affect the effectiveness of formats:

1.	 Number of colors and color depth: grayscale, 8-bit,
10-bit wide gamut, etc.

2.	 Photograph versus illustration: how much of the
image is generated by a computer or a camera’s
image sensor?

For example, an image with hard, straight lines from
generated text will appear blurry when chroma subsam-
pling is applied. (We’ll look more closely at subsampling
in chapter 7, about the jpeg format.) A pastoral scene with
mountains and trees with the text “Top 10 Camping Des-
tinations” bonded on top will appear blurry if lossy webp
is used. Comparing a jpeg and webp is not appropriate in
this case, since the webp format does not have the ability

57image quality & performance  Comparing Image Formats

to produce full chroma images, while jpeg can. An image
of just the mountains and trees – without the text – would
be a fair comparison.

JPEG Quality !== JPEG Quality

The quality factor used in jpeg can create a lot of confusion.
For convenience, each jpeg encoder exposes an easy to under-
stand number that internally aligns to a quantization matrix

definition. Howev-
er, this means that
jpeg quality 80 with
libjpeg-turbo (a jpeg
encoder) will not use
the same definition
as quality factor 80 in
mozjpeg. In both of
these cases the index
of 0 to 100 is not a
grade or a consistent

score, but rather 100 placeholders that internally map to a
32×32 quantization matrix.

These factors are generally arranged in increasing aggres-
siveness as you go down to 0. Even between jpeg encoders,
the quality factor is not consistent.

success stories  Yelp investigated

potential optimizations on image

file size it could apply without loss

of quality. It found that “switching

to MozJPEG was responsible for

13.8% of the savings,” which

helped make “the website faster

for users and saved terabytes a

day in data transfer.” (June 2017)

58 Image Optimization  part one

Comparing Formats and Aligning
Experience Scores: A Study from
Cloudinary

Cloudinary conducted a longitudinal study comparing dif-
ferent image formats with a large corpus of over 10 million
images including content from open-source corpora. In this
study, each image was saved with all the different quality
options and then matched up with ssimulacra scores.

The smallest file that matches the ssimulacra experience
is then compared from one format to another.

LIBJPEG-TURBO VS. MOZJPEG

At the 95th percentile, mozjpeg produced an image that
was 15% smaller than the same experience jpeg produced
using libjpeg-turbo. Yet, at the median (p50), the mozjpeg
file was slightly larger.

Note: Negative numbers indicate the file size got larger
comparatively, meaning that the mozjpeg file was larger
than the libjpeg-turbo equivalent. Positive numbers means
the file was smaller in mozjpeg.

For this reason, when comparing image formats you must
first compare all the different jpeg variants for an expe-

59image quality & performance  Comparing Image Formats

libjpeg-turbo vs. mozjpeg.

60 Image Optimization  part one

rience score. Unfortunately, most comparisons are made
simply using the older libjpeg libraries and do not compare
the more modern jpeg encoders like mozjpeg.

OTHER FORMATS: JPEG 2000, WEBP, HEIF

Similar claims of superiority have been made for each new
format. From this study, however, we can see that there
are clearly some scenarios where each format is better, and
other scenarios where the results can be larger compared to
an equivalent jpeg.

In the comparisons below, each format is compared with the
best jpeg file for the experience. For each experience score,
the smallest jpeg (libjpeg-turbo or mozjpeg) is compared
with the smallest equivalent for the other formats.

Note: Also worth mentioning is that this comparison uses
pure photographic images where chroma subsampling is not
a concern. Similar comparisons can be done where subsam-
pling should not be used. However, this immediately disquali-
fies webp and heif (we’ll look at them in later chapters).

61image quality & performance  Comparing Image Formats

WebP vs. *JPEG.

relative file size, webp vs. jpeg

Image
Size (mp)

p05
(%)

p50
(%)

p95
(%)

p05
(kB)

p50
(kB)

p95
(kB)

0.05 -5 28 50 -0.1 0.7 3.0

0.5 -87 20 40 -1.6 2.0 15.3

1 -143 15 35 -6.2 5.1 40.1

1.4 -128 15 37 -8.5 6.7 56.7

2 -128 14 37 -12.5 9.5 75.9

7.5 -124 11 36 -44.0 18.2 200.5

62 Image Optimization  part one

JPEG 2000 vs. *JPEG.

relative file size, jpeg 2000 vs. jpeg

Image
Size (mp)

p05
(%)

p50
(%)

p95
(%)

p05
(kB)

p50
(kB)

p95
(kB)

0.05 -12 9 43 -0.5 0.2 1.3

0.5 -11 11 52 -2.4 0.8 8.0

1 -12 11 62 -8.3 3.1 25.3

1.4 -13 13 67 -13.9 4.7 34.6

2 -8 18 74 -12.6 10.0 73.5

7.5 -9 20 80 -42.1 31.8 221.3

63image quality & performance  Comparing Image Formats

HEIF vs. *JPEG.

relative file size, heif vs. jpeg

Image
Size (mp)

p05
(%)

p50
(%)

p95
(%)

p05
(kB)

p50
(kB)

p95
(kB)

0.05 9 29 45 0.1 0.8 4.1

0.5 6 33 56 0.1 3.7 28.6

1 4 34 59 0.3 12.3 70.1

1.4 6 35 63 0.5 17.3 99.2

2 10 39 67 1.5 29.3 167.7

7.5 12 40 72 7.0 84.0 572.1

64 Image Optimization  part one

A few observations from the charts above:

•	 No single format is always a winner (although heif
comes close).

•	 WebP appears to produce the most savings with small-
er (in pixels) images. The file size savings on a large
product image will be less compared to the same image
used as a thumbnail.

•	 In contrast, jpeg 2000 and heif become more effective
with byte savings with more pixels.

•	 Since heif is based on a video codec, with use cases of
1080p and 4k videos in mind, it makes sense that the
algorithms for pixel deduplication will become more
effective with larger pixel volume.

Not shown in the charts is the quality factor or settings for
each equivalent experience. Depending on the image, each
quality factor or quality setting can yield an experience
score from really good to really bad. Selecting one quality
factor can yield inconsistent results in experience and why
you need to accompany the output with post-analysis.

65image quality & performance  Comparing Image Formats

Visual experience vs. format quality factor.

66 Image Optimization  part one

When converting an image from one format to another, it
is important to ensure consistency in the generated output.
Each format uses a different set of options to save or com-
press an image which can produce different experiences.

For best results you should:

•	 Establish an experience benchmark or high-water mark
using dssim or ssimulacra.

•	 Analyze the image context to determine the applicabil-
ity of features for each format. Does it require trans-
parency or animation? Does the image have comput-
er-generated characteristics and require full chroma
subsampling?

•	 Save the image as a jpeg using both libjpeg-turbo and
mozjpeg using a variety of quality factors.

•	 Select the smallest jpeg (in bytes) that matches the
experience metric.

•	 Repeat the procedure for webp, jpeg 2000, heif, or any
other image formats.

•	 When serving the image to different users, determine
which format the user can accept and use the smallest
option. Sometimes jpeg will still be the winner.

67image quality & performance  Comparing Image Formats

chapter 4

Color Management

There are at least three possible perspectives to take
on color: biology, physics, and print. In biology, color
is a perceptual phenomenon: objects reflect light in

different combinations of wavelengths, and light receptors
in our eyes translate these wavelengths into the sensation
we know as color. In physics, it’s the light that matters –
light frequencies and brightness. Print is all about color
wheels, inks, and color models and modes.

Ideally, every screen and web browser in the world would
display color in exactly the same way. Unfortunately, due
to a number of inherent inconsistencies, they don’t. Color
management allows us to reach a compromise on display-
ing color through color models, spaces, and profiles.

Color Models

Color models25 are systems for generating a complete range
of colors from a smaller set of primary colors. There are
different types of color models which use different parame-
ters to control colors. Some color models have fewer control

25	 https://smashed.by/colormodel

68 Image Optimization  part one

https://en.wikipedia.org/wiki/Color_model
https://en.wikipedia.org/wiki/Color_model
https://en.wikipedia.org/wiki/Color_model

parameters than others; for example, grayscale only has a
single parameter for controlling brightness between black
and white colors.

Two common color models are additive and subtractive.
Additive color models (like rgb, used for digital displays)
add light to show color, while subtractive color models (like
cmyk, used in printing) work by taking light away.

Subtractive
Used for print media

Takes white light away by combining colors

CMYK

Y

M C

R

G B

RGB

Additive
Used for digital and web

Creates while light by combining colors

The additive model of rgb compared with cmyk’s subtractive model.

In the rgb color model, red, green, and blue light are added in
different combinations to produce a broad spectrum of colors.
CMYK (cyan, magenta, yellow, black) works through different
colors of ink subtracting brightness from white paper.

69image quality & performance  Color Management

SPEED MATTERS
53% of mobile visits are abandoned if pages take

longer than 3 seconds to load

“Understanding Color Models and Spot Color Systems”26
has a good description of other color models and modes,
such as hue, saturation, lightness (hsl), hue, saturation, val-
ue (hsv), and cielab, a color space defined by the Interna-
tional Commission on Illumination (Commission interna-
tionale de l’éclairage, cie).

Color Spaces

The terms color space and color model are often used inter-
changeably, though they are not quite the same thing. When
a color model is associated with a precise description of how
its color components are to be interpreted, the resulting set
of colors is called a color space. Color spaces27 are specific
ranges of colors that can be represented for a given image.
For example, if an image contains up to 16.7 million colors,
different color spaces allow the use of narrower or wider
ranges of these colors.

srgb28 was designed to be a standard29 color space for the web
and is based on the rgb color model. It’s a small color space
that is typically considered the lowest common denominator
and the safest option for cross-browser color management
because it is ubiquitous across most web browsers, games,
and monitors. Other color spaces, such as Adobe rgb30 or

26	 https://smashed.by/understandingcolor
27	 https://smashed.by/colorspace
28	 https://smashed.by/srgb
29	 https://smashed.by/standard
30	 https://smashed.by/adobergb

SPEED MATTERS
53% of mobile visits are abandoned if pages take

longer than 3 seconds to load

71image quality & performance  Color Management

https://www.designersinsights.com/designer-resources/understanding-color-models/
https://www.designersinsights.com/designer-resources/understanding-color-models/
https://www.designersinsights.com/designer-resources/understanding-color-models/
https://www.designersinsights.com/designer-resources/understanding-color-models/
https://www.designersinsights.com/designer-resources/understanding-color-models/
https://www.designersinsights.com/designer-resources/understanding-color-models/
https://www.designersinsights.com/designer-resources/understanding-color-models/
https://www.designersinsights.com/designer-resources/understanding-color-models/
https://www.designersinsights.com/designer-resources/understanding-color-models/
https://www.designersinsights.com/designer-resources/understanding-color-models/
https://www.designersinsights.com/designer-resources/understanding-color-models/
https://www.designersinsights.com/designer-resources/understanding-color-models/
https://www.designersinsights.com/designer-resources/understanding-color-models/
http://www.dpbestflow.org/color/color-space-and-color-profiles#space
http://www.dpbestflow.org/color/color-space-and-color-profiles#space
http://www.dpbestflow.org/color/color-space-and-color-profiles#space
https://en.wikipedia.org/wiki/SRGB
https://www.w3.org/Graphics/Color/sRGB.html
https://en.wikipedia.org/wiki/Adobe_RGB_color_space
https://en.wikipedia.org/wiki/Adobe_RGB_color_space
https://en.wikipedia.org/wiki/Adobe_RGB_color_space

ProPhoto rgb31 used in Photoshop and Lightroom, can repre-
sent more vibrant colors but are less widely used.

A visualization of
gamut (the range of
colors a color space
can define) in srgb,
Adobe rgb and
ProPhoto rgb.

Color spaces have three channels (red, green, and blue).
There are 255 colors possible in each channel under 8-bit
mode, bringing us to a total of 16.7 million colors. 16-bit
images can show trillions of colors.

A comparison of srgb, Adobe rgb, and ProPhoto rgb using an image
from Yardstick.

31	 https://smashed.by/prorgb

ProPhoto RGB
Wide Gamut RGB

Adobe RGB 1998

sRGB

72 Image Optimization  part one

https://en.wikipedia.org/wiki/ProPhoto_RGB_color_space
https://en.wikipedia.org/wiki/ProPhoto_RGB_color_space
https://en.wikipedia.org/wiki/ProPhoto_RGB_color_space

It’s incredibly hard to show this concept in srgb, when you
can’t show colors that can’t be seen. A regular photo in srgb
vs. wide gamut should have everything identical, except the
most saturated “juicy” colors. The above image sources are
from Clipping Path Zone.32

The differences in color spaces are their gamut (the range
of colors they can reproduce with shades), illuminant (the
nature of its theoretical light source, like incandescent light
or natural sunlight) and gamma33 curves. srgb is about 20%
narrower than Adobe rgb, and ProPhoto rgb is about 50%
wider34 than Adobe rgb.

Wide gamut35 is a term describing color spaces with a gamut
larger than srgb. These types of displays are becoming more
common. That said, many digital displays are still simply
unable to display color profiles that are significantly better
than srgb. When saving for the web in Photoshop, consider
using the “Convert to srgb” option unless targeting users
with higher-end wide-gamut screens.

When working with original photography,
avoid using srgb as your primary color

32	 https://smashed.by/clippingpath
33	 https://smashed.by/gamma
34	 https://smashed.by/gamut
35	 http://www.astramael.com/

73image quality & performance  Color Management

http://clippingpathzone.com/blog/essential-photoshop-color-settings-for-photographers
http://clippingpathzone.com/blog/essential-photoshop-color-settings-for-photographers
http://clippingpathzone.com/blog/essential-photoshop-color-settings-for-photographers
http://clippingpathzone.com/blog/essential-photoshop-color-settings-for-photographers
http://clippingpathzone.com/blog/essential-photoshop-color-settings-for-photographers
http://blog.johnnovak.net/2016/09/21/what-every-coder-should-know-about-gamma/
http://www.petrvodnakphotography.com/Articles/ColorSpace.htm
http://www.petrvodnakphotography.com/Articles/ColorSpace.htm
http://www.astramael.com/
http://www.astramael.com/
http://www.astramael.com/

space. It’s smaller than the color spaces most
cameras support and can cause clipping.
Instead, work in a larger color space (like
ProPhoto rgb) and output to srgb when
exporting for the web.

ARE THERE ANY CASES WHERE WIDE GAMUT MAKES

SENSE FOR WEB CONTENT?

Yes. If an image contains a fluorescent highlighter color,
then you’ll have an easier time with wide gamut. Another
good use case is images that contain very saturated and
vibrant color, if you care about them being just as juicy on
screens that support it.

However, in most photos it’s often easy to tweak color to
make it appear vibrant, without it actually exceeding srgb’s
gamut. That’s because human color perception is not abso-
lute but relative to our surroundings – and it’s easily fooled.
That said, you should still strive to deliver the most realistic
images possible. With the technology constantly advancing
and new image formats that support wide gamut already
available, that’s becoming easier.

74 Image Optimization  part one

Gamma Correction and Compression

Gamma correction36 (or just gamma) controls the overall
brightness of an image. Changing the gamma can also alter
the ratio of red to green and blue colors. Images without
gamma correction can look like their colors are bleached out
or too dark.

In video and computer graphics, gamma is used for com-
pression, similar to data compression. This allows you to
squeeze useful levels of brightness in fewer bits: 8, rather
than 12 or 16. Human perception of brightness is not linearly
proportional to the physical amount of light.

Representing colors in their true form would be wasteful
when encoding images for human eyes. Gamma compres-
sion is used to encode brightness on a scale that is closer
to human perception.

With gamma compression, a useful scale of brightness fits
in 8 bits of precision (0–255, used by most rgb colors). This
stems from the fact that if colors used some unit with a
1:1 relationship to physics, rgb values would be from 1 to 1
million, and values 0 to 1,000 would look distinct, but values
between 999,000 and 1,000,000 (and well before this range
too) would look identical.

36	 https://smashed.by/gammacorrection

75image quality & performance  Color Management

https://en.wikipedia.org/wiki/Gamma_correction
https://en.wikipedia.org/wiki/Gamma_correction
https://en.wikipedia.org/wiki/Gamma_correction

Imagine being in a dark room lit by a single candle. Light
a second candle and you’d notice a significant increase in
brightness. Add a third and the room will be brighter still.
Now imagine being in a room with 100 candles. Light the
101st candle, then the 102nd. You won’t notice a change in
brightness, even though in both cases, exactly the same
amount of light was added. Because eyes are less sensitive
when light is bright, gamma compression “squeezes” bright-
ness values, so in physical terms brightness levels are less
precise, but the scale is adjusted so from our perspective all
values are equally precise.

Gamma compression is different to the
image gamma curves you might config-
ure in Photoshop. When gamma com-
pression works as it should, it doesn’t
“look” like anything.

Color Profiles

A color profile is the information describing the color space
of a device. It’s used to convert between different color spac-

76 Image Optimization  part one

es. Profiles attempt to ensure an image looks as similar as
possible on different kinds of screens and media.

Images can have an embedded color profile as described by
the International Color Consortium37 (icc) to represent pre-
cisely how colors should appear. This is supported by different
formats including jpeg, png, svg, and webp and most major
browsers support embedded icc profiles. When an image is
displayed in an app and it knows the monitor’s capabilities,
these colors can be adjusted based on the color profile.

Some monitors have a color profile similar
to srgb and cannot display much better
profiles, so depending on your target users
displays, there may be limited value in
embedding them. Check who your
target users are.

Embedded color profiles can also heavily increase the size
of your images (over 100 kb occasionally) so be careful with
embedding. Tools like ImageOptim will automatically re-
move color profiles38 if they find them. In contrast, with the
icc profile removed in the name of size reduction, browsers

37	 https://smashed.by/webpcontainer
38	 https://smashed.by/colorprofiles

77image quality & performance  Color Management

http://www.color.org/icc_specs2.xalter
http://www.color.org/icc_specs2.xalter
http://www.color.org/icc_specs2.xalter
http://www.color.org/icc_specs2.xalter
http://www.color.org/icc_specs2.xalter
https://developers.google.com/speed/webp/docs/riff_container
https://imageoptim.com/color-profiles.html
https://imageoptim.com/color-profiles.html
https://imageoptim.com/color-profiles.html
https://imageoptim.com/color-profiles.html
https://imageoptim.com/color-profiles.html
https://imageoptim.com/color-profiles.html
https://imageoptim.com/color-profiles.html
https://imageoptim.com/color-profiles.html

will be forced to display the image in the monitor’s color
space, which can lead to differences in expected saturation
and contrast. Evaluate the trade-offs that make sense for
your use case.

Nine Degrees Below39 has an excellent set of resources on
icc profile color management if you are interested in learn-
ing more about profiles.

COLOR PROFILES AND WEB BROWSERS

Earlier versions of Chrome did not have great support for
color management, but this is improving with color-correct
rendering.40 Displays that are not srgb (newer MacBook
Pros) will convert colors from srgb to their profile. With
this, colors should look more similar across different sys-
tems and browsers. Safari, Edge, and Firefox can now also
take icc profiles into account, so images with a different
color profile can now be displayed correctly whether your
screen has wide gamut or not.

JPEG images that do not contain embedded
color profiles can be problematic for consis-
tency in this mode. Also note that some
versions of Chrome on Android have color
management disabled.

39	 https://smashed.by/9degrees
40	 https://smashed.by/colorcorrect

78 Image Optimization  part one

https://ninedegreesbelow.com/photography/articles.html
https://ninedegreesbelow.com/photography/articles.html
https://ninedegreesbelow.com/photography/articles.html
https://ninedegreesbelow.com/photography/articles.html
https://ninedegreesbelow.com/photography/articles.html
https://groups.google.com/a/chromium.org/forum/#!topic/blink-dev/ptuKdRQwPAo
https://groups.google.com/a/chromium.org/forum/#!topic/blink-dev/ptuKdRQwPAo
https://groups.google.com/a/chromium.org/forum/#!topic/blink-dev/ptuKdRQwPAo
https://groups.google.com/a/chromium.org/forum/#!topic/blink-dev/ptuKdRQwPAo
https://groups.google.com/a/chromium.org/forum/#!topic/blink-dev/ptuKdRQwPAo
https://groups.google.com/a/chromium.org/forum/#!topic/blink-dev/ptuKdRQwPAo

For a great guide on how color applies to a broader spectrum
of ways we work on the web, see “A Nerd’s Guide to Color on
the Web”41 by Sarah Drasner.

41	 https://smashed.by/nerdsguide

79image quality & performance  Color Management

https://css-tricks.com/nerds-guide-color-web/
https://css-tricks.com/nerds-guide-color-web/
https://css-tricks.com/nerds-guide-color-web/
https://css-tricks.com/nerds-guide-color-web/
https://css-tricks.com/nerds-guide-color-web/
https://css-tricks.com/nerds-guide-color-web/
https://css-tricks.com/nerds-guide-color-web/
https://css-tricks.com/nerds-guide-color-web/
https://css-tricks.com/nerds-guide-color-web/
https://css-tricks.com/nerds-guide-color-web/
https://css-tricks.com/nerds-guide-color-web/
https://css-tricks.com/nerds-guide-color-web/
https://css-tricks.com/nerds-guide-color-web/
https://css-tricks.com/nerds-guide-color-web/
https://css-tricks.com/nerds-guide-color-web/
https://css-tricks.com/nerds-guide-color-web/
https://css-tricks.com/nerds-guide-color-web/
https://css-tricks.com/nerds-guide-color-web/
https://css-tricks.com/nerds-guide-color-web/
https://css-tricks.com/nerds-guide-color-web/

chapter 5

Image Decoding Performance

How quickly an image can be decoded determines
how soon browsers can show it to the user. Keep-
ing this efficient helps ensure a good user expe-

rience. We need to minimize the time it takes for a com-
pressed image to be translated back into an uncompressed
bitmap a browser can render to the screen.

At a high level, browsers process images in a series of steps:

1.	 Image is loaded from the server.

2.	 Image data is read or “decoded.”

3.	 Image pixels are painted on the screen based on the
decoded data.

Decoding image data is a key step, and decode time is a
major component of the overall image load time after down-
loading. The size and format of the image as well as the
user’s hardware (cpu and gpu) can all affect decoding time.
Larger images take longer to decode. Formats with easily
available and efficient decoders outperform those that do
not have an efficient decoder on the client device.

80 Image Optimization  part one

Let’s dig deeper into image decoding to understand how
browsers perform behind the scenes and how you can con-
trol decoding using:

•	 for async image decoding

•	 img.decode() to pre-decode images

•	 web workers to decode in a worker thread

Browsers: Behind the Scenes

The basic building blocks of a web page are text, images,
markup, styles, and script. Web pages are really just thou-
sands of lines of html, css and JavaScript, and images
delivered over the network. This simplicity was key to the
early success of the web.

Before a browser can paint a web page on the screen, it has
to go through multiple steps to translate the content these
resources represent into a bitmap that can be painted. Get-
ting pixels on the screen involves using the graphics librar-
ies provided by the underlying operating system. On most
platforms, this is done with a standardized called OpenGL.
So rendering is turning html, css, JavaScript, and images
into OpenGL calls to display pixels on a screen.

81image quality & performance  Image Decoding Performance

Typically, browsers start by parsing the html to construct
the dom tree. The dom tree combines with styling informa-
tion and visual instructions to result in the render tree. The
layout is computed based on the geometry of each node in
the render tree. This layout is then used to paint each of the
nodes on the screen.

HTML

CSS

DOM

CSSOM

JavaScript PaintLayoutRender
Tree

Network

The process browsers typically follow to render content on screen.

This process of painting the pixels, also known as
rasterization, takes a series of draw calls. The draw calls
are based on the layout of each element and can handle all
supported html elements.

We won’t go into the detail of how any
specific browser renders. However, if you
are interested in learning how Chrome
turns web content into pixels in more
depth, I recommend the excellent “Life
of a Pixel”42 series by Steve Kobes
and Philip Rogers.

42	 https://smashed.by/lifeofapixel

82 Image Optimization  part one

https://bit.ly/lifeofapixel
https://bit.ly/lifeofapixel
https://bit.ly/lifeofapixel
https://bit.ly/lifeofapixel
https://bit.ly/lifeofapixel
https://bit.ly/lifeofapixel
https://bit.ly/lifeofapixel
https://bit.ly/lifeofapixel

IMAGE RASTERIZATION

When the browser rasterizer comes across a draw call for
an image, it has to get the corresponding encoded image file
(jpeg, png, and so on) and decode it to generate the pixels

The process Chromium-based browsers (such as Chrome, Edge, and Opera)
use to render web pages in further detail (Source: “Life of a Pixel” by Steve
Kobes and Philip Rogers)

Rasterization (“raster”) also decodes image resources in the page. “Paint”
references compressed image data (e.g. jpeg) and “raster” invokes the
correct decoder to decompress it.

83image quality & performance  Image Decoding Performance

to be painted. Most images need to be resized, based on the
dimensions of the screen, the size of the parent elements in
the html, and the width specified by the developer.

Resizing might also happen when a user pinches or zooms
the image. Most algorithms decode the images to the
required output size. Since both decoding and resizing are
expensive operations, it takes longer to paint frames with
large or multiple images.

The DevTools Performance panel illustrates43 how expensive long image decode

operations can be compared with other phases of the page load life cycle.

Most modern browsers support multithreading: that is, they
allow multiple operations to be carried out on different
threads. However, JavaScript itself is single-threaded and
runs on the main thread. In a single-threaded environment,
both JavaScript execution and operations such as layout and
rasterization occur on the main thread.

43	 https://smashed.by/perfpanel

84 Image Optimization  part one

https://medium.com/dailyjs/image-loading-with-image-decode-b03652e7d2d2

In a multithreaded environment, content is divided into
tiles that can be rasterized on multiple threads simultane-
ously. However, because of the atomicity of updates guaran-
teed by the browser, all content is shown at the same time
after all the threads have completed their respective tasks.
This means that until the frame containing the image is
completely rasterized and presented, the browser does not
display any subsequent frames. A later smaller image has to
wait for the larger image to finish painting first.

Thus, rendering of larger images causes a significant blip
in performance not only due to the higher consumption of
memory and processing power but also because of the way
they are handled by browsers.

HOW IMAGE DECODERS WORK

Earlier we saw that rasterization invokes the correct image
decoder to decompress an image. But how do image encod-
ers and decoders work?

The process of encoding or compressing an image is com-
posed of a number of phases.

•	 Color Transform attempts to produce an efficient
mathematical representation of colors optimized for

85image quality & performance  Image Decoding Performance

Avoid image bloat with a performance budget. Budgets
constrain a site based on performance goals. e.g to load in

under 3 seconds, include less than 100KB of images.

COMBAT BLOAT

what the eye can perceive. It converts the image from
an rgb color space to a YCbCr color space. The jpeg
encoder will convert the rgb components of the image
into three components: monochrome (luminance), red
and blue chroma. This separation of rgb into mono-
chrome and color enables additional processing on both
the luminance and chroma channels.

•	 Downsampling (or chroma subsampling) attempts
to resize certain color channels to a fraction of their
size. It takes advantage of the eye’s reduced sensitiv-
ity to color by using fewer pixels for the two chroma
channels. The luminance channel, however, is kept at
its original resolution. It’s common for both chroma
channels to be downsampled horizontally by 2:1 and
vertically by 2:1 or 1:1. For a 500×500 pixel image, the lu-
minance channel remains at 500×500, but the chroma
channels would either be 250×500 or 250×250 pixels.
Downsampling can give us a high level (50%) of com-
pression with low perceived loss of quality in photos.

•	 Forward Discrete Cosine Transforms (DCTs)
assume any numeric signal can be reproduced using a
combination of cosine functions. We divide the lumi-
nance and chroma components of the image into 8×8
blocks of pixels as we don’t expect there to be much var-
iance over these blocks. The idea for this step is any 8×8
block can be represented as the sum of weighted cosine

87image quality & performance  Image Decoding Performance

transforms. There’s a lot of self-similarity in different
areas of an image which can help with compression.
The output of the forward dct is a set of 64 values rep-
resenting the strength of each frequency component.

•	 Quantization is a key step in lossy image compression.
As the human eye is less sensitive to losses in high-fre-
quency detail (noise), this information is discarded
while low-frequency information is preserved in the
quantization table. The quantization process reduces
the total quantity of bits required to store an integer by
reducing integer precision.

•	 Encoding. The last phase of jpeg compression is to use
a statistical encoder – the Huffman coding algorithm to
encode each of the dct coefficients into variable-length

The different phases of compressing an image into jpeg and then
decompressing it.

Color
Transform

Down-
Sampling

Forward
DCT

EncodingQuanti-
zation

RAW Image
Data

JPEG-Compressed
Image Data

JPEG Compression

JPEG Decompression

Color
Transform

Up-
Sampling

Inverse
DCT

DecodingDequanti-
zation

88 Image Optimization  part one

code. Huffman does this using statistical probabilities.
Any symbols that are frequently used are encoded us-
ing a code that occupies only a few bits, while symbols
more rarely used are represented by code that takes
more bits to encode. The output of this overall process
should now be jpeg-encoded.

JPEGs have up to four Huffman tables which include
the mapping between code that is variable-length and
code values. While most jpeg encoders will use the
Huffman tables found in the jpeg standard, some allow
optimizing such tables to be more efficient.

As a quick recap of jpeg compression:

1.	 Transform an image into the appropriate color space.

2.	 Downsample components (Cb, Cr) as our eyes can’t
perceive the full brightness of an image.

3.	 Split the image into smaller blocks (8×8 pixels) for
processing, and apply a dct to each of the 8×8
pixel blocks.

4.	 Quantize each 8×8 block with a weighting function
optimized for human perception.

5.	 Rearrange coefficients in each 8×8 block, and encode
the coefficients based on quality needs.

89image quality & performance  Image Decoding Performance

As a reminder, rgb and YCbCr are color
models used in color space conversions.
RGB represents colors in combinations of
red, green and blue signals. YCbCr repre-
sents colors as combinations of a bright-
ness signal and two chroma signals.
YCbCr includes: Y for luminance (bright-
ness); Cb for blue minus luma (B − Y); and
Cr for red minus luma (R − Y). Luma (Y)
is an approximation of monochrome
image content, while the Cb and Cr
chroma channels represent color difference.

To decompress a jpeg, a decoder inverts the steps from above:

1.	 The image data goes through a Huffman
decoding process.

2.	 The output of that step goes through an inverse dct.

3.	 This goes through a dequantization process to return
the image from the frequency space to the color space.

4.	 Chroma upsampling is applied to restore downsam-
pled components to their full size.

5.	 Finally, the image gets converted from YCbCr to rgb.

90 Image Optimization  part one

Performance and Jank

Jank can be defined as a perceptible pause in the smooth
rendering of a software application’s user interface.

An animated sun experiencing jank when the third phase of the animation
takes longer to render, dropping its frame rate below 60 frames a second.
This makes the animation look janky. (Source: “Life of a Pixel” by Steve Kobes
and Philip Rogers)

Tom Wiltzius has described in detail various symptoms that
might lead to jank44 and categorized them as follows:

1.	 Incomplete rendering: Also known as checker-
boarding, this is the situation when parts of a page
are not rendered or rendered in low resolution,
especially during a fast scroll. This may result in a
checkerboard pattern to appear on the screen.

44	 https://smashed.by/jank

91image quality & performance  Image Decoding Performance

http://bit.ly/2omqf9U
http://bit.ly/2omqf9U
http://bit.ly/2omqf9U
http://bit.ly/2omqf9U
http://bit.ly/2omqf9U
http://bit.ly/2omqf9U
http://bit.ly/2omqf9U
http://bit.ly/2omqf9U
http://bit.ly/2omqf9U
http://bit.ly/2omqf9U
http://bit.ly/2omqf9U
http://bit.ly/2omqf9U
http://bit.ly/2omqf9U

2.	 Low frame rate: Imagine your web page has an
embedded video or animated content. When the
network speed is low, you will observe a perceptible
break between frames causing the video to render
unevenly. This is due to a low frame rate, which caus-
es the frames to change slowly when compared to a
normally rendered video.

3.	 Latency: This implies a longer delay between any
input event and the corresponding frames rendered
on screen; for example, when you touch the screen to
scroll but observe a delay in the actual scroll.

Due to the heavy processing cost associated with image
decoding and resizing operations (in particular on low-
end mobile devices), jank can be a problem in image-heavy
pages and disturbs not just the images being rendered but
also the other contents of the page owing to layout shifts. In
the following sections we will see how we can control image
decoding to improve performance and avoid jank.

REDUCE UNNECESSARY RESIZE COSTS

We’ve all shipped images that are larger or at a higher reso-
lution than our users need. As you’ve learned, decoding and
resizing are expensive operations for a browser on average mo-
bile hardware. Sending large images and rescaling using css or
width or height attributes can negatively impact performance.

92 Image Optimization  part one

Omitting the width or height attributes on an image can
also hinder performance. Without them, a browser assigns
a smaller placeholder region for the image until sufficient
bytes have arrived for it to know the correct dimensions. At
that point, the document layout must be updated. The more
elements a page has, the longer this process can take.

Sending images that a browser can render without needing
to resize at all is ideal. Serve the smallest images for your
target screen sizes and resolutions, taking advantage of
srcset and sizes.45

When building its new mobile web experience,46 Twitter im-
proved image decoding performance by ensuring it served
appropriately sized images. Decode time for many images

45	 https://smashed.by/srcset
46	 https://smashed.by/twittermobile

Chrome DevTools Timeline/Performance panel highlighting image decode
times before and after Twitter Lite optimized its image pipeline. Before was
considerably higher.

93image quality & performance  Image Decoding Performance

https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://medium.com/@paularmstrong/twitter-lite-and-high-performance-react-progressive-web-apps-at-scale-d28a00e780a3
https://medium.com/@paularmstrong/twitter-lite-and-high-performance-react-progressive-web-apps-at-scale-d28a00e780a3
https://medium.com/@paularmstrong/twitter-lite-and-high-performance-react-progressive-web-apps-at-scale-d28a00e780a3
https://medium.com/@paularmstrong/twitter-lite-and-high-performance-react-progressive-web-apps-at-scale-d28a00e780a3
https://medium.com/@paularmstrong/twitter-lite-and-high-performance-react-progressive-web-apps-at-scale-d28a00e780a3

in the Twitter timeline was reduced from approximately
400 ms all the way down to 19!

DEVELOPER-CONTROLLED DECODING

There are two ways an image can be loaded on a web page.
There’s the one you are most familiar with: specifying an
image source in your html:

In some cases, images can also be loaded by client-side
JavaScript, like when you need to dynamically create and
inject images returned from an response. The following
example shows how this is done:

const img = new Image();
 img.src = "bigImage.jpg";
 img.onload = () => {
 document.body.appendChild(img);
 };
img.onerror = () => {
 throw new Error('Could not load the big image.');
};

94 Image Optimization  part one

In the first scenario the image is decoded and painted while
the page is loaded; in the second case, it is done after the
page is loaded or when a specific event occurs. Two updates
to the html specification help us control image decoding in
each of the above scenarios:

•	 attribute

•	 decode() method

HTMLImageElement: attribute

When image sources are known before page load (e.g.
), they may be loaded with the other
content on the page or after the content has been displayed.
Synchronous image decoding prevents the other content
from rendering until the decoding is completed. This causes
the image and other content to be presented atomically at
the same time. There might be a delay in rendering the page
if the time taken for decoding the image is higher.

Asynchronous image decoding, on the other hand, does not
block the other content from being rendered. The image
content is updated on the screen once the decode finishes.
In both cases the total time taken for rendering all of the
content on screen is the same.

95image quality & performance  Image Decoding Performance

In some cases developers might want both images and text
to be presented together to achieve the desired user expe-
rience, and they can use synchronous decoding. This will
also ensure that there is no flicker or pop due to the delayed
display of images. In situations where the images are not
really that relevant to the context of the text, developers may
prefer asynchronous decoding of images.

Before 2018 there was no way for developers to control
image decoding. However, the decoding attribute of the
HTMLImageElement is supported in Chrome, Edge, and Fire-
fox, and it allows developers to indicate their preference for
decoding images.

This attribute can be used as follows:

example use explanation

<img decoding=

async src="…">
Developer prefers to delay im-
age decoding and render other
content first.

<img decoding=

sync src="…">
Developer prefers that this
image and other content be
rendered atomically together.

<img decoding=

auto src="…">
No preference indicated by
developer. Browser can choose
sync or async decoding.

96 Image Optimization  part one

HTMLImageElement: decode() method

For images that need to be decoded at runtime by Java-
Script, the decode() method has been added to the html
specification.47 The method allows an asynchronous decode
in parallel, and provides a success or failure callback for
when the image is loaded and decoded. It can be used to
add the image to the dom without causing a decoding delay
when it is painted on the screen. The decode() method is
supported48 in Chromium browsers, Firefox, and Safari.

The following code (from Stephan Köpp’s “Image loading
with image.decode()”)49 illustrates how the decode() meth-
od can be used with callback functionality to decode and
load the image in JavaScript:

const img = new Image();
img.src = "bigImage.jpg";
img.decode().then(() => {
 document.body.appendChild(img);
}).catch(() => {
 throw new Error('Could not load/
decode big image.');
});

The performance improvement with this method may not
be significant for small images, but it can help to reduce
jank when loading large images and inserting them
into the dom.

47	 https://smashed.by/htmlspec
48	 https://smashed.by/decode
49	 https://smashed.by/decodeloading

97image quality & performance  Image Decoding Performance

http://bit.ly/2pg6KjH
http://bit.ly/2pg6KjH
http://bit.ly/2pg6KjH
https://mzl.la/2onIYli
https://mzl.la/2onIYli
https://mzl.la/2onIYli
https://mzl.la/2onIYli
https://mzl.la/2onIYli
https://mzl.la/2onIYli
https://mzl.la/2onIYli
https://mzl.la/2onIYli
http://bit.ly/2ph5NaZ
http://bit.ly/2ph5NaZ
http://bit.ly/2ph5NaZ
http://bit.ly/2ph5NaZ
http://bit.ly/2ph5NaZ
http://bit.ly/2ph5NaZ
http://bit.ly/2ph5NaZ
http://bit.ly/2ph5NaZ
http://bit.ly/2ph5NaZ
http://bit.ly/2ph5NaZ

When using requestAnimationFrame,50 however, it is not
a good idea to issue decode requests for multiple images in
the same frame. Since the guarantees the image will remain
cached until the next requestAnimationFrame() to give
the developer a chance to draw the decoded image, it puts
memory pressure on the system to cache all these images
simultaneously.

E-commerce platform Shopee51 has incorporated the
decode() method as part of its progressive image-loading
strategy. They
implemented an
image component
that displays a
placeholder by
default. When
the image is inside
the viewport
(tracked using
Intersection-
Observer),52 a
network call is triggered to download the image in the back-
ground. Browsers that do not support the decode() method
download the image synchronously.

The tag is rendered after the image is decoded or
downloaded. To enhance the user experience, Shopee also

50	 https://smashed.by/requestanimation
51	 https://shopee.co.id/
52	 https://smashed.by/intersectionobssample

trivia  Blink (the rendering engine

used by Chrome) decodes images off

the main thread. Moving the decoding

work to the compositor thread frees

up the main thread to work on other

tasks. This is called deferred decoding.

With deferred decoding, the decoding

work remains on the critical path for

presenting a frame to the display, so

it can still cause animation jank. The

img.decode() should help with that.

98 Image Optimization  part one

https://mzl.la/2njYHBQ
https://shopee.co.id/
http://bit.ly/2nLXcMX
http://bit.ly/2nLXcMX

includes the fade-in animation effect as the actual image
appears. When the image is huge in size or the network is
slow, users first see the placeholder, and then the fully ren-
dered image will fade in without jank. The above illustration
shows how the Shopee images were rendered before and
after the changes.

Shopee defers the rendering of the actual image until the image has been down-
loaded and decoded. Users see either a placeholder or a fully rendered image.

Image decoding performance is key to the overall perfor-
mance of web pages and improving this can be significant
in reducing jank. Browser engineering teams are constantly
coming up with solutions and workarounds that offer more
control to web developers over how they want to render im-
ages. The techniques listed above should provide a little more
insight and control over image decoding in the browser.

99image quality & performance  Image Decoding Performance

chapter 6

Measuring Image Performance

Audit for Unoptimized Images
Using Lighthouse

Lighthouse53 is an open-source tool from the Chrome
team for auditing and improving the quality of your
web pages. You can run it against any web page

whether it is public or requires authentication. Lighthouse
includes audits for several best practices including web
performance and image optimization opportunities.

The Lighthouse panel in Chrome DevTools.

53	 https://smashed.by/lighthouse

100 Image Optimization  part one

https://developers.google.com/web/tools/lighthouse/
https://developers.google.com/web/tools/lighthouse/

You can run Lighthouse from the Audits panel in Chrome
DevTools, from the command line, or as a Node.js module
from npm. You provide Lighthouse a URL that it can run a
number of audits against. It then generates a report on how
well the page performed as well as suggestions on how to
improve the page.

A Lighthouse audit result highlighting the performance of a page in the lab
(on your local machine). Higher up in the report are performance metrics
while specific opportunities to improve are presented lower down.

Each audit, including those for image optimization opportu-
nities, links up to documentation explaining the issue and
how best to fix it.

101image quality & performance  Measuring Image Performance

IMAGES COST
Images increase download times. The median web page

includes 800KB of images according to HTTP Archive

Running Lighthouse on a web page can highlight some of
the following image optimization suggestions.

OPTIMIZE IMAGES

JPEGs on the web can often be compressed at a lower quality
without a perceivable difference compared to the original
source. Lighthouse checks each jpeg image on the page, at-
tempts to recompress it at a quality of 85, and then compares
the first with the compressed version. If the potential savings
are 4 kb or greater, Lighthouse includes the image in the
report. This is part of the “efficiently encode images”54 audit.

The results of a Lighthouse audit including a suggestion to efficiently
encode images.

54	 https://smashed.by/optimizeimages

103image quality & performance  Measuring Image Performance

https://developers.google.com/web/tools/lighthouse/audits/optimize-images
https://developers.google.com/web/tools/lighthouse/audits/optimize-images
https://developers.google.com/web/tools/lighthouse/audits/optimize-images
https://developers.google.com/web/tools/lighthouse/audits/optimize-images
https://developers.google.com/web/tools/lighthouse/audits/optimize-images

PROPERLY SIZE IMAGES

For each image, Lighthouse compares the size of the
rendered image against the size of the actual image. The
rendered size also accounts for device pixel ratio. If the ren-
dered size is at least 25 kb smaller than the actual size, the
image fails the audit.

SERVE IMAGES IN NEXT-GENERATION FORMATS

A number of modern image formats,55 such as webp, can of-
fer better compression and quality characteristics compared
to their older jpeg and png counterparts. Encoding your
images in these formats, rather than jpeg or png, means
they can load faster and consume less data. (We’ll look at
some emerging image formats in part 4.)

DISPLAY IMAGES IN THE CORRECT ASPECT RATIO

If a rendered image has a significantly different aspect
ratio56 from that of its source file (the “natural” aspect ratio),
then the rendered image may look distorted, possibly creat-
ing an unpleasant user experience. When possible, it’s good
practice to specify the image’s width and height in html,
so that the browser can allocate space for the image, which
prevents it from jumping around as the page loads.

55	 https://smashed.by/formats
56	 https://smashed.by/offscreen

104 Image Optimization  part one

https://developers.google.com/web/tools/lighthouse/audits/webp
https://developers.google.com/web/tools/lighthouse/audits/webp
https://developers.google.com/web/tools/lighthouse/audits/webp
https://developers.google.com/web/tools/lighthouse/audits/webp
https://developers.google.com/web/tools/lighthouse/audits/webp
https://developers.google.com/web/tools/lighthouse/audits/aspect-ratio
https://developers.google.com/web/tools/lighthouse/audits/aspect-ratio
https://developers.google.com/web/tools/lighthouse/audits/aspect-ratio

LAZY-LOAD OFFSCREEN IMAGES

Offscreen images57 are those that appear below what used
to be called the “fold.” Since users can’t see offscreen images
when they load a page, there’s no reason to download them
as part of the initial page load. Lazy-loading offscreen imag-
es can speed up page load time and reduce time-to-interac-
tive. (Chapter 14 examines lazy-loading in detail.)

LIGHTHOUSE WORKFLOW

A good workflow for using Lighthouse is to run it once to
discover image optimization opportunities, and then, if
performance needs some work, check the suggested improve-

57	 https://smashed.by/offscreen

The results of a Lighthouse audit including a suggestion to serve images in
next-gen formats.

105image quality & performance  Measuring Image Performance

https://developers.google.com/web/tools/lighthouse/audits/offscreen-images
https://developers.google.com/web/tools/lighthouse/audits/offscreen-images
https://developers.google.com/web/tools/lighthouse/audits/offscreen-images

ments and read the documentation referenced for each audit.
This should hopefully guide you towards a fix for the issues.
Once you’ve got a fix, rerun Lighthouse against the web page
and with luck you can celebrate your page being faster.

Web Performance Budgets for Images

A performance budget is a set of limits imposed on metrics
that affect site performance. For example: “Images will not
exceed 200 kb on any page” or “The user must be able to
interact with the page in under 3 seconds.” When a budget
isn’t met, explore why this happens and how you can get
back on target.

Budgets provide a useful framework for discussing perfor-
mance with stakeholders. When a design or business deci-
sion might influence site performance, consult the budget.
It’s a reference for pushing back or rethinking the change
when it can harm user experience.

I’ve found teams have the best success with performance
budgets with automated monitoring. Rather than man-
ually inspecting network waterfalls for budget regres-
sions, automation can flag when the budget is crossed.
Two useful services for performance budget tracking are
Calibre58 and SpeedCurve.59

58	 https://smashed.by/calibre
59	 https://smashed.by/speedcurve

106 Image Optimization  part one

https://calibreapp.com/docs/metrics/budgets
https://speedcurve.com/blog/tag/performance-budgets/

Once a performance budget for image sizes is defined,
SpeedCurve starts monitoring and alerts you if the
budget is exceeded:

SpeedCurve image size monitoring.

Calibre offers a similar feature with support for setting
budgets for each device class you’re targeting. This is useful
as your budget for image sizes on desktop over Wi-Fi may
be different than your budget on mobile.

Calibre supports budgets for image sizes.

107image quality & performance  Measuring Image Performance

Current Image
Formats

Part Two

	 chapter 7	 	 JPEG . 115

	 chapter 8	 	 PNG . 144

	 chapter 9	 	 WebP . 170

	chapter 10	 	 SVG . 200

How to Choose the Best Image Format

The “right format” for an image is a combination
of the desired visual results and functional
requirements.1 Are you working with raster

or vector images?

VECTOR RASTER

Raster graphics2 present images by encoding the values of
each pixel within a rectangular grid of pixels. They are not
resolution- or zoom-independent: if you stretch raster imag-
es to a width and height beyond their resolution, they begin
to lose quality and clarity as there aren’t enough pixels to
organically fill the larger dimensions. Photorealistic scenes
are almost always represented in raster. WebP and widely
supported formats like jpeg and png handle these graphics
well. MozJPEG, Guetzli, and other ideas discussed in this
book apply well to raster graphics.

Vector graphics3 use points, lines, and polygons to present
images that consist of simple geometric shapes (such as
logos). Vector graphics offer high resolution, and as the

1	 https://smashed.by/optimizationguide
2	 https://smashed.by/rastergraphics
3	 https://smashed.by/vectorgraphics

https://en.wikipedia.org/wiki/Raster_graphics
https://en.wikipedia.org/wiki/Raster_graphics
https://en.wikipedia.org/wiki/Raster_graphics
https://github.com/mozilla/mozjpeg
https://en.wikipedia.org/wiki/Vector_graphics
https://en.wikipedia.org/wiki/Vector_graphics
https://en.wikipedia.org/wiki/Vector_graphics

presentation of vectors isn’t based on a fixed number of
pixels, this type of image can be scaled to any size needed
with zero loss in image quality and clarity. Formats like svg
handle this use case better.

Each format has its own merits and ideal uses for the web.
A simplified summary could break down as follows:

highlights drawbacks

JPEG •	 Ubiquitously
supported.

•	 Ideal for photo-
graphic content.

•	 There is always
quality loss.

•	 Most decoders cannot
handle high bit-depth
photographs from
modern cameras
(> 8 bits per channel).

•	 No support for
transparency.

PNG •	 Like jpeg and gif,
enjoys wide support.

•	 It is lossless.

•	 Supports transpar-
ency, animation, and
high bit-depth.

•	 Much bigger files
compared to jpeg.

•	 Not ideal for
photographic content.

112 Image Optimization  part two

GIF •	 The predecessor to
png, most known
for animations.

•	 Lossless.

•	 Because of the limita-
tion of 256 colors, there
is always visual loss
from conversion.

•	 Very large files for
animations.

SVG •	 A vector-based
format that can be
resized without
increasing file size.

•	 It is based on math
rather than pixels and
creates smooth lines.

•	 Not useful for photo-
graphic or other raster
content.

WebP •	 A newer file format
that can produce
lossless images like
png and lossy imag-
es like jpeg.

•	 It boasts a 30%
average file reduction
compared to jpeg,
while other data sug-
gests that median file
reduction is between
10 and 28% based on
pixel volume.

•	 Unlike jpeg, it is limit-
ed to chroma subsam-
pling which will make
some images appear
blurry.

•	 Not universally sup-
ported: only Chrome,
Firefox, and Android
ecosystems.

•	 Fragmented feature
support depending on
browser versions.

113current image formats  Introduction

Jeremy Wagner has covered trade-offs4 worth considering
when evaluating formats in his image optimization talks.

Use full
color PNG

Use
JPEG

Use GIF
or 8-bit PNG

Use
SVG

YES NO

Do you need
transparency?

Is SVG an
option?

Does the image contain photographic
content or depict a photorealistic subject?

YES NO YES NO

One way to choose an image format by Jeremy Wagner.

Using the wrong format can cost you. Choosing the right
format is not always straightforward, so be careful when you
experiment with the savings different formats can afford.

4	 https://smashed.by/tradeoffs

114 Image Optimization  part two

http://jlwagner.net/talks/these-images/#/2/2
http://jlwagner.net/talks/these-images/#/2/2
http://jlwagner.net/talks/these-images/#/2/2

chapter 7

JPEG

The jpeg5 may well be the world’s most widely used
image format. As noted earlier, 45% of the images6 seen
on sites crawled by HTTP Archive are jpegs. Your

phone, your digital slr, that old webcam – everything pretty
much supports this codec. It’s also very old, dating all the way
back to 1992 when the standard was first released by the Joint
Photographic Experts Group.7 Since then, there’s been an im-
mense body of research into attempts to improve what it offers.

JPEGs are best suited to photographs or images with a
number of color regions. jpeg is a lossy compression al-
gorithm that discards information to save space. Many of
the efforts that came after it tried to preserve visual fidelity
while keeping file sizes as small as possible. Let’s examine
jpeg’s compression modes as these can have a significant
impact on perceived performance.

JPEG Compression Modes

The jpeg image format has a number of different
compression modes.8 Two popular modes are
baseline (sequential) and progressive jpeg (pjpeg).

5	 https://smashed.by/jpeg
6	 https://smashed.by/stateofimages
7	 https://jpeg.org/
8	 https://smashed.by/compressionmodes (pdf)

115

JPEG

current image formats  JPEG

https://en.wikipedia.org/wiki/JPEG
https://www.google.com/url?q=https://httparchive.org/reports/state-of-images?start%3Dlatest%26view%3Dlist%23optimizedImages&sa=D&ust=1607369486063000&usg=AOvVaw0ehfjOzvEWN__uHLkk7kjF
https://www.google.com/url?q=https://httparchive.org/reports/state-of-images?start%3Dlatest%26view%3Dlist%23optimizedImages&sa=D&ust=1607369486063000&usg=AOvVaw0ehfjOzvEWN__uHLkk7kjF
https://www.google.com/url?q=https://httparchive.org/reports/state-of-images?start%3Dlatest%26view%3Dlist%23optimizedImages&sa=D&ust=1607369486063000&usg=AOvVaw0ehfjOzvEWN__uHLkk7kjF
https://www.google.com/url?q=https://httparchive.org/reports/state-of-images?start%3Dlatest%26view%3Dlist%23optimizedImages&sa=D&ust=1607369486063000&usg=AOvVaw0ehfjOzvEWN__uHLkk7kjF
https://www.google.com/url?q=https://httparchive.org/reports/state-of-images?start%3Dlatest%26view%3Dlist%23optimizedImages&sa=D&ust=1607369486063000&usg=AOvVaw0ehfjOzvEWN__uHLkk7kjF
https://www.google.com/url?q=https://httparchive.org/reports/state-of-images?start%3Dlatest%26view%3Dlist%23optimizedImages&sa=D&ust=1607369486063000&usg=AOvVaw0ehfjOzvEWN__uHLkk7kjF
https://jpeg.org/
https://jpeg.org/
https://jpeg.org/
https://jpeg.org/
https://jpeg.org/
https://jpeg.org/
https://jpeg.org/
https://jpeg.org/
http://cs.haifa.ac.il/~nimrod/Compression/JPEG/J5mods2007.pdf
http://cs.haifa.ac.il/~nimrod/Compression/JPEG/J5mods2007.pdf
http://cs.haifa.ac.il/~nimrod/Compression/JPEG/J5mods2007.pdf

Baseline jpegs (the default for most image editing and
optimization tools) are encoded and decoded in a relatively
simple manner: top to bottom. When baseline jpegs load
on slow or spotty connections, users first see the top of the
image with more being revealed as the image loads. Lossless
jpegs are similar but have a smaller compression ratio.

Baseline jpegs load top to bottom.

Progressive jpegs divide the image into a number of scans.
The first scan shows the image in a blurry or low-quality
setting and subsequent scans improve image quality. You
can think of this as progressively refining it: each scan of an
image adds an increasing level of detail. When combined,
the scans create the full-quality image.

Progressive jpegs load from low resolution to high resolution.

116 Image Optimization  part two

JPEG

To test and learn about progressive jpeg scans, try Pat
Meenan’s interactive tool.9

Higher-fidelity jpeg optimization can be
achieved by: removing exif (exchangeable
image file format) data10 added by digital
cameras or editors; optimizing an image’s
Huffman tables;11 or rescaling the image.
Tools like jpegtran12 achieve higher-
fidelity compression by rearranging the
compressed data without image degrada-
tion. JPEGrescan,13 jpegoptim14 and mozjpeg15
(which we’ll cover shortly) also support
this kind of jpeg compression.

The Advantages of Progressive JPEGs

The ability for pjpegs to offer low-resolution “previews”
of an image as it loads improves perceived performance
– users feel like the image is loading faster compared to
traditional image loads. On slower 3g connections, this
allows users to see (roughly) what’s in an image when

9	 https://smashed.by/progressivejpeg
10	 http://www.verexif.com/en/
11	 https://smashed.by/huffman
12	 https://smashed.by/jpegtran
13	 https://smashed.by/jpegrescan
14	 https://smashed.by/jpegoptim
15	 https://smashed.by/mozjpeg

117

JPEG

current image formats  JPEG

https://www.google.com/url?q=https://bit.ly/progressive-jpeg-demo&sa=D&ust=1607369485980000&usg=AOvVaw3_an1tLJ2gCBcUxM8TtLNS
https://www.google.com/url?q=https://bit.ly/progressive-jpeg-demo&sa=D&ust=1607369485980000&usg=AOvVaw3_an1tLJ2gCBcUxM8TtLNS
https://www.google.com/url?q=https://bit.ly/progressive-jpeg-demo&sa=D&ust=1607369485980000&usg=AOvVaw3_an1tLJ2gCBcUxM8TtLNS
http://www.verexif.com/en/
http://www.verexif.com/en/
http://www.verexif.com/en/
http://www.verexif.com/en/
http://www.verexif.com/en/
http://www.verexif.com/en/
http://www.verexif.com/en/
http://www.verexif.com/en/
http://www.verexif.com/en/
http://www.verexif.com/en/
http://www.verexif.com/en/
http://www.verexif.com/en/
https://en.wikipedia.org/wiki/Huffman_coding
https://en.wikipedia.org/wiki/Huffman_coding
https://en.wikipedia.org/wiki/Huffman_coding
http://jpegclub.org/jpegtran/
https://github.com/kud/jpegrescan
https://github.com/tjko/jpegoptim
https://github.com/mozilla/mozjpeg

only part of the file has been received and make a call
on whether to wait for it to fully load. This can be more
pleasant than the top-to-bottom display of images offered
by baseline jpegs.

Because pjpeg’s first scan has the same dimensions as the fi-
nal image, the browser engine can calculate the page layout16
sooner. This also means there will be less content shifting17
during page load, which provides better user experience.

Small Image

Full Image

Good Scan

Progressive JPEG Wait Time

Final ScanPreview Scan

Baseline JPEG Wait Time

Impact to wait time of switching to progressive jpeg.

In 2015, Facebook switched to pjpeg (for its ios app) and
saw a 10% reduction in data usage. They were able to show
a good-quality image 15% faster than previously, optimizing
perceived loading time, as shown in the figure above.

16	 https://smashed.by/pagelayout
17	 https://smashed.by/pjpegios

118 Image Optimization  part two

JPEG

https://developers.google.com/web/updates/2018/09/inside-browser-part3#layout
https://developers.google.com/web/updates/2018/09/inside-browser-part3#layout
https://developers.google.com/web/updates/2018/09/inside-browser-part3#layout
https://developers.google.com/web/updates/2018/09/inside-browser-part3#layout
https://developers.google.com/web/updates/2018/09/inside-browser-part3#layout
https://developers.google.com/web/updates/2018/09/inside-browser-part3#layout
https://developers.google.com/web/updates/2018/09/inside-browser-part3#layout
https://web.dev/cls/
https://web.dev/cls/
https://web.dev/cls/
https://code.facebook.com/posts/857662304298232/faster-photos-in-facebook-for-ios/
https://code.facebook.com/posts/857662304298232/faster-photos-in-facebook-for-ios/
https://code.facebook.com/posts/857662304298232/faster-photos-in-facebook-for-ios/
https://code.facebook.com/posts/857662304298232/faster-photos-in-facebook-for-ios/
https://code.facebook.com/posts/857662304298232/faster-photos-in-facebook-for-ios/
https://code.facebook.com/posts/857662304298232/faster-photos-in-facebook-for-ios/
https://code.facebook.com/posts/857662304298232/faster-photos-in-facebook-for-ios/
https://code.facebook.com/posts/857662304298232/faster-photos-in-facebook-for-ios/
https://code.facebook.com/posts/857662304298232/faster-photos-in-facebook-for-ios/
https://code.facebook.com/posts/857662304298232/faster-photos-in-facebook-for-ios/
https://code.facebook.com/posts/857662304298232/faster-photos-in-facebook-for-ios/
https://code.facebook.com/posts/857662304298232/faster-photos-in-facebook-for-ios/
https://code.facebook.com/posts/857662304298232/faster-photos-in-facebook-for-ios/
https://code.facebook.com/posts/857662304298232/faster-photos-in-facebook-for-ios/
https://code.facebook.com/posts/857662304298232/faster-photos-in-facebook-for-ios/
https://code.facebook.com/posts/857662304298232/faster-photos-in-facebook-for-ios/

PJPEGs can improve compression, consuming 2–10%18 less
bandwidth compared to baseline jpegs for images over
10 kb. Their higher compression ratio is thanks to each
scan in the jpeg being able to have its own dedicated op-
tional Huffman table. Modern jpeg encoders (e.g.
libjpeg-turbo,19 mozjpeg, etc.) take advantage of pjpeg’s
flexibility to pack data better.

Why do pjpegs compress better? Baseline
jpeg blocks are encoded one at a time.
With pjpegs, similar discrete cosine
transform20 coefficients across more than
one block can be encoded together leading
to better compression.

Another advantage of pjpegs is that on http/2 their first
scan layers load simultaneously, which improves the
speed with which users can see initial image contents21
and enables browsers to lay out the page elements faster.
Combining this with customized scan layers for pjpegs (by
providing a custom scans file to mozjpeg,22 for example, or
using Cloudinary’s custom pjpeg options23) will render truly
meaningful image contents faster.

18	 https://smashed.by/bookofspeed
19	 https://smashed.by/libjpegturbo
20	 https://smashed.by/cosine
21	 https://smashed.by/pjpegshttp2
22	 https://smashed.by/scans
23	 https://smashed.by/martians

119

JPEG

current image formats  Chapter JPEG

http://www.bookofspeed.com/chapter5.html
http://www.bookofspeed.com/chapter5.html
http://www.bookofspeed.com/chapter5.html
https://en.wikipedia.org/wiki/Huffman_coding
https://en.wikipedia.org/wiki/Huffman_coding
https://en.wikipedia.org/wiki/Huffman_coding
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
https://github.com/mozilla/mozjpeg
https://en.wikipedia.org/wiki/Discrete_cosine_transform
https://en.wikipedia.org/wiki/Discrete_cosine_transform
https://en.wikipedia.org/wiki/Discrete_cosine_transform
https://en.wikipedia.org/wiki/Discrete_cosine_transform
https://en.wikipedia.org/wiki/Discrete_cosine_transform
https://en.wikipedia.org/wiki/Discrete_cosine_transform
https://en.wikipedia.org/wiki/Discrete_cosine_transform
https://en.wikipedia.org/wiki/Discrete_cosine_transform
https://calendar.perfplanet.com/2016/even-faster-images-using-http2-and-progressive-jpegs/
https://calendar.perfplanet.com/2016/even-faster-images-using-http2-and-progressive-jpegs/
https://calendar.perfplanet.com/2016/even-faster-images-using-http2-and-progressive-jpegs/
https://calendar.perfplanet.com/2016/even-faster-images-using-http2-and-progressive-jpegs/
https://calendar.perfplanet.com/2016/even-faster-images-using-http2-and-progressive-jpegs/
https://calendar.perfplanet.com/2016/even-faster-images-using-http2-and-progressive-jpegs/
https://calendar.perfplanet.com/2016/even-faster-images-using-http2-and-progressive-jpegs/
https://calendar.perfplanet.com/2016/even-faster-images-using-http2-and-progressive-jpegs/
https://calendar.perfplanet.com/2016/even-faster-images-using-http2-and-progressive-jpegs/
https://calendar.perfplanet.com/2016/even-faster-images-using-http2-and-progressive-jpegs/
https://calendar.perfplanet.com/2016/even-faster-images-using-http2-and-progressive-jpegs/
https://calendar.perfplanet.com/2016/even-faster-images-using-http2-and-progressive-jpegs/
https://calendar.perfplanet.com/2016/even-faster-images-using-http2-and-progressive-jpegs/
https://calendar.perfplanet.com/2016/even-faster-images-using-http2-and-progressive-jpegs/
https://calendar.perfplanet.com/2016/even-faster-images-using-http2-and-progressive-jpegs/
https://calendar.perfplanet.com/2016/even-faster-images-using-http2-and-progressive-jpegs/
https://calendar.perfplanet.com/2016/even-faster-images-using-http2-and-progressive-jpegs/
https://calendar.perfplanet.com/2016/even-faster-images-using-http2-and-progressive-jpegs/
https://calendar.perfplanet.com/2016/even-faster-images-using-http2-and-progressive-jpegs/
https://calendar.perfplanet.com/2016/even-faster-images-using-http2-and-progressive-jpegs/
https://calendar.perfplanet.com/2016/even-faster-images-using-http2-and-progressive-jpegs/
https://calendar.perfplanet.com/wp-content/uploads/2016/12/scans.txt
https://calendar.perfplanet.com/wp-content/uploads/2016/12/scans.txt
https://calendar.perfplanet.com/wp-content/uploads/2016/12/scans.txt
https://calendar.perfplanet.com/wp-content/uploads/2016/12/scans.txt
https://calendar.perfplanet.com/wp-content/uploads/2016/12/scans.txt
https://calendar.perfplanet.com/wp-content/uploads/2016/12/scans.txt
https://calendar.perfplanet.com/wp-content/uploads/2016/12/scans.txt
https://calendar.perfplanet.com/wp-content/uploads/2016/12/scans.txt
https://calendar.perfplanet.com/wp-content/uploads/2016/12/scans.txt
https://calendar.perfplanet.com/wp-content/uploads/2016/12/scans.txt
https://calendar.perfplanet.com/wp-content/uploads/2016/12/scans.txt
https://calendar.perfplanet.com/wp-content/uploads/2016/12/scans.txt
https://github.com/mozilla/mozjpeg
http://cloudinary.com/blog/progressive_jpegs_and_green_martians
http://cloudinary.com/blog/progressive_jpegs_and_green_martians
http://cloudinary.com/blog/progressive_jpegs_and_green_martians
http://cloudinary.com/blog/progressive_jpegs_and_green_martians
http://cloudinary.com/blog/progressive_jpegs_and_green_martians
http://cloudinary.com/blog/progressive_jpegs_and_green_martians
http://cloudinary.com/blog/progressive_jpegs_and_green_martians
http://cloudinary.com/blog/progressive_jpegs_and_green_martians
http://cloudinary.com/blog/progressive_jpegs_and_green_martians

WHO’S USING PROGRESSIVE JPEGS IN PRODUCTION?

•	 Twitter.com ships progressive jpegs24 with a baseline
quality of 85%. They measured user-perceived latency
(time to first scan and overall load time) and found
overall that pjpegs were competitive at addressing
their requirements for low file sizes, and acceptable
transcode and decode times.

•	 Facebook ships progressive jpegs for its ios app.25 They
found it reduced data usage by 10% and enabled show-
ing a good-quality image 15% faster.

•	 Yelp switched to progressive jpegs26 and found it was in
part responsible for approximately 4.5% of their image
size reduction savings. They also saved an extra 13.8%
using mozjpeg.

Use a dominant color

 placeholder

Progressively load image scan-by-scan Image is fully loaded

Pinterest’s jpegs are all progressively encoded. This optimizes the user
experience by loading them each scan by scan.

24	 https://smashed.by/twitterpjpegs
25	 https://smashed.by/fbjpegs
26	 https://smashed.by/yelpjpegs

120 Image Optimization  part two

JPEG

https://www.webpagetest.org/performance_optimization.php?test=170717_NQ_1K9P&run=2#compress_images
https://www.webpagetest.org/performance_optimization.php?test=170717_NQ_1K9P&run=2#compress_images
https://www.webpagetest.org/performance_optimization.php?test=170717_NQ_1K9P&run=2#compress_images
https://www.webpagetest.org/performance_optimization.php?test=170717_NQ_1K9P&run=2#compress_images
https://www.webpagetest.org/performance_optimization.php?test=170717_NQ_1K9P&run=2#compress_images
https://www.webpagetest.org/performance_optimization.php?test=170717_NQ_1K9P&run=2#compress_images
https://www.webpagetest.org/performance_optimization.php?test=170717_NQ_1K9P&run=2#compress_images
https://www.webpagetest.org/performance_optimization.php?test=170717_NQ_1K9P&run=2#compress_images
https://www.webpagetest.org/performance_optimization.php?test=170717_NQ_1K9P&run=2#compress_images
https://www.webpagetest.org/performance_optimization.php?test=170717_NQ_1K9P&run=2#compress_images
https://code.facebook.com/posts/857662304298232/faster-photos-in-facebook-for-ios/
https://code.facebook.com/posts/857662304298232/faster-photos-in-facebook-for-ios/
https://code.facebook.com/posts/857662304298232/faster-photos-in-facebook-for-ios/
https://code.facebook.com/posts/857662304298232/faster-photos-in-facebook-for-ios/
https://code.facebook.com/posts/857662304298232/faster-photos-in-facebook-for-ios/
https://code.facebook.com/posts/857662304298232/faster-photos-in-facebook-for-ios/
https://code.facebook.com/posts/857662304298232/faster-photos-in-facebook-for-ios/
https://code.facebook.com/posts/857662304298232/faster-photos-in-facebook-for-ios/
https://code.facebook.com/posts/857662304298232/faster-photos-in-facebook-for-ios/
https://code.facebook.com/posts/857662304298232/faster-photos-in-facebook-for-ios/
https://code.facebook.com/posts/857662304298232/faster-photos-in-facebook-for-ios/
https://code.facebook.com/posts/857662304298232/faster-photos-in-facebook-for-ios/
https://code.facebook.com/posts/857662304298232/faster-photos-in-facebook-for-ios/
https://code.facebook.com/posts/857662304298232/faster-photos-in-facebook-for-ios/
https://code.facebook.com/posts/857662304298232/faster-photos-in-facebook-for-ios/
https://code.facebook.com/posts/857662304298232/faster-photos-in-facebook-for-ios/
https://engineeringblog.yelp.com/2017/06/making-photos-smaller.html
https://engineeringblog.yelp.com/2017/06/making-photos-smaller.html
https://engineeringblog.yelp.com/2017/06/making-photos-smaller.html
https://engineeringblog.yelp.com/2017/06/making-photos-smaller.html
https://engineeringblog.yelp.com/2017/06/making-photos-smaller.html
https://engineeringblog.yelp.com/2017/06/making-photos-smaller.html
https://engineeringblog.yelp.com/2017/06/making-photos-smaller.html
https://engineeringblog.yelp.com/2017/06/making-photos-smaller.html
https://engineeringblog.yelp.com/2017/06/making-photos-smaller.html
https://engineeringblog.yelp.com/2017/06/making-photos-smaller.html
https://github.com/mozilla/mozjpeg

Many other image-heavy sites, like Pinterest,27 also use pro-
gressive jpegs in production.

The Disadvantages of Progressive JPEGs

Progressive jpegs are not always smaller. For very small
images (like thumbnails), progressive jpegs can be lar-
ger than their baseline counterparts. However, for such
small thumbnails, progressive rendering might not really
offer much value.

PJPEGs can also be slower to decode than baseline jpegs as
decoding the image multiple times to display different lay-
ers takes more work. On desktop machines with powerful
cpus this is not a big concern, but it can be on underpow-
ered mobile devices with limited resources.

There is no extensive benchmark that com-
pares decoding speed, but when testing a
small sample of images on desktop and
mobile, I’ve noticed pjpeg decode time
sometimes being up to three times as long
as baseline jpeg.

27	 https://pinterest.com

121

JPEG

current image formats  JPEG

https://pinterest.com

When deciding whether or not to ship pjpegs, you’ll need to
experiment and find the right balance of file size, network
latency, and use of cpu cycles.

All jpegs (including progressive jpegs) can
sometimes be hardware decodable on
mobile devices. It doesn’t improve on ram
impact, but it can negate some of the cpu
concerns. Not all Android devices have
hardware acceleration support, but high-
end devices do, and so do all ios devices.

Some users may consider progressive loading to be a disad-
vantage as it can be hard to tell when an image has complet-
ed loading. As this can vary heavily per audience, evaluate
what makes sense for your users.

Creating Progressive JPEGS

Tools and libraries like ImageMagick,28 libjpeg,29 jpegtran,30
jpeg-recompress,31 and imagemin32 support exporting pro-
gressive jpegs. If you have an existing image optimization

28	 https://www.imagemagick.org/
29	 https://smashed.by/libjpeg
30	 https://smashed.by/jpegtran
31	 https://smashed.by/jpegarchive
32	 https://smashed.by/imagemin

122 Image Optimization  part two

JPEG

https://www.imagemagick.org/
http://libjpeg.sourceforge.net/
http://jpegclub.org/jpegtran/
https://github.com/danielgtaylor/jpeg-archive
https://github.com/danielgtaylor/jpeg-archive
https://github.com/danielgtaylor/jpeg-archive
https://github.com/imagemin/imagemin

pipeline, there’s a good likelihood that adding progressive
loading support will be straightforward:

const gulp = require('gulp');
const imagemin = require('gulp-imagemin');

gulp.task('images', function () {
 return gulp.src('images/*.jpg')
 .pipe(imagemin({
 progressive: true
 }))
 .pipe(gulp.dest('dist'));
});

Most image editing tools save images as baseline jpeg
files by default.

Photoshop supports exporting to progressive jpeg from the File > Export menu.

You can save any image you create in Photoshop as a progres-
sive jpeg by going to File > Export > Save for Web (legacy)

123

JPEG

current image formats  JPEG

and then clicking on the Progressive option. Sketch also
supports exporting progressive jpegs: export as .jpg and
check the Progressive checkbox while saving your images.

Chroma (or Color) Subsampling

Our eyes are more forgiving to loss of color detail (chroma)
in an image than they are luminance (luma for short – a
measure of brightness). Chroma subsampling33 is a form of
compression that reduces the precision of color in a signal
in favor of luma. This reduces file size, in some cases by up
to 15–17%,34 without adversely affecting image quality and is
an option available for jpeg images. Subsampling can also
reduce image memory usage.

Signal = luma + chroma.

Luma is very important because it defines contrast, which
is responsible for forming the shapes we see in an image.
Older, or filtered, black and white photos may not contain
color, but thanks to luma, they can be just as detailed as
their color counterparts. Chroma (color) has less of an
impact on visual perception.

33	 https://smashed.by/subsampling
34	 https://smashed.by/usingsubsampling

124 Image Optimization  part two

JPEG

https://en.wikipedia.org/wiki/Chroma_subsampling
https://en.wikipedia.org/wiki/Chroma_subsampling
https://en.wikipedia.org/wiki/Chroma_subsampling
https://calendar.perfplanet.com/2015/why-arent-your-images-using-chroma-subsampling/
https://calendar.perfplanet.com/2015/why-arent-your-images-using-chroma-subsampling/
https://calendar.perfplanet.com/2015/why-arent-your-images-using-chroma-subsampling/

Recent research suggests that men and
women see35 colors differently.36 Since women
have greater color sensitivity, they might
be able to notice image degradation from
chroma subsampling more easily.

JPEG supports a number of different subsampling types:
none, horizontal, and horizontal and vertical. There are
a number of common examples discussed when talking
about subsampling: 4:4:4, 4:2:2, and 4:2:0. But what do these
represent? Let’s say a subsample takes the format A:B:C. A is
the number of pixels in a row and for jpegs this is usually 4.
B represents the amount of color in the first row, and C the
color in the second.

•	 4:4:4 has no compression, so color and luma are trans-
ported completely.

•	 4:2:2 has half sampling horizontally and full sampling
vertically.

•	 4:2:0 samples colors out of half the first row’s pixels and
ignores the second row.

4:2:0 subsampling is used in all video codecs and it’s the
recommended setting for photos.

35	 https://smashed.by/gender
36	 https://smashed.by/colorvision

125

JPEG

current image formats  JPEG

https://lions-talk-science.org/2015/03/30/when-it-comes-to-vision-men-and-women-really-arent-seeing-eye-to-eye/
https://jov.arvojournals.org/article.aspx?articleid=2191999
https://jov.arvojournals.org/article.aspx?articleid=2191999
https://jov.arvojournals.org/article.aspx?articleid=2191999

4:4:4 (1×1) No subsampling. All the chroma samples are kept as is. To ensure
maximum picture quality, chroma subsampling remains an optional feature
within jpeg. (Source for subsampling images: “JPEGs for the horseshoe crabs”
37 by Frédéric Kayser)

4:2:2 (2×1) Horizontal. Two horizontally contiguous chroma samples are
merged into a single one, and horizontal chroma definition is halved. This
type of subsampling is often used by default.

4:2:0 (2×2) Horizontal and vertical. A square of four chroma samples is
merged into a single one, and chroma definition is divided by four. This is
webp’s (lossy mode) mandatory subsampling type and a common type for
highly compressed jpegs.

37	 https://smashed.by/horseshoecrabs (pdf)

126 Image Optimization  part two

JPEG

http://frdx.free.fr/JPEG_for_the_horseshoe_crabs.pdf
http://frdx.free.fr/JPEG_for_the_horseshoe_crabs.pdf
http://frdx.free.fr/JPEG_for_the_horseshoe_crabs.pdf
http://frdx.free.fr/JPEG_for_the_horseshoe_crabs.pdf
http://frdx.free.fr/JPEG_for_the_horseshoe_crabs.pdf
http://frdx.free.fr/JPEG_for_the_horseshoe_crabs.pdf
http://frdx.free.fr/JPEG_for_the_horseshoe_crabs.pdf
http://frdx.free.fr/JPEG_for_the_horseshoe_crabs.pdf
http://frdx.free.fr/JPEG_for_the_horseshoe_crabs.pdf

jpegtran and cjpeg support separate quality
configuration of luminance and chroma.
This can be done by adding the -sample flag
(e.g. -sample 2x1).

By reducing pixels in our chroma components, it’s possible
to reduce the size of color components significantly, ulti-
mately reducing byte size.

Chroma subsampling configurations for a jpeg at quality 80.

Chroma subsampling is worth considering for most types of
images. It does have some notable exceptions: because sub-
sampling relies on limitations in our eyes, it is not great for
compressing images where color detail may be as important
as luminance (medical images, for instance).

127

JPEG

current image formats  JPEG

Sharper edges are harder to compress with jpeg as it was
designed to better handle photographic scenes with softer
transitions. That’s why images containing typefaces are poor
candidates for subsampling (it can decrease legibility), as are
images with patterns, diagrams, banners, buttons, or logos.

Source Subsampling 1x1 Subsampling 2x2

In his article “Finally understanding jpeg,”38 Christoph Erdmann
recommends sticking with a subsampling of 4:4:4 (1×1) when working with
images containing text.

The exact method of chroma subsampling
wasn’t specified in the jpeg specification, so
different decoders handle it differently.
mozjpeg and libjpeg-turbo use the same
scaling method. Older versions of libjpeg
use a different method that adds ringing
artifacts in colors. Photoshop sets chroma
subsampling automatically when using
the “Save for web” feature. When image
quality is set between 51 and 100, no sub-
sampling is used at all (4:4:4). When

38	 https://smashed.by/understandingjpeg

128 Image Optimization  part two

JPEG

http://compress-or-die.com/Understanding-JPG/
http://compress-or-die.com/Understanding-JPG/
http://compress-or-die.com/Understanding-JPG/
http://compress-or-die.com/Understanding-JPG/
http://compress-or-die.com/Understanding-JPG/
http://compress-or-die.com/Understanding-JPG/
https://github.com/mozilla/mozjpeg

quality is below this, a 4:2:0 subsamp-
ling is used instead. This is one reason
a far greater file size reduction can
be observed when switching quality
from 51 to 50.

In subsampling discussions the term YCbCr39 is often
mentioned. Like rgb,40 YCbCr is a way to mathematically
represent how humans view color. While rgb represents
colors as combinations of red, green, and blue signals, YCb-
Cr represents colors as combinations of a brightness signal
and two chroma signals. Y is gamma-corrected luminance,
Cb is the blue color’s chroma component, and Cr is the red
color’s chroma component. If you look at exif data, you’ll
see YCbCr next to sampling levels.

The color transformation from rgb to
YCbCr41 is reversible in principle, but in
practice involves small losses of data due
to round-off errors. For lossless conversion
to and from rgb, you can use YCoCg42 and
cielab43 color models.

39	 https://smashed.by/ycbcr
40	 https://smashed.by/rgbmodel
41	 https://smashed.by/compressionhandbook
42	 https://smashed.by/ycocg
43	 https://smashed.by/cielab

129

JPEG

current image formats  JPEG

https://en.wikipedia.org/wiki/YCbCr
https://en.wikipedia.org/wiki/RGB_color_model
https://books.google.rs/books?id=LHCY4VbiFqAC&pg=PA540&dq=ycbcr
https://books.google.rs/books?id=LHCY4VbiFqAC&pg=PA540&dq=ycbcr
https://books.google.rs/books?id=LHCY4VbiFqAC&pg=PA540&dq=ycbcr
https://books.google.rs/books?id=LHCY4VbiFqAC&pg=PA540&dq=ycbcr
https://books.google.rs/books?id=LHCY4VbiFqAC&pg=PA540&dq=ycbcr
https://en.wikipedia.org/wiki/YCoCg

For a further read on chroma subsampling, see “Why
aren’t your Images using Chroma-Subsampling?”44
by Colin Bendell.

How Far Have We Come Since the JPEG?

Here’s the current state of image formats on the web. (These
image formats typically aim to offer more efficient replace-
ments for handling photographic images, but in many cases
they also offer better handling for illustrations too.)

tl;dr: there’s a lot of fragmentation. We often need to condi-
tionally serve different formats to different browsers to take
advantage of anything modern.

•	 JPEG 200045 (2000): an improvement to jpeg,
switching from a discrete cosine-based transform
to a wavelet-based method. Browser support: Safari
macOS and iOS

•	 JPEG XR46 (2009): an alternative to jpeg and jpeg
2000, supporting high dynamic range47 (hdr) and
wide gamut48 color spaces. Produces smaller files than
jpeg at slightly slower encode/decode speeds. Browser
support: Edge, IE 9+.

44	 https://smashed.by/usingsubsampling
45	 https://smashed.by/jpeg2000
46	 https://smashed.by/jpegxrwiki
47	 https://smashed.by/hdr
48	 https://smashed.by/gamutwiki

130 Image Optimization  part two

JPEG

https://calendar.perfplanet.com/2015/why-arent-your-images-using-chroma-subsampling/
https://calendar.perfplanet.com/2015/why-arent-your-images-using-chroma-subsampling/
https://calendar.perfplanet.com/2015/why-arent-your-images-using-chroma-subsampling/
https://calendar.perfplanet.com/2015/why-arent-your-images-using-chroma-subsampling/
https://calendar.perfplanet.com/2015/why-arent-your-images-using-chroma-subsampling/
https://calendar.perfplanet.com/2015/why-arent-your-images-using-chroma-subsampling/
https://calendar.perfplanet.com/2015/why-arent-your-images-using-chroma-subsampling/
https://calendar.perfplanet.com/2015/why-arent-your-images-using-chroma-subsampling/
https://calendar.perfplanet.com/2015/why-arent-your-images-using-chroma-subsampling/
https://calendar.perfplanet.com/2015/why-arent-your-images-using-chroma-subsampling/
https://calendar.perfplanet.com/2015/why-arent-your-images-using-chroma-subsampling/
https://calendar.perfplanet.com/2015/why-arent-your-images-using-chroma-subsampling/
https://calendar.perfplanet.com/2015/why-arent-your-images-using-chroma-subsampling/
https://calendar.perfplanet.com/2015/why-arent-your-images-using-chroma-subsampling/
https://calendar.perfplanet.com/2015/why-arent-your-images-using-chroma-subsampling/
https://calendar.perfplanet.com/2015/why-arent-your-images-using-chroma-subsampling/
https://calendar.perfplanet.com/2015/why-arent-your-images-using-chroma-subsampling/
https://calendar.perfplanet.com/2015/why-arent-your-images-using-chroma-subsampling/
https://en.wikipedia.org/wiki/JPEG_2000
https://en.wikipedia.org/wiki/JPEG_2000
https://en.wikipedia.org/wiki/JPEG_XR
https://en.wikipedia.org/wiki/JPEG_XR
https://en.wikipedia.org/wiki/JPEG_XR
http://wikivisually.com/wiki/High_dynamic_range_imaging
http://wikivisually.com/wiki/High_dynamic_range_imaging
http://wikivisually.com/wiki/High_dynamic_range_imaging
http://wikivisually.com/wiki/High_dynamic_range_imaging
http://wikivisually.com/wiki/High_dynamic_range_imaging
http://wikivisually.com/wiki/High_dynamic_range_imaging
http://wikivisually.com/wiki/High_dynamic_range_imaging
http://wikivisually.com/wiki/Gamut

•	 WebP49 (2010): developed by Google and based on block
prediction with support for lossy and lossless compres-
sion. Offers byte savings associated with jpeg and the
transparency support that byte-heavy pngs are often
used for. Lacks chroma subsampling configuration and
progressive loading. Decode times are also slower than
jpeg decoding. Browser support: Chrome (and Chromi-
um-based browsers like Edge and Opera), Firefox and
Safari. (Chapter 9 covers webp in more detail.)

•	 HEIF50 (2015): a format for images and image sequenc-
es for storing hevc-encoded images with constrained
inter-prediction applied. Apple announced at wwdc51
(June 2020) that it would explore switching to heif over
jpeg for iOS, citing up to 50% savings on file size. Brows-
er support: Since ios 12, supported in web view of iOS
apps. (We’ll take a close look at heif in chapter 17.)

•	 AVIF52 (2019): a highly efficient compression format53
based on heif for storing still and animated images
compressed with av154 video codec. It has lossy and
lossless modes for compression and supports trans-
parency, hdr, and wide color gamut. Browser support:
None at the time of writing. Chrome and Firefox
currently support av1 video decoding, but they cannot
display avif images.

49	 https://smashed.by/webpwiki
50	 https://smashed.by/heifwiki
51	 https://smashed.by/wwdc
52	 https://smashed.by/avif
53	 https://smashed.by/nextgenavif
54	 https://smashed.by/av1

131

JPEG

current image formats  JPEG

https://en.wikipedia.org/wiki/WebP
https://en.wikipedia.org/wiki/High_Efficiency_Image_File_Format
https://aomediacodec.github.io/av1-avif/
https://netflixtechblog.com/avif-for-next-generation-image-coding-b1d75675fe4
https://netflixtechblog.com/avif-for-next-generation-image-coding-b1d75675fe4
https://netflixtechblog.com/avif-for-next-generation-image-coding-b1d75675fe4
https://netflixtechblog.com/avif-for-next-generation-image-coding-b1d75675fe4
https://netflixtechblog.com/avif-for-next-generation-image-coding-b1d75675fe4
https://netflixtechblog.com/avif-for-next-generation-image-coding-b1d75675fe4
https://netflixtechblog.com/avif-for-next-generation-image-coding-b1d75675fe4
https://en.wikipedia.org/wiki/AV1

•	 JPEG XL55 (2019): a work-in-progress that offers sub-
stantially better compression efficiency than existing
image formats (e.g. >60% over jpeg), fast decoding and
encoding configurations, and a rich feature set for web
distribution, particularly optimized for responsive web
environments. jpeg xl encoders can produce back-
wards-compatible jpeg files and existing jpeg files can
be losslessly transcoded to jpeg xl with file-size reduc-
tion. Browser support: None at the time of writing.

To see for yourself, try a visual image format comparison
tool.56 Here are different modern image formats (and opti-
mizers) used to demonstrate what is possible:

Visual Similarity
Scores Ranked

SSIM:	 Butteraugli:

BPG	 Guetzli

WebP	 BPG

Mozjpeg	 Mozjpeg

JPEG XR	 WebP

JPEG	 JPEG

Guetzli	 JPEG XR

Modern image formats compared based on quality. At a target file size of
26 kb it’s possible to obtain a higher perceived quality with modern options
compared with lossy jpeg alone. (Source: 800×600 srgb 1.2 mb file. Shown
above is a crop of the final image.)

55	 https://smashed.by/jpegxl
56	 https://smashed.by/comparison

132 Image Optimization  part two

JPEG

https://jpeg.org/jpegxl/
https://jpeg.org/jpegxl/
https://jpeg.org/jpegxl/

We can compare quality using the structural similarity
index measure57 (ssim) or Butteraugli,58 both of which we
covered in more detail in chapter 2.

BPG59 (Better Portable Graphics, 2015) is
another interesting format that was
intended to be a more compression-
efficient replacement for jpeg, but it’s
unlikely to get broad traction due to
licensing issues. Like heif, it’s based on
hevc (high efficiency video coding) and
appears to offer better file size compared
to mozjpeg and webp. It’s not currently
supported in any browser, though there
is a js in-browser decoder.

So, browser support is fragmented and if you wish to take
advantage of any of the formats above you’ll likely need to
conditionally serve fallbacks for each of your target brows-
ers. At Google, we’ve seen some promise with webp so we’ll
dive into it in more depth in chapter 9.

You can also serve image formats (webp and jpeg 2000, for
example) with a .jpg extension (or any other) as the brows-
er can render an image it can decide the media type for.

57	 https://smashed.by/ssim
58	 https://smashed.by/butteraugligit
59	 https://smashed.by/bpg

133

JPEG

current image formats  JPEG

https://en.wikipedia.org/wiki/Structural_similarity
https://en.wikipedia.org/wiki/Structural_similarity
https://en.wikipedia.org/wiki/Structural_similarity
https://en.wikipedia.org/wiki/Structural_similarity
https://en.wikipedia.org/wiki/Structural_similarity
https://en.wikipedia.org/wiki/Structural_similarity
https://en.wikipedia.org/wiki/Structural_similarity
https://en.wikipedia.org/wiki/Structural_similarity
https://github.com/google/butteraugli
https://en.wikipedia.org/wiki/Better_Portable_Graphics
http://wikivisually.com/wiki/High_Efficiency_Video_Coding
http://wikivisually.com/wiki/High_Efficiency_Video_Coding
http://wikivisually.com/wiki/High_Efficiency_Video_Coding
http://wikivisually.com/wiki/High_Efficiency_Video_Coding
http://wikivisually.com/wiki/High_Efficiency_Video_Coding
http://wikivisually.com/wiki/High_Efficiency_Video_Coding
http://wikivisually.com/wiki/High_Efficiency_Video_Coding
http://wikivisually.com/wiki/High_Efficiency_Video_Coding
http://wikivisually.com/wiki/High_Efficiency_Video_Coding
http://wikivisually.com/wiki/High_Efficiency_Video_Coding
http://wikivisually.com/wiki/High_Efficiency_Video_Coding
https://github.com/mozilla/mozjpeg
https://bellard.org/bpg/
https://bellard.org/bpg/
https://bellard.org/bpg/
https://bellard.org/bpg/
https://bellard.org/bpg/
https://bellard.org/bpg/
https://bellard.org/bpg/

This allows for server-side Content-Type negotiation60 to
decide which image to send without needing to change the
html at all.

Next, let’s talk about an option for when you can’t condition-
ally serve different image formats: optimizing jpeg encoders.

Optimizing JPEG Encoders

To maintain compatibility with existing browsers and
image processing apps, modern jpeg encoders that produce
smaller, higher-fidelity jpeg files were created. They avoid
the need to introduce new image formats or changes in the
ecosystem in order for compression gains to be possible.
Two such encoders are mozjpeg and Guetzli.

MozJPEG is a good choice for most web assets, while
Guetzli achieves higher image fidelity, but at the cost of
very long encode times.

There are also configurable optimization tools that apply
perception analysis (imitating the human visual system) in
addition to jpeg encoding. Based on this analysis they apply
the maximum amount of compression that will not cause

60	 https://smashed.by/negotiation

134 Image Optimization  part two

JPEG

https://www.igvita.com/2012/12/18/deploying-new-image-formats-on-the-web/
https://www.igvita.com/2012/12/18/deploying-new-image-formats-on-the-web/
https://www.igvita.com/2012/12/18/deploying-new-image-formats-on-the-web/
https://www.igvita.com/2012/12/18/deploying-new-image-formats-on-the-web/
https://www.igvita.com/2012/12/18/deploying-new-image-formats-on-the-web/
https://www.igvita.com/2012/12/18/deploying-new-image-formats-on-the-web/
https://www.igvita.com/2012/12/18/deploying-new-image-formats-on-the-web/
https://github.com/mozilla/mozjpeg

visible artifacts. Under the hood, most of them use libjpeg,
libjpeg-turbo, or mozjpeg.

Popular ones are:

•	 jpeg-recompress61 (uses mozjpeg under the hood).

•	 JPEGmini62 chooses the best quality automatically and
aims at a quality range suitable for the web.

•	 ImageOptim63 (with free online interface64) is unique
in its handling of color. You can choose color quality
separately from overall quality. It automatically chooses
a chroma subsampling level to preserve high-res colors
in screenshots, but avoid wasted bytes on smooth
colors in natural photos.

MOZJPEG

Mozilla offers a modern jpeg encoder in the form of
mozjpeg.65 It claims66 to shave up to 10% off jpeg files.
Files compressed with mozjpeg work cross-browser and
some of its features include progressive scan optimization,
trellis quantization67 (discarding details that compress

61	 https://smashed.by/jpegrecompress
62	 https://smashed.by/jpegminitech
63	 https://smashed.by/imageoptimapi
64	 https://smashed.by/imageoptimonline
65	 https://smashed.by/mozjpeg
66	 https://smashed.by/mozjpegclaims
67	 https://smashed.by/trellis

135

JPEG

current image formats  JPEG

https://github.com/mozilla/mozjpeg
https://github.com/danielgtaylor/jpeg-archive
https://github.com/danielgtaylor/jpeg-archive
https://github.com/danielgtaylor/jpeg-archive
https://github.com/mozilla/mozjpeg
https://www.jpegmini.com/technology
https://www.jpegmini.com/technology
https://www.jpegmini.com/technology
https://imageoptim.com/api
https://github.com/mozilla/mozjpeg
https://research.mozilla.org/2014/03/05/introducing-the-mozjpeg-project/
https://github.com/mozilla/mozjpeg
https://en.wikipedia.org/wiki/Trellis_quantization
https://en.wikipedia.org/wiki/Trellis_quantization
https://en.wikipedia.org/wiki/Trellis_quantization

the least), and a few decent quantization table presets68
that help create smoother high-dpi images (although this
is possible with ImageMagick if you’re willing to wade
through xml configurations).

MozJPEG is supported in ImageOptim69 and there’s a rela-
tively reliable configurable imagemin plug-in70 for it.

Here’s a sample implementation with Gulp:

const gulp = require('gulp');
const imagemin = require('gulp-imagemin');
const imageminMozjpeg = require('imagemin-mozjpeg');

gulp.task('mozjpeg', () =>
 gulp.src('src/*.jpg')
 .pipe(imagemin([imageminMozjpeg({
 quality: 85
 })]))
 .pipe(gulp.dest('dist'))
);

MozJPEG being run from the command line.

68	 https://smashed.by/mozjpegquant
69	 https://smashed.by/imageoptimsupport
70	 https://smashed.by/imageminplugin

136 Image Optimization  part two

JPEG

https://calendar.perfplanet.com/2014/mozjpeg-3-0/
https://calendar.perfplanet.com/2014/mozjpeg-3-0/
https://calendar.perfplanet.com/2014/mozjpeg-3-0/
https://calendar.perfplanet.com/2014/mozjpeg-3-0/
https://calendar.perfplanet.com/2014/mozjpeg-3-0/
https://github.com/ImageOptim/ImageOptim/issues/45
https://github.com/imagemin/imagemin-mozjpeg
https://github.com/imagemin/imagemin-mozjpeg
https://github.com/imagemin/imagemin-mozjpeg

MozJPEG: a comparison of file sizes and visual similarity scores at different
qualities (q = 90, 841 kb, 14.5% saving; q = 85, 562 kb, 42.8% saving; q = 75,
324 kb, 67% saving). Unsplash photo by Ray Hennessy.

I used jpeg-compress71 from the JPEG Archive72 project to
calculate the ssim scores for a source image. SSIM is a
method for measuring the similarity between two images,
where the ssim score is a quality measure of one image
given the other is considered perfect.

In my experience, mozjpeg is a good option for compressing
images for the web at a high visual quality while delivering
reductions on file size. For small to medium sized images, I
found mozjpeg (at quality = 80–85) led to 30–40% savings
on file size while maintaining acceptable SSIM, offering a
5–6% improvement on jpeg-turbo. It does come with a slow-
er encoding cost73 than baseline jpeg, but you may not find
this a showstopper.

71	 https://smashed.by/imageminrecompress
72	 https://smashed.by/jpegarchive
73	 https://smashed.by/encodingcost

137

JPEG

current image formats  JPEG

https://github.com/imagemin/imagemin-jpeg-recompress
https://github.com/imagemin/imagemin-jpeg-recompress
https://github.com/danielgtaylor/jpeg-archive
https://github.com/danielgtaylor/jpeg-archive
https://github.com/mozilla/mozjpeg
https://github.com/mozilla/mozjpeg
http://www.libjpeg-turbo.org/About/Mozjpeg
http://www.libjpeg-turbo.org/About/Mozjpeg
http://www.libjpeg-turbo.org/About/Mozjpeg
http://www.libjpeg-turbo.org/About/Mozjpeg
http://www.libjpeg-turbo.org/About/Mozjpeg
http://www.libjpeg-turbo.org/About/Mozjpeg

If you need a tool supporting mozjpeg with
additional configuration support and some
complementary utilities for image compari-
son, check out jpeg-recompress.74

GUETZLI

Guetzli75 is a promising, if slow, perceptual jpeg encoder
from Google that tries to find the smallest jpeg that is per-
ceptually indistinguishable from the original. It performs
a sequence of experiments that produces a proposal for the
final jpeg, accounting for the psychovisual error of each
proposal. Out of these, it selects the highest-scoring propos-
al as the final output. This way, Gutezli achieves image-size
reduction with minimal quality loss.

To measure the differences between images, Guetzli uses
Butteraugli, an objective image quality assessment metric.
Guetzli can take into account a few properties of vision that
other jpeg encoders do not. For example, there is a relation-
ship between the amount of green light seen and sensitivity
to blue, so changes in blue in the vicinity of green can be
encoded a little less precisely.

74	 https://smashed.by/jpegarchive
75	 https://smashed.by/guetzli

138 Image Optimization  part two

JPEG

https://github.com/mozilla/mozjpeg
https://github.com/danielgtaylor/jpeg-archive
https://github.com/danielgtaylor/jpeg-archive
https://github.com/danielgtaylor/jpeg-archive
https://github.com/google/guetzli

Image file size is much more dependent on
the choice of quality than the choice of
codec. There are far, far larger file size
differences between the lowest and highest
quality jpegs compared to the file size
savings made possible by switching codecs.
Using the lowest acceptable quality is very
important. Avoid setting your quality too
high without paying attention to it.

Guetzli claims76 to achieve a 20–30% reduction in data
size for images for a given Butteraugli score compared to
other compressors. A large caveat to using Guetzli is that
it is extremely slow. From the readme, we should note
that Guetzli requires a large amount of memory – it can
take 1 minute + 200 mb ram per megapixel. There’s a
good thread on real-world experience with Guetzli to be
found on GitHub.77

What Is Guetzli Good For?

Guetzli offers excellent compression and output quality
but at a high cost in terms of encoding time. This makes it
impractical to use for optimizing images on demand, but it

76	 https://smashed.by/guetzlisize
77	 https://smashed.by/guetzlirealworld

139

JPEG

current image formats  JPEG

https://research.googleblog.com/2017/03/announcing-guetzli-new-open-source-jpeg.html

can be considered for optimizing images as a part of a build
process for a static site, and archiving photos.

Tools like ImageOptim support Guetzli optimization.
Here is an example of how to use Guetzli with the
imagemin-guetzli package.

const gulp = require('gulp');
const imagemin = require('gulp-imagemin');
const imageminGuetzli = require('imagemin-guetzli');

gulp.task('guetzli', () =>
 gulp.src('src/*.jpg')
 .pipe(imagemin([
 imageminGuetzli({
 quality: 85
 })
]))
 .pipe(gulp.dest('dist'))

);

Guetzli being run from Gulp for optimization.

140 Image Optimization  part two

JPEG

It took almost seven minutes (and high cpu usage) to en-
code three 3 mp images using Guetzli with varied savings.
For archiving higher-resolution photos, I could see this
offering some value.

Guetzli: a comparison of file sizes and visual similarity scores at different
qualities (q = 100, 945 kb, 3.7% saving; q = 90, 687 kb, 30% saving; q = 85,
542 kb, 45% saving). Unsplash photo by Ray Hennessy.

It’s recommended to run Guetzli on high-
quality images (e.g. uncompressed input
images, png sources, or jpegs of 100%
quality or close). While it will work on other
images (e.g. jpegs of quality 84 or lower),
results can be poorer.

141

JPEG

current image formats  JPEG

While compressing an image with Guetzli is very (very)
time-consuming and will make your fans spin, for larger im-
ages it is worth it. I have seen a number of examples where
it saved anywhere up to 40% on file size while maintaining
visual fidelity. On small to medium sized images, I have still
seen some savings (in the 10–15 kb range), but they were not
quite as pronounced. Guetzli can introduce more liquify-es-
que distortion on smaller images while compressing.

You may also be interested in Eric Portis’s research compar-
ing Guetzli to Cloudinary’s auto-compression78 for a differ-
ent data point on effectiveness.

HOW GUETZLI COMPARES WITH MOZJPEG

Comparing different jpeg encoders is complex – you need
to compare both the quality and fidelity of the compressed
image as well as the final size. As image compression expert
Kornel Lesiński notes, benchmarking one but not both of
these aspects could lead to invalid conclusions.79

How does Guetzli compare with mozjpeg? Kornel’s take:

•	 Guetzli is tuned for higher-quality images.
(Butteraugli is said to be best for q = 90+; mozjpeg’s
sweet spot is around q = 75.)

78	 https://smashed.by/guetzlivscloudinary
79	 https://smashed.by/conclusions

142 Image Optimization  part two

JPEG

https://cloudinary.com/blog/a_closer_look_at_guetzli
https://cloudinary.com/blog/a_closer_look_at_guetzli
https://cloudinary.com/blog/a_closer_look_at_guetzli
https://cloudinary.com/blog/a_closer_look_at_guetzli
https://cloudinary.com/blog/a_closer_look_at_guetzli
https://cloudinary.com/blog/a_closer_look_at_guetzli
https://cloudinary.com/blog/a_closer_look_at_guetzli
https://cloudinary.com/blog/a_closer_look_at_guetzli
https://cloudinary.com/blog/a_closer_look_at_guetzli
https://cloudinary.com/blog/a_closer_look_at_guetzli
https://cloudinary.com/blog/a_closer_look_at_guetzli
https://cloudinary.com/blog/a_closer_look_at_guetzli
https://cloudinary.com/blog/a_closer_look_at_guetzli
https://cloudinary.com/blog/a_closer_look_at_guetzli
https://kornel.ski/faircomparison
https://kornel.ski/faircomparison
https://kornel.ski/faircomparison
https://github.com/mozilla/mozjpeg
https://github.com/mozilla/mozjpeg

•	 Guetzli is much slower to compress (both Guetzli
and mozjpeg produce standard jpegs, so decoding
is fast as usual).

•	 MozJPEG doesn’t automagically pick a quality setting,
but you can find optimal quality using an external tool,
like jpeg-archive.80

•	 Unlike mozjpeg, Guetzli doesn’t support progres-
sive image loading or color profiles (only srgb
with gamma 2.2).

MozJPEG is a beginner-friendly encoder for web assets that
strikes a good balance between speed, compression, and im-
age quality. As Guetzli is very resource-intensive its practi-
cal use is limited, but if you have large, high-quality images
you need to optimize, the results might be worth the wait.

COMBINING ENCODERS

For larger images, I found combining Guetzli with lossless
compression in mozjpeg (jpegtran, not cjpeg, to avoid
throwing away the work done by Guetzli) can lead to a fur-
ther 10–15% decrease in filesize (55% overall) with only very
minor decreases in ssim. This is something that requires ex-
perimentation and analysis, but it has been tried by others
in the field, like Ariya Hidayat,81 with promising results.

80	 https://smashed.by/jpegarchive
81	 https://smashed.by/ariya

143

JPEG

current image formats  JPEG

https://github.com/mozilla/mozjpeg
https://github.com/danielgtaylor/jpeg-archive
https://github.com/danielgtaylor/jpeg-archive
https://github.com/danielgtaylor/jpeg-archive
https://github.com/mozilla/mozjpeg
https://github.com/mozilla/mozjpeg
https://ariya.io/2017/03/squeezing-jpeg-images-with-guetzli
https://ariya.io/2017/03/squeezing-jpeg-images-with-guetzli
https://ariya.io/2017/03/squeezing-jpeg-images-with-guetzli

chapter 8

PNG

PNG,82 or portable network graphics, is a raster image
format that uses lossless compression.83 It was devel-
oped around 1995 as an alternative for static gifs.84

Several popular tools allow you to export pngs including
Photoshop, Sketch and most image converters.

PNG has advantages such as the ability to use transparency
or opacity (compared to jpeg, which retains background
colors) and has broad support for color palettes.

Because of wide browser support, pngs are the most popu-
lar choice for:

•	 Graphics that have sharp contrast, like line art, text, large
areas of solid color, screenshots, illustrations, and logos.

•	 Graphics that need to preserve opacity and transparency.

•	 Graphics that are to have multiple edits (since pngs do
not accrue any generation loss when opened and saved
again and again).

Most computers come with a built-in image viewer that can
open a png with ease, but because all web browsers support

82	 https://smashed.by/pngwiki
83	 https://smashed.by/lossless
84	 https://smashed.by/gifwiki

144 Image Optimization  part two

PNG

https://en.wikipedia.org/wiki/Portable_Network_Graphics
https://en.wikipedia.org/wiki/Portable_Network_Graphics
https://en.wikipedia.org/wiki/Lossless_compression
https://en.wikipedia.org/wiki/Lossless_compression
https://en.wikipedia.org/wiki/Lossless_compression
https://en.wikipedia.org/wiki/GIF

png files, there is no need for external apps or programs to
view them; simply go to File > Open from your browser and
select your file.

PNG Basics

Every single png image has an identical 8-byte signature
identifier. If this signature is altered in any way, the file will
show as corrupt.

CHUNKS

After the png signature identifier, come the specific file’s
chunks, which are essentially the building blocks of the png
format. Each chunk is composed of a set of four components:

•	 Length field: takes up 4 bytes and refers to the length
of the chunk’s data field.

•	 Type field: takes up 4 bytes and indicates to the decod-
er what type of data the chunk contains.

•	 Chunk data: bytes of data that range from 0 to
2,147,483,647 bytes in size

•	 Cyclic redundancy code (crc): a 4-byte check calcu-
lated using the chunk data and type.

145

PNG

current image formats  PNG

PNG Palette Modes

A png uses one of three different palette modes: png-8,
png-24, and png-32. The number of colors you can have in
a png-8 image can be anything from 2 to 256. png supports
color depths up to 48-bit (also known as deep color), pro-
viding you billions of different colors. However, the vast
majority of consumer monitors and screens do not support
more than 24-bit, so this is, for the most part, useless to us.

Indexed PNG-8
2 colors, 10KB

Indexed PNG-8
4 colors, 16KB

Indexed PNG-8
8 colors, 29KB

Indexed PNG-8
16 colors, 45KB

Indexed PNG-8
32 colors, 56KB

Indexed PNG-8
64 colors, 68KB

Indexed PNG-8
128 colors, 83KB

Indexed PNG-8
256 colors, 97KB

Truecolor PNG-24
16.6M colors, 338KB

JPEG
80% quality, 43KB

GIF 87a
256 colors, 114KB

Truecolor PNG-24
ImageOptim, 314KB

Since the color information is stored separately in the palette, reducing the
number of colors in your png-8 files makes a noticeable impact on file size.

146 Image Optimization  part two

PNG

The terms indexed and paletted can be used
interchangeably.

PNG-8

Supports 8-bit color and can handle up to 256 colors while
retaining a small file size. Background transparency is
available, although any round edges of the artwork will
appear jagged. If a matte (background color) is applied when
saving, the matte edges will become jagged, but can give the
illusion of smooth artwork edges when placed on a back-
ground matching the matte color.

PNG-24

Supports 24-bit colors85 and can handle 16 million colors.
This makes it a good choice for images containing gradients
because the higher color range will reduce banding. Owing
to the amount of information png-24 files hold, their file
size is significantly larger than a png-8 and they should
only be used when saving more complex graphics or photos
where detail retention is important. Similar to png-8, png-
24 files support background transparency best used with a
matte to give the illusion of smooth, rounded edges.

85	 https://smashed.by/colordepth

147

PNG

current image formats  PNG

https://en.wikipedia.org/wiki/Color_depth
https://en.wikipedia.org/wiki/Color_depth
https://en.wikipedia.org/wiki/Color_depth
https://en.wikipedia.org/wiki/Color_depth
https://en.wikipedia.org/wiki/Color_depth

PNG-32

Can you work out how many colors a png-32 supports?
The answer might surprise you. A png-32 supports 24-bit
colors but has an extra 8-bit alpha channel used when we
need transparency in our images. This can mean the highest
quality png output and, in turn, the largest file size. It’s only
necessary when saving complex graphics containing gradi-
ents, rounded edges, and transparency with varying opacity;
for example, images with drop shadows or outer glows.
There are also instances where the background you need to
place your png over is complex and a matte sticks out like a
sore thumb, such as gradient blend backgrounds.

What if output doesn’t offer png-32? Chances are it does,
but it’s disguised as an additional option under png-24
mentioning something like “full alpha transparency.” To
learn more about the difference between the various png
bit-depths, read “The Difference Between png8, png24, and
png32”86 from Beamtic.

Transparency: Index versus Alpha

In digital imagery, transparency is the idea that certain
areas of an image are transparent or invisible. This unlocks

86	 https://smashed.by/bitdepth

148 Image Optimization  part two

PNG

https://beamtic.com/png-bit-depth
https://beamtic.com/png-bit-depth
https://beamtic.com/png-bit-depth
https://beamtic.com/png-bit-depth
https://beamtic.com/png-bit-depth
https://beamtic.com/png-bit-depth
https://beamtic.com/png-bit-depth
https://beamtic.com/png-bit-depth
https://beamtic.com/png-bit-depth
https://beamtic.com/png-bit-depth
https://beamtic.com/png-bit-depth
https://beamtic.com/png-bit-depth
https://beamtic.com/png-bit-depth
https://beamtic.com/png-bit-depth

a wide range of use cases, such as displaying logos seam-
lessly against any colored background, all the way up to
presenting composite images that take advantage of partial
transparency with multiple images or backgrounds to
produce special effects.

Several image formats support transparency, the most basic
being index (or binary) transparency, and more advanced
kinds using an alpha channel in which transparency infor-
mation can be represented on a per-pixel basis with inter-
mediate levels of opacity.

INDEX TRANSPARENCY (OR TRANSPARENT PIXELS)

Index transparency is the simpler of the two kinds of
transparency, allowing only a single color to be transpar-
ent. Any pixels with an index transparency color are not
shown, and whatever content is in the background “be-
hind” the pixel is visible instead.

As a reminder, images use a color table to represent colors
where each color is designated a number. Pixel data is for the
image and each pixel is given a number pointing to its color
in the color table. If color #5 in a png is yellow and has been
chosen to be (index) transparent, pixels that are color #5 will
not be displayed and the background will be visible instead.

149

PNG

current image formats  PNG

Index transparency can often be found in gifs and png-8
files as the edges around transparent areas are often pixelat-
ed and there are no pixels that are partially transparent.

Index transparency can be useful when a unique symbol is
not available for a block of text (perhaps you are using a web
font or system font that doesn’t support that character) and
you wish to use an image with a transparent background to
match the background of the text.

Lorem Ipsum is simply the dummy text of the
printing and typesetting industry.

Lorem Ipsum is simply the dummy text of the
printing and typesetting industry.

Lorem Ipsum is simply the dummy text of the
printing and typesetting industry.

Lorem Ipsum

Index transparency color

An image or symbol with a solid color background that we wish to make
transparent so it better matches the rest of the text it is displayed alongside.

It can also be useful when you need to display a non-rect-
angular image (a donut, for example) with a transparent
background matching other content on a page.

150 Image Optimization  part two

PNG

Take care when selecting transparent colors so that the
index-transparent pngs are rendered as seamlessly as
possible. Note how the index-transparent donut png might
render acceptably if the background color is similar to the
original blue, but might not look (entirely) seamless against
a white background.

When relying on index transparency, avoid images with
shades of gray on the edges of characters/illustrations with
transparency backgrounds. These are commonly used be-
tween the color of the letter or image and that of the
backdrop for intermediate colors.

Shades of gray often have issues in the intermediate be-
tween a darker colored letter and a lighter background.
As can be seen in the example below, an unclean result
occurs when giving the encoder an image with gray edge
pixels. For such images, I recommend relying on alpha
channel transparency instead.

A donut png
where the blue
background
color is set as
transparent.

151

PNG

current image formats  PNG

This image uses index transparency to make a
white background transparent. Unfortunately,
it has grayscale edges with anti-aliasing. It looks
awkward even on a white background, and has a
very visible ghosting effect on a colored background.

ALPHA TRANSPARENCY

Image formats that support partial transparency do so
through an alpha channel. This allows transparency to be
represented on a per-pixel basis where each color value can
indicate how transparent it needs to be. A colorspace such
as rgba has colors represented as red, green, blue, and alpha
for controlling color opacity. An alpha value of 0 indicates
complete transparency (the full background is visible, as it
were), while 1 means fully opaque (full render of the pixel’s
color without any background being visible).

One of the nice things about alpha channels is that they can
represent transparency as a gradient of values; you can use
values between 0 and 1 to have full control over how much
background is visible and this can be mixed in with colors.
The closer the value gets to 0, the more visible the back-
ground is, while the closer to 1, the less background is shown.
This level of control enables images to better blend or fade
into their backgrounds with much smoother edges. Alpha
channels are supported in truecolor and grayscale pngs.

152 Image Optimization  part two

PNG

100%
opacity
graphic

PNG-8

50%
opacity
graphic

100%
opacity
graphic

PNG-24

50%
opacity
graphic

100%
opacity
graphic

PNG-32

50%
opacity
graphic

PNG Type Matrix

by Patrick Hansen

153

PNG

current image formats  PNG

On the top row is a png using index transparency;
below it is a png using an alpha channel. Note
how the alpha channel version blends into the
background much more smoothly without any of
the awkward fringes around the edges.

Alpha channels help make the edges of complex artwork like
logos blend better into the rest of the page, enabling smoother
transitions between different image layers, or making images
more translucent (a cleaner glass-like effect).

Alpha transparency allows many color levels to be trans-
parent, which will smooth any blends along curved or
anti-aliased87 edges. A png-24 with alpha transparency is ef-
fectively a png-32. The comparison by Patrick Hansen88 pro-
vides an excellent visualization of the same artwork saved
using different color palettes and transparency options.

Progressive versus Interlaced Display

Progressive and interlaced display options refer to how a
png loads on a website.

Both options provide a way to give users early visual feed-
back while a png is loading. This can be useful for improv-
ing the perception that an image is loading quickly.

87	 https://smashed.by/antialiasing
88	 https://smashed.by/png8

154 Image Optimization  part two

PNG

https://en.wikipedia.org/wiki/Anti-aliasing
https://en.wikipedia.org/wiki/Anti-aliasing
https://en.wikipedia.org/wiki/Anti-aliasing
http://www.patrickhansen.com/2011/02/04/png-8-24-32-what/
http://www.patrickhansen.com/2011/02/04/png-8-24-32-what/
http://www.patrickhansen.com/2011/02/04/png-8-24-32-what/

PNG Two-dimensional interlaced rendering

PNG Progressive-as-received rendering

The difference between interlaced and progressive png rendering. (Adapted

from “Progressive Image Rendering”89 by Jeff Atwood)

PROGRESSIVE

A png saved without the interlaced option90 is considered a
progressive image, which loads one line at a time from top
to bottom. When the connection speed is fast, this is often
not even noticeable. However, when the connection is slow,
a website visitor may grow frustrated with the slow build
of the graphic.

INTERLACED

A png saved with the interlaced option will begin displaying
by loading the whole image in a degraded condition and
then gradually build up quality.

Choosing interlaced when saving your png means a web-
site’s visitor will immediately see the image (at a suboptimal
quality) when first opening a site rather than only a line

89	 https://smashed.by/progressiveimage
90	 https://smashed.by/interlaced

155

PNG

current image formats  PNG

https://blog.codinghorror.com/progressive-image-rendering/
https://blog.codinghorror.com/progressive-image-rendering/
https://blog.codinghorror.com/progressive-image-rendering/
https://blog.codinghorror.com/progressive-image-rendering/
https://blog.codinghorror.com/progressive-image-rendering/
https://graphicdesign.stackexchange.com/questions/6677/what-does-the-interlaced-option-in-photoshop-do
https://graphicdesign.stackexchange.com/questions/6677/what-does-the-interlaced-option-in-photoshop-do
https://graphicdesign.stackexchange.com/questions/6677/what-does-the-interlaced-option-in-photoshop-do
https://graphicdesign.stackexchange.com/questions/6677/what-does-the-interlaced-option-in-photoshop-do

at a time. Though this may seem like the obvious choice,
interlacing does increase file size slightly and that should be
considered when deciding how to save your png.

Optimizing PNGS

To understand how, it’s important to first understand why a
png should be optimized. Optimization basically refers to sav-
ing only the parts of a png that are necessary for its intended
use, resulting in a compressed file size and quicker loading on
the web. Finding the optimal settings for each png requires
careful analysis along many dimensions: capabilities, content
of the encoded data, quality, dimensions, and more.

The following items discuss the behind-the-scenes process
involved in optimizing pngs that result in images with a
low file size while retaining the highest quality possible.

REDUCE UNIQUE COLORS

Remember the difference between png-8, png-24, and png-
32, and don’t automatically default to png-32 to retain the
highest quality as that’s often overkill. Weigh all of the options
and choose the base output needed for that particular image.

This can mean manually reducing many slightly different
colors into one color. This act alone directly influences the

156 Image Optimization  part two

PNG

compression potential of an image. Because reducing the
number of unique colors is essentially applying a loss effect
to an image, it is important to do this manually to ensure
perceptual quality is unaffected.

A Google doodle exported from 32-bit png to png-8.

The Google doodle shown here was exported to png-8,
which created the color palette to the right. This is a good
example of moving from a 32-bit true color png file to an
8-bit indexed png file. By moving to an indexed image,
we’ve replaced the unique color at each pixel to a pointer
in the palette. The result is a reasonable size reduction. It
works well as we’re dealing with an illustration.

Resizing an image with reduced unique
colors can sometimes result in an increase
of image colors due to anti-aliasing.

157

PNG

current image formats  PNG

OPTIMIZE DEFLATE COMPRESSION

PNG compression is a three-stage process. First, the pixels
pass through a lossless arithmetic transformation called fil-
tering, which does not compress or reduce the size of the data
but makes it more compressible. Filtering is powered by how
adjacent pixel colors differ from one another. In the second
stage, that filtered data is passed through the Lempel-Ziv-
Welch algorithm,91 which produces LZ7792 codes that are fur-
ther compressed by the Huffman algorithm,93 which makes
up the third and final stage. The second and third stages are
referred to as the Deflate compression94 which is a universal
form of lossless data compression. By reducing the number of
unique colors, the range of values after filtering is decreased,
and as a result the Deflate compression, which is made up of
the second and third stage, will find more duplicate values
and, therefore, be able to compress better.

Although Deflate is what png uses internally to compress
pixel data, it may not compress as well as newer codecs.
Advanced compressors like Zopfli95 or 7-zip96 can produce
gzip (.gz) files which will generate smaller files overall.
(Note: Gzip is not supported in IE11.) Tools like AdvPNG
can repack png data to generate a smaller png file.
We’ll discuss this and other options for generating
leaner pngs shortly.

91	 https://smashed.by/lempel
92	 https://smashed.by/lz77
93	 https://smashed.by/huffman
94	 https://smashed.by/deflate
95	 https://smashed.by/zopfli
96	 https://smashed.by/7zip

158 Image Optimization  part two

PNG

https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch
https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch
https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch
https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch
https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch
https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch
https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch
https://en.wikipedia.org/wiki/LZ77_and_LZ78
https://en.wikipedia.org/wiki/LZ77_and_LZ78
https://en.wikipedia.org/wiki/Huffman_coding
https://en.wikipedia.org/wiki/Huffman_coding
https://en.wikipedia.org/wiki/Huffman_coding
https://en.wikipedia.org/wiki/DEFLATE
https://en.wikipedia.org/wiki/DEFLATE
https://en.wikipedia.org/wiki/DEFLATE
https://en.wikipedia.org/wiki/DEFLATE
https://github.com/google/zopfli
http://www.7-zip.org/
http://www.7-zip.org/

REMOVE UNNEEDED CHUNKS

Remember that a png file is made up of its signature iden-
tifier and image-specific chunks containing all sorts of data.
For example, a header chunk can contain simple data such
as an image’s height, width, bit depth, and color type.

Then there is a chunk reserved for image data which contains
the actual image information itself. This image information
can actually be hidden in other chunks as well. Color-paletted
images have a separate chunk specifically for that.

Finally, there is a chunk at the end of each png file that is
considered to be the conclusion.

PNGs are notorious for containing a lot of other chunks that
may not be necessary to your png’s visible pixel data at all
and may be responsible for unwanted added bytes. These
chunks could be related to your file’s default background color,
chroma coordinates that control the display of white points,
gamma spec, histogram information,97 text data containing
language or metadata, color space information, stereo-image
data, notes dating previous edits, and transparency data.

These extra, sometimes unnecessary chunks represent
opportunities for trimming because your image-editing

97	 https://smashed.by/histogram

159

PNG

current image formats  PNG

https://en.wikipedia.org/wiki/Histogram
https://en.wikipedia.org/wiki/Histogram
https://en.wikipedia.org/wiki/Histogram

program automatically generates additional data behind
the scenes. For example, saving a png file from Photoshop
will result in a chunk that states that the image was made in
Photoshop. That chunk has absolutely nothing to do with the
visible pixel data, yet it’s included in the file. Removing these
useless chunks is a critical step in ensuring small file sizes.
While Photoshop may add unnecessary chunks to your png,
it also includes a feature to eliminate those chunks by simply
selecting the Export option from the File menu.

Colt McAnlis’s “Reducing png File Size”98 and “How png
Works”99 explain all the steps listed above in further detail.

Compression Tips for PNGS

There are a few tricks you can perform manually to further
compress a png.

IMAGE POSTERIZATION

Posterization100 can lower the file size of an image without
harming the perceived image quality too much. It works by
converting continuous color gradients into non-continuous
segments that require fewer colors to render.

98	 https://smashed.by/reducingpng
99	 https://smashed.by/howpngworks
100	 https://smashed.by/posterization

160 Image Optimization  part two

PNG

https://medium.com/@duhroach/reducing-png-file-size-8473480d0476
https://medium.com/@duhroach/reducing-png-file-size-8473480d0476
https://medium.com/@duhroach/reducing-png-file-size-8473480d0476
https://medium.com/@duhroach/reducing-png-file-size-8473480d0476
https://medium.com/@duhroach/reducing-png-file-size-8473480d0476
https://medium.com/@duhroach/reducing-png-file-size-8473480d0476
https://medium.com/@duhroach/reducing-png-file-size-8473480d0476
https://medium.com/@duhroach/reducing-png-file-size-8473480d0476
https://medium.com/@duhroach/reducing-png-file-size-8473480d0476
https://medium.com/@duhroach/how-png-works-f1174e3cc7b7
https://medium.com/@duhroach/how-png-works-f1174e3cc7b7
https://medium.com/@duhroach/how-png-works-f1174e3cc7b7
https://medium.com/@duhroach/how-png-works-f1174e3cc7b7
https://medium.com/@duhroach/how-png-works-f1174e3cc7b7
https://www.cambridgeincolour.com/tutorials/posterization.htm

A photograph before and after posterization.

Posterization influences the appearance of a photo in a
similar way to how the print process can limit the
number of color inks in a poster. The effect can range
from subtle to strong.

ALIASING AND ANTI-ALIASING

The term aliasing101 refers to the process of sampling a smooth
and continuous item using a series of small measurements; in
other words, taking a vector image and converting it to a raster
image. If this is done without using anti-aliasing then unwant-
ed, jagged artifacts not present in the original will appear.

The letter on the left is
aliased; on the right, anti-
aliasing has been applied to
make the edges smoother.

101	 https://smashed.by/aliasing

161

PNG

current image formats  PNG

https://en.wikipedia.org/wiki/Aliasing

The appearance of these artifacts is called aliasing. Because
pixels are set in a square grid system, aliasing isn’t visible
when dealing with square or rectangular objects. But as
soon as an image deviates from the square pixel grid, un-
wanted artifacts represented by jagged curves or diagonal
lines appear. Anti-aliasing is a method of reducing the visi-
bility of those jagged edges by blurring them slightly, which
creates a slightly higher file size.

PIXEL FITTING

Pixel fitting102 (also known as pixel hinting) is a practical
technique for ensuring high-quality results for vector
graphics that are converted over to raster graphics
such as png.

Simple images like icons, wordmarks, and logos are best cre-
ated as vector graphics, because doing so allows us to scale
them to different sizes without any loss of quality. However,
when converting that vector file into a browser-friendly, ras-
ter png, a problem often occurs when an image editor tries
to smooth out edges during anti-aliasing. The result of that
process varies but is often applied not only to the curves
and diagonal lines where it’s needed, but also unnecessarily
along straight lines.

102	 https://smashed.by/pixelfitting

162 Image Optimization  part two

PNG

http://dcurt.is/pixel-fitting
http://dcurt.is/pixel-fitting
http://dcurt.is/pixel-fitting

The results of
pixel fitting.
(Source: spec.fm103)

The illustration shows the results of pixel-fitting an icon
from spec.fm. The red icon uses automatic anti-aliasing,
leaving many of the important decisions to computer graph-
ics tools. To the left, the green icon has its pixels aligned to
the grid, ensuring they are sharp with crisp edges.

Pixel fitting or hinting is the process that bumps those blur-
ry pixels along vertical or horizontal lines back into their
place within the pixel grid.

SPLIT BY TRANSPARENCY

Sometimes it is necessary to save an image as the “heavy”
png-24 because of a few semitransparent pixels. You can
reduce file size, though, if you split the image into two sep-
arate images: one with solid pixels saved as a png-8, and the
other with semitransparent pixels saved as necessary.

103	 https://smashed.by/specfm

163

PNG

current image formats  PNG

https://spec.fm/specifics/8-pt-grid
https://spec.fm/specifics/8-pt-grid
https://spec.fm/specifics/8-pt-grid

“How to Optimize png”104 by
Sergey Chikuyonok is a good resource
that lists a bunch of different ways to
reduce file size manually.

PNG Optimization Tools

Several tools exist for optimizing pngs in batch, with
ImageOptim desktop being strongly recommended on
desktop for Macs and ImageOptim105 online for Windows.
On the web, I personally also like Squoosh.app106 for one-off
compression of individual images.

IMAGEOPTIM

ImageOptim107 is a free desktop tool for macOS that seam-
lessly combines several image optimization tools, including
pngcrush, pngquant, and pngout (see individual entries in
this list for more details).

In addition to stripping png metadata such as gamma,
color profiles, and optional chunks, it also provides easy
configuration over many of the png tools listed in the rest
of this section.

104	 https://smashed.by/optimizingpng
105	 https://imageoptim.com
106	 http://squoosh.app/
107	 https://imageoptim.com/mac

164 Image Optimization  part two

PNG

https://www.smashingmagazine.com/2009/07/clever-png-optimization-techniques/
https://www.smashingmagazine.com/2009/07/clever-png-optimization-techniques/
https://www.smashingmagazine.com/2009/07/clever-png-optimization-techniques/
https://www.smashingmagazine.com/2009/07/clever-png-optimization-techniques/
https://www.smashingmagazine.com/2009/07/clever-png-optimization-techniques/
https://www.smashingmagazine.com/2009/07/clever-png-optimization-techniques/
https://www.smashingmagazine.com/2009/07/clever-png-optimization-techniques/
https://www.smashingmagazine.com/2009/07/clever-png-optimization-techniques/
https://imageoptim.com/mac
https://imageoptim.com/mac
https://imageoptim.com/mac
https://imageoptim.com/online
https://imageoptim.com/online
https://imageoptim.com/online
http://squoosh.app/
http://squoosh.app/
http://squoosh.app/
https://imageoptim.com

The preferences pane for ImageOptim showing its integrated compression tools.

A number of alternatives to ImageOptim108 for Windows
and Linux are listed on the website.

ADVDEF

An open-source, lossless deflate stream recompressor,
advdef109 does not run compression trials or change file
specifications, but the bit depth is always rewritten to
8 bits per pixel.

EFFICIENT COMPRESSION TOOL (ECT)

ECT110 is an open-source and visually lossless jpeg and
png optimizer that uses optipng111 for the fast mode and
zopflipng112 for stronger compression. It uses an optimized

108	 https://smashed.by/imageoptimversions
109	 https://smashed.by/advdef
110	 https://smashed.by/ect
111	 https://smashed.by/optipng
112	 https://smashed.by/zopflipng

165

PNG

current image formats  PNG

https://imageoptim.com/versions.html
https://imageoptim.com/versions.html
https://imageoptim.com/versions.html
https://imageoptim.com/versions.html
https://imageoptim.com/versions.html
http://www.advancemame.it/doc-advdef
https://github.com/fhanau/Efficient-Compression-Tool
http://optipng.sourceforge.net/
https://github.com/google/zopfli/blob/master/README.zopflipng

version of the libraries used by those tools, which makes
ect much faster. It includes nice improvements for dirty
transparency (image regions which are 100% transparent,
but still contain color information in the other channels)
and lets the user combine optimization trials with order of
entries in the palette.

MEDIAN CUT PNG POSTERIZER

This open-source and lossy png compressor has two
distinct modes: the lossy blurizer, which changes data to
make it more compressible with the average filter; and
the posterizer, that reduces the number of colors without
conversion to palette mode. In both cases, the median
cut png posterizer’s operation113 is lossy but should reduce
file size significantly.

OPTIPNG

An open-source and visually lossless png optimizer mainly
based on pngcrush, optipng114 recompresses image files to a
smaller size without losing information. If using Gulp, you
can install gulp-imagemin115 to add optipng to your work-
flow. To install, run:

$ npm install --save-dev gulp-imagemin

113	 https://smashed.by/mediancut
114	 https://smashed.by/optipng
115	 https://smashed.by/gulpimagemin

166 Image Optimization  part two

PNG

https://github.com/kornelski/mediancut-posterizer
https://github.com/kornelski/mediancut-posterizer
https://github.com/kornelski/mediancut-posterizer
https://github.com/kornelski/mediancut-posterizer
https://github.com/kornelski/mediancut-posterizer
https://github.com/kornelski/mediancut-posterizer
https://github.com/kornelski/mediancut-posterizer
http://optipng.sourceforge.net/
https://github.com/sindresorhus/gulp-imagemin
https://github.com/sindresorhus/gulp-imagemin
https://github.com/sindresorhus/gulp-imagemin

Then, to configure and use optipng:

const gulp = require('gulp');
const imagemin = require('gulp-imagemin');

gulp.task('default', () =>
 gulp.src('src/images/*')
 .pipe(imagemin([
 imagemin.optipng({optimizationLevel:
5})]))
 .pipe(gulp.dest('dist/images'))
);

PINGO

Pingo116 is an experimental, closed-source, and visually lossless
or lossy jpeg and png optimizer for Windows. It processes files
or folders recursively with a file-based multiprocessing system.

PNGCRUSH

An open-source and visually lossless png optimizer,
pngcrush117 is probably one of the first public png optimi-
zers, and most of the other tools are inspired by it. To make
use of it, you actually have to know how png works, be-
cause the tool does not provide profiles, but there are
lots of options.

116	 https://smashed.by/pingo
117	 https://smashed.by/pngcrush

167

PNG

current image formats  PNG

https://css-ig.net/pingo
https://pmt.sourceforge.io/pngcrush/

PNGOPTIMIZER

Open-source and visually lossless, PngOptimizer118 exists as
a command-line interface and a very simple gui that
allows drag-and-drop of files or folders. It performs all of
the major reductions, along with color-type trials and basic
dirty transparency support.

PNGOUT

When used with the right options, pngout usually com-
presses better than other tools that use zlib, thanks to its
compression algorithm ks-flate. pngout is slow but offers
better compression with an advanced block splitter.

PNGQUANT

This open-source and lossy png converter transforms rgba
png to indexed color png (256 colors maximum) using a
nicely modified median-cut algorithm. The file size is usually
reduced by half or more thanks to the conversion to palette
type. Pngquant119 works fine on most simple images, but ow-
ing to the color limitation, it requires some quality control.

118	 https://smashed.by/pngoptimizer
119	 https://pngquant.org/

168 Image Optimization  part two

PNG

https://psydk.org/pngoptimizer
https://psydk.org/pngoptimizer
https://psydk.org/pngoptimizer
https://pngquant.org/

PNGWOLF

Pngwolf120 is an open-source and lossless png filter finder
tool that uses a generic algorithm to find filter combina-
tions and selects the one that compresses better. Used well,
it should be able to find a better filtering solution than most
other png optimizers.

ZOPFLIPNG

ZopfliPNG121 is an open-source and visually lossless png op-
timizer that uses the lodepng122 library and zopfli compres-
sion algorithm. The tool is able to do some important reduc-
tions for web-based images, including dirty transparency. As
a pure compressor, the tool is usually able to compress a bit
more than pngout’s ks-flate algorithm.

For a detailed comparison of the free optimization tools
listed above, see Cédric Louvrier’s “png tools overview.”123

120	 https://smashed.by/pngwolf
121	 https://smashed.by/zopflipng
122	 https://smashed.by/lodepng
123	 https://smashed.by/pngtools

169

PNG

current image formats  PNG

http://bjoern.hoehrmann.de/pngwolf/
https://github.com/google/zopfli/blob/master/README.zopflipng
https://lodev.org/lodepng/
https://css-ig.net/png-tools-overview
https://css-ig.net/png-tools-overview
https://css-ig.net/png-tools-overview
https://css-ig.net/png-tools-overview
https://css-ig.net/png-tools-overview
https://css-ig.net/png-tools-overview

chapter 9

WebP

WebP124 is a relatively recent image format
developed by Google with the aim of offering
lower file sizes for lossless and lossy compres-

sion at an acceptable visual quality. It includes support for
alpha-channel transparency and animation.

Through 2019, webp became a few percent better compres-
sion-wise in lossy and lossless modes, and the algorithm
got twice as fast with a 10% improvement in decompres-
sion. WebP is not a tool for all purposes, but it has some
standing and a growing user base in the image compres-
sion community.

Comparison of WebP file sizes at different quality settings: q=90, 646 kb;
q=80, 290 kb; q=75, 219 kb; q=70, 199 kb. Unsplash photo by Ray Hennessy.

Is a more modern image format worth considering? Light-
house in Chrome DevTools highlights images in older
image formats, showing potential savings gained by serving
webp versions of those images.

124	 https://smashed.by/webpspeed

170 Image Optimization  part two

WebP

https://developers.google.com/speed/webp/
https://developers.google.com/speed/webp/

Lighthouse displays potential byte savings for images served in newer formats.

The “Serve images in next-gen formats” audit can be a quick
gut check that formats like webp are worth investing your
time in. As always, manual verification is also recommend-
ed if time allows.

WebP in Performance

LOSSY COMPRESSION

WebP lossy files, using a vp8 or vp9 video key frame encod-
ing variant,125 are cited by the webp team as being 25–34%126
smaller than jpeg files on average.

125	 https://smashed.by/vp9
126	 https://smashed.by/webpstudy

171current image formats  WebP

WebP

https://www.webmproject.org/vp9/
https://www.webmproject.org/vp9/
https://www.webmproject.org/vp9/
https://www.webmproject.org/vp9/
https://www.webmproject.org/vp9/
https://www.webmproject.org/vp9/
https://www.webmproject.org/vp9/
https://www.webmproject.org/vp9/
https://www.webmproject.org/vp9/
https://www.webmproject.org/vp9/
https://www.webmproject.org/vp9/
https://developers.google.com/speed/webp/docs/webp_study
https://developers.google.com/speed/webp/docs/webp_study
https://developers.google.com/speed/webp/docs/webp_study

In the low-quality range (0–50), webp has a large advantage
over jpeg because it can blur away ugly blockiness artifacts.
A medium quality setting (-m 4 -q 75) is the default, bal-
ancing speed and file size. In the higher range (80–99), the
advantages of webp shrink. WebP is recommended where
speed matters more than quality.

LOSSLESS COMPRESSION

WebP lossless files are 26% smaller than png files.127 The
lossless load-time decrease compared with png is 3%.
That said, you generally don’t want to deliver lossless on
the web. There’s a difference between lossless and sharp
edges (i.e. non-jpeg). Lossless webp may be more suitable
for archival content.

TRANSPARENCY

WebP has a lossless 8-bit transparency channel with only
22% more bytes than png. It also supports lossy rgb trans-
parency, which is a feature unique to webp.

METADATA

The webp file format supports exif photo metadata and
extreme memory profile (xmp) digital document metadata.
It also contains an icc color profile.

127	 https://smashed.by/webplossless

172 Image Optimization  part two

WebP

https://developers.google.com/speed/webp/docs/webp_lossless_alpha_study
https://developers.google.com/speed/webp/docs/webp_lossless_alpha_study
https://developers.google.com/speed/webp/docs/webp_lossless_alpha_study
https://developers.google.com/speed/webp/docs/webp_lossless_alpha_study
https://developers.google.com/speed/webp/docs/webp_lossless_alpha_study
https://developers.google.com/speed/webp/docs/webp_lossless_alpha_study
https://developers.google.com/speed/webp/docs/webp_lossless_alpha_study
https://developers.google.com/speed/webp/docs/webp_lossless_alpha_study
https://developers.google.com/speed/webp/docs/webp_lossless_alpha_study
https://developers.google.com/speed/webp/docs/webp_lossless_alpha_study
https://developers.google.com/speed/webp/docs/webp_lossless_alpha_study
https://developers.google.com/speed/webp/docs/webp_lossless_alpha_study
https://developers.google.com/speed/webp/docs/webp_lossless_alpha_study
https://developers.google.com/speed/webp/docs/webp_lossless_alpha_study
https://developers.google.com/speed/webp/docs/webp_lossless_alpha_study

WebP offers better compression at the cost of being more
cpu-intensive. Back in 2013, the compression speed of webp
was about ten times slower than jpeg, but it is now mostly
negligible (some images may be two times slower). For stat-
ic images processed as part of your build, this shouldn’t be a
large issue. Dynamically generated images will likely cause
a perceivable cpu overhead and will be something you will
need to evaluate.

WebP lossy quality settings are not directly
comparable to jpeg. A jpeg at a quality
setting of 70 will be quite different to a
webp image at the same setting because
webp achieves smaller file sizes by
discarding more data.

WebP Feature Comparison

WebP combines good performance with rich features. WebP
images can use either lossy or lossless compression, with or
without transparency, while having consistently smaller128
file sizes129 than other image formats.

128	 https://smashed.by/pngtowebp
129	 https://smashed.by/animatedwebp

173

WebP

current image formats  WebP

https://optimus.keycdn.com/support/png-to-webp/
https://developers.google.com/speed/webp/docs/c_study#results
https://developers.google.com/speed/webp/docs/c_study#results
https://developers.google.com/speed/webp/docs/c_study#results

webp png jpeg gif

Lossy
Compression

Yes Yes Yes No

Lossless
Compression

Yes Yes Yes Yes

Transparency Yes Yes No Yes

Animation Yes No No Yes

Support for animation makes webp a good alternative to gif:130

•	 WebP supports 24-bit rgb color with an 8-bit alpha chan-
nel, compared with gif’s 8-bit color and 1-bit alpha.

•	 Animated gifs converted to lossy webps are 64%
smaller, while lossless webps are 19% smaller.

In 2019, Tumblr131 and Giphy132 started serving animated imag-
es in webp format to supporting browsers, with gifs as a fall-
back for the rest. Other websites, including Twitter, use videos
to display animated content, which we’ll discuss in chapter 15.

WebP in Production

Many large companies are using webp in production to
reduce costs and decrease web page load times.

130	 https://smashed.by/animatedwebp
131	 https://www.tumblr.com/
132 	 https://giphy.com/	

174 Image Optimization  part two

WebP

https://developers.google.com/speed/webp/faq#why_should_i_use_animated_webp
https://developers.google.com/speed/webp/faq#why_should_i_use_animated_webp
https://developers.google.com/speed/webp/faq#why_should_i_use_animated_webp
https://developers.google.com/speed/webp/faq#why_should_i_use_animated_webp
https://developers.google.com/speed/webp/faq#why_should_i_use_animated_webp
https://developers.google.com/speed/webp/faq#why_should_i_use_animated_webp
https://developers.google.com/speed/webp/faq#why_should_i_use_animated_webp
https://developers.google.com/speed/webp/faq#why_should_i_use_animated_webp
https://developers.google.com/speed/webp/faq#why_should_i_use_animated_webp
https://developers.google.com/speed/webp/faq#why_should_i_use_animated_webp
https://www.tumblr.com/
https://giphy.com/

Google reports 30–35% savings using webp over other lossy
compression schemes, serving 43 billion image requests a
day, 26% of those being lossless compression. This can be seen
in large sites like YouTube and Google Play. That’s a lot of
requests and significant savings. Savings would undoubtedly
be larger if webp’s browser support133 were more widespread.

At the time of writing, Netflix, Amazon, Quora, Yahoo,
Walmart, Ebay, the Guardian, Fortune, and USA Today all
compress and serve webp images for browsers that support
it. VoxMedia shaved between one and three seconds off load
times134 for the Verge by switching over to webp for Chrome
users. 500px saw an average 25% reduction in image file size135
with similar or better image quality when switching to serving
webp to Chrome users.

WebP Encoding

WebP’s lossy encoding is designed to compete with jpeg for still
images. There are three key phases to webp’s lossy encoding.

Macroblocking: splitting an image into 16×16 (macro)
blocks of luma pixels and two 8×8 blocks of chroma
pixels. This may sound similar to the idea of jpegs
doing color space conversion, chroma channel downsam-
pling, and image subdivision.

133	 https://smashed.by/webpsupport
134	 https://smashed.by/boogaloo
135	 https://smashed.by/500px

175

WebP

current image formats  WebP

http://caniuse.com/#search=webp
http://caniuse.com/#search=webp
http://caniuse.com/#search=webp
http://caniuse.com/#search=webp
http://caniuse.com/#search=webp
http://caniuse.com/#search=webp
https://product.voxmedia.com/2015/8/13/9143805/performance-update-2-electric-boogaloo
https://product.voxmedia.com/2015/8/13/9143805/performance-update-2-electric-boogaloo
https://product.voxmedia.com/2015/8/13/9143805/performance-update-2-electric-boogaloo
https://product.voxmedia.com/2015/8/13/9143805/performance-update-2-electric-boogaloo
https://product.voxmedia.com/2015/8/13/9143805/performance-update-2-electric-boogaloo
https://product.voxmedia.com/2015/8/13/9143805/performance-update-2-electric-boogaloo
https://product.voxmedia.com/2015/8/13/9143805/performance-update-2-electric-boogaloo
https://product.voxmedia.com/2015/8/13/9143805/performance-update-2-electric-boogaloo
https://product.voxmedia.com/2015/8/13/9143805/performance-update-2-electric-boogaloo
https://product.voxmedia.com/2015/8/13/9143805/performance-update-2-electric-boogaloo
https://product.voxmedia.com/2015/8/13/9143805/performance-update-2-electric-boogaloo
https://product.voxmedia.com/2015/8/13/9143805/performance-update-2-electric-boogaloo
https://product.voxmedia.com/2015/8/13/9143805/performance-update-2-electric-boogaloo
https://product.voxmedia.com/2015/8/13/9143805/performance-update-2-electric-boogaloo
https://product.voxmedia.com/2015/8/13/9143805/performance-update-2-electric-boogaloo
https://product.voxmedia.com/2015/8/13/9143805/performance-update-2-electric-boogaloo
https://product.voxmedia.com/2015/8/13/9143805/performance-update-2-electric-boogaloo
https://product.voxmedia.com/2015/8/13/9143805/performance-update-2-electric-boogaloo
https://iso.500px.com/500px-color-profiles-file-formats-and-you/
https://iso.500px.com/500px-color-profiles-file-formats-and-you/
https://iso.500px.com/500px-color-profiles-file-formats-and-you/
https://iso.500px.com/500px-color-profiles-file-formats-and-you/
https://iso.500px.com/500px-color-profiles-file-formats-and-you/
https://iso.500px.com/500px-color-profiles-file-formats-and-you/
https://iso.500px.com/500px-color-profiles-file-formats-and-you/
https://iso.500px.com/500px-color-profiles-file-formats-and-you/
https://iso.500px.com/500px-color-profiles-file-formats-and-you/
https://iso.500px.com/500px-color-profiles-file-formats-and-you/
https://iso.500px.com/500px-color-profiles-file-formats-and-you/

Macroblocking
example of a
Google doodle
where a range
of pixels is
broken down
into luma and
chroma blocks.

Prediction: every 4×4 subblock of a macroblock has a
prediction model applied that effectively does filtering. This
defines two sets of pixels around a block: A (the row directly
above it), and L (the column to the left of it).

Using these two sets, the encoder fills a test block with 4×4
pixels and determines which creates values closest to the
original block. Colt McAnlis talks about this in more depth
in “How WebP Works (lossly mode).”136

Google doodle example of a
segment displaying the row A,
target block, and column L when
considering a prediction model.

136	 https://smashed.by/lossly

176 Image Optimization  part two

WebP

https://medium.com/@duhroach/how-webp-works-lossly-mode-33bd2b1d0670
https://medium.com/@duhroach/how-webp-works-lossly-mode-33bd2b1d0670
https://medium.com/@duhroach/how-webp-works-lossly-mode-33bd2b1d0670
https://medium.com/@duhroach/how-webp-works-lossly-mode-33bd2b1d0670
https://medium.com/@duhroach/how-webp-works-lossly-mode-33bd2b1d0670
https://medium.com/@duhroach/how-webp-works-lossly-mode-33bd2b1d0670
https://medium.com/@duhroach/how-webp-works-lossly-mode-33bd2b1d0670
https://medium.com/@duhroach/how-webp-works-lossly-mode-33bd2b1d0670
https://medium.com/@duhroach/how-webp-works-lossly-mode-33bd2b1d0670

Finally, a discrete cosine transform (dct) is then applied
with a few steps similar to jpeg encoding. A key dif-
ference is the use of an arithmetic compressor137 rather
than jpeg’s Huffman coding. If you want to dive deeper, the
Google Developers article “WebP Compression Techniques”138
goes into this topic in depth.

Browser Support for WebP

WebP is supported in most major browsers, though support
for different features has been added gradually. Here are the
major browsers and support information139 for webp:

lossy
webp
support

lossless
webp animation

Chrome 17 23
25 on Android

32

Edge 18 18 18

Firefox 65 65 65

Internet
Explorer

11.10
(Presto)

12.10
(Presto)

Not
Supported

Opera 15 (Blink) 15 (Blink) 19 (Blink)

Safari 14 14 14

137	 https://smashed.by/compressor
138	 https://smashed.by/webpcompression
139	 https://smashed.by/webpbrowser

177

WebP

current image formats  WebP

https://www.youtube.com/watch?v=FdMoL3PzmSA&index=7&list=PLOU2XLYxmsIJGErt5rrCqaSGTMyyqNt2H
https://www.youtube.com/watch?v=FdMoL3PzmSA&index=7&list=PLOU2XLYxmsIJGErt5rrCqaSGTMyyqNt2H
https://www.youtube.com/watch?v=FdMoL3PzmSA&index=7&list=PLOU2XLYxmsIJGErt5rrCqaSGTMyyqNt2H
https://www.youtube.com/watch?v=FdMoL3PzmSA&index=7&list=PLOU2XLYxmsIJGErt5rrCqaSGTMyyqNt2H
https://www.youtube.com/watch?v=FdMoL3PzmSA&index=7&list=PLOU2XLYxmsIJGErt5rrCqaSGTMyyqNt2H
https://developers.google.com/speed/webp/docs/compression
https://developers.google.com/speed/webp/docs/compression
https://developers.google.com/speed/webp/docs/compression
https://developers.google.com/speed/webp/docs/compression
https://developer.mozilla.org/en-US/docs/Web/Media/Formats/Image_types#WebP_image
https://developer.mozilla.org/en-US/docs/Web/Media/Formats/Image_types#WebP_image
https://developer.mozilla.org/en-US/docs/Web/Media/Formats/Image_types#WebP_image
https://developer.mozilla.org/en-US/docs/Web/Media/Formats/Image_types#WebP_image
https://developer.mozilla.org/en-US/docs/Web/Media/Formats/Image_types#WebP_image
https://developer.mozilla.org/en-US/docs/Web/Media/Formats/Image_types#WebP_image
https://developer.mozilla.org/en-US/docs/Web/Media/Formats/Image_types#WebP_image

It’s left to developers to provide fallbacks for browsers that
do not support this image format. Depending on the webp
features used, it might also be necessary to detect older
browser versions that don’t support them and provide fall-
back for those too. WebP is not without its downsides:

•	 It lacks wide gamut and full chroma subsampling.

•	 Lossy webp works exclusively with an 8-bit YCbCr 4:2:0
(see also chapter 7, “jpeg”), while lossless webp works
exclusively with the rbga format.

•	 It does not support progressive decoding.

That said, the tooling for webp is decent, and browser sup-
port may well cover enough of your users for it to be worth
considering with a fallback.

Avoid converting low or average quality
jpegs to webp. This common mistake can
generate webp images displaying jpeg
compression artifacts. Using webp for this
is less efficient: it has to save the image and
the distortions added by jpeg, meaning
you lose on quality twice. When converting
to webp, use the best quality source file
available, preferably the original.

178 Image Optimization  part two

WebP

Viewing WebP Images

While you can drag and drop webp images to Blink-based
browsers (Chrome, Opera, Brave) to preview them, you

can also preview
them directly in
your os using
an add-on for
either macOS
or Windows.
When Facebook

experimented with webp140 a few years ago, it found that
users who tried to right-click on photos and save them
noticed they could only display them in their browsers.

There were three key problems here:

•	 Users were able to save webp images to their local
filesystem using the browser’s “Save As” functionality.
Unfortunately, once saved, they were unable to view
these webp files locally. This was fixed by Chrome
registering itself as a .webp handler.

•	 “Save As” then attaching the image to an email and
sharing with someone without Chrome. Facebook
solved this by introducing a prominent “download”
button in their ui and returning a jpeg when users
requested the download.

140	 https://smashed.by/squawk

success story  “Switching from jpeg to

webp thumbnails decreased their size by

about 30%. On desktop, this decreased

mean thumbnail load time by about 13%

in supported browsers”

—YouTube (Nov, 2018)

179

WebP

current image formats  WebP

https://www.cnet.com/news/facebook-tries-googles-webp-image-format-users-squawk/
https://www.cnet.com/news/facebook-tries-googles-webp-image-format-users-squawk/
https://www.cnet.com/news/facebook-tries-googles-webp-image-format-users-squawk/
https://www.cnet.com/news/facebook-tries-googles-webp-image-format-users-squawk/
https://www.cnet.com/news/facebook-tries-googles-webp-image-format-users-squawk/
https://www.cnet.com/news/facebook-tries-googles-webp-image-format-users-squawk/

•	 Users who would right click a webp image to copy the
url and share it on the web with other users (who may
not have a webp-supporting browser) found that sharing
was broken. This was solved by content-type negotia-
tion141 and modern browsers now all supporting webp.

These issues might matter less to your users, but it is an in-
teresting note on social shareability in passing. Thankfully,
utilities now exist for viewing and working with webp on
different operating systems.

On macOS, try the Quick Look plug-in for webp142
(qlImageSize). It works pretty well:

Desktop on macOS showing a webp file previewed using the Quick Look

plug-in for webp files.

141	 https://smashed.by/newformats
142	 https://smashed.by/quicklook

180 Image Optimization  part two

WebP

https://www.igvita.com/2012/12/18/deploying-new-image-formats-on-the-web/
https://www.igvita.com/2012/12/18/deploying-new-image-formats-on-the-web/
https://www.igvita.com/2012/12/18/deploying-new-image-formats-on-the-web/
https://www.igvita.com/2012/12/18/deploying-new-image-formats-on-the-web/
https://www.igvita.com/2012/12/18/deploying-new-image-formats-on-the-web/
https://www.igvita.com/2012/12/18/deploying-new-image-formats-on-the-web/
https://github.com/Nyx0uf/qlImageSize
https://github.com/Nyx0uf/qlImageSize
https://github.com/Nyx0uf/qlImageSize
https://github.com/Nyx0uf/qlImageSize
https://github.com/Nyx0uf/qlImageSize
https://github.com/Nyx0uf/qlImageSize
https://github.com/Nyx0uf/qlImageSize
https://github.com/Nyx0uf/qlImageSize
https://github.com/Nyx0uf/qlImageSize
https://github.com/Nyx0uf/qlImageSize

On Windows, you can download the webp codec package143
that enables webp images to be previewed in File Explorer
and Windows Photo Viewer.

Converting Images to WebP

Several free, open-source, and commercial image editing
tools support webp.

SQUOOSH

For one off conversions to webp, I personally enjoy using
Squoosh144 (by the Google Chrome team) on the web:

The online interface for Squoosh. (Pug image source: Charles Deluvio145)

143	 https://smashed.by/webpcodec
144	 https://squoosh.app
145	 https://smashed.by/deluvio

181

WebP

current image formats  WebP

https://developers.google.com/speed/webp/download
https://developers.google.com/speed/webp/download
https://developers.google.com/speed/webp/download
https://developers.google.com/speed/webp/download
https://squoosh.app
https://unsplash.com/photos/Mv9hjnEUHR4
https://unsplash.com/photos/Mv9hjnEUHR4
https://unsplash.com/photos/Mv9hjnEUHR4

It supports an advanced mode, affording you more control
over compression settings for each format, such as how
alpha channels should be handled.

XNCONVERT

A great desktop application for converting to webp is
XnConvert:146 it’s free, cross-platform, and a great batch
image processing converter.

XnConvert enables batch image processing and is compatible
with over 500 image formats. You can combine over 80 sepa-
rate actions to transform or edit your images in multiple ways.

Batch image editing using XnConvert on macOS.

146	 https://smashed.by/xnconvert

182 Image Optimization  part two

WebP

http://www.xnview.com/en/xnconvert/

In addition to compression, XnConvert can also help with
stripping and editing metadata, cropping and resizing, bright-
ness and contrast, customizing color depth, blurring and
sharpening, masks and watermarks, and other transforms.

NODE.JS MODULES

Imagemin147 is a popular image minification module
that also has an add-on for converting images to webp
(imagemin-webp148). The add-on supports both lossy and
lossless webp modes.

To install imagemin and imagemin-webp run:

npm install --save imagemin imagemin-webp

We can then require() in both modules and run them on
any images in a project directory. The code below uses lossy
encoding with a webp encoder quality of 60:

const imagemin = require('imagemin');
const imageminWebp = require('imagemin-webp');

imagemin(['images/*.{jpg}'], 'images', {
 use: [

147	 https://smashed.by/imagemingit
148	 https://smashed.by/imageminwebp

183

WebP

current image formats  WebP

https://github.com/imagemin/imagemin
https://github.com/imagemin/imagemin-webp
https://github.com/imagemin/imagemin-webp
https://github.com/imagemin/imagemin-webp

 imageminWebp({quality: 60})
]
}).then(() => {
 console.log('Images optimized');
});

Similar to jpegs, it’s possible to notice compression artifacts
in our output. Evaluate what quality setting makes sense
for your own images. Imagemin-webp can also be used to
encode lossless webp images (supporting 24-bit color and
full transparency) by passing lossless: true to options:

const imagemin = require('imagemin');
const imageminWebp = require('imagemin-webp');

imagemin(['images/*.{jpg,png}'], 'build/images', {
 use: [
 imageminWebp({lossless: true})
]
}).then(() => {
 console.log('Images optimized');
});

A webp plug-in for Gulp149 by Sindre Sorhus built on
imagemin-webp, and a webp loader for webpack150 are

149	 https://smashed.by/webpgulp
150	 https://smashed.by/webploader

184 Image Optimization  part two

WebP

https://github.com/sindresorhus/gulp-webp
https://github.com/sindresorhus/gulp-webp
https://github.com/sindresorhus/gulp-webp
https://github.com/sindresorhus/gulp-webp
https://github.com/sindresorhus/gulp-webp
https://github.com/sindresorhus/gulp-webp
https://github.com/sindresorhus/gulp-webp
https://github.com/sindresorhus/gulp-webp
https://www.npmjs.com/package/webp-loader
https://www.npmjs.com/package/webp-loader
https://www.npmjs.com/package/webp-loader
https://www.npmjs.com/package/webp-loader
https://www.npmjs.com/package/webp-loader
https://www.npmjs.com/package/webp-loader
https://www.npmjs.com/package/webp-loader
https://www.npmjs.com/package/webp-loader
https://www.npmjs.com/package/webp-loader

also available. The Gulp plug-in accepts any options the
imagemin add-on does:

const gulp = require('gulp');
const webp = require('gulp-webp');

gulp.task('webp', () =>
 gulp.src('src/*.jpg')
 .pipe(webp
 quality: 80,
 preset: 'photo',
 method: 6
 }))
 .pipe(gulp.dest('dist'))
);

Or lossless:

const gulp = require('gulp');
const webp = require('gulp-webp');

gulp.task('webp-lossless', () =>
 gulp.src('src/*.jpg')
 .pipe(webp({
 lossless: true
 }))
 .pipe(gulp.dest('dist'))
);

185

WebP

current image formats  WebP

BATCH IMAGE OPTIMIZATION USING BASH

XnConvert supports batch image compression, but if you
would prefer to avoid using an app or a build system, Bash
and image optimization binaries keep things fairly simple.
You can bulk convert your images to webp using cwebp:151

find ./ -type f -name '*.jpg' -exec cwebp -q 70 {} -o
{}.webp \;

Or bulk optimize your image sources with mozjpeg using
jpeg-recompress:152

find ./ -type f -name '*.jpg' -exec jpeg-recompress
{} {} \;

And trim those svgs using svgo153 (which we’ll cover in the
next chapter):

find ./ -type f -name '*.svg' -exec svgo {} \;

Jeremy Wagner has published a comprehensive post on
image optimization using Bash154 and another on doing this
work in parallel.155

151	 https://smashed.by/cwebp
152	 https://smashed.by/jpegarchive
153	 https://smashed.by/svgo
154	 https://smashed.by/bash
155	 https://smashed.by/bulk

186 Image Optimization  part two

WebP

https://developers.google.com/speed/webp/docs/cwebp
https://github.com/danielgtaylor/jpeg-archive
https://github.com/danielgtaylor/jpeg-archive
https://github.com/danielgtaylor/jpeg-archive
https://github.com/svg/svgo
https://jeremy.codes/blog/bulk-image-optimization-in-bash
https://jeremy.codes/blog/bulk-image-optimization-in-bash
https://jeremy.codes/blog/bulk-image-optimization-in-bash
https://jeremy.codes/blog/bulk-image-optimization-in-bash
https://jeremy.codes/blog/bulk-image-optimization-in-bash
https://jeremy.codes/blog/bulk-image-optimization-in-bash
https://jeremy.codes/blog/bulk-image-optimization-in-bash
https://jeremy.codes/blog/faster-bulk-image-optimization-in-bash

OTHER WEBP IMAGE PROCESSING AND EDITING TOOLS

As well as those described above, other webp tools include:

•	 Leptonica:156 an entire website of open source image
processing and analysis apps by Dan Bloomberg.

•	 Sketch:157 supports exporting directly to webp.

•	 GIMP:158 the free, open-source image editor can
export to webp.

•	 ImageMagick:159 a free command-line app that allows
you to create, compose, convert, or edit bitmap images,
including webp.

•	 Pixelmator:160 a commercial image editor for macOS
exports webp images.

•	 Photoshop WebPShop plug-in:161 a free Photoshop
plug-in from Google that enables importing and export-
ing webp images (in the latest version of Photoshop).

Android users can convert existing bmp, jpeg, png,
or static gif images to webp format using Android
Studio. For more information, see “Create webp Images”162
in the user guide.

156	 http://www.leptonica.org/
157	 https://www.sketch.com/
158	 https://www.gimp.org/
159	 https://imagemagick.org/
160	 https://www.pixelmator.com/
161	 https://smashed.by/webpshop
162	 https://smashed.by/convertwebp

187

WebP

current image formats  WebP

http://www.leptonica.org/
https://www.sketch.com/
https://www.gimp.org/
https://imagemagick.org/
https://www.pixelmator.com/
https://github.com/webmproject/WebPShop
https://github.com/webmproject/WebPShop
https://github.com/webmproject/WebPShop
https://github.com/webmproject/WebPShop
https://github.com/webmproject/WebPShop
https://github.com/webmproject/WebPShop
https://github.com/webmproject/WebPShop
https://github.com/webmproject/WebPShop
https://developers.google.com/speed/webp/docs/webpshop
https://developers.google.com/speed/webp/docs/webpshop
https://developers.google.com/speed/webp/docs/webpshop
https://developers.google.com/speed/webp/docs/webpshop
https://developers.google.com/speed/webp/docs/webpshop
https://developers.google.com/speed/webp/docs/webpshop
https://developers.google.com/speed/webp/docs/webpshop
https://developers.google.com/speed/webp/docs/webpshop
https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio/write/convert-webp.html
https://developer.android.com/studio/write/convert-webp.html
https://developer.android.com/studio/write/convert-webp.html
https://developer.android.com/studio/write/convert-webp.html

Serving WebP

Browsers without webp support can end up not displaying
an image at all, which isn’t ideal. To avoid this there are a
few strategies we can use for conditionally serving webp
based on browser support.

The Chrome DevTools Network panel highlighting webp files conditionally
served to Blink-based browsers under the ‘Type’ column.

While the Play store delivers webp to Blink, it falls back to jpegs for
browsers like Firefox.

188 Image Optimization  part two

WebP

Let’s look at some of the options for getting webp images
from your server to your user.

USING THE <PICTURE> ELEMENT

We’ll take a more comprehensive look at
the <picture> element in chapter 11 on
responsive images.

The browser can choose which image format to display
using the <picture> element. The <picture> element
supports multiple <source> elements, which can reference
sources for formats like webp.

<picture>
 <source srcset="puppy.webp" type="image/webp">
 <source srcset="puppy.jpg" type="image/jpeg">

</picture>

In this example, the browser will begin to parse the sources
and will stop when it has retrieved the first supported match.
If no match is found, the browser loads the source specified

189

WebP

current image formats  WebP

in as the fallback. This approach works well for serving
any modern image format not supported in all browsers.

Be careful with ordering <source> elements
as order matters. Don’t place image/webp
sources after legacy formats, but instead
put them before. Browsers that understand
it will use them and those that don’t will
move on to more widely supported frame-
works. You can also place your images in
order of file size if they’re all the same
physical size (when not using the media
attribute). Generally this is the same order
as putting legacy last.

USING .HTACCESS TO SERVE WEBP

Here’s how to use an .htaccess file to serve webp files to
supported browsers when a matching .webp version of a
jpeg/png file exists on the server. Vincent Orback recom-
mended this approach:

Browsers can signal webp support explicitly163 via an Accept
header.164 If you control your back end, you can return a

163	 https://smashed.by/signalwebp
164	 https://smashed.by/accept

190 Image Optimization  part two

WebP

http://vincentorback.se/blog/using-webp-images-with-htaccess/
http://vincentorback.se/blog/using-webp-images-with-htaccess/
http://vincentorback.se/blog/using-webp-images-with-htaccess/
http://vincentorback.se/blog/using-webp-images-with-htaccess/
http://vincentorback.se/blog/using-webp-images-with-htaccess/
http://vincentorback.se/blog/using-webp-images-with-htaccess/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept

webp version of an image if it exists on disk rather than for-
mats like jpeg or png. This isn’t always possible, however
(for example, for static hosts like GitHub pages or Amazon
S3), so be sure to check before considering this option.

Here is a sample .htaccess file for the Apache web server:

<IfModule mod_rewrite.c>

RewriteEngine On

Check if browser support WebP images
RewriteCond %{HTTP_ACCEPT} image/webp

Check if WebP replacement image exists
RewriteCond %{DOCUMENT_ROOT}/$1.webp -f

Serve WebP image instead
RewriteRule (.+)\.(jpe?g|png)$ $1.webp
[T=image/webp,E=accept:1]

</IfModule>

<IfModule mod_headers.c>

Header append Vary Accept env=REDIRECT_accept

</IfModule>

AddType image/webp .webp

191

WebP

current image formats  WebP

If there are issues with the .webp images appearing on the
page, make sure that the image/webp mime type is enabled
on your server.

Apache: add the following code to your .htaccess file:

AddType image/webp .webp

Nginx: add the following code to your mime.types file:

image/webp webp;

Vincent Orback has a sample .htaccess
config165 for serving webp for reference and
Ilya Grigorik maintains a collection of
configuration scripts for serving webp166
that can be useful.

AUTOMATIC CDN CONVERSION TO WEBP

Some content delivery networks (cdns) support automated
conversion to webp and can use client hints167 to serve up

165	 https://smashed.by/htaccess
166	 https://smashed.by/detect
167	 https://smashed.by/clienthints

192 Image Optimization  part two

WebP

https://github.com/vincentorback/WebP-images-with-htaccess
https://github.com/vincentorback/WebP-images-with-htaccess
https://github.com/vincentorback/WebP-images-with-htaccess
https://github.com/vincentorback/WebP-images-with-htaccess
https://github.com/igrigorik/webp-detect
https://github.com/igrigorik/webp-detect
https://github.com/igrigorik/webp-detect
https://github.com/igrigorik/webp-detect
https://github.com/igrigorik/webp-detect
https://github.com/igrigorik/webp-detect
https://github.com/igrigorik/webp-detect
https://github.com/igrigorik/webp-detect
https://developer.mozilla.org/en-US/docs/Glossary/Client_hints
https://developer.mozilla.org/en-US/docs/Glossary/Client_hints
https://developer.mozilla.org/en-US/docs/Glossary/Client_hints

webp images whenever possible.168 Check with your cdn to
see if webp support is included in the service. You may have
an easy solution just waiting for you.

WEBP SUPPORT IN WORDPRESS

Jetpack,169 a popular WordPress plug-in, includes a cdn im-
age service called Site Accelerator, which gives you seamless
webp image support. The drawback is that Site Accelerator
resizes your image, puts a query string in your url, and
there is an extra dns lookup required for each image.

If you are using WordPress, there is at least one halfway
open-source option from KeyCDN.170 Its open-source
plug-in Cache Enabler171 has a menu checkbox option for

caching webp images
to be served if they’re
available and the user’s
browser supports them.
This makes serving webp
images easy. There is a
drawback,
however: Cache Enabler

requires the use of a sister program called Optimus,172
which has an annual fee for webp conversion (the free
version doesn’t include it).

168	 https://smashed.by/automatingimages
169	 https://jetpack.com/
170	 https://www.keycdn.com/
171	 https://smashed.by/cacheenabler
172	 https://optimus.io/

success story  “With

a migration to webp, we

saw a 30% reduction in

data consumed per million

requests.”

—Navbharat Times
(November, 2018)

193

WebP

current image formats  WebP

http://cloudinary.com/documentation/responsive_images#automating_responsive_images_with_client_hints
http://cloudinary.com/documentation/responsive_images#automating_responsive_images_with_client_hints
http://cloudinary.com/documentation/responsive_images#automating_responsive_images_with_client_hints
https://jetpack.com/
https://www.keycdn.com/
https://wordpress.org/plugins/cache-enabler/
https://wordpress.org/plugins/cache-enabler/
https://wordpress.org/plugins/cache-enabler/
https://optimus.io/

An alternative that works with Cache Enabler—also at a cost
—is ShortPixel.173 Short Pixel functions much like Optimus,
and you can optimize up to 100 images a month for free.

WebP and Chroma Subsampling

“Why does red text on a dark background look blurry in
webp images?”

Good question. Glad you asked. The short answer is chro-
ma subsampling, which is great for saving bandwidth, but
unfortunately reduces the resolution of the red channel in
images. The long answer goes something like this.

As mentioned in chapter 7, “jpeg,” the human eye is more
sensitive to brightness (luma) than it is to color (chroma).
Many image codecs take advantage of this to unlock more
efficient forms of lossy image compression as they can
avoid representing color in full resolution. Many lossy co-
decs will lower the chroma resolution to half or a quarter
of full resolution. This means you only get one pixel of
colour for every four pixels of brightness, which can sig-
nificantly decrease how much data is needed with a
low cost to quality.

173	 https://shortpixel.com/

194 Image Optimization  part two

WebP

https://shortpixel.com/

Brightness is composed of the sum of red, green, and blue.
Because encoding pixels as rgb would generate larger files
requiring more bandwidth, they’re encoded as yuv (see
chapter 5). Y is roughly the green component; U is Y minus
the red component (blue); and V is Y minus the blue compo-
nent (red). It’s an approximation.

Many codecs will sample the U and V components at a
lower resolution than Y. This is conveyed as a ratio be-
tween the rate at which brightness (luma) and colour
(chroma) values are sent. The ratio is often based on four
luma values, taking the form A:B:C, where A is the number
of pixels in the row (e.g, 4), and B and C are the number of
chroma values in rows of a 4×2 pixel block. You may see
these ratios often expressed in image compression circles
as 4:1:1, 4:2:2, 4:2:0, and so on.

4:2:2 means that each horizontal scanline has 2 chroma
values for every 4 luma values. 4:1:1 means 1 chroma value
for every 4 luma values, and 4:4:4 means no chroma subsa-
mpling. This isn’t very consistent. 4:2:0 implies that for each
4 luma values, there would be 2 for the first chroma compo-
nent and none for the second, but this would not produce
images of full color. In practice, 4:2:0 means there are two of
each chroma sample per scanline.

195

WebP

current image formats  WebP

The most widely used chroma
subsampling formats
(Source: shutterangle.com174)

On the web, much of the media we come across uses 4:2:0.
In each 4×2 rectangle of pixels, there are only two U+V sam-
ples. This means the color portion of the image is made up
of chunks 2×2 pixels in size, or one quarter the full resolu-
tion. The red channel alone has one quarter the resolution of
the overall image, meaning if the edges of overlaid red text
appear pixelated, it is because they are.

What do these artifacts look like up close? As visualized in
the example from red.com, because chroma subsampling
effectively reduces colour resolution, it is most visible near
the edges of sharp color transitions. This is what this looks
like with an 8×8 pixel image.

4:4:4
Full Color

4:2:2 4:1:1 4:2:0

(Source: https://www.red.com/red-101/video-chroma-subsampling175)

174	 http://www.shutterangle.com
175	 https://smashed.by/videochroma

Y U+V YUV

4:4:4

4:2:2

4:2:0

4:1:1

196 Image Optimization  part two

WebP

To confirm if the artifacts are an issue with yuv 4:2:0,
experiment with jpegs and switch between 4:2:0 and 4:4:4
encoding. If you observe the same artifacts as webp, this is
a good indication that yuv 4:2:0 is the culprit.

How do you address this with webp? The answer is with
the -sharp_yuv option with cwebp (see “Batch Image Op-
timization Using Bash” above). The idea with -sharp_yuv
is to invent U and V values around the edges that are not
necessarily correlated to the source image, but should pro-
duce sharper edges when smeared by the decoder’s upsam-
pling process. To demonstrate this workaround, let’s take a
(super cute) image of a pug with a red text overlay:

Below is the before/after of compressing the pug image us-
ing webp. The version on the right has -sharp_yuv enabled:

Using Squoosh to compare
the edges of the red text
overlay before and after
applying -sharp_yuv.
Notice how the edges of the red
text overlay are subtly sharper.

197

WebP

current image formats  WebP

Your mileage may vary with -sharp_yuv. It’s certainly not
a panacea, so do spend time analyzing how well it suits the
kinds of images you work with. Be careful not to use this
mode for archival imagery.

Images with gradient backgrounds can experience a banding effect with
-sharp_yuv turned on. While this isn’t simply -sharp_yuv’s fault, it
highlights the limitations of lossy webp only supporting 8-bit YUV 4:2:0,
which may cause color loss on images with thin contrast elements.

The Future for WebP

With modern browsers now featuring broad support for webp,
the team behind the codec has set their sights on webp 2.176

176	 https://smashed.by/libwebp2

198 Image Optimization  part two

WebP

https://chromium.googlesource.com/codecs/libwebp2/

At the time of writing, webp 2 is considered an experimental
codec that explores how much further webp compression
can evolve. The team aims to achieve another 30% better
than webp to offer savings as close to avif as possible. Other
features to be explored include:

•	 better visual degradation at low bit rates

•	 lightweight incremental decoding

•	 better transparency and lossless compression

•	 support for hdr10

•	 support for very lightweight image previews

As it will likely take time for browser and tooling support
for avif and jpeg xl (see chapters 18 and 19) to mature,
webp is a great choice for anyone using jpeg or png that
would like greater compression with support for wider color
depths, transparency, or animation.

199

WebP

current image formats  WebP

chapter 10

SVG

SVG is an xml (extensible markup language) based
vector image format for the web and other platforms.
Think of svg code as being quite similar to html but

with a stricter subset of features. Here is a preview of the
svg markup to draw a simple blue rectangle with a black
border around it:

<rect x="14" y="23" width="200" height="50"
fill="blue" stroke="black" />

Under the hood, svg is just plain text that uses shapes,
lines, numbers, and coordinates to render graphics, instead
of a grid of colors and pixels.

The shapes supported
by svg include
rectangles (<rect>),
circles (<circle>),
ellipses (<ellipse>),
straight lines
(<line>), polygons
(<polygon>)
and polylines
(<polyline>).

200 Image Optimization  part two

SVG

Because it is a vector format, svg can be infinitely scaled with-
out any loss in image quality, unlike raster-based formats with
fixed dimensions. A jpeg, gif, or png will eventually pixelate
when it scales, but svgs remain crisp in detail at any size.

When you scale up a raster image, you are likely to see pixels. When you
scale up an SVG, however, you’ll continue to see detailed curves or lines. This
makes SVG ideal for illustrations, logos, icons, and UI elements that need to
maintain crispness on high-definition screens.

Being text-based lends well to svg files being small in file
size. But keep in mind that this depends on the complexity
of the image and shapes used. In web pages, css and Java-
Script can be applied to both html and svg. This means
you can adjust the color of svg elements using css, or add

201

SVG

current image formats  SVG

interactivity using JavaScript, making it powerful for build-
ing user interface elements.

SVG177 is a w3c web standard, and it can typically be
used across modern browsers with a decent level of con-
sistency for core features. These different qualities
make svg a great option for the web as it can deliver
sharp vector graphics on different screen sizes with
minimal bandwidth.

SVG has become the de facto vector format
used on the web. As such it has strong
support across popular design tools such
as Sketch,178 Figma179 and Adobe Illustrator180
to name but a few. This allows you to
import svg elements between design
tools by copying and pasting them.

Adding SVGs to a Page

There are a number of ways to implement svgs in a web
page. They can be used via the element, embedded
inline, or embedded via an svg map.

177	 https://smashed.by/aboutsvg
178	 https://www.sketch.com/
179	 https://smashed.by/figma
180	 https://smashed.by/illustrator

202 Image Optimization  part two

SVG

https://www.sketch.com/
https://www.toptal.com/designers/ui/figma-design-tool
https://www.adobe.com/products/illustrator.html
https://www.adobe.com/products/illustrator.html
https://www.adobe.com/products/illustrator.html

USING THE ELEMENT

An svg image saved to a file from a design tool, text editor,
or the web can be used directly inside of the element.
Like jpegs or pngs, you can adjust the svg image’s width or
height, and browser support is relatively strong (IE9+ and
all modern browsers).

<img src="smashing.svg" alt="Smashing Magazine logo"
width="300" height="100">

Similarly, it is possible to use svgs with within the
<picture> element for responsive design use cases. Smashing
Magazine delivers either a simplified or a more detailed svg
illustration depending on a media query in the media attribute:

<picture>
<source media="(min-width: 1450px)" srcset="/images/
logo-full.svg">
<img src="/images/logo/logo.svg" alt="Smashing
Magazine logo">
</picture>

203

SVG

current image formats  SVG

There are several benefits to using the approach to
reference svgs, including full support for alt and title
attributes, browser caching, search indexability, and com-
pression. The downsides, unfortunately, are:

•	 Lack of control over styling the inner elements of the
svg with css.

•	 If you need to add interactivity to your svg, you will
need to use a different approach, such as inline svg
embeds or the <object> element.

•	 Limited ability to rely on external resources like web
fonts. Because of security concerns,181 you might need
to convert web fonts to outlined shapes to ensure visual
fidelity with your source.

SVGs can also be used as background images in css with
very similar pros and cons to svgs in an element. To
ensure that outer areas of a larger svg file are not visible we
also set the dimensions and background-size:

#logo {
 display: block;
 width: 300px;
 height: 100px;
 background-image: url(smashing.svg);
 background-size: 300px 100px;
}

181	 https://smashed.by/svgsecurity

204 Image Optimization  part two

SVG

https://blog.guya.net/2014/02/17/svg-for-fun-and-phishing/
https://blog.guya.net/2014/02/17/svg-for-fun-and-phishing/
https://blog.guya.net/2014/02/17/svg-for-fun-and-phishing/

EMBEDDING SVGS INLINE

Inlining svg directly in html is relatively straightforward
and can often be seen with svg icons. The primary benefit
of inlining is that you can skip a network request to obtain
the svg image, speeding up how quickly a user can see it.

 Visit Blog
 <svg xmlns="http://www.w3.org/2000/svg"
version="1.1" class="triangle" width='100'
height='100'>
 <polygon points="100,50 0,100 0,0"/>
 </svg>

The downsides are:

•	 Inline svgs don’t benefit from caching because the
browser will need to redownload the embedded code
each time you navigate to a new document that uses it.

•	 Inline svgs need to be re-embedded each time you wish to
use them, making maintenance and update more difficult.

•	 Additional care must be taken over accessibility.182 If
there is no text in the svg that describes it, a <ti-
tle>image title</title> should be used as the first

182	 https://smashed.by/svgaccessibility

205

SVG

current image formats  SVG

https://css-tricks.com/accessible-svgs/

child of its parent element, and you might wish to add
a <desc> for a description.

SVG icons have become mainstream, such as Google’s Material Design
icons183 collection. Individual icons can either be referenced via an
file, pasted as inline svg into html or imported via other methods.

USE THE <OBJECT> ELEMENT

If the cacheability issues with inline svgs are an issue, or
you require a deeper level of interaction or customization
using css than is available with the approach, it’s pos-
sible to link to an svg file using the <object> element:

<object type="image/svg+xml" data="smashing.svg"></
object>

183	 https://smashed.by/materialicons

206 Image Optimization  part two

SVG

https://material.io/resources/icons/
https://material.io/resources/icons/
https://material.io/resources/icons/
https://material.io/resources/icons/
https://material.io/resources/icons/

This has strong cross-browser support but there are
a few gotchas:

•	 You cannot use <style> in your document or an exter-
nal style sheet to style the <object>. Instead, you need
to use an inline <style> within the svg file.

•	 Search engine optimization: svg images referenced
using <object> may not show up in image searches.
One workaround to this problem is including an
source as a fallback within the <object>. However, this
can introduce a double-loading side effect.

INLINING WITH SVG MAPS

SVG can be powerful for icons,184 offering a way to represent
visualizations as a sprite without the quirky workarounds185
that were needed for icon fonts. It has more granular css
styling control than icon fonts (svg stroke properties), better
positioning control (no need to hack around pseudo-elements
and css display), and svgs are much more accessible.186

It is also possible to create a single svg file that contains
the different graphics you wish to use on a page, similar
to image sprites.

184	 https://smashed.by/iconfonts
185	 https://smashed.by/accessibleicons
186	 https://smashed.by/accessiblesvg

207

SVG

current image formats  SVG

https://css-tricks.com/icon-fonts-vs-svg/
https://css-tricks.com/icon-fonts-vs-svg/
https://css-tricks.com/icon-fonts-vs-svg/
https://css-tricks.com/icon-fonts-vs-svg/
https://css-tricks.com/icon-fonts-vs-svg/
https://www.filamentgroup.com/lab/bulletproof_icon_fonts.html
https://www.filamentgroup.com/lab/bulletproof_icon_fonts.html
https://www.filamentgroup.com/lab/bulletproof_icon_fonts.html
http://www.sitepoint.com/tips-accessible-svg/

Each graphic (an icon, perhaps) has a unique id allowing it
to be referenced elsewhere in the html document. This svg
map can be dropped into a template for use on other pages
across a site, which could make maintenance a little simpler
than strictly relying on inlining alone. Remember to hide
this svg map from the user (via css, for example) so the
map itself does not get rendered:

<svg class="svg-assets" xmlns="http://www.w3.org/2000/
svg" role="presentation"
 aria-hidden="true">
 <defs>
 <svg id="arrow-left" xmlns="http://www.
w3.org/2000/svg" version="1.1" class="triangle"
width='100' height='100'>
 <polygon points="0,50 100,0 100,100"/>
 </svg>
 <svg id="arrow-right" xmlns="http://www.
w3.org/2000/svg" version="1.1" class="triangle"
width='100' height='100'>
 <polygon points="100,50 0,100 0,0"/>
 </svg>
 </defs>
</svg>

When you then want to refer to a specific graphic or icon,
you can reference it by id. In the example below, we are
using the “arrow-right” graphic defined in our svg map:

208 Image Optimization  part two

SVG

 Visit Blog
 <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0
18 18" class="my-icon"
 role="presentation" aria-hidden="true">
 <use xlink:href="#arrow-right"></use>
 </svg>

SVG maps can also be referenced separately, linking directly
to the svg file rather than inlining it on the page.

 Visit Blog
 <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0
18 18" class="my-icon"
 role="presentation" aria-hidden="true">
 <use xlink:href="/assets/icons/navigation-icons.
svg#arrow-right"></use>
 </svg>

Tools like svg-sprite187 and IcoMoon188 can automate com-
bining svgs into sprites that can be used via a css sprite,
symbol sprite, or stacked sprite. Una Kravetz has published
a great practical write-up189 on how to use gulp-svg-sprite in
an svg sprite workflow. Sara Soueidan also covers making
the transition from icon fonts to svg190 on her blog.

187	 https://smashed.by/svgsprite
188	 https://icomoon.io/
189	 https://smashed.by/spriteworkflow
190	 https://smashed.by/iconfontstosvg

209

SVG

current image formats  SVG

https://github.com/jkphl/svg-sprite
https://github.com/jkphl/svg-sprite
https://github.com/jkphl/svg-sprite
https://icomoon.io/
https://css-tricks.com/css-sprites/
https://css-tricks.com/css-sprites/
https://css-tricks.com/svg-use-with-external-reference-take-2
https://css-tricks.com/svg-use-with-external-reference-take-2
https://css-tricks.com/svg-use-with-external-reference-take-2
http://simurai.com/blog/2012/04/02/svg-stacks
http://simurai.com/blog/2012/04/02/svg-stacks
http://simurai.com/blog/2012/04/02/svg-stacks
https://una.im/svg-icons/
https://una.im/svg-icons/
https://una.im/svg-icons/
https://una.im/svg-icons/
https://una.im/svg-icons/
https://una.im/svg-icons/
https://una.im/svg-icons/
https://www.sarasoueidan.com/blog/icon-fonts-to-svg/
https://www.sarasoueidan.com/blog/icon-fonts-to-svg/
https://www.sarasoueidan.com/blog/icon-fonts-to-svg/
https://www.sarasoueidan.com/blog/icon-fonts-to-svg/
https://www.sarasoueidan.com/blog/icon-fonts-to-svg/
https://www.sarasoueidan.com/blog/icon-fonts-to-svg/
https://www.sarasoueidan.com/blog/icon-fonts-to-svg/
https://www.sarasoueidan.com/blog/icon-fonts-to-svg/
https://www.sarasoueidan.com/blog/icon-fonts-to-svg/
https://www.sarasoueidan.com/blog/icon-fonts-to-svg/
https://www.sarasoueidan.com/blog/icon-fonts-to-svg/
https://www.sarasoueidan.com/blog/icon-fonts-to-svg/
https://www.sarasoueidan.com/blog/icon-fonts-to-svg/
https://www.sarasoueidan.com/blog/icon-fonts-to-svg/

Optimizing SVGs

Keeping svgs lean means stripping out anything unneces-
sary. SVG files created with design tools usually contain a
large quantity of redundant information (metadata, com-
ments, hidden layers, and so forth). This content can often
be safely removed or converted to a more minimal form
without altering the look of the final image.

There are some useful principles to apply to any svg to keep
your files as lean as possible:

•	 Remove metadata that should be safe to drop:

•	 <?xml … ?>: is the version of xml used.

•	 <!-- Comments -->: Suggest the file was
tool-generated.

•	 Individual ids. Unless they are being targeted directly,
you do not need to define an id on each element
inside your file.

•	 Instead of paths, use predefined svg shapes like <rect>,
<circle>, <ellipse>, <line>, and <polygon>. Using
predefined shapes decreases the amount of markup

210 Image Optimization  part two

SVG

needed to produce an image, meaning less code for the
browser to parse and rasterize. Reducing svg complexity
helps a browser display it more quickly.

•	 If you must use paths, try to reduce your curves, and
simplify and combine paths where you can. Illustrator’s
Simplify tool191 is adept at removing superfluous points in
even complex artworks while smoothing out irregularities.

•	 Minify and then compress your svg files with gzip or
Brotli192 (a compression algorithm developed by Google
that works best for text compression). SVGs are really
just text assets expressed in xml and should be mini-
fied and compressed to improve performance.

•	 Avoid any Photoshop or Illustrator effects. They can
end up converted into large raster images.

•	 Avoid using groups (<g> indicates groups). If you can’t,
try to simplify them. Ideally, everything in your image
should be in a single top-level layer, removing the need
for groups when distributing svgs on the web.

•	 Delete invisible layers.

•	 Double-check for any embedded raster images that
aren’t svg-friendly.

191	 https://smashed.by/simplify
192	 https://smashed.by/brotliwiki

211

SVG

current image formats  SVG

https://helpx.adobe.com/illustrator/using/simplify_paths.html
https://helpx.adobe.com/illustrator/using/simplify_paths.html
https://helpx.adobe.com/illustrator/using/simplify_paths.html
https://en.wikipedia.org/wiki/Brotli

SVG Optimizer (SVGO)

Perhaps the most important thing to do is to use a tool to
optimize your svgs. SVGOMG,193 by Jake Archibald, is a
super handy web-based gui for svgo,194 a Node.js-based tool
for optimizing svgs. It allows you to select and combine
different optimizations and offers a live preview of the out-
putted markup. If you use Sketch, you can also use the svgo
Compressor plug-in195 when exporting to shrink the file size.

SVGOMG further optimizing the size of an existing SVG image.

Below is an illustration that I exported to svg from Adobe
Illustrator. The file size on my disk was 76 kb. SVGOMG
shows it could be 51.87 kb if gzipped and 51.55 kb after addi-
tional clean-up and minification is applied.

193	 https://smashed.by/svgomg
194	 https://smashed.by/svgo
195	 https://smashed.by/svgocompressor

212 Image Optimization  part two

SVG

https://jakearchibald.github.io/svgomg/
https://www.sketchapp.com/extensions/plugins/svgo-compressor/
https://www.sketchapp.com/extensions/plugins/svgo-compressor/
https://www.sketchapp.com/extensions/plugins/svgo-compressor/
https://www.sketchapp.com/extensions/plugins/svgo-compressor/
https://www.sketchapp.com/extensions/plugins/svgo-compressor/
https://www.sketchapp.com/extensions/plugins/svgo-compressor/

SVGs of this complexity are often a little smaller than this,
so I began to play around with some of the optional opti-
mizations in svgomg. This brought my attention to the
“Remove raster images” option. I didn’t think that I had any
embedded images in this illustration, but see what happens
with this option on:

Lo and behold, the svg size has been reduced from 51.87 kb
to just 3.29 kb. As it turns out, the illustration of the family

213

SVG

current image formats  SVG

in the picture frame was a raster image – not a vector
– and this was bloating up our file size. With this new
information, I went back to Illustrator and made sure to
redo this part of the illustration as a vector. (The family is
flipped to the left this time around to distinguish it from
the earlier image.)

And … presto! Our complete svg is now only 7.35 kb
in size. Amazing!

SVGO can reduce file size by lowering the precision of num-
bers in your definitions. Each digit after a point adds a byte
and this is why changing the precision (number of digits)
can heavily influence file size.

214 Image Optimization  part two

SVG

SVGO precision
reduction can
sometimes have
a positive impact
on size.

Be very careful when changing precision, however, as it
can influence how your shapes look. It’s important to note
that while svgo does well in the example above without
oversimplifying paths and shapes, there are plenty of cases
where the result doesn’t end up looking great.

Where svgo can go wrong: oversimplifying paths and artwork.

Observe how the light strip on the rocket is distorted at
a lower precision.

215

SVG

current image formats  SVG

USING SVGO AT THE COMMAND LINE

If you prefer clis over guis, you can install svgo as a
global npm cli:196

npm i -g svgo

You can then run svgo against a local svg file as follows:

svgo input.svg -o output.svg

It supports all the options you might expect, including
adjusting floating point precision:

svgo input.svg --precision=1 -o output.svg

See the svgo documentation197 for a list of supported options.

Before and after running an image through svgo, with further compression.

196	 https://smashed.by/npmcli
197	 https://smashed.by/svgodoc

216 Image Optimization  part two

SVG

https://www.npmjs.com/package/svgo
https://www.npmjs.com/package/svgo
https://www.npmjs.com/package/svgo
https://www.npmjs.com/package/svgo
https://github.com/svg/svgo
https://github.com/svg/svgo

Also, don’t forget to gzip your svg assets198 or serve them
using Brotli. As they’re text-based, they’ll compress really
well (around 50% of the original sources).

When Google shipped a new logo back in 2015, we an-
nounced199 that the smallest version of it was only 305
bytes in size. There are lots of advanced svg tricks200 you
can use to trim this logo down even further – all the way
to 146 bytes! Suffice to say, whether it’s through tools or
manual clean-up, there’s always a little more you can
shave off your svgs.

The smallest version of the new Google logo was only 305 bytes in size.

198	 https://smashed.by/optimizingsvg
199	 https://smashed.by/logo
200	 https://smashed.by/svgtricks

217

SVG

current image formats  SVG

https://calendar.perfplanet.com/2014/tips-for-optimising-svg-delivery-for-the-web/
https://calendar.perfplanet.com/2014/tips-for-optimising-svg-delivery-for-the-web/
https://calendar.perfplanet.com/2014/tips-for-optimising-svg-delivery-for-the-web/
https://calendar.perfplanet.com/2014/tips-for-optimising-svg-delivery-for-the-web/
https://calendar.perfplanet.com/2014/tips-for-optimising-svg-delivery-for-the-web/
https://calendar.perfplanet.com/2014/tips-for-optimising-svg-delivery-for-the-web/
https://twitter.com/addyosmani/status/638753485555671040
https://twitter.com/addyosmani/status/638753485555671040
https://twitter.com/addyosmani/status/638753485555671040
https://twitter.com/addyosmani/status/638753485555671040
https://www.clicktorelease.com/blog/svg-google-logo-in-305-bytes/
https://www.clicktorelease.com/blog/svg-google-logo-in-305-bytes/
https://www.clicktorelease.com/blog/svg-google-logo-in-305-bytes/
https://www.clicktorelease.com/blog/svg-google-logo-in-305-bytes/
https://www.clicktorelease.com/blog/svg-google-logo-in-305-bytes/
https://www.clicktorelease.com/blog/svg-google-logo-in-305-bytes/
https://www.clicktorelease.com/blog/svg-google-logo-in-305-bytes/
https://www.clicktorelease.com/blog/svg-google-logo-in-305-bytes/

Understanding when and how to leverage svgs on the web
can lead to sharper images with a smaller file size. Keep
in mind that they’re ideal for simpler graphics rather than
detailed photography and are very flexible, being styleable
with css or interactive with JavaScript.

SVGs are lightweight, scalable, have great tooling support and
can be great for web performance compared to their raster
counterparts. While learning how to work with this vector for-
mat can take some time, it’s definitely worth the investment.

SVG is optimal for simpler graphics such as illustrations, logos, and icons. It’s not
intended to render detailed photographic content. While you can try this, the size
and memory use costs are likely to be far higher than using a raster format which
is far better suited to this type of image. (Source: Richard Brutyo, Unsplash201)

201	 https://smashed.by/brutyo

218 Image Optimization  part two

SVG

https://unsplash.com/photos/Sg3XwuEpybU

Further Reading

Sara Soueidan’s “Tips for Optimising SVG Delivery for the
Web”202 and Chris Coyier’s articles “Using SVG”203 and
“Tools for Optimizing SVG”,204 and his Practical SVG
book205 are excellent.

I’ve also found Andreas Larsen’s “Optimizing SVG” posts
(part 1206 and part 2207) enlightening. “Preparing and
Exporting SVG Icons in Sketch”208 by Anthony Collurafici
 was also a great read.

202	 https://smashed.by/svgdelivery
203	 https://smashed.by/usingsvg
204	 https://smashed.by/optimizationtools
205	 https://smashed.by/practicalsvg
206	 https://smashed.by/optimizingforweb1
207	 https://smashed.by/optimizingforweb2
208	 https://smashed.by/exportingsvg

219

SVG

current image formats  SVG

https://calendar.perfplanet.com/2014/tips-for-optimising-svg-delivery-for-the-web/
https://calendar.perfplanet.com/2014/tips-for-optimising-svg-delivery-for-the-web/
https://calendar.perfplanet.com/2014/tips-for-optimising-svg-delivery-for-the-web/
https://calendar.perfplanet.com/2014/tips-for-optimising-svg-delivery-for-the-web/
https://calendar.perfplanet.com/2014/tips-for-optimising-svg-delivery-for-the-web/
https://calendar.perfplanet.com/2014/tips-for-optimising-svg-delivery-for-the-web/
https://calendar.perfplanet.com/2014/tips-for-optimising-svg-delivery-for-the-web/
https://calendar.perfplanet.com/2014/tips-for-optimising-svg-delivery-for-the-web/
https://calendar.perfplanet.com/2014/tips-for-optimising-svg-delivery-for-the-web/
https://calendar.perfplanet.com/2014/tips-for-optimising-svg-delivery-for-the-web/
https://calendar.perfplanet.com/2014/tips-for-optimising-svg-delivery-for-the-web/
https://calendar.perfplanet.com/2014/tips-for-optimising-svg-delivery-for-the-web/
https://calendar.perfplanet.com/2014/tips-for-optimising-svg-delivery-for-the-web/
https://calendar.perfplanet.com/2014/tips-for-optimising-svg-delivery-for-the-web/
https://calendar.perfplanet.com/2014/tips-for-optimising-svg-delivery-for-the-web/
https://css-tricks.com/using-svg/
https://css-tricks.com/using-svg/
https://css-tricks.com/using-svg/
https://css-tricks.com/tools-for-optimizing-svg/
https://css-tricks.com/tools-for-optimizing-svg/
https://css-tricks.com/tools-for-optimizing-svg/
https://css-tricks.com/tools-for-optimizing-svg/
https://css-tricks.com/tools-for-optimizing-svg/
https://css-tricks.com/tools-for-optimizing-svg/
https://css-tricks.com/tools-for-optimizing-svg/
https://css-tricks.com/tools-for-optimizing-svg/
https://abookapart.com/products/practical-svg
https://abookapart.com/products/practical-svg
https://abookapart.com/products/practical-svg
https://abookapart.com/products/practical-svg
https://abookapart.com/products/practical-svg
https://medium.com/larsenwork-andreas-larsen/optimising-svgs-for-web-use-part-1-67e8f2d4035
https://medium.com/larsenwork-andreas-larsen/optimising-svgs-for-web-use-part-1-67e8f2d4035
https://medium.com/larsenwork-andreas-larsen/optimising-svgs-for-web-use-part-2-6711cc15df46
https://medium.com/larsenwork-andreas-larsen/optimising-svgs-for-web-use-part-2-6711cc15df46
https://medium.com/sketch-app-sources/preparing-and-exporting-svg-icons-in-sketch-1a3d65b239bb
https://medium.com/sketch-app-sources/preparing-and-exporting-svg-icons-in-sketch-1a3d65b239bb
https://medium.com/sketch-app-sources/preparing-and-exporting-svg-icons-in-sketch-1a3d65b239bb
https://medium.com/sketch-app-sources/preparing-and-exporting-svg-icons-in-sketch-1a3d65b239bb
https://medium.com/sketch-app-sources/preparing-and-exporting-svg-icons-in-sketch-1a3d65b239bb
https://medium.com/sketch-app-sources/preparing-and-exporting-svg-icons-in-sketch-1a3d65b239bb
https://medium.com/sketch-app-sources/preparing-and-exporting-svg-icons-in-sketch-1a3d65b239bb
https://medium.com/sketch-app-sources/preparing-and-exporting-svg-icons-in-sketch-1a3d65b239bb
https://medium.com/sketch-app-sources/preparing-and-exporting-svg-icons-in-sketch-1a3d65b239bb
https://medium.com/sketch-app-sources/preparing-and-exporting-svg-icons-in-sketch-1a3d65b239bb
https://medium.com/sketch-app-sources/preparing-and-exporting-svg-icons-in-sketch-1a3d65b239bb
https://medium.com/sketch-app-sources/preparing-and-exporting-svg-icons-in-sketch-1a3d65b239bb
https://medium.com/sketch-app-sources/preparing-and-exporting-svg-icons-in-sketch-1a3d65b239bb

Images in
Browsers

Part Three

	 Chapter 11	 	 Responsive Images 223
	 Chapter 12	 	 Progressive Rendering
			 Techniques. 238
	 Chapter 13	 	 Caching Image Assets 256
	 Chapter 14	 	 Lazy-Loading Images 290
	 Chapter 15	 	 Replacing Animated GIFs. . . 314
	 Chapter 16	 	 Image Content
			 Delivery Networks. 337

chapter 11

Responsive Images

Using responsive images is the practice of serv-
ing multiple versions of the same image so the
browser can choose the version that works best

for the user’s device. It’s a key part of delivering a fully
responsive web design.

Using responsive images, HBO is able to deliver close-up high-resolution
artwork to Retina devices while delivering smaller file sizes to mobile without
sacrificing art direction.

With responsive images, we can supply the browser with
a variety of image resources depending on display density,
size of the image element, or a number of other factors. For
example, on high-resolution (2x) displays, high-resolution
graphics can deliver sharpness.

224 Image Optimization  part three

In this chapter, we will cover a number of techniques for
defining responsive images. We will build off the powerful
 element, which can already download, decode, and
render content in modern browsers across a range of differ-
ent formats. Here’s a sneak preview:

The tag can define multiple image sources of different sizes and
resolutions, selecting the best fit for different situations.

Defining Multiple Image Sources

The srcset attribute enhances the element, allowing
us to supply a variety of different image sources for differ-
ent device characteristics. srcset lets the browser select the
best image; a 2x image on a 2x display, for example.

<img src="puppy.jpg" srcset="puppy@2x.jpg 2x"
alt="Cute puppy" />

225images in browsers  Responsive Images

When the browser encounters srcset, it parses the com-
ma-separated list of images and conditions before making
any image requests. Only the most appropriate image is
then fetched and rendered.

<img src="puppy@1x.jpg" alt="Cute puppy"
 srcset="puppy@1x.jpg 1x,
 puppy@2x.jpg 2x" />

In the example above, we use srcset to handle different
pixel densities. If the display is standard resolution, the
browser will use the 1x image and if the display is a 2x high-
dpi screen, we’ll use the 2x.

All modern browsers support srcset. Older, legacy browsers
will simply use the default image specified by the src at-
tribute. This is one reason it’s key to include a 1x image that
can be loaded for any device, as seen above.

When using the x descriptor (e.g. 1x), users will always get
the same image on devices with a similar device pixel ratio,
regardless of it being a large-screen laptop or a smartphone
with the same device pixel ratio.

While accessibility is not the focus of this
book, including the alt attribute on images
is fundamental for those using screen
readers or for any users who have images
switched off.

DEVICE PIXEL RATIO (DPR)

The device pixel ratio (dpr, and also called css pixel ratio)
describes how a pixel in css translates to physical pixels on
a hardware screen. High-resolution screens use more phys-
ical pixels to represent css pixels for more sharp visuals. To
prevent blurry images on these displays, a larger image size
should be loaded.

A diagram showing device pixel ratio at 1x, 2x, and 3x, comparing device
pixels to css pixels. Image quality appears to sharpen as dpr increases.

226 Image Optimization  part three

Let’s say we want to serve an image at 400 pixels wide:

<img src="puppy-400px.jpg" alt="Cute puppy"
 srcset="puppy@dpr-1.jpg 1x,
 puppy@dpr-2.jpg 2x,
 puppy@dpr-3.jpg 3x" />

This will deliver the best resolution for each device based
on its device pixel ratio. A 400×300 image at dpr=2 (2x) will
actually be an 800×600 pixel image. DPR=3 (3x) will be an
image 1,200×900 pixels in size.

Device pixel ratio is the ratio of the image width to the viewport width.
It can be calculated by looking at the image width/viewport width. In
the case of our puppy-400px.jpg image, 400/400 = dpr 1,
800/400 = dpr 2, 1200/400 = dpr 3, and so on.

This gives you full resolution for devices that support it,
without delivering larger file sizes than necessary to devices
where it won’t improve the user experience.

227images in browsers  Responsive Images

Use responsive images (<picture> element,)
to deliver users the best-sized image based on device

capabilities. This can massively save on bandwidth.

BE RESPONSIVE

Many sites track the dpr for popular
devices, including material.io1
and mydevice.io.2

WIDTH DESCRIPTOR

When it comes to selecting which image to download, the
browser needs to be aware of the dimensions of each image,
but it can’t strictly know this without downloading each im-
age to check. This is where the width descriptor (w) comes in.

<img src="small.jpg" alt="Cute puppy"
 srcset="small.jpg 500w,
 med.jpg 1000w,
 large.jpg 1500w" />

The w descriptor tells the browser the width of each image
in pixels. This allows the browser to select the right image
for retrieval, based on characteristics like the screen’s pixel
density and viewport size.

1	 https://smashed.by/materialio
2	 https://smashed.by/mydeviceio

229images in browsers  Responsive Images

https://material.io/devices/
https://material.io/devices/
https://material.io/devices/
https://mydevice.io/devices/
https://mydevice.io/devices/
https://mydevice.io/devices/

Use either width descriptors or pixel
densities on all of your sources. Avoid
setting both in the same srcset as this
is considered invalid.

As a recap:

The srcset attribute accepts a width descriptor or a device pixel ratio (the
number of device pixels per css pixel it is related to). For a dpr of 1, cat-1x.jpg is
used; when dpr is 2, cat-2x.jpg is used; and for a dpr of 3, cat-3x.jpg is used.

•	 Responsive images can serve different widths of an
image or different densities of an image.

•	 Density refers to the device pixel ratio, or pixel density,
of the device that the image is intended for.

•	 Older crt monitors and pre-Retina screens may have
a pixel density of 1, while Retina displays have a pixel
density of 2.

230 Image Optimization  part three

Specifying Sizes

The sizes attribute enhances the element by provid-
ing the sizes of the element a srcset is attached to, which
lets the browser use the most appropriate image. In this
example, we inform the browser that the image will be dis-
played at 60% of the viewport width (sizes="60vw").

<img src="small.jpg" alt="Cute puppy"
 srcset="small.jpg 600w,
 medium.jpg 1000w,
 large.jpg 1500w" sizes="60vw" />

If the width of the browser is 1,024 pixels wide, the image
will be rendered at 512 pixels. The browser would select
small.jpg as it is the smallest image that is still larger than
the viewport width.

Specifying Alternative Versions of an
Image for Different Display Scenarios

The <picture> and <source> elements allow us to specify
alternative sources for the same imagery. This can be used
to deliver different image formats or for art direction (which
we’ll cover shortly). In this example, the browser will load the
image in the first <source> element it can understand. If the

231images in browsers  Responsive Images

232 Image Optimization  part three

browser is unable to read the files specified in any <source>
elements, the default image src will be loaded instead.

<picture>
 <source srcset="puppy.webp" type="image/webp">
 <source srcset="puppy.jpg" type="image/jpeg">

</picture>

Here, the first <source> element includes a webp image
and the second and default sources contain a jpeg
as a fallback.

ART DIRECTION

Although shipping an image at the best resolution to
users is important, some sites also need to think about
delivering the
best artwork
to account
for device
constraints.
If a user is
on a smaller
screen, you
might want to crop the image or zoom in on the subject to
make the best use of available space.

success story  “Instagram embeds allow

third-party sites to display Instagram

content on their own site. As a result of

serving multiple image sizes, Instagram

was able to reduce image transfer size by

20% for their Instagram embeds.”

—Instagram (Nov, 2018)

Responsive art direction in action: adapting to show more or less of an image
in a cropped manner depending on the device.

The <picture> element can be used for art direction.
<source> can accept an optional media attribute that can
take a media query. When this media query is triggered, the
image in the srcset is loaded.

Only a single image will be loaded at a time. In the follow-
ing example, the browser would load: puppy-large.png when
the window width is 700 pixels or larger; puppy-medium.png
when the window width is at least 512 pixels, but no more
than 700 pixels; and puppy-small.png when the window is
less than 512 pixels wide.

<picture>
 <source media="(min-width: 700px)" srcset="puppy-
large.png">
 <source media="(min-width: 512px)" srcset="puppy-
medium.png">

</picture>

233images in browsers  Responsive Images

Should the browser support neither <picture> nor
<source>, the fallback image specified in would
be loaded instead (puppy-small.png).

If you would like to avoid writing image
selection logic yourself, you may be in-
terested in client hints:3 a set of http
request header fields enabling automated
delivery of optimized assets, like negotia-
tion of image dpr resolution. At the time
of writing, this is a feature only available
in Chromium-based browsers (Chrome,
Edge, Opera, and so on.).

Bringing It All Together

Here is a more complex example that combines the differ-
ent responsive image techniques discussed so far. In this
example, we:

•	 Combine and media queries to specify
images for different viewports.

•	 Use <picture>, <source> and srcset to provide differ-
ent images for different pixel densities.

3	 https://smashed.by/clienthints

234 Image Optimization  part three

https://developer.mozilla.org/en-US/docs/Glossary/Client_hints
https://developer.mozilla.org/en-US/docs/Glossary/Client_hints
https://developer.mozilla.org/en-US/docs/Glossary/Client_hints
https://developer.mozilla.org/en-US/docs/Glossary/Client_hints
https://developer.mozilla.org/en-US/docs/Glossary/Client_hints

The Responsive Breakpoints tool suggests both the optimal breakpoints
for an image, as well as generating html with srcset and sizes
already filled out.

235images in browsers  Responsive Images

<picture>
 <source media="(min-width: 1000px)" srcset="puppy_
large_1x.jpg 1x, puppy_large_2x.jpg 2x">
 <source media="(min-width: 500px)" srcset="puppy_
med_1x.jpg 1x, puppy_med_2x.jpg 2x">

</picture>

Tools

RESPONSIVE BREAKPOINTS

Would you like to create responsive images fast? Try
Responsive Breakpoints.4 This free tool determines the

4	 https://responsivebreakpoints.com

https://responsivebreakpoints.com
https://responsivebreakpoints.com
https://responsivebreakpoints.com

optimal image breakpoints, generates code
for you (complete with width descriptors) and creates a .zip
of responsive images.

LIGHTHOUSE IN CHROME DEVTOOLS

Lighthouse5 can highlight images on your page that aren’t
appropriately sized, along with the potential savings. Re-
sponsive images are a great way to address this problem.

The Lighthouse panel in Chrome DevTools highlighting that images on the page
could be delivered more optimally if they were appropriately sized for mobile.

Aim to avoid serving images larger than the version ren-
dered on the user’s screen. Anything larger can result in
wasted bytes that increase page load time.

5	 https://smashed.by/lighthouse

236 Image Optimization  part three

https://developers.google.com/web/tools/lighthouse/

IMAGEMAGICK CLI

The ImageMagick CLI6 tool is helpful for image process-
ing and includes two commands: convert and mogrify,
which is similar to convert, but can process multiple
images in place. Both commands support the -resize
(-r) argument.

Image resizing (for responsive image generation, for exam-
ple) can take a number of forms:

mogrify -resize 50% *.jpg # resize images to 50%
mogrify -resize 768x432 *.jpg # resize and keep
original aspect ratio
mogrify -r 768x432! *.jpg # resize and enforce exact
dimensions
convert source.jpg -r 768x432 output.jpg

6	 https://smashed.by/imagemagick

237images in browsers  Responsive Images

https://www.imagemagick.org/script/index.php
https://www.imagemagick.org/script/index.php
https://www.imagemagick.org/script/index.php

chapter 12

Progressive Rendering
Techniques

Short page-load time is critical for a positive user
experience. Perceived load times can be shorter than
the actual load time, if the user senses that the site is

responsive and feels active while browsing it. The principle
underlying the different techniques used to improve the
perceived performance is to give users something as soon as
possible rather than making them wait.

Placeholders used for
progressive image
loading on Pinterest and
Google Photos.

In chapter 7 we covered progressive jpegs. But there are
many other progressive image loading techniques that can

238 Image Optimization  part three

shorten perceived load time. These techniques usually use
a placeholder with a relevant substitute image shown to the
user while the actual image loads. Such techniques are used
on a range of large, image-heavy sites, including Pinterest
and Google Photos.

This section looks at different ways of progressively loading
images to improve performance.

A visual comparison of progressive image rendering techniques by Gunther
Brunner.7 “Prevent Flash” includes techniques to prevent an unpleasant
flash of invisible content. “Show Progress” highlights that the user knows
something is happening. “Preview Content” shows low-quality partials so the
user can tell if it’s useful. “Provide Joy” does something interesting to keep the
user engaged while waiting.

7	 https://smashed.by/brunner

239images in browsers  Progressive Rendering Techniques

https://github.com/WICG/largest-contentful-paint/issues/68#issuecomment-742141525
https://github.com/WICG/largest-contentful-paint/issues/68#issuecomment-742141525
https://github.com/WICG/largest-contentful-paint/issues/68#issuecomment-742141525

Baseline versus Progressive JPEGs

As a reminder (but do read chapter 7!), jpegs are the most
common image format on the web. jpegs come in two
varieties, baseline and progressive, and both of these have
been around since the 1990s. By default, most image software
saves images as baseline jpegs. Baseline jpegs are interpret-
ed and displayed line by line. On the other hand, progressive
jpegs consist of multiple layers or scans of the image inter-
laced together such that each layer reveals a better-quality
image than the previous layer. The output of each scan is
merged with any outputs rendered earlier and displayed as
an image. The difference between baseline and progressive
jpegs is illustrated well with this example from Liquid Web.8

Baseline

Progressive

8	 https://smashed.by/liquidweb

240 Image Optimization  part three

https://www.liquidweb.com/kb/what-is-a-progressive-jpeg/
https://www.liquidweb.com/kb/what-is-a-progressive-jpeg/
https://www.liquidweb.com/kb/what-is-a-progressive-jpeg/
https://www.liquidweb.com/kb/what-is-a-progressive-jpeg/
https://www.liquidweb.com/kb/what-is-a-progressive-jpeg/

For baseline jpeg, it appears that the user is expected to wait
for the image to load, while the progressive image load gives
the user some definite output in the same amount of time.

A baseline jpeg can be converted to progressive using a
simple command in jpegtran:

$ jpegtran -progressive in.jpg > out.jpg

Because progressive jpegs contain multiple scans it
might be expected that they produce larger files, but
that’s not quite the case in practice. A study by Stoyan
Stefanov in his Book of Speed9 shows that images larger
than 10 kb are more likely to be smaller when using the
progressive jpeg format.

While most popular browsers are able to render progres-
sive images, not all of them render the image progressive-
ly. IE 8.0 and below, Safari, and Opera render progressive
images all at once, thus losing the expected advantage in
terms of user experience. This is probably the reason why
they are not as popular as some of the other techniques
explained in this chapter.

9	 https://smashed.by/bookofspeed

241images in browsers  Progressive Rendering Techniques

http://www.bookofspeed.com/chapter5.html
http://www.bookofspeed.com/chapter5.html
http://www.bookofspeed.com/chapter5.html
http://www.bookofspeed.com/chapter5.html
http://www.bookofspeed.com/chapter5.html
http://www.bookofspeed.com/chapter5.html
http://www.bookofspeed.com/chapter5.html
http://www.bookofspeed.com/chapter5.html
http://www.bookofspeed.com/chapter5.html
http://www.bookofspeed.com/chapter5.html
http://www.bookofspeed.com/chapter5.html
http://www.bookofspeed.com/chapter5.html
http://www.bookofspeed.com/chapter5.html
http://www.bookofspeed.com/chapter5.html
http://www.bookofspeed.com/chapter5.html
http://www.bookofspeed.com/chapter5.html
http://www.bookofspeed.com/chapter5.html

Low-Quality Image Placeholders (LQIPs)

As the name suggests, lqips use low-quality images as
placeholders to hold the user’s interest while the actual
high-quality, large-size images are loading. While with
progressive jpegs there is always a single image that gets
progressively loaded, the lqip technique relies on the
creation of two versions of the same image. The low-resolu-
tion image file is automatically of lower size. The following
example shows an actual image with its lqip counterpart.

Here are the steps required to implement lqips:

1.	 Create the low-quality images corresponding to every
high-quality image you want to render progressively.
Low-quality images can be generated in advance and
saved on the server with all the other static content.
In the case of dynamic content, they can also be
generated at runtime using online tools: the Image
and Video Manager10 from Akamai and Cloudinary’s
image transformation11 feature.

10	 https://smashed.by/imagemanager
11	 https://smashed.by/imagemanipulation

242 Image Optimization  part three

https://www.akamai.com/uk/en/products/performance/image-manager.jsp
https://www.akamai.com/uk/en/products/performance/image-manager.jsp
https://www.akamai.com/uk/en/products/performance/image-manager.jsp
https://www.akamai.com/uk/en/products/performance/image-manager.jsp
https://www.akamai.com/uk/en/products/performance/image-manager.jsp
https://www.akamai.com/uk/en/products/performance/image-manager.jsp
https://www.akamai.com/uk/en/products/performance/image-manager.jsp
https://www.akamai.com/uk/en/products/performance/image-manager.jsp
https://cloudinary.com/features/image_manipulation
https://cloudinary.com/features/image_manipulation
https://cloudinary.com/features/image_manipulation

2.	 Load the lqip images using the html tag with
src attribute. This will ensure that the page is loaded
with the lqip version of the images.

3.	 Swap the low-quality images with the actual im-
ages using JavaScript after the screen is loaded. The
window.onload event can be used to call a JavaScript
function that swaps the source paths of the lqip
images with the actual images, as shown in Carol
Gumby’s imgix blog post.12

LQIPs work best when they resemble the original image.
Some developers tend to blur their lqips to such an extent
that it provides no additional value in terms of user expe-
rience. When a lqip is swapped with the actual image, the
user registers the change, causing a blip in the user experi-
ence. This is the opposite of what we want.

Blurry lqip on Medium.

12	 https://smashed.by/lqip

243images in browsers  Progressive Rendering Techniques

https://blog.imgix.com/2016/06/01/lqip-your-images
https://blog.imgix.com/2016/06/01/lqip-your-images
https://blog.imgix.com/2016/06/01/lqip-your-images
https://blog.imgix.com/2016/06/01/lqip-your-images
https://blog.imgix.com/2016/06/01/lqip-your-images
https://blog.imgix.com/2016/06/01/lqip-your-images
https://blog.imgix.com/2016/06/01/lqip-your-images
https://blog.imgix.com/2016/06/01/lqip-your-images
https://blog.imgix.com/2016/06/01/lqip-your-images
https://blog.imgix.com/2016/06/01/lqip-your-images
https://blog.imgix.com/2016/06/01/lqip-your-images
https://blog.imgix.com/2016/06/01/lqip-your-images
https://blog.imgix.com/2016/06/01/lqip-your-images

Non-user-friendly lqips, like the example from Medium,
seem to be the primary reason why this technique is some-
times criticized.13 If you choose to use lqips, be sure your
approach actually sets accurate expectations for what the
final image will be.

In many cases developers use a low-
resolution jpeg with a css blur filter.
This can overwhelm the gpu and cause
serious performance issues. The filters
are often not applied once: they are re-
applied on every composite. One way to
work around this would be to blur in
<canvas>, but you would need to be
careful of main-thread cpu time.

SQIP with SVG Images

SVG uses xml to display graphics or images (see chapter 10).
As it is not pixel-based like jpeg or png, it offers higher scal-
ability and versatility. jpegs used as lqips tend to look very
coarse and pixelated on increasing the compression. SVG is

13	 https://smashed.by/placeholders

244 Image Optimization  part three

https://www.robinosborne.co.uk/2018/01/05/image-placeholders-do-it-right-or-dont-do-it-at-all-please

resolution-independent as it uses the shape and dimensions
of vectors or shapes to generate the image. As such, scaling
it in size does not make it look pixelated.

	 13.5KB (gz: 6.25KB)	 1.27KB (gz: 811B)	 1.16KB (gz: 560B)

	 Original	 LQIP	 SQIP default

A comparison of an original image, a low-quality placeholder, and a sqip version.

SQIP14 is a tool created by Tobias Baldauf for implementing
lqip with svg images. The sqip tool can be used to create
svg-based image placeholders which are 800 to 1,000 bytes
in size, look smooth as compared with lqip, and help to
render images progressively.

The requirements and installation instructions for the tool
are available on the project’s GitHub page. The following
command may be used to generate the placeholder svg
from an input jpeg file:

sqip -o output.svg input.jpg

14	 https://smashed.by/sqip

245images in browsers  Progressive Rendering Techniques

https://github.com/axe312ger/sqip

SQIP provides options to control the number and type
of primitive shapes used (triangle, circle, and so on), and
options to control the Gaussian blur in the resultant svg
image. SQIP provides an improvement over basic lqip in
terms of byte size and image quality, and should provide a
better user experience if the sqip image bears closer resem-
blance to the original image.

Make sure you measure the performance
impact of sqip in several browsers. There
have been cases reported15 where perfor-
mance is good in one browser, but the
gpu takes a hammering in another.
These problems can be further exacer-
bated on mobile devices.

Gradient Image Placeholders

Gradient image placeholders are the easiest to implement
as image placeholders, as they do not require any additional
images to be created, nor any extra requests to load first the
low- and then the high-quality images. They can be imple-
mented using simple css syntax for creating linear or radial

15	 https://smashed.by/lenymo

246 Image Optimization  part three

https://twitter.com/lenymo/status/975310607179137024
https://twitter.com/lenymo/status/975310607179137024
https://twitter.com/lenymo/status/975310607179137024

gradients of any size: the background: linear-gradient
and background: radial-gradient properties.

Most implementations of gradient image placeholders rely
on identifying the two most prominent colors in an image
and plotting a linear or radial gradient between them.
These gradients are displayed as placeholders until the
image is loaded.

The two most prominent colors could be determined manu-
ally for each image, but will have to be determined at run-
time if there are multiple unknown images that might get
displayed, as is the case with social media or e-commerce
applications. Stoyan Stefanov has created a tool called gip16
which determines the four most dominant colors in each of
the four quadrants of an image and then uses these to plot
the gradient. GIP17 can be incorporated in JavaScript to set the
background and gradient for an image placeholder. The gip
function in the tool returns an object with three properties:

css: "background: #ab9f92; background: linear-
gradient(135deg, #cbc6c2 0%, #5d5347 100%)"
background: "#ab9f92"
gradient: "linear-gradient(135deg, #cbc6c2 0%, #5d5347
100%)"

16	 https://smashed.by/gradient
17	 https://smashed.by/gip

247images in browsers  Progressive Rendering Techniques

https://calendar.perfplanet.com/2018/gradient-image-placeholders/
https://calendar.perfplanet.com/2018/gradient-image-placeholders/
https://calendar.perfplanet.com/2018/gradient-image-placeholders/
https://calendar.perfplanet.com/2018/gradient-image-placeholders/
https://calendar.perfplanet.com/2018/gradient-image-placeholders/
https://github.com/stoyan/cssgip/

I used the demo for the gip module18 to generate the back-
ground gradient corresponding to the following image:

Image

GIP output

Of course, while gip offers a low-fidelity solution as an im-
age placeholder, it is completely based on color and gives no
idea about the shapes composing the image. This might not
be ideal when the designers or business expect users to get
a clearer idea of what is to come.

18	 https://smashed.by/gipdemo

248 Image Optimization  part three

https://tools.w3clubs.com/gip/
https://tools.w3clubs.com/gip/
https://tools.w3clubs.com/gip/
https://tools.w3clubs.com/gip/
https://tools.w3clubs.com/gip/
https://tools.w3clubs.com/gip/
https://tools.w3clubs.com/gip/
https://tools.w3clubs.com/gip/
https://tools.w3clubs.com/gip/

A number of interesting, if experimental,
alternative approaches exist outside of
those covered so far. These include dyna-
mic image tracing,19 where a JavaScript
library traces a low-res thumbnail of an
image (< 5 kb), generates an svg from it,
and then animates this in, providing a
line structure for what the final image
may look like.

Avoiding the display:none Trap

Older responsive image solutions have mistaken how browsers
handle image requests when setting the css display property.
This can cause significantly more images to be requested than
you might expect, and is another reason <picture> and <img
srcset> are preferred for loading responsive images.

Have you ever written a media query that sets an image to
display:none at certain breakpoints?

<style>
@media (max-width: 640px) {

19	 https://smashed.by/tracing

249images in browsers  Progressive Rendering Techniques

https://codepen.io/jesstelford/pen/PaBMrL
https://codepen.io/jesstelford/pen/PaBMrL
https://codepen.io/jesstelford/pen/PaBMrL
https://codepen.io/jesstelford/pen/PaBMrL
https://codepen.io/jesstelford/pen/PaBMrL
https://codepen.io/jesstelford/pen/PaBMrL

 img {
 display: none;
 }
}
</style>

Or toggled what images are hidden using a
display:none class?

<style>
.hidden {
 display: none;
}
</style>

Images hidden with display:none still get fetched.

250 Image Optimization  part three

A quick check against the Chrome DevTools Network panel
will verify that images hidden using these approaches still
get fetched, even when we expect them not to be. This be-
havior is actually correct per the embedded resources spec.

Does display:none avoid triggering a request for
an image src?

<div style="display:none"></div>

No. The image specified will still get requested. A library
cannot rely on display:none here as the image will be
requested before JavaScript can alter the src.

Does display:none avoid triggering a request for a
background:url()?

<div style="display: none">
 <div style="background: url(img.jpg)"></div>
</div>

Yes. css backgrounds aren’t fetched as soon as an element is
parsed. Calculating css styles for children of elements with
display:none would be less useful as they don’t impact
rendering of the document. Background images on child
elements are neither calculated nor downloaded.

251images in browsers  Progressive Rendering Techniques

Jake Archibald’s Request Quest20 has an excellent quiz on the
pitfalls of using display:none for your responsive images
loading. When in doubt about how specific browsers handle
image request loading, pop open their developer tools and
verify for yourself.

Choosing a Progressive Image
Rendering Strategy

For any approach to providing image placeholders, the devil
is in the details. Performance is not always about byte size
here; in some cases, while sqip size can be smaller than a
blurred jpeg in lqip, the computation cost on a client ma-
chine can be higher.

Because the web lacks an img:loading css pseudo-selector,
you have to try to balance the cost of enabling lqip/sqip
(JavaScript) with the cost of executing the approach (lqip/
sqip running in the browser).

When deciding on your approach, here are a few questions
you should think about:

•	 Does the placeholder offer tangible value? Is it a good
approximation of the final image? If not, consider
whether the real performance cost is worth the im-
provement to perceived performance.

20	 https://smashed.by/quest

252 Image Optimization  part three

https://jakearchibald.github.io/request-quest/
https://jakearchibald.github.io/request-quest/
https://jakearchibald.github.io/request-quest/

•	 How much of the placeholder can be computed ahead
of time (for example, during a build step)?

•	 How much of the placeholder can’t be done ahead of
time? If you’re using a css blur filter on a low-res jpeg,
that computation is done in the browser. The browser
has to process svg placeholders too, so it’s important
to measure the performance implications of your
implementation regardless of whether you are using
lqip or sqip.

•	 How much of the placeholder can be inlined (in Base64,
for example)? Can you avoid going back out to the net-
work for both the low-res placeholder and the high-res
final image? Some implementations go as far as to race
the queue of low-res versus high-res images, and this
can add lots of complexity to the equation. Again, the
answer to this question can be found by measuring the
performance of each scenario.

•	 How many images in the viewport need the placehold-
er? This matters because the aggregate cost of lqip
against sqip may influence your decision.

•	 Do you need to worry about variable network availabili-
ty? Most lqip and sqip implementations rely on Java-
Script to make the switch from low- to high-res images
when the final image is available. A JavaScript-heavy
implementation may delay the user seeing any images

253images in browsers  Progressive Rendering Techniques

at all if it takes a while before the lines responsible for
this are actually transferred and executed.

•	 Will your specific users react better to a blurry image
preview (jpeg lqip) or a preview with a sharper silhou-
ette or shapes (sqip)? (Glenn McComb has published an
interesting comparison of different placeholders.)21

•	 Is this a short-term or long-term project? Consider your
project timeline and whether you need to add this opti-
mization now or if you can wait for solutions like jpeg
xl (see chapter 19) that attempt to incorporate low-qual-
ity image placeholders as part of the format.

The effort it takes to set up lqip and sqip is roughly the
same, and both have a potential performance cost. To
choose the right strategy, consider how each option fits
your project, and make sure you measure the perfor-
mance impact in multiple browsers.

Having covered the different solutions available for progres-
sive images, we can say that just like any other ux design
problem, there isn’t a one-size-fits-all solution available in
this case either. Some users would like to see a substitute
image before the original image loads, while others may get
irritated by the switch.

21	 https://smashed.by/placeholdercomp

254 Image Optimization  part three

https://twitter.com/lenymo/status/975306472174190592
https://twitter.com/lenymo/status/975306472174190592
https://twitter.com/lenymo/status/975306472174190592
https://twitter.com/lenymo/status/975306472174190592
https://twitter.com/lenymo/status/975306472174190592
https://twitter.com/lenymo/status/975306472174190592
https://twitter.com/lenymo/status/975306472174190592

A 2014 study by Tammy Everts, “Progressive Image Ren-
dering: Good or Evil?”22 tried to gauge user reactions to
different techniques but failed to prove anything conclu-
sive. However, it did highlight that users could be sensitive
to how images render. So images need to be rendered as
quickly, clearly, and simply as possible. It should also be
noted that, since the progressive layer has to be decoded
and rendered separately, it may take some processing power
away from the normal page rendering process.

It is important to remember that these techniques were
designed to keep users with slow internet connections
engaged. Every website should cater to such users. The
solution implemented should meet the needs of this subset
of users, and the expected number of targeted users on a
slow connection should be able to justify the additional cost
of implementing a specific image-loading solution. Simple
gradients would probably serve the purpose if the images
are not dynamic, while lqip and sqip could be used where
a more sophisticated approach is required. The goal should
be to enhance the user experience and to ensure that the
progression from the low-quality substitute to the original
image is subtle and smooth.

22	 https://smashed.by/progrendering

255images in browsers  Progressive Rendering Techniques

https://blog.radware.com/applicationdelivery/wpo/2014/09/progressive-image-rendering-good-evil/
https://blog.radware.com/applicationdelivery/wpo/2014/09/progressive-image-rendering-good-evil/
https://blog.radware.com/applicationdelivery/wpo/2014/09/progressive-image-rendering-good-evil/
https://blog.radware.com/applicationdelivery/wpo/2014/09/progressive-image-rendering-good-evil/
https://blog.radware.com/applicationdelivery/wpo/2014/09/progressive-image-rendering-good-evil/
https://blog.radware.com/applicationdelivery/wpo/2014/09/progressive-image-rendering-good-evil/
https://blog.radware.com/applicationdelivery/wpo/2014/09/progressive-image-rendering-good-evil/
https://blog.radware.com/applicationdelivery/wpo/2014/09/progressive-image-rendering-good-evil/
https://blog.radware.com/applicationdelivery/wpo/2014/09/progressive-image-rendering-good-evil/
https://blog.radware.com/applicationdelivery/wpo/2014/09/progressive-image-rendering-good-evil/
https://blog.radware.com/applicationdelivery/wpo/2014/09/progressive-image-rendering-good-evil/
https://blog.radware.com/applicationdelivery/wpo/2014/09/progressive-image-rendering-good-evil/
https://blog.radware.com/applicationdelivery/wpo/2014/09/progressive-image-rendering-good-evil/
https://blog.radware.com/applicationdelivery/wpo/2014/09/progressive-image-rendering-good-evil/

chapter 13

Optimizing Network Requests
with Caching and Preloading

HTTP Caching

Downloading files such as images or videos over
the network can be slow and costly. Large files
may require several round trips between browser

and server to fetch them in full. Similarly, the loading of
web pages can be delayed if critical resources, such as hero
images, are still waiting on the network. Ideally, we should
avoid keeping users waiting or paying a cost on their data
plan as each extra network request can be a waste of money.

HTTP caching enables browsers to store a copy of a down-
loaded resource and serve it back when a page requests it
again. When the http cache has a requested resource, it in-
tercepts the request and returns the copy on the file system
rather than refetching it from the network. This reduces the
load on servers, which don’t always need to serve the same
resources to users who have previously visited the page or
site. It also optimizes performance as it’s often quicker to
read a resource from the local cache than fetching it from

256 Image Optimization  part three

the original server. When done correctly, http caching can
be a powerful tool for ensuring resources are cached until
they change, rather than any longer than this.

HTTP caching allows us to:

•	 Control which network responses can be cached.

•	 Configure for how long responses can be cached (using
max-age and Cache-Control or Expires).

•	 Customize the validators used for checking if responses
are stale (such as ETag or Last-Modified).

•	 Perform a forced revalidation if needed.

HTTP caching in all modern web browsers is a widely
agreed specification, making it easy to incorporate in web
applications. Your application will significantly benefit from
appropriate use of these requirements, optimizing response
times, and reducing server load. Inaccurate caching, though,
may cause users to see out-of-date content and bugs that are
difficult to debug.

REQUEST AND RESPONSE HEADERS

There are two things a browser needs to know in order to
cache a file in the http cache: how long it’s permitted to

257images in browsers  Optimizing Network Requests

cache this file, and how to determine whether this file’s con-
tent is fresh. When your browser receives a response from a
network, it often indicates via headers if the resource can be
cached and for how long, and the age of the file.

The behavior of the http cache is controlled by request and
response headers. Web developers should control both the
code for our sites (request headers)23 and the web server part
(response headers).24 There are a few primary http headers
that are effective in caching.

Last-Modified

The Last-Modified header25 uses a date and time strategy
to decide if a file has changed. It looks at when the origin
believes the file was last modified and is a good validator
for checking if a file received or stored is the same. It’s less
accurate than the ETag header, which is content-based.

Last-Modified: Mon, 20 Jul 2020 11:43:22 GMT

Cache-Control

Cache-Control26 keeps instructions for caching in both re-
quests and responses. Servers can return a Cache-Control to
state how and for what length of time the browser and other
caches should store responses.

23	 https://smashed.by/requestheader
24	 https://smashed.by/responseheader
25	 https://smashed.by/lastmodified
26	 https://smashed.by/cachecontrol

258 Image Optimization  part three

https://developer.mozilla.org/en-US/docs/Glossary/Request_header
https://developer.mozilla.org/en-US/docs/Glossary/Request_header
https://developer.mozilla.org/en-US/docs/Glossary/Request_header
https://developer.mozilla.org/en-US/docs/Glossary/Response_header
https://developer.mozilla.org/en-US/docs/Glossary/Response_header
https://developer.mozilla.org/en-US/docs/Glossary/Response_header
https://developer.mozilla.org/docs/Web/HTTP/Headers/Last-Modified
https://developer.mozilla.org/docs/Web/HTTP/Headers/Last-Modified
https://developer.mozilla.org/docs/Web/HTTP/Headers/Last-Modified
https://developer.mozilla.org/docs/Web/HTTP/Headers/Cache-Control
https://developer.mozilla.org/docs/Web/HTTP/Headers/Cache-Control
https://developer.mozilla.org/docs/Web/HTTP/Headers/Cache-Control

Cache-Control: public, max-age=600

To get started with Cache-Control, here are a few pointers:

•	 For resources that should be stored for a fixed
period of time:
Cache-Control: max-age
(good for assets that are versioned).

•	 For resources that need to be revalidated each time
they are used:
Cache-Control: no-cache.

•	 For resources that should never be cached:
Cache-Control: no-store.

ETag

ETag27 is an http response header that identifies a specific
version of a file. When browsers find a cached response
that has expired, they can send a small token (often a hash
of the file’s content) to the server to validate if the file
has been modified.

ETag: "v456.2.01"
Cache-Control: max-age=600

27	 https://smashed.by/etag

259images in browsers  Optimizing Network Requests

https://developer.mozilla.org/docs/Web/HTTP/Headers/ETag

Should the server return the same token, the file is the same
and there is no need to download it again. ETags allow cach-
es to be much more efficient as servers don’t need to send a
full response if content hasn’t changed.

CACHE DURATION

How long you cache a resource depends heavily on the
sensitivity of what you are caching. Versioned images or
JavaScript can be cached for a long period of time, while
resources that are not versioned likely need a shorter cache
time so that users are guaranteed to get a fresh version.

The Chrome DevTools Network panel can optionally show the values of
different caching headers, including Cache-Control, Last-Modified, ETag,
and whether the file is already in the http (disk) cache.

260 Image Optimization  part three

There are often many different layers28 in the modern tech
stack where a site may leverage caching. These include the
web browser (http cache, service worker cache), cdns and
image cdns (cache close to users on the edge), caching prox-
ies that can sit in front of the site, and, finally, intermediate
caches such as those between your site and database.

Freshness

When a file gets downloaded and stored in the http cache,
one could imagine it being servable from there forever.
However, as the user’s file system has finite storage that can
change over time, browsers also have finite storage and may
need to periodically purge items from the cache to free up
space. This is known as cache eviction.

Servers need to inform browsers of an expiration time
for their resources. Prior to this expiration, a file is con-
sidered fresh and up to date; after this time, the file is
stale or out of date.

This stale file isn’t evicted immediately from the cache, but
when the browser checks the cache for a stale file, it sends
this request with an If-None-Match header to ensure it’s up
to date. Servers will return a 304 Not Modified29 header but
won’t send the body to reduce bandwidth consumption.

28	 https://smashed.by/fourcaches
29	 https://smashed.by/status304

261images in browsers  Optimizing Network Requests

https://blog.yoav.ws/tale-of-four-caches/
https://blog.yoav.ws/tale-of-four-caches/
https://blog.yoav.ws/tale-of-four-caches/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/304
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/304
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/304
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/304

Freshness is based on many different headers. With the
Cache-Control: max-age=N header, the length of freshness
is N. If the header is missing, it’s checked to see if an Expires
header is in place. If it is, the freshness lifetime is its value
minus the Date header value.

Should an origin server not configure a freshness prefer-
ence using Cache-Control/Expires, it’s possible other heuris-
tics may be used.

stale-while-revalidate (SWR)

The stale-while-revalidate30 http Cache-Control di-
rective sets a grace period in which browsers can use an out-
of-date (stale) asset while checking on a new version. This
hides network and server latency from clients.

Cache-Control: max-age=31536000, stale-while-
revalidate=86400

This Cache-Control header states the amount of time in sec-
onds a file should be cached for (max-age=31536000 – this
file should be good for a year). After a year, you have one day
to keep serving this stale asset, while it is asynchronously
revalidated in the background (stale-while-revalidate
=86400 – one day in seconds).

30	 https://smashed.by/revalidate

262 Image Optimization  part three

https://web.dev/stale-while-revalidate/
https://web.dev/stale-while-revalidate/
https://web.dev/stale-while-revalidate/
https://web.dev/stale-while-revalidate/
https://web.dev/stale-while-revalidate/

With this directive, you can balance delivering on imme-
diacy – serving content that is cached straightaway – and
freshness – making sure that updates to the cached con-
tent are used next time. In browsers that don’t support
stale-while-revalidate, it will be ignored and max-age
values will be used instead.

Using URL Versioning for Long-Lived Caching

URL versioning (also referred to as “revving” or “hashing”)
is a helpful way to ensure you invalidate cached respons-
es. Add Cache-Control: max-age=31536000 to responses
for versioned resources if they include contents you don’t
believe will ever change – this value represents a full year.
Static image resources like a logo, illustration, or UI element
are good candidates for such resources.

When you set a value like this, it informs the browser that
it can directly use the cached response in the http cache
if the url attempts to be loaded, without ever needing to
make a request to the server at all. Automating file version-
ing31 can be achieved with build tooling like webpack.

Revalidation for Non-Versioned URLs

It’s not possible to entirely skip the network using http
caching. To optimize caching for urls that are not versioned
you can use one of the following Cache-Control values:

31	 https://smashed.by/versioning

263images in browsers  Optimizing Network Requests

https://webpack.js.org/guides/caching/#output-filenames
https://webpack.js.org/guides/caching/#output-filenames
https://webpack.js.org/guides/caching/#output-filenames
https://webpack.js.org/guides/caching/#output-filenames
https://webpack.js.org/guides/caching/#output-filenames
https://webpack.js.org/guides/caching/#output-filenames

•	 public: any cache can store these responses.

•	 private: intermediate caches can’t cache the file, but
browsers can.

•	 no-store: both the browser and intermediate caches
such as cdns should never store a version of the file.

•	 no-cache: the browser needs to revalidate with the
server each time before a cached version of the url
can be used.

Vary Header

It’s important to understand if the file being requested is
cached. This may seem straightforward, but often a url on
its own isn’t sufficient to tell. Particular requests (let’s say
index.html) could be modified specifically for mobile users.
To solve this problem, browsers give each cached file a cache
key (a unique identifier). This cache key is just the url of
the resource by default, but we can add other details to it
using the Vary header.32

Vary: Accept-Encoding

A Vary header informs the browser to add the value of
request header values to the unique cache key. A pretty
common example of this is done using compression,

32	 https://smashed.by/vary

264 Image Optimization  part three

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Vary
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Vary
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Vary

where Vary: Accept-Encoding33 will create different
entries in the cache for different Accept-Encoding val-
ues (e.g. gzip or br for Brotli). Vary:Accept-Encoding,
User-Agent is also a popular directive that informs the
browser to vary cached entries by both Accept-Encoding
and User-Agent string values.

IMPROVING CACHE HIT RATIOS

When the cache is able to fulfill a request for a file rather
than needing to go back to the network to retrieve it, this is
referred to as a “cache hit.” If a user navigates to a page with
a hero image of a dancing bear, the browser may request
this image from the origin’s image cdn. A cache hit from the
browser’s perspective would be this file being readable from
the local http cache.

Similarly, the image cdn may view a cache hit as there
already being a copy of the dancing bear image in its storage
that can be quickly sent back to the browser, perhaps requir-
ing that the image be fetched from the origin instead.

A “cache miss” happens when the cache does not have a
copy of the requested file. For an image cdn, if the dancing
bear image is not in its storage cache, the request would
need to defer back to the origin server to serve the image
instead. The image cdn would then cache the image when

33	 https://smashed.by/understandingvary

265images in browsers  Optimizing Network Requests

https://www.smashingmagazine.com/2017/11/understanding-vary-header/
https://www.smashingmagazine.com/2017/11/understanding-vary-header/
https://www.smashingmagazine.com/2017/11/understanding-vary-header/
https://www.smashingmagazine.com/2017/11/understanding-vary-header/
https://www.smashingmagazine.com/2017/11/understanding-vary-header/

the origin responds to the request so future requests for it
would result in a cache hit.

The cache hit ratio measures how many requests for con-
tent a cache can successfully fulfill compared to the number
of requests it receives.

The formula for cache hit ratio (Source: Cloudflare)34

When dealing with images, a number of criteria can impact
cache hit ratio:

•	 Serving images with a shorter cache lifetime.
Image assets that are unlikely to change often can be
cached with a much longer duration, in particular if
url versioning is being used should you need to
perform an update. Too short a cache lifetime on
such resources can decrease the chances of getting
a cache hit.

•	 Serving images on different urls. It’s possible that
you have an or custom image cdn that serves the exact
same content but from different urls. This can cause

34	 https://smashed.by/hitratio

266 Image Optimization  part three

https://www.cloudflare.com/learning/cdn/what-is-a-cache-hit-ratio/

content to be downloaded and stored several times. For
example, foo.com/logo.jpg?w=500,h=100 and foo.com/logo.
jpg?h=100,w=500 are technically two different urls,
which will result in different requests being made to
the server for the same resource.

•	 Serving images on a url with a timestamp. Some-
times site owners will append a timestamp to urls to
force the latest version of a resource to be delivered
(for cache busting via foo.com/logo.jpg?t=1365253323,
for example). This changes the url being cached and
can mean that while users will get the latest version,
they may never benefit from caching as the url being
requested is always considered different. A better ap-
proach here would be to rely on revving or file version-
ing in the url string.

•	 Serving a broad range of responsive image varia-
tions. It’s possible you, your build process, or design
team have a large number of image variations used
to target different dpr values. If leveraging a cdn
to serve these images, users may be the first ones to
request a particular dpr before it is cached at the cdn
layer. This may be fine in practice, but it’s worth
being aware of.

267images in browsers  Optimizing Network Requests

IDENTIFYING CACHE OPPORTUNITIES

Lighthouse35 in Chrome DevTools highlights opportunities
to improve web pages. It includes an “efficient cache policy”
audit,36 which can evaluate if a page can benefit from a
stronger set of caching rules.

The audit works by comparing the value of the Last-
Modified header (how old the content is) with the time to
live (ttl) of the cache and estimating the likelihood of a
file being served from the cache.

Lighthouse presenting a set of caching recommendations for specific requests.

35	 https://smashed.by/lighthouse
36	 https://smashed.by/efficientcache

268 Image Optimization  part three

https://developers.google.com/web/tools/lighthouse
https://web.dev/uses-long-cache-ttl/
https://web.dev/uses-long-cache-ttl/
https://web.dev/uses-long-cache-ttl/
https://web.dev/uses-long-cache-ttl/
https://web.dev/uses-long-cache-ttl/
https://web.dev/uses-long-cache-ttl/
https://web.dev/uses-long-cache-ttl/
https://web.dev/uses-long-cache-ttl/

Offline Caching with Service Workers

Next up are service workers.37 Service workers and the http
cache serve the same purpose, but service workers provide
more fine-grained control over what files get cached and
how caching is completed.

Service workers are a type of web worker38 that afford
web pages greater control over network requests. They are
effectively JavaScript files that run a lot like a proxy server,
enabling you to modify both requests and responses, cache
these requests to optimize performance, and enable offline
access to content that has been cached.

The primary benefits of using service workers are:

•	 Enabling offline support in your web page or
web application.

•	 Optimizing page load performance (e.g. from caching
hero and article images).

•	 Accessing advanced browser features (e.g. push
notifications).

There are two primarys that service workers use to make
pages work offline. These are the Fetch standard39 (a stan-
dardized way to download content from the network) and

37	 https://smashed.by/serviceworkerapi
38	 https://smashed.by/webworkers
39	 https://smashed.by/fetchapi

269images in browsers  Optimizing Network Requests

https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

the Cache40 (a storage mechanism for page data that is both
persistent and independent from the http cache).

If you are building a progressive web application41 (a web
app that is installable) or just want to add offline caching
to your page, service workers can enable you to cache both
static and dynamic urls, including images, videos, and oth-
er kinds of media. Similar to the http cache, caching files
with service workers and the Cache can make content load
quicker under many kinds of network conditions.

Static image assets can include favicons, svg icons, hero
images, illustrations, and other images that are not likely to
change regularly. Dynamic image assets may be those that
may not be known easily ahead of time (for example, those
returned from an external) or which may be user-uploaded
content that can’t be known at build time.

Service workers will only run on https.
As they can intercept and modify network
responses, it’s important that browsers
limit possible “man-in-the-middle” attacks.
It’s possible to use services like Let’s Encrypt42
to secure ssl certificates for your site.

40	 https://smashed.by/cacheapi
41	 https://smashed.by/pwa
42	 https://letsencrypt.org/

270 Image Optimization  part three

https://developer.mozilla.org/en-US/docs/Web/API/CacheStorage
https://web.dev/progressive-web-apps/
https://web.dev/progressive-web-apps/
https://web.dev/progressive-web-apps/
https://web.dev/progressive-web-apps/
https://web.dev/progressive-web-apps/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/

IMPROVED PERFORMANCE FROM OFFLINE CACHING

When you cache files locally, pages can load more quickly.
Service workers are able to cache files locally in the brows-
er and retrieve them without needing to go back to the
network. This can enable a quicker experience for users
even if they’re on a fast network connection.

At the core of a modern offline experience in the browser
is your service worker. It allows you to select when files
should be cached and when content should be fetched from
the cache instead of going back to the network. One way to
handle offline caching for static resources such as images
is the following:

1.	 Register a service worker. A first visit to your page
triggers the service worker installation flow.

2.	 On installation, cache the static resources for
the page or site. Typically this is the core set of
html, css, JavaScript, and images the page
needs to be opened.

3.	 Set up the service worker to listen for file fetches.
When a file is being fetched, the service worker will
try to find it in the local cache (via the Cache) before
going back to the network to download it.

271images in browsers  Optimizing Network Requests

4.	 Your service worker should cache copies of files that
need to be fetched from the network so in future they
can be retrieved from the local cache instead.

There are many other recipes for caching approaches avail-
able in Google’s Offline Cookbook43 and Workbox Recipes.44

To register a service worker, first check for browser support
and then register the service worker. The first time a user visits
your page, the service worker will be installed and will activate.

index.html

<script>
if ('serviceWorker' in navigator) {
 navigator.serviceWorker.register('service-worker.
js')
 .then(registration => {
 console.log('Registered:', registration);
 })
 .catch(error => {
 console.log('Registration failed: ', error);
 });
}
</script>

43	 https://smashed.by/offlinecookbook
44	 https://smashed.by/workboxrecipes

272 Image Optimization  part three

https://developers.google.com/web/fundamentals/instant-and-offline/offline-cookbook/
https://developers.google.com/web/fundamentals/instant-and-offline/offline-cookbook/
https://developers.google.com/web/fundamentals/instant-and-offline/offline-cookbook/
https://developers.google.com/web/tools/workbox/guides/advanced-recipes
https://developers.google.com/web/tools/workbox/guides/advanced-recipes
https://developers.google.com/web/tools/workbox/guides/advanced-recipes

While there are many possible strategies for caching the
static assets in a site, a common one is when the service
worker installs. When users navigate to your site for the
first time, these static files can be cached so they can be
retrieved from the cache for future visits. The code below
defines a name of the cache and a list of what static files
need to be cached. An install event listener is created which
runs code once the service worker completes installation.
The install listener here opens the cache and stores the
static assets for us.

service-worker.js

const CACHE_NAME = 'static-cache';
const urlsToCache = [
 '.',
 'index.html',
 'logo.svg',
 'styles/main.css'
];
self.addEventListener('install', event => {
 event.waitUntil(
 caches.open(CACHE_NAME)
 .then(cache => cache.addAll(urlsToCache))
);
});

273images in browsers  Optimizing Network Requests

OFFLINE CACHING MADE EASIER WITH

A JAVASCRIPT LIBRARY

Workbox45 is a set of JavaScript libraries by Google that
helps you author and manage service workers and caching
with the Cache. It includes robust support for a number
of best-practice patterns and documented offline caching
recipes to ease your path to adding offline support with
examples from large production sites.

One example of what you can achieve with Workbox is to
create an image cache. The code below allows your service
worker to respond to requests for images with a cache-first
strategy. This means that once they’re in the cache, a user
doesn’t need to make another request for them. By default,
the approach caches at most 60 images, each for 30 days:

import { registerRoute } from 'workbox-routing';
import { CacheFirst } from 'workbox-strategies';
import { CacheableResponsePlugin } from 'workbox-
cacheable-response';
import { ExpirationPlugin } from 'workbox-expiration';
const cacheName = 'images';
const matchCallback = ({ request }) => request.
destination === 'image';
const maxAgeSeconds = 30 * 24 * 60 * 60;

45	 https://smashed.by/workbox

274 Image Optimization  part three

https://developers.google.com/web/tools/workbox

const maxEntries = 60;
registerRoute(
 matchCallback,
 new CacheFirst({
 cacheName,
 plugins: [
 new CacheableResponsePlugin({
 statuses: [0, 200],
 }),
 new ExpirationPlugin({
 maxEntries,
 maxAgeSeconds,
 }),
],
 }),
);

Recent versions of Workbox come with a workbox-
recipes46 package: a set of standardized reusable recipes
to quickly set up routing and caching with service workers
for common scenarios. Here’s how we can use workbox-
recipes to accomplish the same functionality as the more
verbose above example:

import { imageCache } from 'workbox-recipes';
imageCache();

46	 https://smashed.by/imagecache

275images in browsers  Optimizing Network Requests

https://developers.google.com/web/tools/workbox/modules/workbox-recipes#image_cache
https://developers.google.com/web/tools/workbox/modules/workbox-recipes#image_cache
https://developers.google.com/web/tools/workbox/modules/workbox-recipes#image_cache

For more guidance on how to use Workbox and service
workers to set up caching and routing in your application,
check out the official Workbox documentation.47

Effectively leveraging the http cache and service workers
can be a powerful way to ensure that browsers and other
intermediate layers (like cdns) work together to deliver
content as efficiently as possible to users. The benefits to
performance from caching (even if just for first-party con-
tent you own yourself) can be significant thanks to reduc-
tions in round-trip times and avoiding repeating requests to
the network for files.

There is a lot of nuance to caching and it’s worth investing
time to get a deeper understanding of the different http
headers that represent freshness and allow us to validate
entries we wish to cache. It’s worthwhile auditing your site
to understand opportunities to better cache resources, and
tools such as Lighthouse are a good first step in getting you
on your journey to effectively using browser caches.

47	 https://smashed.by/workboxdoc

276 Image Optimization  part three

https://developers.google.com/web/tools/workbox
https://developers.google.com/web/tools/workbox
https://developers.google.com/web/tools/workbox
https://developers.google.com/web/tools/workbox
https://developers.google.com/web/tools/workbox

Image Spriting

As we’re discussing how to optimize network requests, let’s
also discuss image spriting.48

Spriting is an optimization which combines a number of im-
ages (sprites) into one “sprite sheet” image. The term was

A single sprite sheet composed of three flag images. By setting the
same background-image on each flag class via css, we can then adjust
the background position and dimensions to “crop” to a specific flag
[Source: CSS Tricks]49

48	 https://smashed.by/spriting
49	 https://smashed.by/csssprite

.flags-canada, .flags-
mexico, .flags-usa {
 background-image:
url('../images/flags.png'
);
 background-repeat:
no-repeat;
}

.flags-canada {
 height: 128px;
 background-position:
-5px -5px;
}

.flags-usa {
 height: 135px;
 background-position:
-5px -143px;
}

277images in browsers  Optimizing Network Requests

https://developers.google.com/web/fundamentals/design-and-ui/responsive/images#use_image_sprites
https://css-tricks.com/css-sprites/
https://css-tricks.com/css-sprites/
https://css-tricks.com/css-sprites/

popularized in the video games industry back in the 1970s
where it was originally used to composite several graphics
into a single image and only display a portion of the image
at a time. On older gaming hardware, this was more effi-
cient for memory and storage.

When used in a web page, each “sprite” sets a background-
image url that points to the sprite sheet image and leverag-
es offsets in css to display the correct image while hiding
the rest of the sheet from view.

Image sprites (or css sprites) are supported by all browsers,
and have been a popular way to reduce the number of images
a page loads by combining them into a single larger image.

Image sprites are still used in some production sites, including the Google
homepage.

Under http/1.x, some developers used spriting to reduce
http requests. This came with a number of benefits, but
care was needed as you quickly ran into challenges with
cache invalidation – changes to any small part of an image
sprite would invalidate the entire image in a user’s cache.

278 Image Optimization  part three

Today, spriting could be considered an http/2 anti-pattern.50
With http/2, it may be best to load individual images51
since multiple requests within a single connection are now
possible. Measure to evaluate whether this is the case for
your network setup.

Preloading

Preloading52 allows you to inform the browser about critical
resources you want to load as soon as possible, before
they’re discovered in html.

If you are optimizing largest contentful paint53 (lcp – see
chapter 22), preload can be a game-changer for boosting how
soon a browser downloads late-discovered resources loaded
via JavaScript, or that are delayed by other resource fetches
taking precedence. Preload is supported54 in Chrome, Edge,
Safari and Firefox 84+.

<link rel="preload" as="image" href="hero-image.jpg">

The markup version of preloading (<link rel="preload">)
is a declarative fetch allowing you to force the browser to
make a request for a resource without blocking the docu-

50	 https://smashed.by/antipattern
51	 https://smashed.by/individualimages
52	 https://smashed.by/preloading
53	 https://smashed.by/lcp
54	 https://smashed.by/caniusepreload

279images in browsers  Optimizing Network Requests

https://hpbn.co/http2/#request-and-response-multiplexing
https://hpbn.co/http2/#request-and-response-multiplexing
https://hpbn.co/http2/#request-and-response-multiplexing
https://hpbn.co/http2/#request-and-response-multiplexing
https://hpbn.co/http2/#request-and-response-multiplexing
https://deliciousbrains.com/performance-best-practices-http2/
https://deliciousbrains.com/performance-best-practices-http2/
https://deliciousbrains.com/performance-best-practices-http2/
https://deliciousbrains.com/performance-best-practices-http2/
https://deliciousbrains.com/performance-best-practices-http2/
https://web.dev/preload-critical-assets
https://web.dev/lcp
https://web.dev/lcp
https://web.dev/lcp
https://web.dev/lcp
https://web.dev/lcp
https://caniuse.com/#search=preload

ment’s onload event. Browsers will more quickly download
resources that might otherwise not be discovered until later
in the document parsing process.

Any resources you preload should be chosen
with care so you don’t accidentally cause
network contention with other important
files in the critical rendering path of the page.

Preloading can substantially improve lcp especially if you
need critical images (like hero images) to be prioritized over
the loading of other images on a page. While browsers will
try their best to prioritize the loading of images in the vis-
ible viewport, <link rel="preload"> offers page authors
some further control over this process.

A hero image is the primary photo you see at the top of a web page. It may
be the largest contentful element visible in the viewport, such as the movie
poster in the filmstrip above.

280 Image Optimization  part three

Preloading might be able to substantially speed up image
display if you currently have:

•	 hero images that rely on JavaScript to load them:

•	 a React, Vue, or Angular component loading
tags client-side

•	 client-side rendered html responsible for loading
images

•	 background hero images in css (these are discovered
really late)

•	 hero images that rely on JavaScript and a network
fetch to load (e.g. require a json fetch from an
to discover images)

•	 use a webpack loader to load in images

The key idea here is to avoid the browser having to wait for
the script before beginning to load the image, as this could
heavily delay when users can actually see it.

Overleaf is a WebPageTest55 filmstrip from loading a React-
based movie browser. The app uses client-side rendering
(app.js) and also relies on a fetch to an to return a json feed
of images (movies.json). This means the browser may need to

55	 https://webpagetest.org/

281images in browsers  Optimizing Network Requests

https://webpagetest.org/

process app.js before it starts fetching movies.json and can
discover our hero image (poster.jpg).

A filmstrip of a React app that highlights how a key poster image was
discovered and loaded late. With preload, we can help the browser discover
the image far sooner. This helps us reach largest contentful paint (the orange
frame) one second sooner on 4G.

Using preload on the
hero image, we are able
to prioritize fetching
content in the optimal
order, rendering useful
image content (right)
instead of the empty
gray background in the
original version (left).

282 Image Optimization  part three

The largest contentful paint56 metric mea-
sures the render time of the largest image
or text block visible within the viewport.

CHOOSING WHAT TO PRELOAD

<link rel="preload"> can be used in a few different ways
to optimize the loading of late-discovered images. Preload
a hero image so it’s discovered before the time JavaScript
outputs an :

<link rel="preload" as="image" href="poster.jpg">

Now that browser support for formats like webp and avif
has improved, you might also like to know that such images
can also be preloaded:

<link rel="preload" as="image" href="poster.webp"
type="image/webp">

56	 https://smashed.by/lcp

283images in browsers  Optimizing Network Requests

https://web.dev/lcp
https://web.dev/lcp
https://web.dev/lcp
https://web.dev/lcp
https://web.dev/lcp

Preloading a specific format won’t also
preload the fallback image for browsers
that don’t support that format, but it will
optimize loading for the ones that do.

Preload a responsive image57 so the correct source is
discovered sooner:

<link rel="preload" as="image"
 href="poster.jpg"
 imagesrcset="
 poster_400px.jpg 400w,
 poster_800px.jpg 800w,
 poster_1600px.jpg 1600w"
 imagesizes="50vw">

Preload the json as fetch so it’s discovered before
JavaScript requests it:

<link rel="preload" as="fetch" href="movies.json">

In the case of the React movies app mentioned earlier,
movies.json requires a cross-origin fetch, which you can get
working with preload if you set the crossorigin attribute
on the link element:

57	 https://smashed.by/responsiveimages

284 Image Optimization  part three

https://web.dev/preload-responsive-images/
https://web.dev/preload-responsive-images/
https://web.dev/preload-responsive-images/

<link rel="preload" as="fetch" href="foo.com/api/
movies.json" crossorigin>

For bonus points, you can also preconnect58 to the origin
that this fetch is going to connect to:

<link rel="preconnect" href="https://foo.com/"
crossorigin>

Preload the JavaScript to shorten the time it takes to discov-
er from html:

<link rel="preload" as="fetch" href="app.js">

58	 https://smashed.by/preconnect

When a preload is declared in markup, resources can be fetched before the html
parser has even reached the element (e.g , <script>) where the resource is
defined. As such, preload shifts resource fetches much closer to parse time.

285images in browsers  Optimizing Network Requests

https://web.dev/uses-rel-preconnect/

Don’t overuse preload – used without care,
it can regress metrics like first contentful
paint. Reserve it for critical resources the
browser’s preload scanner can’t find quickly.

Sites like Philips,59 Flipkart,60 and Xerox61 use <link rel=
"preload"> to preload their main logo assets (often used
early in the document). Kayak62 also uses preload to ensure
the hero image for the header is loaded as soon as possible.

Philips uses <link rel="preload"> to preload its logo.

LINK PRELOAD HEADER

A preload link can be specified using either an html tag or
an http Link header.63 In either case, a preload link directs
the browser to begin loading a resource into the memory

59	 https://www.usa.philips.com/
60	 https://www.flipkart.com/
61	 https://www.xerox.com/
62	 https://kayak.com/
63	 https://smashed.by/linkheader

286 Image Optimization  part three

https://www.usa.philips.com/
https://www.flipkart.com/
https://www.xerox.com/
https://kayak.com/
https://www.w3.org/wiki/LinkHeader
https://www.w3.org/wiki/LinkHeader
https://www.w3.org/wiki/LinkHeader
https://www.w3.org/wiki/LinkHeader
https://www.w3.org/wiki/LinkHeader

cache, indicating that the page expects with high confidence
to use the resource and doesn’t want to wait for the preload
scanner or the parser to discover it. A Link preload header
for images would look like this:

Link: <https://example.com/poster.jpg>;
 rel=preload; as=image

When the Financial Times introduced a Link preload header
to its site, one second was shaved off64 the time it took to
display the masthead image.

The FT using preload. Displayed are the WebPageTest before and after traces
showing improvements. Bottom: with the Link header65 to preload; top: without.

Similarly, Wikipedia improved time-to-logo performance66
with the Link preload header.

64	 https://smashed.by/onesecond
65	 https://smashed.by/ftheader
66	 https://smashed.by/timetologo

287images in browsers  Optimizing Network Requests

https://twitter.com/wheresrhys/status/843252599902167040
https://twitter.com/wheresrhys/status/843252599902167040
https://twitter.com/wheresrhys/status/843252599902167040
https://twitter.com/wheresrhys/status/843252599902167040
https://twitter.com/wheresrhys/status/843252599902167040
https://twitter.com/wheresrhys/status/843252599902167040
https://twitter.com/wheresrhys/status/843252599902167040
https://twitter.com/wheresrhys/status/843252599902167040
https://twitter.com/wheresrhys/status/843252599902167040
https://github.com/Financial-Times/n-ui/pull/882
https://github.com/Financial-Times/n-ui/pull/882
https://github.com/Financial-Times/n-ui/pull/882
https://phabricator.wikimedia.org/phame/post/view/19/improving_time-to-logo_performance_with_preload_links/
https://phabricator.wikimedia.org/phame/post/view/19/improving_time-to-logo_performance_with_preload_links/
https://phabricator.wikimedia.org/phame/post/view/19/improving_time-to-logo_performance_with_preload_links/
https://phabricator.wikimedia.org/phame/post/view/19/improving_time-to-logo_performance_with_preload_links/
https://phabricator.wikimedia.org/phame/post/view/19/improving_time-to-logo_performance_with_preload_links/
https://phabricator.wikimedia.org/phame/post/view/19/improving_time-to-logo_performance_with_preload_links/
https://phabricator.wikimedia.org/phame/post/view/19/improving_time-to-logo_performance_with_preload_links/
https://phabricator.wikimedia.org/phame/post/view/19/improving_time-to-logo_performance_with_preload_links/
https://phabricator.wikimedia.org/phame/post/view/19/improving_time-to-logo_performance_with_preload_links/
https://phabricator.wikimedia.org/phame/post/view/19/improving_time-to-logo_performance_with_preload_links/
https://phabricator.wikimedia.org/phame/post/view/19/improving_time-to-logo_performance_with_preload_links/

WHEN NOT TO PRELOAD

Only preload image assets that are important and needed
early on. If images aren’t critical to your user experience,
focus your early loading efforts on other content instead.
By prioritizing image requests, you might end up pushing
other important resources further down the queue.

To learn more about preloading, see my
“Preload, Prefetch, and Priorities in
Chrome”67 and “Preload: What Is It Good
For?”68 by Yoav Weiss.

TOOLING FOR PRELOAD

The Lighthouse panel in Chrome DevTools can suggest op-
portunities to preload largest contentful paint images that
could be discovered late. This includes images that might be
loaded as css background images.

The “Opportunities” section of the Lighthouse report also
has a more general “preload key requests”69 audit, which
highlights requests in your critical request chain that could
be good candidates to preload.

67	 https://smashed.by/priorities
68	 https://smashed.by/preloadbenefits
69	 https://smashed.by/keyrequests

288 Image Optimization  part three

https://medium.com/reloading/preload-prefetch-and-priorities-in-chrome-776165961bbf
https://medium.com/reloading/preload-prefetch-and-priorities-in-chrome-776165961bbf
https://medium.com/reloading/preload-prefetch-and-priorities-in-chrome-776165961bbf
https://medium.com/reloading/preload-prefetch-and-priorities-in-chrome-776165961bbf
https://medium.com/reloading/preload-prefetch-and-priorities-in-chrome-776165961bbf
https://medium.com/reloading/preload-prefetch-and-priorities-in-chrome-776165961bbf
https://medium.com/reloading/preload-prefetch-and-priorities-in-chrome-776165961bbf
https://medium.com/reloading/preload-prefetch-and-priorities-in-chrome-776165961bbf
https://medium.com/reloading/preload-prefetch-and-priorities-in-chrome-776165961bbf
https://medium.com/reloading/preload-prefetch-and-priorities-in-chrome-776165961bbf
https://medium.com/reloading/preload-prefetch-and-priorities-in-chrome-776165961bbf
https://www.smashingmagazine.com/2016/02/preload-what-is-it-good-for/
https://www.smashingmagazine.com/2016/02/preload-what-is-it-good-for/
https://www.smashingmagazine.com/2016/02/preload-what-is-it-good-for/
https://www.smashingmagazine.com/2016/02/preload-what-is-it-good-for/
https://www.smashingmagazine.com/2016/02/preload-what-is-it-good-for/
https://www.smashingmagazine.com/2016/02/preload-what-is-it-good-for/
https://www.smashingmagazine.com/2016/02/preload-what-is-it-good-for/
https://www.smashingmagazine.com/2016/02/preload-what-is-it-good-for/
https://www.smashingmagazine.com/2016/02/preload-what-is-it-good-for/
https://www.smashingmagazine.com/2016/02/preload-what-is-it-good-for/
https://www.smashingmagazine.com/2016/02/preload-what-is-it-good-for/
https://www.smashingmagazine.com/2016/02/preload-what-is-it-good-for/
https://web.dev/uses-rel-preload/
https://web.dev/uses-rel-preload/
https://web.dev/uses-rel-preload/
https://web.dev/uses-rel-preload/
https://web.dev/uses-rel-preload/

The “Preload Largest Contentful Paint image” audit in Lighthouse
highlighting that a hero image could be preloaded so that it loads sooner.

Preload helps ensure critical hero images and resources get
shown to users as soon as possible. It’s an important web
performance feature that gives developers more control
over the loading sequence for files in a page, with browser
support continuing to improve.

To discover if there are opportunities preload could make
a difference to your app, try out Lighthouse70 or PageSpeed
Insights,71 which have an audit for preloads.72

70	 https://smashed.by/lighthouse
71	 https://smashed.by/pagespeedinsights
72	 https://smashed.by/preloadaudit

289images in browsers  Optimizing Network Requests

https://developers.google.com/web/tools/lighthouse/
https://developers.google.com/speed/pagespeed/insights/
https://developers.google.com/speed/pagespeed/insights/
https://developers.google.com/speed/pagespeed/insights/
https://web.dev/uses-rel-preload/
https://web.dev/uses-rel-preload/
https://web.dev/uses-rel-preload/
https://web.dev/uses-rel-preload/
https://web.dev/uses-rel-preload/

chapter 14

Lazy-Loading Offscreen Images

With special thanks to Houssein Djirdeh and Mathias Bynens for their
contributions to native image lazy-loading guidance for web developers.

Web pages often contain a large number of
images, contributing to page bloat, data costs,
and how fast a page can load. Many of these

images are offscreen; to see them, a user would have to scroll.

Lazy loading is a web performance pattern that delays load-
ing offscreen images until a user needs to see them. One
way to achieve lazy loading is as a user scrolls. This tech-
nique complements the data savings you see with a good
image compression strategy.

The difference between eager and lazy loading: loading images only when
users will see them can improve performance.

290 Image Optimization  part three

Images that must appear in the viewport when the web
page first appears (what used to be known as “above the
fold”) are loaded straight away.

The images which fall offscreen, however, are not yet visible
to the user. They do not have to be immediately loaded into
the browser. They can be loaded later – or lazy-loaded – if
and when the user scrolls down and it becomes necessary
to show them.

Lazy loading is sometimes combined with a placeholder-
based solution, such as a placeholder containing a color,
a placeholder image, or low-resolution preview that is dis-
played while the original is being lazy-loaded.

Benef﻿its of Lazy Loading

This lazy way of loading images only if and when necessary
has many benefits:

•	 Reduced data consumption: Because you don’t
assume users need every image fetched ahead of time,
you only load the minimal number of resources. This is
always a good thing, especially on mobile devices with
more restrictive data plans.

291images in browsers  Lazy-Loading Offscreen Images

Are there non-critical images you just have to keep?
Consider lazy-loading them to speed up page loads.

 LAZY-LOAD IMAGES

Are there non-critical images you just have to keep?
Consider lazy-loading them to speed up page loads.

 LAZY-LOAD IMAGES

•	 Reduced battery consumption: Less workload for the
user’s browser, saving battery life.

•	 Improved download speed: Decreasing your overall
page load time on an image-heavy website from several
seconds to almost nothing is a tremendous boost to
user experience. In fact, it could be the difference be-
tween a user staying around to enjoy your site and just
another bounce statistic.

But like all tools, lazy loading should be wielded with the
appropriate care and attention.

Avoid lazy-loading images that should appear in the view-
port immediately. Use it for long lists of images: product
shots, for example, or lists of user avatars. Don’t use it for
the main page hero image. Lazy-loading critical images can
make loading slower, technically and as perceived by users.
It can kill the browser’s preloader and progressive loading,
and the JavaScript can create extra work for the browser.

Be careful not to lazy-load images when users scroll. If you
wait until the user scrolls they are likely to see placehold-
ers and may eventually get images, if they haven’t already
scrolled past them. One recommendation would be to start
lazy loading after the critical images are displayed, loading
all of the images independent of user interaction.

Be mindful, too, of the cost of JavaScript, particularly on
low-end devices. When implementing lazy loading choose

293images in browsers  Lazy-Loading Offscreen Images

lightweight options that have low execution times and
low battery impact.

Implementing Lazy Loading

Without native browser support, there are two ways to defer
the loading of offscreen images:

•	 using the Intersection Observer73

•	 using scroll, resize, or orientationchange
event handlers74

Either option can let developers include lazy-loading func-
tionality, and many developers have built third-party librar-
ies to provide abstractions that are even easier to use.

Lazy-Loading with Intersection
Observer

Most libraries that implement lazy loading rely on the
Intersection Observer75 to track when a particular element
enters or exits the viewport. Dean Hume76 provides an im-

73	 https://smashed.by/intersectionobserver
74	 https://smashed.by/eventhandlers
75	 https://smashed.by/ioapi
76	 https://smashed.by/hume

294 Image Optimization  part three

https://developers.google.com/web/updates/2016/04/intersectionobserver
https://developers.google.com/web/updates/2016/04/intersectionobserver
https://developers.google.com/web/updates/2016/04/intersectionobserver
https://developers.google.com/web/fundamentals/performance/lazy-loading-guidance/images-and-video/#using_event_handlers_the_most_compatible_way
https://developers.google.com/web/fundamentals/performance/lazy-loading-guidance/images-and-video/#using_event_handlers_the_most_compatible_way
https://developers.google.com/web/fundamentals/performance/lazy-loading-guidance/images-and-video/#using_event_handlers_the_most_compatible_way
https://developer.mozilla.org/en-US/docs/Web/API/Intersection_Observer_API
https://developer.mozilla.org/en-US/docs/Web/API/Intersection_Observer_API
https://developer.mozilla.org/en-US/docs/Web/API/Intersection_Observer_API
https://deanhume.com/lazy-loading-images-using-intersection-observer
https://deanhume.com/lazy-loading-images-using-intersection-observer
https://deanhume.com/lazy-loading-images-using-intersection-observer
https://github.com/deanhume/lazy-observer-load

plementation77 for using Intersection Observer to lazy-
load images on web pages and also describes how to com-
bine lazy-loading based on Intersection Observer with
svg-based sqip images.78

There are a number of techniques and plug-ins available for
lazy loading. I recommend lazysizes79 by Alexander Farkas
because of its decent performance, features, its optional
integration with Intersection Observer,80 and support for
plug-ins. Once you have imported it to your website, all
html elements with class="lazyload" will be lazy-loaded.
This can also be used with the lqip technique:

<img alt="100%x200"
src="low-quality.jpg"
data-src="original.jpg"
class="lazyload" />

Lazysizes

Lazysizes is a JavaScript library. It requires no configura-
tion. Download the minified .js file and include it in
your web page.

77	 https://smashed.by/implementation
78	 https://smashed.by/lazyloadingsqip
79	 https://smashed.by/lazysizes
80	 https://smashed.by/intersectionobserver

295images in browsers  Lazy-Loading Offscreen Images

https://github.com/deanhume/lazy-observer-load
https://calendar.perfplanet.com/2017/progressive-image-loading-using-intersection-observer-and-sqip
https://calendar.perfplanet.com/2017/progressive-image-loading-using-intersection-observer-and-sqip
https://calendar.perfplanet.com/2017/progressive-image-loading-using-intersection-observer-and-sqip
https://calendar.perfplanet.com/2017/progressive-image-loading-using-intersection-observer-and-sqip
https://calendar.perfplanet.com/2017/progressive-image-loading-using-intersection-observer-and-sqip
https://calendar.perfplanet.com/2017/progressive-image-loading-using-intersection-observer-and-sqip
https://calendar.perfplanet.com/2017/progressive-image-loading-using-intersection-observer-and-sqip
https://calendar.perfplanet.com/2017/progressive-image-loading-using-intersection-observer-and-sqip
https://calendar.perfplanet.com/2017/progressive-image-loading-using-intersection-observer-and-sqip
https://calendar.perfplanet.com/2017/progressive-image-loading-using-intersection-observer-and-sqip
https://calendar.perfplanet.com/2017/progressive-image-loading-using-intersection-observer-and-sqip
https://calendar.perfplanet.com/2017/progressive-image-loading-using-intersection-observer-and-sqip
https://calendar.perfplanet.com/2017/progressive-image-loading-using-intersection-observer-and-sqip
https://calendar.perfplanet.com/2017/progressive-image-loading-using-intersection-observer-and-sqip
https://calendar.perfplanet.com/2017/progressive-image-loading-using-intersection-observer-and-sqip
https://calendar.perfplanet.com/2017/progressive-image-loading-using-intersection-observer-and-sqip
https://calendar.perfplanet.com/2017/progressive-image-loading-using-intersection-observer-and-sqip
https://calendar.perfplanet.com/2017/progressive-image-loading-using-intersection-observer-and-sqip
https://calendar.perfplanet.com/2017/progressive-image-loading-using-intersection-observer-and-sqip
https://calendar.perfplanet.com/2017/progressive-image-loading-using-intersection-observer-and-sqip
https://github.com/aFarkas/lazysizes
https://developers.google.com/web/updates/2016/04/intersectionobserver
https://developers.google.com/web/updates/2016/04/intersectionobserver
https://developers.google.com/web/updates/2016/04/intersectionobserver

Here is some example code taken from the readme file:

Add the class lazyload to your images/iframes in
conjunction with a data-src and/or data-srcset
attribute.

Optionally you can also add a src attribute with a
low quality image:

<!-- non-responsive: -->

<!-- responsive example with automatic sizes
calculation: -->
<img
 data-sizes="auto"
 data-src="image2.jpg"
 data-srcset="image1.jpg 300w,
 image2.jpg 600w,
 image3.jpg 900w" class="lazyload" />

<!-- iframe example -->

<iframe frameborder="0"
 class="lazyload"
 allowfullscreen=""
 data-src="//www.youtube.com/embed/ZfV-aYdU4uE">
</iframe>

296 Image Optimization  part three

Lazysizes features include:

•	 Automatically detects visibility changes on current and
future lazyload elements.

•	 Includes standard responsive image support
(<picture> and <srcset>).

•	 Adds automatic sizes calculation and alias names for
media queries feature.

•	 Can be used with hundreds of images/iframes on css
and JS-heavy pages or web apps.

•	 Extendable: supports plug-ins.

•	 Lightweight but mature solution.

•	 SEO improved: does not hide images/assets from crawlers.

MORE LAZY LOADING OPTIONS

Lazysizes is not your only option. Other lazy loading librar-
ies include: Lazy-Load xt,81 BLazy.js82 (or [Be]Lazy), Unveil,83
and yall.js (Yet Another Lazy-Loader).84

81	 https://smashed.by/lazyloadxt
82	 https://smashed.by/blazy
83	 https://smashed.by/unveil
84	 https://smashed.by/yalljs

297images in browsers  Lazy-Loading Offscreen Images

http://ressio.github.io/lazy-load-xt/
http://ressio.github.io/lazy-load-xt/
http://ressio.github.io/lazy-load-xt/
http://ressio.github.io/lazy-load-xt/
https://github.com/dinbror/blazy
https://github.com/dinbror/blazy
https://github.com/dinbror/blazy
http://luis-almeida.github.io/unveil/
https://github.com/malchata/yall.js
https://github.com/malchata/yall.js
https://github.com/malchata/yall.js
https://github.com/malchata/yall.js
https://github.com/malchata/yall.js
https://github.com/malchata/yall.js
https://github.com/malchata/yall.js
https://github.com/malchata/yall.js
https://github.com/malchata/yall.js
https://github.com/malchata/yall.js
https://github.com/malchata/yall.js
https://github.com/malchata/yall.js

JAVASCRIPT LAZY LOADING: CAVEATS

Screen readers, some search bots, and any users with
JavaScript disabled will not be able to view images lazy-
loaded with JavaScript. We can work around this with
a <noscript> fallback.

Scroll listeners, used for determining when to load a
lazy-loaded image, can have an adverse impact on browser
scrolling performance. They can cause the browser to re-
draw many times, slowing the process to a crawl. However,
smart lazy-loading libraries will use throttling to mitigate
this. One possible solution is Intersection Observer, which is
supported by lazysizes.

Lazy-loading images is a widespread pattern for reducing
bandwidth, decreasing costs, and improving user expe-
rience. Until recently, lazy-loading images could only be
implemented using JavaScript libraries. But from 2019,
browsers started to support this capability natively.85

Native Lazy Loading

In this section, we’ll look at the loading attribute which
brings native lazy-loading to the web! For the curious,
here’s what the syntax looks like:

85	 https://smashed.by/nativelazy

298 Image Optimization  part three

https://web.dev/native-lazy-loading

Historically, to limit the impact offscreen images have on
page load times, developers have needed to use a JavaScript
library (like lazysizes)86 to defer fetching these images until
a user scrolls near them.

Native image lazy-loading landed in Chromium-based browsers (Chrome,
Edge, Opera, etc.) and Firefox in 2019 and 2020.

What if the browser could avoid loading these offscreen
images for you? This would help content in the viewport
load quicker, reduce overall network data usage, and re-
duce memory usage on lower-end devices. I’m happy
to share that this is now possible with the loading
attribute for images.

86	 https://smashed.by/lazysizes

299images in browsers  Lazy-Loading Offscreen Images

https://github.com/aFarkas/lazysizes

The loading Attribute

Today, browsers already load images at different priority
levels depending on where they’re located with respect to the
device viewport. Images below the viewport are loaded with a
lower priority, but they’re still fetched as soon as possible.

In modern browsers, you can use the loading attribute
on the element to completely defer the loading of
offscreen images that can be reached by scrolling:

<img src="image.png" loading="lazy" alt="…"
width="200" height="200">

Here are the supported values for the loading attribute:

•	 auto: Default lazy-loading behavior of the browser,
effectively the same as not including the attribute.

•	 lazy: Defer loading of the resource until it reaches a
calculated distance from the viewport.

•	 eager: Load the resource immediately, regardless of
where it’s located on the page.

300 Image Optimization  part three

Although available in Chromium, the auto
value is not mentioned in the specification.87
Since it may be subject to change, I recom-
mend not to use it until it gets included.

Browser Compatibility

 is supported by most popular Chro-
mium-powered browsers (Chrome, Edge, Opera), Firefox,88
and the implementation for WebKit (Safari) is in progress.89
Browsers that do not support the loading attribute simply
ignore it without side effects.

If Lite mode90 is enabled on Chrome for Android, Chromium
automatically lazy-loads any images that are well suited to
being deferred. This is primarily aimed at users who are
conscious about data savings (see chapter 21).

Here is the support data91 for major browsers:

87	 https://smashed.by/attributes
88	 https://smashed.by/firefox75
89	 https://smashed.by/webkit
90	 https://smashed.by/litemode
91	 https://smashed.by/supportdata

301images in browsers  Lazy-Loading Offscreen Images

https://html.spec.whatwg.org/multipage/urls-and-fetching.html#lazy-loading-attributes
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Releases/75#HTML
https://bugs.webkit.org/show_bug.cgi?id=200764
https://bugs.webkit.org/show_bug.cgi?id=200764
https://bugs.webkit.org/show_bug.cgi?id=200764
https://bugs.webkit.org/show_bug.cgi?id=200764
https://bugs.webkit.org/show_bug.cgi?id=200764
https://blog.chromium.org/2019/04/data-saver-is-now-lite-mode.html
https://blog.chromium.org/2019/04/data-saver-is-now-lite-mode.html
https://blog.chromium.org/2019/04/data-saver-is-now-lite-mode.html
https://wiki.developer.mozilla.org/en-US/docs/Web/HTML/Element/img#Browser_compatibility
https://wiki.developer.mozilla.org/en-US/docs/Web/HTML/Element/img#Browser_compatibility
https://wiki.developer.mozilla.org/en-US/docs/Web/HTML/Element/img#Browser_compatibility

browser lazy loading support

Chrome 76

Edge 79

Firefox 75

Internet Explorer Not supported

Opera 64

Safari Under active development

Background images in css cannot take advantage of the
loading attribute.

DISTANCE-FROM-VIEWPORT THRESHOLDS

All images that are immediately viewable without scrolling
load normally. Those that are below the device viewport are
only fetched when the user scrolls near them.

Chromium’s implementation of native lazy loading tries to
ensure that offscreen images are loaded early enough so
that they have finished loading once the user scrolls near to
them. By fetching nearby images before they become visible
in the viewport, we maximize the chance they are already
loaded by the time they become visible.

302 Image Optimization  part three

Compared to JavaScript lazy-loading libraries, the thresholds
for fetching images that scroll into view may be considered
conservative. Chromium is looking at better aligning these
thresholds with developer expectations.

Experiments conducted using Chrome
on Android suggest that on 4G 97.5% of
offscreen lazy-loaded images were fully
loaded within 10 ms of becoming visible.
Even on slow 2G networks, 92.6% of such
images were fully loaded within 10 ms.
This means native lazy loading offers a
stable experience regarding the visibility
of elements that are scrolled into view.

The distance threshold is not fixed and varies depending
on several factors:

•	 the type of image resource being fetched

•	 whether Lite mode92 is enabled on Chrome for Android

•	 the effective connection type93

You can find the default values for the different effective
connection types in the Chromium source.94 These num-

92	 https://smashed.by/litemode
93	 https://smashed.by/networkinformation
94	 https://smashed.by/chromiumsource

303images in browsers  Lazy-Loading Offscreen Images

https://blog.chromium.org/2019/04/data-saver-is-now-lite-mode.html
https://blog.chromium.org/2019/04/data-saver-is-now-lite-mode.html
https://blog.chromium.org/2019/04/data-saver-is-now-lite-mode.html
https://googlechrome.github.io/samples/network-information/
https://googlechrome.github.io/samples/network-information/
https://googlechrome.github.io/samples/network-information/
https://googlechrome.github.io/samples/network-information/
https://googlechrome.github.io/samples/network-information/
https://cs.chromium.org/chromium/src/third_party/blink/renderer/core/frame/settings.json5?l=971-1003&rcl=e8f3cf0bbe085fee0d1b468e84395aad3ebb2cad
https://cs.chromium.org/chromium/src/third_party/blink/renderer/core/frame/settings.json5?l=971-1003&rcl=e8f3cf0bbe085fee0d1b468e84395aad3ebb2cad
https://cs.chromium.org/chromium/src/third_party/blink/renderer/core/frame/settings.json5?l=971-1003&rcl=e8f3cf0bbe085fee0d1b468e84395aad3ebb2cad

bers, and even the approach of fetching only when a certain
distance from the viewport is reached, may change in the
near future as the Chrome team improves heuristics to
determine when to begin loading.

In Chrome 77+, you can experiment with
these different thresholds by throttling
the network95 in DevTools.
In the meantime, you will need to
override the effective connection type
of the browser using the chrome://flags/
#force-effective-connection-type flag.

IMPROVED DATA-SAVINGS AND

DISTANCE-FROM-VIEWPORT THRESHOLDS

As of July 2020, Chrome has made significant improvements
to align the native image lazy-loading distance-from-viewport
thresholds to better meet developer expectations.

On fast connections (4g and up), Chrome’s distance-from-
viewport thresholds reduced from 3,000px to 1,250px; on slow-
er connections (3g and below), the threshold reduced from
4,000px to 2,500px. This change achieves two things:

95	 https://smashed.by/networkthrottle

304 Image Optimization  part three

https://developers.google.com/web/tools/chrome-devtools/network/#throttle
https://developers.google.com/web/tools/chrome-devtools/network/#throttle
https://developers.google.com/web/tools/chrome-devtools/network/#throttle
https://developers.google.com/web/tools/chrome-devtools/network/#throttle

•	 behaves more like the experi-
ence offered by JavaScript lazy-loading libraries.

•	 The new distance-from-viewport thresholds still allow
us to guarantee images have probably loaded by the
time a user has scrolled to them.

The new and improved thresholds for native image lazy loading in
Chrome, reducing the distance-from-viewport thresholds for fast
connections from 3,000px down to 1,250px.

The new distance-from-viewport thresholds in Chrome, loading
90 kb of images natively compared with lazysizes loading in
70 kb under the same network conditions.

305images in browsers  Lazy-Loading Offscreen Images

To ensure Chrome users on recent ver-
sions also benefit from the new thresholds,
Google has backported these changes so
that Chrome 79–85 inclusive also use
them. Please keep this in mind if attempt-
ing to compare data savings from older
versions of Chrome to newer ones.

These values are hard-coded and can’t be changed through
the. However, they may change in the future as browsers
experiment with different threshold distances and variables.

Include Image Dimensions

While the browser loads an image, it does not immediately
know its dimensions unless they are explicitly specified. To
enable the browser to reserve sufficient space on a page for
images, it is recommended that all tags include both
width and height attributes. Without dimensions specified,
layout shifts96 can occur, which are more noticeable on pag-
es that take some time to load.

<img src="image.png" loading="lazy" alt="…"
width="200" height="200">

96	 https://smashed.by/cls

306 Image Optimization  part three

https://web.dev/cls/
https://web.dev/cls/
https://web.dev/cls/

Alternatively, specify their values in an inline style:

<img src="image.png" loading="lazy" alt="…"
style="height:200px; width:200px;">

The best practice of setting dimensions applies to
tags regardless of how they’re to be loaded. With lazy
loading, this can become more relevant. Setting width and
height on images in modern browsers also allows browsers
to infer their intrinsic size. Of course, images will still load
if their dimensions are not included, but specifying them
decreases the chance of layout shift.97 If you are unable to
include dimensions for your images, lazy-loading them can
be a trade-off between saving network resources and poten-
tially being more at risk of layout shift.

While native lazy loading in Chromium is implemented in
a way such that images are likely to be loaded once they are
visible, there is still a small chance that they might not be.
In this case, missing width and height attributes on such
images increase their impact on cumulative layout shift.

A demo from Mathias Bynens shows
how the loading attribute works with
100 pictures.98

97	 https://smashed.by/specify
98	 https://smashed.by/loadingdemo

307images in browsers  Lazy-Loading Offscreen Images

https://www.youtube.com/watch?v=4-d_SoCHeWE
https://www.youtube.com/watch?v=4-d_SoCHeWE
https://www.youtube.com/watch?v=4-d_SoCHeWE
https://www.youtube.com/watch?v=4-d_SoCHeWE
https://www.youtube.com/watch?v=4-d_SoCHeWE
https://www.youtube.com/watch?v=4-d_SoCHeWE
https://www.youtube.com/watch?v=4-d_SoCHeWE
https://www.youtube.com/watch?v=4-d_SoCHeWE
https://www.youtube.com/watch?v=4-d_SoCHeWE
https://www.youtube.com/watch?v=4-d_SoCHeWE
https://www.youtube.com/watch?v=4-d_SoCHeWE
https://www.youtube.com/watch?v=4-d_SoCHeWE
https://www.youtube.com/watch?v=4-d_SoCHeWE
https://www.youtube.com/watch?v=4-d_SoCHeWE
https://www.youtube.com/watch?v=4-d_SoCHeWE

Images defined using the <picture> element can also
be lazy-loaded:

<picture>
 <source media="(min-width: 800px)" srcset="large.jpg
1x, larger.jpg 2x">

</picture>

Although a browser will decide which image to load from
any of the <source> elements, the loading attribute only
needs to be included to the fallback element.

No Lazy-Loading in the
First Visible Viewport

You should avoid setting loading="lazy" for any images
that are in the first visible viewport.

It is recommended to add loading="lazy" only to images
positioned below the viewport, if possible. Images that are
eagerly loaded can be fetched right away; the browser has
to wait until it calculates where lazy-loaded images are
positioned on the page, which relies on the Intersection-
Observer being available. It is safer to avoid lazy-loading
above-the-fold images, as browsers such as Chrome won’t
include them in the preload scanner.

308 Image Optimization  part three

In Chromium, the impact of images in the
initial viewport being marked with
loading="lazy" on “largest contentful paint”
(a Core Web Vital: see chapter 22) is fairly
small, with a regression of <1% at the 75th
and 99th percentiles compared with
eagerly loaded images.

Generally, any images within the viewport should be
loaded eagerly using the browser’s defaults. You do not
need to specify loading="eager" for this to be the case for
in-viewport images.

<!-- visible in the viewport -->
<img src="product-1.jpg" alt="..." width="200"
height="200">
<img src="product-2.jpg" alt="..." width="200"
height="200">
<img src="product-3.jpg" alt="..." width="200"
height="200">

<!-- offscreen images -->
<img src="product-4.jpg" loading="lazy" alt="..."
width="200" height="200">
<img src="product-5.jpg" loading="lazy" alt="..."
width="200" height="200">
<img src="product-6.jpg" loading="lazy" alt="..."
width="200" height="200">

309images in browsers  Lazy-Loading Offscreen Images

Only images below the viewport can load lazily; images in
the viewport but not immediately visible – behind a carou-
sel, for example, or hidden by css for certain screen sizes –
will load normally.

Third-Party Libraries and Scripts and
Native Lazy Loading

The loading attribute should not affect code that currently
lazy-loads your assets in any way, but there are a few im-
portant things to consider:

1.	 If your custom lazy-loader attempts to load images
or frames sooner than when Chrome loads them nor-
mally – that is, at a distance greater than the load-in
distance threshold – they are still deferred, and will
load based on normal browser behavior.

2.	 If your custom lazy-loader uses a shorter distance
to determine when to load a particular image than
the browser, then the behavior will conform to
your custom settings.

One of the important reasons to continue to use a third-par-
ty library alongside loading="lazy" is to provide a polyfill
for browsers that do not yet support the attribute.

310 Image Optimization  part three

HANDLING BROWSERS WITHOUT SUPPORT

FOR LAZY LOADING

Create a polyfill or use a third-party library to lazy-load im-
ages on your site. The loading property can be used to detect
if the feature is supported in the browser:

if ('loading' in HTMLImageElement.prototype) {
 // supported in browser
} else {
 // fetch polyfill/third-party library
}

For example, lazysizes99 is a popular JavaScript lazy-loading
library. You can detect support for the loading attribute to
load lazysizes as a fallback library only when loading isn’t
supported. This works as follows:

•	 Replace with to avoid an
eager load in unsupported browsers. If the loading
attribute is supported, swap data-src for src.

•	 If loading is not supported, load a fallback (lazysizes)
and initiate it. As per lazysizes docs, you use the
lazyload class as a way to indicate to lazysizes which
images to lazy-load.

99	 https://smashed.by/lazysizes

311images in browsers  Lazy-Loading Offscreen Images

https://github.com/aFarkas/lazysizes

<!-- Let's load this in-viewport image normally -->

<!-- Let's lazy-load the rest of these images -->
<img data-src="unicorn.jpg" alt="…" loading="lazy"
class="lazyload">
<img data-src="cats.jpg" alt="…" loading="lazy"
class="lazyload">
<img data-src="dogs.jpg" alt="…" loading="lazy"
class="lazyload">

<script>
 if ('loading' in HTMLImageElement.prototype) {
 const images = document.
querySelectorAll('img[loading="lazy"]');
 images.forEach(img => {
 img.src = img.dataset.src;
 });
 } else {
 // Dynamically import the LazySizes library
 const script = document.createElement('script');
 script.src =
 'https://cdnjs.cloudflare.com/ajax/libs/
lazysizes/5.1.2/lazysizes.min.js';
 document.body.appendChild(script);
 }
</script>

A demo showing this pattern is available.100 Try it out in a
browser like Firefox or Safari to see the fallback in action.

100	 https://smashed.by/firebaselazy

312 Image Optimization  part three

https://lazy-loading.firebaseapp.com/lazy_loading_native.html

The lazysizes library also provides a native
loading plug-in101 that uses native lazy
loading when available but falls back to the
library’s custom functionality when needed.

Impact of Native Lazy-Loading

Andy Potts, a senior software engineer at the bbc, added the
loading attribute102 to images on one of its internal sites,
thereby decreasing load time on a fast network by around
50% (reduced from about 1 second to less than 0.5 seconds)
and saving up to 40 requests to the server.

Similarly, by adding loading="lazy" to all its images,
TheyWorkForYou (a non-political site taking open data from
uk parliamentary proceedings and making it easily available
and understandable) cut down total page load for one of its
pages by about 90%.103 Your mileage may vary, of course, but
given the ease of testing the loading attribute on your pages,
I’d certainly recommend giving it a go! Baking in native sup-
port for lazy-loading images can make it significantly easier
for you to improve the performance of your web pages.

101	 https://smashed.by/nativeplugin
102	 https://smashed.by/bbcloading
103	 https://smashed.by/90perc

313images in browsers  Lazy-Loading Offscreen Images

https://github.com/aFarkas/lazysizes/tree/gh-pages/plugins/native-loading
https://github.com/aFarkas/lazysizes/tree/gh-pages/plugins/native-loading
https://github.com/aFarkas/lazysizes/tree/gh-pages/plugins/native-loading
https://github.com/aFarkas/lazysizes/tree/gh-pages/plugins/native-loading
https://github.com/aFarkas/lazysizes/tree/gh-pages/plugins/native-loading
https://github.com/aFarkas/lazysizes/tree/gh-pages/plugins/native-loading
https://github.com/aFarkas/lazysizes/tree/gh-pages/plugins/native-loading
https://medium.com/bbc-design-engineering/native-lazy-loading-has-arrived-c37a165d70a5
https://medium.com/bbc-design-engineering/native-lazy-loading-has-arrived-c37a165d70a5
https://medium.com/bbc-design-engineering/native-lazy-loading-has-arrived-c37a165d70a5
https://medium.com/bbc-design-engineering/native-lazy-loading-has-arrived-c37a165d70a5
https://medium.com/bbc-design-engineering/native-lazy-loading-has-arrived-c37a165d70a5
https://medium.com/bbc-design-engineering/native-lazy-loading-has-arrived-c37a165d70a5
https://medium.com/bbc-design-engineering/native-lazy-loading-has-arrived-c37a165d70a5
https://twitter.com/hdjirdeh/status/1161883719986139136
https://twitter.com/hdjirdeh/status/1161883719986139136
https://twitter.com/hdjirdeh/status/1161883719986139136

chapter 15

Replacing Animated GIFs

This chapter includes contributions from performance experts Jeremy Wagner
and Houssein Djirdeh, who also strongly prefer videos to animated gifs! :)

Have you ever read an article with an animated gif
and inspected it in DevTools only to learn that the
gif was really a video? There’s a great reason for that.

Animated gifs can be huge. It’s common for gifs from popular
memes, movies, and TV shows to be several megabytes in
size, depending on the quality and length. If you’re aiming
to improve the loading performance of your pages, animated
gifs aren’t very compatible with that goal. But this is an area of
loading performance where, without a lot of work, you can get
significant gains without a loss of content quality.

An animated gif from the TV show “Killing Eve.” It was viewed over 144
million times in 2019 and is almost 8 mb. That’s a lot of wasted bandwidth!

314 Image Optimization  part three

In this chapter, you’ll learn to use the same techniques that
popular image cdn and gif hosting sites employ to keep
their bandwidth bills as low as possible, by converting those
large gifs into lean, fast-to-load video files. You’ll also learn
how to embed these videos into web pages so they behave
like gifs do. We’ll take a brief look at decoding performance
for gifs and video and, before you know it, you’ll be on your
way to shaving megabytes off your gif-heavy pages!

The Problem with Animated GIFs

Although animated gifs can be found everywhere from
news articles to social media sites, the format was never
supposed to be heavily used for video storage or animation.
The gif89a specification104 states: “The Graphics Inter-
change Format is not intended as a platform for animation.”

Animated gif vs. video: a comparison of file sizes at roughly equivalent
quality for different formats.

104	 https://smashed.by/gif89a

315images in browsers  Replacing Animated GIFs

https://www.w3.org/Graphics/GIF/spec-gif89a.txt
https://www.w3.org/Graphics/GIF/spec-gif89a.txt
https://www.w3.org/Graphics/GIF/spec-gif89a.txt
https://www.w3.org/Graphics/GIF/spec-gif89a.txt
https://www.w3.org/Graphics/GIF/spec-gif89a.txt

Animated gifs often waste a significant amount of band-
width. The number of colors, number of frames, and their
dimensions105 all influence their file sizes. They take longer
to load, typically include fewer colors compared with video,
and typically offer a subpar user experience. Switching to
video offers the largest savings.

Why are animated gifs so much larger than video files?
Animated gifs store each frame as a lossless gif image.
You read that right – lossless. The degraded quality we
often experience is due to gifs limited 256-color palette.
The format has other deficiencies, such as not considering
neighbor frames for compression, unlike video codecs like
h.264 and h.265. An mp4 video generally stores each key
frame as a lossy jpeg, discarding some of the original data
to achieve superior compression.

Measure First

You can use Lighthouse to check your page for animated gifs
that can be converted to videos. In Chrome DevTools, select
the Lighthouse tab and check the Performance checkbox.
Then run Lighthouse and check the report. If you have any
gifs that could be better served as videos, you should see a
“Use video formats for animated content” opportunity.

105	 https://smashed.by/gifdimensions

316 Image Optimization  part three

http://gifbrewery.tumblr.com/post/39564982268/can-you-recommend-a-good-length-of-clip-to-keep-gifs
http://gifbrewery.tumblr.com/post/39564982268/can-you-recommend-a-good-length-of-clip-to-keep-gifs
http://gifbrewery.tumblr.com/post/39564982268/can-you-recommend-a-good-length-of-clip-to-keep-gifs
http://gifbrewery.tumblr.com/post/39564982268/can-you-recommend-a-good-length-of-clip-to-keep-gifs
http://gifbrewery.tumblr.com/post/39564982268/can-you-recommend-a-good-length-of-clip-to-keep-gifs
http://gifbrewery.tumblr.com/post/39564982268/can-you-recommend-a-good-length-of-clip-to-keep-gifs
http://gifbrewery.tumblr.com/post/39564982268/can-you-recommend-a-good-length-of-clip-to-keep-gifs
http://gifbrewery.tumblr.com/post/39564982268/can-you-recommend-a-good-length-of-clip-to-keep-gifs
http://gifbrewery.tumblr.com/post/39564982268/can-you-recommend-a-good-length-of-clip-to-keep-gifs
http://gifbrewery.tumblr.com/post/39564982268/can-you-recommend-a-good-length-of-clip-to-keep-gifs
http://gifbrewery.tumblr.com/post/39564982268/can-you-recommend-a-good-length-of-clip-to-keep-gifs
http://gifbrewery.tumblr.com/post/39564982268/can-you-recommend-a-good-length-of-clip-to-keep-gifs
http://gifbrewery.tumblr.com/post/39564982268/can-you-recommend-a-good-length-of-clip-to-keep-gifs
http://gifbrewery.tumblr.com/post/39564982268/can-you-recommend-a-good-length-of-clip-to-keep-gifs
http://gifbrewery.tumblr.com/post/39564982268/can-you-recommend-a-good-length-of-clip-to-keep-gifs
http://gifbrewery.tumblr.com/post/39564982268/can-you-recommend-a-good-length-of-clip-to-keep-gifs
http://gifbrewery.tumblr.com/post/39564982268/can-you-recommend-a-good-length-of-clip-to-keep-gifs

A Lighthouse report for popular gif-sharing site Tenor. The most popular
animated gifs during this particular week were pretty large!

Converting Animated GIFs to Video

There are a number of ways to convert animated gifs to
video. The tool I recommend is ffmpeg,106 and that’s what
I’ll use in the examples throughout this chapter.

FFMPEG QUICK START: MP4 AND WEBM

To use ffmpeg to convert animation.gif to an mp4 video, run
the following command in your console:

ffmpeg -i animation.gif -b:v 0 -crf 25 -f mp4 -vcodec
libx264 -pix_fmt yuv420p animation.mp4

106	 https://www.ffmpeg.org/

317images in browsers  Replacing Animated GIFs

https://www.ffmpeg.org/

This tells ffmpeg to take animation.gif as the input, signified
by the -i flag, and to convert it to a video called animation.mp4.
Your mileage may vary depending on the input, but typical-
ly the output should be significantly smaller now!

While mp4 has been around since 1999, webm107 is a rela-
tively new file format released in 2010. WebM videos are
much smaller than mp4 videos, but not all browsers support
webm so it makes sense to generate both. To convert
animation.gif to a webm video, run:

ffmpeg -i animation.gif -c vp9 -b:v 0 -crf 41 my-
animation.webm

The cost savings between an animated gif and a video can be
significant. In an example where animation.gif is 3.7 mb, com-
pare it to the mp4 which is 551 kb or the webm, which is 341 kb.

Comparing file sizes of mp4 and webm conversions of an animated gif.

107	 https://www.webmproject.org/

318 Image Optimization  part three

https://www.webmproject.org/
https://www.webmproject.org/
https://www.webmproject.org/

If you’re interested in diving into a real example, Rob Dod-
son has a good codelab on replacing gifs with video.108 Next,
let’s take a look at a more detailed version of this workflow
with more nuance.

FFMPEG WORKFLOW

How you install ffmpeg will differ based on the operating
system you use.

•	 For macOS, you can install via Homebrew109 or compile
it yourself.110

•	 For Windows, use Chocolatey.111

•	 For Linux, check if your preferred distro’s package man-
ager (e.g. apt-get or yum) has a package available.

For webm support, you might want to make sure whatever
FFmpeg build you install is compiled with libvpx.112

Once ffmpeg is installed, pick a gif to convert and you’ll
be ready to roll. For the purposes of this guide, we will use
a gif,113 which is just shy of 14 mb. To start off, let’s try our
hand at converting it to mpeg-4!

108	 https://smashed.by/replacinggif
109	 https://smashed.by/ffmpegbrew
110	 https://smashed.by/ffmpegself
111	 https://smashed.by/chocolatey
112	 https://smashed.by/libvpx
113	 https://smashed.by/jazzgif

319images in browsers  Replacing Animated GIFs

https://web.dev/codelab-replace-gifs-with-video/
https://web.dev/codelab-replace-gifs-with-video/
https://web.dev/codelab-replace-gifs-with-video/
https://web.dev/codelab-replace-gifs-with-video/
https://web.dev/codelab-replace-gifs-with-video/
https://web.dev/codelab-replace-gifs-with-video/
https://web.dev/codelab-replace-gifs-with-video/
https://trac.ffmpeg.org/wiki/CompilationGuide/macOS#ffmpegthroughHomebrew
https://trac.ffmpeg.org/wiki/CompilationGuide/macOS#ffmpegthroughHomebrew
https://trac.ffmpeg.org/wiki/CompilationGuide/macOS#ffmpegthroughHomebrew
https://trac.ffmpeg.org/wiki/CompilationGuide/macOS#ffmpegthroughHomebrew
https://trac.ffmpeg.org/wiki/CompilationGuide/macOS#ffmpegthroughHomebrew
https://trac.ffmpeg.org/wiki/CompilationGuide/macOS#ffmpegthroughHomebrew
https://trac.ffmpeg.org/wiki/CompilationGuide/macOS#ffmpegthroughHomebrew
https://trac.ffmpeg.org/wiki/CompilationGuide/macOS#ffmpegthroughHomebrew
https://trac.ffmpeg.org/wiki/CompilationGuide/macOS#ffmpegthroughHomebrew
https://trac.ffmpeg.org/wiki/CompilationGuide/macOS#CompilingFFmpegyourself
https://trac.ffmpeg.org/wiki/CompilationGuide/macOS#CompilingFFmpegyourself
https://trac.ffmpeg.org/wiki/CompilationGuide/macOS#CompilingFFmpegyourself
https://trac.ffmpeg.org/wiki/CompilationGuide/macOS#CompilingFFmpegyourself
https://trac.ffmpeg.org/wiki/CompilationGuide/macOS#CompilingFFmpegyourself
https://chocolatey.org/packages/ffmpeg
https://chocolatey.org/packages/ffmpeg
https://chocolatey.org/packages/ffmpeg
https://www.webmproject.org/
https://www.webmproject.org/code/
https://gif.ski/jazz-chromecast-ultra.gif
https://gif.ski/jazz-chromecast-ultra.gif

CONVERTING GIF TO MPEG-4

When you embed videos on a page, you will want to have
an mpeg-4 version as mpeg-4 enjoys the broadest support114
of all video formats across browsers. To get started, open a
terminal window, go to the directory containing your test
gif, and try this command:

ffmpeg -i input.gif output.mp4

This is the most straightforward syntax for converting a gif to
mpeg-4. The -i flag specifies the input, after which we speci-
fy an output file. This command takes our test gif of 14,024 kb
and reduces it to a reasonably high-quality mpeg-4 video
weighing in at 867 kb. That’s a reduction of 93.8%. Not bad,
but maybe you’re curious to see if we can go a little further.

It turns out ffmpeg is very configurable, and we can use
this to our advantage to fine-tune the video output by
employing an encoding mode called constant rate factor115
(crf). CRF is great when video quality is a high priority.

ffmpeg -i input.gif -b:v 0 -crf 25 output.mp4

114	 https://smashed.by/mpeg4support
115	 https://smashed.by/crf

320 Image Optimization  part three

https://caniuse.com/#feat=mpeg4
https://caniuse.com/#feat=mpeg4
https://caniuse.com/#feat=mpeg4
https://caniuse.com/#feat=mpeg4
https://caniuse.com/#feat=mpeg4
https://caniuse.com/#feat=mpeg4
https://caniuse.com/#feat=mpeg4
https://caniuse.com/#feat=mpeg4
https://caniuse.com/#feat=mpeg4
https://caniuse.com/#feat=mpeg4
https://trac.ffmpeg.org/wiki/Encode/H.264#crf
https://trac.ffmpeg.org/wiki/Encode/H.264#crf
https://trac.ffmpeg.org/wiki/Encode/H.264#crf
https://trac.ffmpeg.org/wiki/Encode/H.264#crf
https://trac.ffmpeg.org/wiki/Encode/H.264#crf
https://trac.ffmpeg.org/wiki/Encode/H.264#crf
https://trac.ffmpeg.org/wiki/Encode/H.264#crf

This command is similar to the one before it, but with two
key differences: The -b:v flag normally would limit the
output bit rate,116 but when we want to use crf mode, it
must be set to 0. The -crf flag accepts a value between 0
and 51. Lower values yield higher quality (and larger) videos,
whereas higher values do the opposite.

Using our test gif, this command outputs an mpeg-4 video
687 kb in size. That’s an improvement on the first compres-
sion of roughly 20%! If you want even smaller file sizes, you
could specify a higher crf value, but be aware that higher
values will yield lower quality videos, so always check the
encoder’s output to ensure you’re happy with the results.

Video processing tools use crf values
as indicators of desired video quality.
Depending on the underlying codec, the
specific compression strategies will be
different for the same crf values (similar
to the quality index used in image pro-
cessing tools). The quality of two videos
is not directly comparable based on
their crf values.

116	 https://smashed.by/limitbitrate

321images in browsers  Replacing Animated GIFs

https://trac.ffmpeg.org/wiki/Limiting the output bitrate
https://trac.ffmpeg.org/wiki/Limiting the output bitrate
https://trac.ffmpeg.org/wiki/Limiting the output bitrate
https://trac.ffmpeg.org/wiki/Limiting the output bitrate
https://trac.ffmpeg.org/wiki/Limiting the output bitrate
https://trac.ffmpeg.org/wiki/Limiting the output bitrate
https://trac.ffmpeg.org/wiki/Limiting the output bitrate
https://trac.ffmpeg.org/wiki/Limiting the output bitrate
https://trac.ffmpeg.org/wiki/Limiting the output bitrate

These commands yield a large reduction in file size over gif,
which in turn will substantially improve initial page load
time and reduce data usage. While the visual quality of the
video is somewhat lower than the source gif, the reduction
in file size is a reasonable trade-off to make.

Visual comparison of an animated gif frame against an mpeg-4 frame from
a video encoded with a crf of 25.

While the illustration is no substitute for a comprehensive
visual comparison, the mpeg-4 is certainly sufficient as an
animated gif replacement. It also pays to remember that
your users likely won’t have a reference to the gif source.
Always adhere to your project’s standards for media
quality, but be willing to make trade-offs for performance
where appropriate.

While mpeg-4 has wide support and is certainly suitable as
a replacement for animated gif, we can go a bit further by
generating an additional webm version.

322 Image Optimization  part three

https://caniuse.com/#feat=webm

CONVERTING GIF TO WEBM

While mpeg-4 has been around in some form since at least
1999117 and continues to see development, webm is a relative
newcomer having been initially released in 2010.118

While browser support for webm119 isn’t as wide as mpeg-4,
it’s still very good. Because the <video> element120 allows
you to specify multiple <source> elements,121 you can state
a preference for a webm source that many browsers can use
while falling back to an mpeg-4 source that all other brows-
ers can understand.

Try converting your test gif to webm with ffmpeg
using this command:

ffmpeg -i input.gif -c vp9 -b:v 0 -crf 41 output.webm

You’ll notice this method is pretty similar to the previous
gif-to-mpeg-4 conversion command using crf mode, but
there are two key differences:

•	 The codec we specify in the -c flag is vp9, which is the
successor to the vp8 codec used by the webm format. If
this fails for you, replace vp9 with vp8.

117	 https://smashed.by/mpeg4parts
118	 https://smashed.by/libvpxrelease
119	 https://smashed.by/webmsupport
120	 https://smashed.by/videoelement
121	 https://smashed.by/multiplesources

323images in browsers  Replacing Animated GIFs

https://en.wikipedia.org/wiki/MPEG-4#MPEG-4_Parts
https://en.wikipedia.org/wiki/MPEG-4#MPEG-4_Parts
https://en.wikipedia.org/wiki/MPEG-4#MPEG-4_Parts
https://en.wikipedia.org/wiki/MPEG-4#MPEG-4_Parts
https://en.wikipedia.org/wiki/MPEG-4#MPEG-4_Parts
https://en.wikipedia.org/wiki/MPEG-4#MPEG-4_Parts
https://en.wikipedia.org/wiki/MPEG-4#MPEG-4_Parts
https://en.wikipedia.org/wiki/MPEG-4#MPEG-4_Parts
https://en.wikipedia.org/wiki/MPEG-4#MPEG-4_Parts
https://en.wikipedia.org/wiki/MPEG-4#MPEG-4_Parts
https://en.wikipedia.org/wiki/MPEG-4#MPEG-4_Parts
https://en.wikipedia.org/wiki/MPEG-4#MPEG-4_Parts
https://en.wikipedia.org/wiki/MPEG-4#MPEG-4_Parts
https://en.wikipedia.org/wiki/MPEG-4#MPEG-4_Parts
https://en.wikipedia.org/wiki/MPEG-4#MPEG-4_Parts
https://en.wikipedia.org/wiki/MPEG-4#MPEG-4_Parts
https://en.wikipedia.org/wiki/MPEG-4#MPEG-4_Parts
https://en.wikipedia.org/wiki/MPEG-4#MPEG-4_Parts
https://en.wikipedia.org/wiki/MPEG-4#MPEG-4_Parts
https://en.wikipedia.org/wiki/MPEG-4#MPEG-4_Parts
https://en.wikipedia.org/wiki/MPEG-4#MPEG-4_Parts
https://en.wikipedia.org/wiki/MPEG-4#MPEG-4_Parts
https://en.wikipedia.org/wiki/MPEG-4#MPEG-4_Parts
https://caniuse.com/#feat=webm
https://github.com/webmproject/libvpx/releases/tag/v0.9.0
https://github.com/webmproject/libvpx/releases/tag/v0.9.0
https://github.com/webmproject/libvpx/releases/tag/v0.9.0
https://github.com/webmproject/libvpx/releases/tag/v0.9.0
https://github.com/webmproject/libvpx/releases/tag/v0.9.0
https://github.com/webmproject/libvpx/releases/tag/v0.9.0
https://github.com/webmproject/libvpx/releases/tag/v0.9.0
https://github.com/webmproject/libvpx/releases/tag/v0.9.0
https://github.com/webmproject/libvpx/releases/tag/v0.9.0
https://github.com/webmproject/libvpx/releases/tag/v0.9.0
https://caniuse.com/#feat=webm
https://caniuse.com/#feat=webm
https://caniuse.com/#feat=webm
https://caniuse.com/#feat=webm
https://caniuse.com/#feat=webm
https://caniuse.com/#feat=webm
https://caniuse.com/#feat=webm
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video#Multiple_sources_example
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video#Multiple_sources_example
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video#Multiple_sources_example
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video#Multiple_sources_example
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video#Multiple_sources_example
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video#Multiple_sources_example
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video#Multiple_sources_example
https://caniuse.com/#feat=webm
https://caniuse.com/#feat=webm
https://caniuse.com/#feat=webm

•	 Because crf values don’t yield equivalent results across
formats, we need to adjust it so our webm output is
visually similar to the mpeg-4 output. A -crf value of
41 is used in this example to achieve reasonably compa-
rable quality to the mpeg-4 version while still output-
ting a smaller file.

In this example, the webm version was roughly 66 kb small-
er than the mpeg-4 at 611 kb. Its visual quality is reasonably
similar to the mpeg-4 version too.

Visual comparison of an mpeg-4 frame encoded with a crf value of 25 versus
a webm frame encoded with a crf value of 41.

Owing to how the vp8 and vp9 codecs encode video, com-
pression artifacts in webm may affect the quality of the
result in ways different from mpeg-4. As always, inspect the
encoder output and experiment with flags (time permitting)
to find the best result for your application.

324 Image Optimization  part three

If you like tinkering, consider trying out
two-pass encoding122 to see if the results are
more to your liking!

Now that we know how to convert gifs to both mpeg-4 and
webm, let’s learn how to replace those animated gif
elements with <video>!

Replacing Animated GIF
Elements with <video>

Unfortunately, using a video as an animated gif replace-
ment is not quite as straightforward as dropping an image
url into an element. Using <video> is a bit more
complex, but not too difficult. We’ll walk through how to
do this step by step and explain everything, but if you just
want to see the code, a CodePen demo is available.123

GETTING THE BEHAVIORS RIGHT

Animated gifs have three key traits:

1.	 They play automatically.

122	 https://smashed.by/twopass
123	 https://smashed.by/gifvideo

325images in browsers  Replacing Animated GIFs

https://trac.ffmpeg.org/wiki/Encode/VP9#twopass
https://trac.ffmpeg.org/wiki/Encode/VP9#twopass
https://trac.ffmpeg.org/wiki/Encode/VP9#twopass
https://trac.ffmpeg.org/wiki/Encode/VP9#twopass
https://trac.ffmpeg.org/wiki/Encode/VP9#twopass
https://codepen.io/malchata/pen/MVYmWZ
https://codepen.io/malchata/pen/MVYmWZ
https://codepen.io/malchata/pen/MVYmWZ

2.	 They loop continuously (usually, though it is possible
to prevent looping).

3.	 They’re silent.

The only true advantage of using animated gif over video
is convenience. We don’t have to be explicit in defining
these traits when we embed gifs. They just behave the way
we expect them to. When we want to use video in place of
gifs, however, we have to explicitly tell the <video> element
to autoplay, loop continuously, and be silent. Let’s start by
writing a <video> element like so:

<video autoplay loop muted playsinline></video>

The attributes in this example are pretty self-explanatory. A
<video> element using these attributes will play automat-
ically, loop endlessly, play no audio, and play inline (that
is, not fullscreen). In other words, all the hallmark behaviors
we expect of animated gifs.

If faithful emulation of animated gif
behavior isn’t crucial to your application,
you could take a more conservative
approach by allowing users to initiate

326 Image Optimization  part three

playback instead of autoplaying. If you
go this route, remove the autoplay attri-
bute, and consider specifying a place-
holder image via the poster attribute.124
Additionally, use the controls attribute125 to
allow the user to control playback, and
add the preload attribute126 to control how
the browser preloads video content.

There’s more to this than simply emulating gif behavior,
though. Some of these attributes are required for autoplay
to even work. For example, the muted attribute must be pres-
ent127 for videos to autoplay, even if they don’t contain an
audio track. On iOS, the playsinline attribute is required
for autoplay to work128 as well.

SPECIFY YOUR <SOURCE>S

All that’s left to do is specify your video sources. The
<video> element requires one or more <source> child
elements pointing to different video files the browser can
choose from, depending on format support:

<video autoplay loop muted playsinline>

124	 https://smashed.by/attrposter
125	 https://smashed.by/attrcontrols
126	 https://smashed.by/attrpreload
127	 https://smashed.by/autoplay
128	 https://smashed.by/iospolicies

327images in browsers  Replacing Animated GIFs

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video#attr-poster
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video#attr-poster
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video#attr-poster
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video#attr-controls
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video#attr-controls
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video#attr-controls
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video#attr-preload
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video#attr-preload
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video#attr-preload
https://developers.google.com/web/updates/2016/07/autoplay
https://developers.google.com/web/updates/2016/07/autoplay
https://developers.google.com/web/updates/2016/07/autoplay
https://developers.google.com/web/updates/2016/07/autoplay
https://developers.google.com/web/updates/2016/07/autoplay
https://developers.google.com/web/updates/2016/07/autoplay
https://developers.google.com/web/updates/2016/07/autoplay
https://developers.google.com/web/updates/2016/07/autoplay
https://developers.google.com/web/updates/2016/07/autoplay
https://developers.google.com/web/updates/2016/07/autoplay
https://developers.google.com/web/updates/2016/07/autoplay
https://developers.google.com/web/updates/2016/07/autoplay
https://webkit.org/blog/6784/new-video-policies-for-ios/
https://webkit.org/blog/6784/new-video-policies-for-ios/
https://webkit.org/blog/6784/new-video-policies-for-ios/
https://webkit.org/blog/6784/new-video-policies-for-ios/
https://webkit.org/blog/6784/new-video-policies-for-ios/
https://webkit.org/blog/6784/new-video-policies-for-ios/
https://webkit.org/blog/6784/new-video-policies-for-ios/
https://webkit.org/blog/6784/new-video-policies-for-ios/
https://webkit.org/blog/6784/new-video-policies-for-ios/
https://webkit.org/blog/6784/new-video-policies-for-ios/
https://webkit.org/blog/6784/new-video-policies-for-ios/
https://webkit.org/blog/6784/new-video-policies-for-ios/
https://webkit.org/blog/6784/new-video-policies-for-ios/
https://webkit.org/blog/6784/new-video-policies-for-ios/
https://webkit.org/blog/6784/new-video-policies-for-ios/
https://webkit.org/blog/6784/new-video-policies-for-ios/
https://webkit.org/blog/6784/new-video-policies-for-ios/
https://webkit.org/blog/6784/new-video-policies-for-ios/
https://webkit.org/blog/6784/new-video-policies-for-ios/
https://webkit.org/blog/6784/new-video-policies-for-ios/
https://webkit.org/blog/6784/new-video-policies-for-ios/

 <source src="oneDoesNotSimply.webm" type="video
/webm">
 <source src="oneDoesNotSimply.mp4" type="video/mp4">
</video>

Browsers don’t speculate about which
<source> is optimal, so the order of
<source>s matters. For example, if you
specify an mpeg-4 video first and the
browser supports webm, browsers will
skip the webm <source> and use the
mpeg-4 instead. If you’d prefer a webm
<source> to be used first, specify it first!

Now that we know how to convert gifs to video and how to
use those videos as gif replacements, let’s see how each of
these solutions performs in the browser.

Performance of Video versus Animated GIF

Though smaller resources are preferable, file size isn’t
everything. We also need to pay attention to how a media
resource performs after it has been downloaded, because
media assets must be decoded before playback.

328 Image Optimization  part three

GIFs (and other animated image formats) are suboptimal
because an image decode is incurred for every frame in
the image, which can contribute to jank. This makes sense,
because each frame in a gif is simply another image. Let’s
see how this looks in the Performance panel in Chrome’s
DevTools for a page where the only content is an
element pointing to an animated gif.

The Performance panel in Chrome’s developer tools showing browser activity
as an animated gif plays.

As you can see in the figure, image decodes occur on the
rasterizer threads as each new frame of the gif is decoded.
Now let’s look at a comparison table of total cpu time for
gif versus mpeg-4 and webm videos:

format cpu time

GIF 2,668 ms

MPEG-4 1,994 ms

WebM 2,330 ms

329images in browsers  Replacing Animated GIFs

Image optimization could be automated using tools or a
CDN. It’s easy to forget, best practices change, and content

that doesn’t go through a build pipeline can easily slip.

AUTOMATE

BIG JPEG

SMALL JPEG

These figures were gathered in Chrome’s tracing utility
(record your own Chrome traces at chrome://tracing) over
a period of approximately 6.5 seconds for each format. As
you can see, gif takes the most cpu time, and less cpu time
occurs for both videos, particularly mpeg-4. This is good
stuff! It means that videos generally use less cpu time than
animated gif, which is a welcome performance enhance-
ment beyond simply reducing file size.

It should be mentioned, however, that some cpus and
gpus offer hardware-accelerated encoding/decoding of
video (for example, Quick Sync Video129 on Intel cpus).
Many processors can handle encoding and decoding for
mpeg-4, but webm codecs such as vp8 and vp9 have only
recently started to benefit from hardware-accelerated en-
coding/decoding on newer cpus. A Kaby Lake Intel proces-
sor was used in these tests, meaning that video decoding
was hardware assisted.

Hardware-accelerated decoding sometimes
has color accuracy issues in video playback.
Software decoding offers more consistency
because bugs can be fixed quicker and
rolled out to all users.

129	 https://smashed.by/quicksync

331images in browsers  Replacing Animated GIFs

https://en.wikipedia.org/wiki/Intel_Quick_Sync_Video
https://en.wikipedia.org/wiki/Intel_Quick_Sync_Video
https://en.wikipedia.org/wiki/Intel_Quick_Sync_Video
https://en.wikipedia.org/wiki/Intel_Quick_Sync_Video
https://en.wikipedia.org/wiki/Intel_Quick_Sync_Video

Potential Pitfalls

You’ve heard enough about the advantages of using vid-
eo instead of animated gif, but I would be remiss in my
responsibility if I didn’t also point out some of the potential
pitfalls. Here’s a couple for your consideration.

EMBEDDING VIDEO IS NOT AS CONVENIENT

AS EMBEDDING A GIF

Nothing is more convenient than slapping a gif in an
element and moving on with your life. It’s a simple one-liner
that just works, and that’s huge for the developer experience.

However, your experience as a developer isn’t the only one
that matters. Users matter more. On the bright side, using
video in the element130 is possible in Safari, so an eas-
ier solution for using videos as gif replacements may be on
the way. It’s just not an approach you can currently depend
on in all browsers.

ENCODING YOUR OWN VIDEOS CAN TAKE TIME

As developers, we want to save time. When it comes to
something as subjective as the notion of media quality,
however, it can be difficult to come up with an automated
process that provides the best results for all scenarios.

130	 https://smashed.by/gifevolution

332 Image Optimization  part three

https://cloudinary.com/blog/evolution_of_img_gif_without_the_gif
https://cloudinary.com/blog/evolution_of_img_gif_without_the_gif
https://cloudinary.com/blog/evolution_of_img_gif_without_the_gif
https://cloudinary.com/blog/evolution_of_img_gif_without_the_gif
https://cloudinary.com/blog/evolution_of_img_gif_without_the_gif
https://cloudinary.com/blog/evolution_of_img_gif_without_the_gif
https://cloudinary.com/blog/evolution_of_img_gif_without_the_gif
https://cloudinary.com/blog/evolution_of_img_gif_without_the_gif
https://cloudinary.com/blog/evolution_of_img_gif_without_the_gif
https://cloudinary.com/blog/evolution_of_img_gif_without_the_gif
https://cloudinary.com/blog/evolution_of_img_gif_without_the_gif
https://cloudinary.com/blog/evolution_of_img_gif_without_the_gif
https://cloudinary.com/blog/evolution_of_img_gif_without_the_gif

The safest thing to do is analyze the encoder output for each
video, and ensure the results are adequate. This may only be
a reasonable solution for projects with few video resourc-
es. For larger projects with many videos, you may want to
go with a conservative encoding strategy that emphasizes
quality over file size. The good news is that this strategy
will still yield great results, substantially improve loading
performance, and reduce data usage for all users.

Additionally, converting all your gifs to video takes time –
time you might not have. In this case, you might consider
a cloud-based media hosting service such as Cloudinary,131
which does the work for you. Nadav Soferman’s article on
Cloudinary’s blog132 explains how their service can transcode
gif to video for you.

DATA SAVER MODE

On Chrome for Android, autoplaying video can be disal-
lowed when Data Saver133 is enabled, even if you follow this
guide’s instructions to the letter. If you’re a web developer,
and you’re struggling to figure out why videos aren’t auto-
playing on your Android device, disable Data Saver to see if
that fixes the issue for you.

To cover edge cases such as these, you should consider set-
ting the poster attribute so the <video> element’s space is

131	 https://cloudinary.com/
132	 https://smashed.by/cloudinaryblog
133	 https://smashed.by/chromelite

333images in browsers  Replacing Animated GIFs

https://cloudinary.com/
https://cloudinary.com/blog/reduce_size_of_animated_gifs_automatically_convert_to_webm_and_mp4
https://cloudinary.com/blog/reduce_size_of_animated_gifs_automatically_convert_to_webm_and_mp4
https://cloudinary.com/blog/reduce_size_of_animated_gifs_automatically_convert_to_webm_and_mp4
https://cloudinary.com/blog/reduce_size_of_animated_gifs_automatically_convert_to_webm_and_mp4
https://cloudinary.com/blog/reduce_size_of_animated_gifs_automatically_convert_to_webm_and_mp4
https://cloudinary.com/blog/reduce_size_of_animated_gifs_automatically_convert_to_webm_and_mp4
https://support.google.com/chrome/answer/2392284?co=GENIE.Platform%3DAndroid
https://support.google.com/chrome/answer/2392284?co=GENIE.Platform%3DAndroid
https://support.google.com/chrome/answer/2392284?co=GENIE.Platform%3DAndroid

populated with some meaningful content in the event Data
Saver is on (or really any possible scenario where autoplay
could be disallowed). Another possible approach could be to
set the controls attribute conditionally based on the pres-
ence of the Save-Data header,134 which is a header Data Saver
sends when it’s active.

If you must use animated gifs, be sure
to optimize them as much as possible.
Gifsicle135 is a tool that can strip metadata
and unused palette entries, and mini-
mize what changes between frames.
It also supports lossy encoding with the
--lossy flag, which can shave off be-
tween 60 and 65% of size. For more infor-
mation on gif optimization, checkout
The Book of GIF136 by Rigor.

When you use video instead of animated gif, you’re doing
your users a big favor by reducing the amount of data
you send to them, as well as potentially reducing system

134	 https://smashed.by/savedataheader
135	 https://smashed.by/gifsicle
136	 https://smashed.by/bookgif

334 Image Optimization  part three

https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/save-data/
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/save-data/
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/save-data/
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/save-data/
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/save-data/
https://github.com/kohler/gifsicle
https://rigor.com/ebooks/the-book-of-gif/
https://rigor.com/ebooks/the-book-of-gif/
https://rigor.com/ebooks/the-book-of-gif/
https://rigor.com/ebooks/the-book-of-gif/
https://rigor.com/ebooks/the-book-of-gif/
https://rigor.com/ebooks/the-book-of-gif/
https://rigor.com/ebooks/the-book-of-gif/

resource usage. Ditching animated gifs is worth serious
consideration, especially if they feature prominently
in your content. In a time where performance is more
important than ever, yet many performance improvement
strategies require a significant investment of time, transi-
tioning your gifs to video is a proportionally small effort
when compared to the massive improvement it can have
on loading performance.

335images in browsers  Replacing Animated GIFs

chapter 16

Image Content
Delivery Networks

With special thanks to Colin Bendell and Katie Hempenius for

their valuable input.

We try to optimize the content and behavior of
our web pages to ensure they’re delivered in
a timely and efficient manner. For sites with

large traffic and a global reach, basic optimizations at build
time are usually not enough. Teams need to handle known
static assets ahead of time (a logo, for example, or icons) as
well as dynamic assets, such as user-uploaded images.

Large sites often rely on a content delivery network (cdn):
a network of distributed servers that deliver web content
based on the geographic locations of users. Content from
the server nearest to the user’s location is likely to be deliv-
ered faster with minimum hops.

CDNs not only improve website load times but also pro-
vide advanced compression and caching services for static
content, and improve site reliability due to their inherent
load-balancing quality.

336 Image Optimization  part three

What Is an Image CDN?

Image cdns are specialized services for delivering imag-
es, animations, and videos that augment the normal cdn
offering. Image cdns work by providing you with an for
accessing your images and, more importantly, manipulating
them. Image cdns can be a service you manage yourself
(via self-hosting) or that you leave to a third party.

An image cdn can often apply optimizations in a simple query string.

They often include image-processing functionality like com-
pression, resizing, and delivering progressive or responsive
images as required. Most image cdns also support multiple
formats so you can apply your chosen image optimization
technique and image format just by referencing an image
that will be served by the image cdn.

337images in browsers  Image Content Delivery Networks

Why Businesses Use Image CDNs

Businesses often use a third-party image cdn service as
they find it can be more efficient for their engineers to focus
on their core product rather than building and maintaining
yet another pipeline.

Trivago, a popular travel site in Europe, switched to using Cloudinary for its
image cdn needs and found that image size decreased by 80%.

While these results are astounding, they are not out of the
ordinary. When we spoke to brands who switched to image
cdns,137 we found that many experienced image savings of
between 40 and 80%. Part of this is that image cdns offer a
level of specialization and optimization difficult
to achieve independently.

137	 https://smashed.by/cdnswitch

338 Image Optimization  part three

http://bit.ly/imgcdns
http://bit.ly/imgcdns
http://bit.ly/imgcdns
http://bit.ly/imgcdns
http://bit.ly/imgcdns
http://bit.ly/imgcdns
http://bit.ly/imgcdns
http://bit.ly/imgcdns
http://bit.ly/imgcdns
http://bit.ly/imgcdns
http://bit.ly/imgcdns

In Google’s Speed at Scale talk,138 brands that switched to image cdns often
found they experienced image savings from 40 to 80%. Image cdns offer a level
of specialization and optimization that is often difficult to achieve on your own.

We know that images are the single largest component of most
sites, so this can often translate into significant savings in
overall page size. The next section looks at how to define a long-
term strategy for optimizing your images with an image cdn.

Defining a Long-Term Image
Optimization Strategy

WHEN YOU SHOULD USE AN IMAGE CDN

An image cdn solves the basic issues around optimizing
images and applies the best practices in real time, while

138	 https://smashed.by/savings

339images in browsers  Image Content Delivery Networks

https://www.youtube.com/watch?v=YJGCZCaIZkQ
https://www.youtube.com/watch?v=YJGCZCaIZkQ
https://www.youtube.com/watch?v=YJGCZCaIZkQ
https://www.youtube.com/watch?v=YJGCZCaIZkQ
https://www.youtube.com/watch?v=YJGCZCaIZkQ

also providing a safety net for security and performance.
However, many situations might not require image delivery
through image cdns, and a local image optimization and
delivery pipeline may be sufficient.

A requirement for an image cdn depends on the
following factors:

•	 How is the image being used on the website?

•	 What is the source of the image?

•	 What is the impact of using a local pipeline?

Images, videos, and animations may be classified by how
they are being used on the website, including:

•	 Images used in ui (rounded corners, logos).

•	 Images used for marketing (landing pages, product
listing pages).

•	 Creative content (hero images, product detail pages,
news pages).

•	 Images uploaded by users (as part of a cms, to social
networks, etc.).

These images usually come from different sources. For
example, images used in the ui would most likely be part

340 Image Optimization  part three

of the code repository, and a local pipeline would be suffi-
cient to deliver them. However, images may be created and
uploaded by other users who provide content to the website.
These could be editors who upload content in a cms, or ven-
dors on e-commerce sites who provide product details.

With users uploading and referencing content outside
the codebase, there are other risks and expectations that

need to be evaluated. The
primary risks revolve
around service-level
agreements, performance
budgets, and security
risks from media injection
attacks. An image cdn
should be able to provide
automation for these imag-

es while addressing the above risks and expectations.

To decide if an image cdn would be the ideal solution to a
specific scenario, it is necessary to evaluate if using a local
pipeline has turned image competency into a dependency
for the website. Consider the following metrics:

Effort to build and maintain: This would indicate the
effort required to build and maintain an image optimiza-
tion pipeline. Effort exceeding 40 hours per year (about
45 minutes per week) implies that the image pipeline

341images in browsers  Image Content Delivery Networks

success story  “[Adopting

Thumbor] allowed [Wikipedia]

to reduce [its] thumb-nailing

cluster's size when it was

deployed.”

—Gilles Dubuc, Wikipedia,

November 2018

may have become the main driver for product updates
and support requests.

Disaster recovery: This would verify how long it would
take to restore the image/video catalogue and all the pipeline
variations, and what would be the cost to business during
this visual outage. A “mean time to recovery” over two hours
would indicate that an image cdn may be needed.

Answers to the questions above would help determine
when an image cdn would effectively solve issues caused
by a local pipeline.

COST–BENEFIT ANALYSIS AND ROI CALCULATION

FOR IMAGE CDNS

In order to shift to an image cdn, engineers may be required
to show to their stakeholders the added value to be gained by
using image cdns. From a business perspective this would
involve monetizing the advantages and comparing them with
the investment required to use an image cdn. This could
involve quantification and comparison of various metrics.

1. Image Delivery

One of the biggest advantages of any cdn would be the
ability to speed up delivery due to the logical compression
in the network path from client to server. Hence, the perfor-
mance improvement in image delivery is one of the criteria

342 Image Optimization  part three

that needs to be measured to determine the roi of image
cdns. Improvement in performance is an important re-
quirement to improve the user experience and attract more
users. This can be measured using different metrics such as:

•	 session length

•	 pixels or bytes delivered per session

•	 user engagement, which can be measured using stand-
ard kpis like conversions and checkouts depending on
the type of website

2. Engineering Effort

An engineering team might not always be up to date
with all the intricacies involved in maintaining an image
optimization pipeline like support for new formats, edge
cases, and so on. Moreover, implementing such support
may require time for both development and testing, there-
by delaying the delivery of the final product. The cost of
developing and maintaining the solution in house would
involve hiring costs for image optimization experts, data
scientists, and so on. These costs in the aggregate could
be comparable to the cost of using an image cdn over the
lifetime of value they provide.

An image cdn has the resources to do the required re-
search at scale for all its customers and implement the best
choice automatically in many cases. For example, when

343images in browsers  Image Content Delivery Networks

Cloudinary introduced support for webp,139 it did so in a
manner transparent to both the site owner as well as users.
If webp is supported on the user’s browser, it is automati-
cally served by Cloudinary; otherwise they serve the same
image in some other format such as jpeg.

https://res.cloudinary.com/demo/image/upload/w_300,f_auto/nice_beach.jpg

A Cloudinary image cdn url which uses f_auto, allowing Cloudinary to
analyze the image content and select the best format to deliver to the browser.
In Chrome, for example, Cloudinary delivers a webp image using the above
.jpg url, while older browsers receive a jpeg instead.

For clients that support webp, Cloudinary can additionally
check if specific webp features, like transparency and gray-
scale, are supported. A client using a libwebp version earlier
than 0.6 for encoding/decoding may not support some of
these features. In such cases, Cloudinary takes appropriate
actions to polyfill the delivered image.

139	 https://smashed.by/webpcdn

344 Image Optimization  part three

https://cloudinary.com/blog/transparent_webp_format_cdn_delivery_based_on_visitors_browsers
https://cloudinary.com/blog/transparent_webp_format_cdn_delivery_based_on_visitors_browsers
https://cloudinary.com/blog/transparent_webp_format_cdn_delivery_based_on_visitors_browsers
https://cloudinary.com/blog/transparent_webp_format_cdn_delivery_based_on_visitors_browsers
https://cloudinary.com/blog/transparent_webp_format_cdn_delivery_based_on_visitors_browsers
https://cloudinary.com/blog/transparent_webp_format_cdn_delivery_based_on_visitors_browsers
https://cloudinary.com/blog/transparent_webp_format_cdn_delivery_based_on_visitors_browsers

3. Content Presentation

Some sites could explore different ideas to present content,
like converting animations to videos, auto-cropping videos,
auto transparency, and automatic alt attribute injection.
Some of these features might not be absolute requirements
but nice-to-haves. In such cases, site owners may not want
to invest time and effort to incorporate these features but
rather turn them on or off as required. This can be easily
provided by image cdns. To convert this into a measurable
metric, owners would need to assign a priority to the fea-
tures required and evaluate the cost of implementing them.

4. Risk Management

Risk management could involve creating an action plan for
risk mitigation that addresses issues around disaster recov-
ery (dr) and data recovery, security, anti-virus protection,
and content that’s not safe for work (nsfw). We will exam-
ine how image cdns address data recovery in the following
sections. Image cdns can also automatically provide other
security features like virus scans for uploaded files, and re-
moval of offensive, unethical, and otherwise nsfw images.

For example, Cloudinary provides automatic image moder-
ation140 by removing adult or inappropriate photos using its
WebPurify add-on service. Rejected images are automati-
cally removed from the site. Cloudinary is also contributing

140	 https://smashed.by/moderation

345images in browsers  Image Content Delivery Networks

https://cloudinary.com/blog/automatic_image_moderation_removing_adult_or_inappropriate_photos_using_webpurify_and_cloudinary
https://cloudinary.com/blog/automatic_image_moderation_removing_adult_or_inappropriate_photos_using_webpurify_and_cloudinary
https://cloudinary.com/blog/automatic_image_moderation_removing_adult_or_inappropriate_photos_using_webpurify_and_cloudinary
https://cloudinary.com/blog/automatic_image_moderation_removing_adult_or_inappropriate_photos_using_webpurify_and_cloudinary
https://cloudinary.com/blog/automatic_image_moderation_removing_adult_or_inappropriate_photos_using_webpurify_and_cloudinary
https://cloudinary.com/blog/automatic_image_moderation_removing_adult_or_inappropriate_photos_using_webpurify_and_cloudinary

to limit the spread of terrorist content141 on the web. It is a
member of the Global Internet Forum to Counter Terror-
ism142 (gifct) and has access to the Facebook anti-terrorism
database containing unique digital fingerprints of media
content. Cloudinary scans uploaded content against this
dataset before accepting it.

Implementing an Image
Optimization Pipeline

The image and video landscapes are ever changing, and the
learning associated with them is never ending. New formats
and optimizations are constantly emerging, and new expec-
tations are being set for marketing and creative divisions
of organizations. Stakeholders may often ask for imple-
mentation of trending ideas such as transparent videos,
wide gamut, high frame rate, cinemagraphs, paper quality
illustrations, 3d spinning, ar, and vr.

To add to the complexity, users can access websites from
a variety of device and browser combinations. The first
requirement for implementing an image optimization pipe-
line would be to understand the breadth of variations that
the website will eventually support, and the mechanisms
required to address these.

141	 https://smashed.by/curbingcontent
142	 https://gifct.org/

346 Image Optimization  part three

https://cloudinary.com/blog/curbing_terrorist_content_online
https://cloudinary.com/blog/curbing_terrorist_content_online
https://cloudinary.com/blog/curbing_terrorist_content_online
https://cloudinary.com/blog/curbing_terrorist_content_online
https://cloudinary.com/blog/curbing_terrorist_content_online
https://cloudinary.com/blog/curbing_terrorist_content_online
https://cloudinary.com/blog/curbing_terrorist_content_online
https://cloudinary.com/blog/curbing_terrorist_content_online
https://cloudinary.com/blog/curbing_terrorist_content_online
https://cloudinary.com/blog/curbing_terrorist_content_online
https://cloudinary.com/blog/curbing_terrorist_content_online
https://gifct.org/
https://gifct.org/
https://gifct.org/
https://gifct.org/
https://gifct.org/
https://gifct.org/
https://gifct.org/
https://gifct.org/
https://gifct.org/
https://gifct.org/
https://gifct.org/
https://gifct.org/

Images required in the ui elements can be included as part
of regular builds, but if the images are uploaded on the go
by users, then sites need to implement a set of machinery
that ensures the uploaded images remain at their highest
quality while they are being prepared for delivery on the
web. Preparation for web could involve various image trans-
forms affecting size, format, and quality.

Sites also need to ensure that the instrumentation to estab-
lish a baseline and monitor the impact of changes to the
image optimization pipeline is in place. This would monitor
the following aspects.

•	 Performance impact: This can be monitored using
software like WebPageTest143 or Lighthouse,144 or
tracked based on monitoring real users.

•	 Operations impact: This would track factors like
uptime, completion rates, time to first byte (ttfb),
cache-hits, etc.

•	 Risk impact: This would involve instrumentation for
monitoring new common vulnerabilities and excep-
tions (cve),145 fingerprint reporting (for nsfw or illegal
content), and content quality (source pixel volume,
blurriness, color profiles, etc.).

143	 https://www.webpagetest.org/
144	 https://smashed.by/lighthouse
145	 https://smashed.by/sve

347images in browsers  Image Content Delivery Networks

https://www.webpagetest.org/
https://developers.google.com/web/tools/lighthouse/

•	 Accessibility: This would ensure the implementation
of factors affecting the accessibility of the images
like color ambiguity, color blindness indexes, alt and
description text.

Finally, it is of utmost importance that the image pipeline
connects to the marketing and brand stakeholders or the
creative experts. They should act as visual gatekeepers and
track visual parity, ideally as a part of the instrumentation.
In the absence of a qa team or stakeholders who can review
images visually, metrics to track visual parity can also be
provided by structural dissimilarity tools.

HANDLING BACKUPS WITH IMAGE CDNS

Most sites that deliver content with images would rely on
a combination of content management system (cms) and/
or digital asset management (dam) software to manage
content, images, and videos. CMS systems like WordPress,
Magento, or Netlify allow you to upload content through
their platforms into a storage bucket. Templates and
transforms may be applied after uploading the content and
before or after saving it to this bucket.

The original content and the variations may or may not be
saved depending on the cms or dam being used. In this sit-
uation, addressing backup and retrieval becomes the devel-
opment team’s responsibility. The team could either extract

348 Image Optimization  part three

and back up the WordPress stack periodically, or develop a
real-time mirroring system to back up the content. Image
cdns provide three possible solutions to address backup
and retrieval.

•	 Lazy ingestion, where the cdn pulls the data from the
source. In this case there is a certain lag between the
master and the replicated data.

•	 Upload to cdn and replicate to cloud storage at the
same time.

•	 DIY replication withs, which could be implemented
by uploading to the cdn first, followed by hooks to
replicate out asynchronously. This is the recommended
method because it allows for audit trails and dr strate-
gies beyond those provided by the cdn.

A dr strategy could also be affected by other factors, such
as the way image cdns store images. Some image cdns use
path-based parameters to force transformations (for for-
mat, crop, quality, and so on) and these could affect the way
images are stored. The actual dr recovery plan should take
this into consideration. If a team is using a load-balancing
server like Nginx, then a point to consider could be whether
it works directly with the replicated images and without the
image cdn, or if it needs additional logic to translate query
parameters to corresponding image paths.

349images in browsers  Image Content Delivery Networks

HANDLING DSSIM WITH IMAGE CDNS

As a reminder (see chapter 2), the structural similarity
(ssim) index helps to predict the perceived quality of im-
ages. Structural dissimilarity (dssim) can be derived from
ssim. These indices help to measure the similarity between
two images: the original and the transformed image.

While some users might want to find out and use the dssim
themselves, others may leave it up to the image cdn to
make decisions based on the dssim. Image cdns use dssim
for automatic quality selection so that the best quality is
used for images.

Automatic quality selection may also calibrate images on a
use-case basis in addition to the perceptual quality metric like
dssim. Cloudinary uses the following factors to decide on the
compression format and degree of compression to be used:

•	 Illustration: indicates if the image looks like an illustra-
tion with hard lines.

•	 Color ambiguity: used to judge if the image will be
problematic for a person with color blindness. It reports
the volume of red-green or blue-green colors that are
ambiguous in clustering.

350 Image Optimization  part three

•	 Source quality: indicates if the image source may be
already heavily precompressed, or suffers from other
aesthetic problems before applying any optimizations.

•	 Grayscale.

•	 Focus.

Perceptual quality also depends on formats in addition to
the factors above. A quality setting of 80 for jpeg may not
be the same as a quality of 80 for webp. Perceptual quality
does not map linearly between formats and is affected by
different variables like target quality, pixel volume, color
volume and illustration-ness. Remember that there are
differences between image quality measurement units used
by different tools: an image quality of 40 in Photoshop’s
“Save for Web” feature, for example, corresponds to 80 with
libjpeg-turbo and gimp quality 93.146

Not all image cdns use this wide range of classifiers for
quality selection: some may just classify images based on
the source format of the original image. There is scope to
add additional intelligence in this area in the future. AI
generation artifacts and semantic content could also be
considered. For example, this could involve making quality
selection more sensitive to changes in the skin coloring of

146	 https://smashed.by/gimp93

351images in browsers  Image Content Delivery Networks

https://blogs.gnome.org/raphael/2007/10/23/mapping-jpeg-compression-levels-between-adobe-photoshop-and-gimp-24/
https://blogs.gnome.org/raphael/2007/10/23/mapping-jpeg-compression-levels-between-adobe-photoshop-and-gimp-24/
https://blogs.gnome.org/raphael/2007/10/23/mapping-jpeg-compression-levels-between-adobe-photoshop-and-gimp-24/

the person being photographed but less sensitive to changes
on the mountains in the background.

RECOMPRESSION ISSUES

Reoptimizing images from a semi-optimized source
using an image cdn is similar to applying the photo-
copier effect.147 In some cases, reapplying lossy trans-
forms is avoidable.

A demonstration of the photocopier effect, which can happen after repeatedly
applying lossy compression transforms to the same image. Shown are the
results after 1, 100, 1,000, and 10,000 encodings.

For simple transforms (cropping, for example), there is
no need to dequantize and requantize the image. This can

147	 https://smashed.by/photocopier

352 Image Optimization  part three

https://cloudinary.com/blog/why_jpeg_is_like_a_photocopier
https://cloudinary.com/blog/why_jpeg_is_like_a_photocopier
https://cloudinary.com/blog/why_jpeg_is_like_a_photocopier
https://cloudinary.com/blog/why_jpeg_is_like_a_photocopier

limit the loss due to transform. It can also work for
responsive images. However, a transform that involves
changing the quality factor will dequantize and
requantize the image.

Using perceptual qualities can help to minimize the gen-
eration loss from recompression. The metric is calculated
against the inflated form of the image, which includes the
original generation loss. SSIM-based calculations are sensi-
tive to the amplification from these recompressed images.
So, the amount of data loss from regeneration is minimized
through this process.

However, the photocopier effect cannot be avoided com-
pletely. Once there is a loss of quality it is impossible to
ascertain if the new image is as good as the original. But it
will certainly be as good as the semi-optimized image with
a little bit of additional loss. Tools such as jpeg2png148 have
attempted to reverse some of the quantization artifacts by
intelligently filling the missing information and creating
a smoother picture.

In this context, it is recommended to always attempt to start
with images of the highest possible quality. Image cdns can
incorporate tools that help identify incoming images of low
quality and optimize accordingly.

148	 https://smashed.by/jpeg2png

353images in browsers  Image Content Delivery Networks

https://github.com/victorvde/jpeg2png
https://github.com/victorvde/jpeg2png
https://github.com/victorvde/jpeg2png

RESPONSIVE WEB DESIGN

A responsive image is expected to adapt in response to differ-
ent environmental conditions like the device it is being viewed
on, the viewport size, bandwidth, and so on. Adaptations can
include, but are not limited to, changing the dimensions of the
image, cropping the image, or automatically selecting a differ-
ent source image based on the viewport size (see chapter 11 for
more details). The next generation of responsive web design
and responsive images needs to make way for art direction149
and smart cropping features. This could involve cropping an
image or using an altogether different image to ensure that the
main subject of the image is always in the picture.

In addition to generating resolution-based responsive im-
ages corresponding to any image, cdns have also explored
automatic art direction150 by which an image’s context is in-
telligently identified and focused on when making cropping
decisions. It uses edge detection, face detection, and visual
uniqueness to generate a heat map of the most important
aspects captured in the image.

LEGAL AND LICENSING ISSUES

Specific legal and licensing issues need to be considered
when it comes to automatic image compression because the
image could be altered by the compression process. These
issues can be categorized as follows.

149	 https://smashed.by/artdirection
150	 https://smashed.by/automaticartdirection

354 Image Optimization  part three

https://usecases.responsiveimages.org/#art-direction
https://usecases.responsiveimages.org/#art-direction
https://usecases.responsiveimages.org/#art-direction
https://cloudinary.com/blog/push_button_art_direction_with_cloudinary_s_responsive_image_breakpoints_generator
https://cloudinary.com/blog/push_button_art_direction_with_cloudinary_s_responsive_image_breakpoints_generator
https://cloudinary.com/blog/push_button_art_direction_with_cloudinary_s_responsive_image_breakpoints_generator
https://cloudinary.com/blog/push_button_art_direction_with_cloudinary_s_responsive_image_breakpoints_generator
https://cloudinary.com/blog/push_button_art_direction_with_cloudinary_s_responsive_image_breakpoints_generator

Ownership

This category of legal concerns is related to visual material re-
lated to trademarks and brand identities; for example, celebri-
ty endorsements and logos. Examples of legal concerns might
include whether a brand logo is displayed exactly as intended,
or ensuring that a celebrity’s identifiable face is not photo-
shopped into an image without their endorsement. Logos
usually need to be displayed with strict Pantone colors and
should not suffer from color shifting. Similarly, skin tones
for celebrity faces should not drift, particularly for people of
color. This has implications not just for the photographer,
but also for the image algorithm that might shift colors up or
down when normalizing. This scenario provides a strong case
for the need for ssim-based scoring when selecting the right
quality factor in jpeg. One of the three main variables in ssim
is contrast, which will help flag shifts in skin tones.

Distribution Rights

This involves ensuring that you have the digital rights to
the content you manipulate. The technological implications
include ensuring that you have mechanisms to track where
you are showing images, how you mitigate hotlinking, and
removing content you no longer have rights to show. Image
cdns should be able to address access control to prevent
these issues; for example: setting time-based access control
to match the legal contracts; preventing hotlinking; and
authorizing image requests so that only consumers on your
web page can see the images, thereby deterring others from

355images in browsers  Image Content Delivery Networks

referencing your content. There is a risk of images being
copied when we send them. Complying with the distribu-
tion requirements can help in mitigating the risk.

Transmission

These issues deal with the technology or medium used to trans-
mit and distribute images and if there are patent implications
for using these technologies and transmitting them in this me-
dium. It is an issue relevant in the transmission of formats like
Advanced Video Coding (h.264), High Efficiency Video Coding
(h.265), and High Efficiency Image File Format (heif) where
licensing is involved. Image cdns can license these patents di-
rectly or indirectly so that customers don’t have to worry about
related legal issues. Cloudinary has a licensing agreement with
Nokia for heif so generating heic/heif content (see chapter 17)
is not a legal burden on customers.

Evaluating Your Need for an
Image-Processing CDN

To achieve optimal page load times, you need to optimize
your image loading. So far we have covered the thought
process of managing an image optimization pipeline with
and without an image cdn. This optimization calls for a
responsive image strategy and can benefit from on-serv-
er image compression, auto-picking the best format, and

356 Image Optimization  part three

responsive resizing. What matters is that you deliver the
correctly sized image to the proper device in the proper
resolution as fast as possible.

Because of the complexity and ever-evolving nature of
image manipulation, doing this is not as easy as one might
think, and image cdns can save you a lot of time and trou-
ble. Industry expert Chris Gmyr151 even goes as far as saying:

If your product is not image manipulation, then
don’t do this yourself. Services like Cloudinary [or
imgix and others] do this much more efficiently
and much better than you will, so use them. And
if you’re worried about the cost, think about how
much it’ll cost you in development and upkeep, as
well as hosting, storage, and delivery costs.

Still, the argument for cost and convenience of image cdns
varies on a case-by-case basis. An image-heavy site with a lot
of traffic could cost hundreds of us dollars a month in cdn
fees. There is also a certain level of prerequisite knowledge
and programming skill required to get the most out of these
services. If you are not doing anything too fancy, you’re
probably not going to have any trouble. But if you’re not
comfortable working with image processing tools ors, then
you are looking at a relatively difficult learning curve. (For
example, to accommodate the cdn server locations, you will

151	 https://smashed.by/gmyr

357images in browsers  Image Content Delivery Networks

https://medium.com/@cmgmyr/moving-from-self-hosted-image-service-to-cloudinary-bd7370317a0d
https://medium.com/@cmgmyr/moving-from-self-hosted-image-service-to-cloudinary-bd7370317a0d
https://medium.com/@cmgmyr/moving-from-self-hosted-image-service-to-cloudinary-bd7370317a0d

need to change some urls in your local links. Before diving
in, do the right due diligence.)

CDN PERFORMANCE

CDN delivery performance is mostly about improved
latency152 and speed.

Latency always increases somewhat for completely un-
cached images. But once an image is cached and distributed
among the network servers, the fact that a global cdn can
find the shortest hop to the user, added to the byte savings
of a properly processed image, almost always mitigates
latency issues when compared to poorly processed images
or solitary servers trying to reach across the planet.

The reduced latency increases download speed, which
affects page load time, and this is one of the most important
metrics for both user experience and conversion.

As mentioned, the advantages of using an image cdn are
not the same for every project. To help, here’s a checklist
of some of the key factors to consider when evaluating the
need for an image cdn. If you answer mostly yes, your web-
site is a good candidate for using one.

152	 https://smashed.by/latency

358 Image Optimization  part three

https://docs.google.com/a/chromium.org/viewer?a=v&pid=sites&srcid=Y2hyb21pdW0ub3JnfGRldnxneDoxMzcyOWI1N2I4YzI3NzE2

1.	 Do you need sophisticated image and video capabili-
ties, like advanced image processing, support for the
latest image formats, etc?

2.	 Will you need to hire or train engineers to implement all
the requirements with respect to image optimization?

3.	 Are images frequently uploaded to your website by
vendors or users?

4.	 Will uploaded images be delivered to different types
of devices and browsers across the world?

5.	 Is the effort required to build and maintain the image
pipeline greater than 40 hours per year?

6.	 Will it take more than two hours to restore media
content in the event of an outage?

7.	 Will you be building instrumentation to measure and
optimize performance impact due to images?

8.	 Do you need features to improve the accessibility of
images? (e.g. support for color blindness, automatic
alt-text injection, etc.)

9.	 Will you be required to automatically select the qual-
ity of images to be delivered based on their structural
similarity to originals?

359images in browsers  Image Content Delivery Networks

10.	 Are you required to moderate uploaded content for
illegal or inappropriate images and videos?

11.	 Are there legal or licensing issues to be addressed
with respect to image compression, transmission,
distribution?

To answer some of these questions, it would also be a good
idea to have an inventory of the different types of images
and image functionality required on the website. The fol-
lowing table shows a sample.

image type

image
processing
required

licensed
formats
required

accessibility
features
required

image
moderation
required

UI chrome
images

N N Y N

Landing
page
images

Y Y N X

Product
images on
detail page

Y Y Y Y

Blog

images
Y X Y Y

360 Image Optimization  part three

If you are currently serving your own images (or planning
to) and decide to consider cdns, here are some options:

•	 Cloudinary:153 a paid service which offers a free tier.

•	 Imgix:154 a paid service which offers a free trial.

•	 Thumbor:155 an open-source software alternative.

CLOUDINARY AND IMGIX

Unless you are the owner of a network of servers like
Cloudinary and imgix, their first huge advantage over
rolling your own solution is that they use a distributed
global network system to bring a copy of your images
closer to your users. It’s also far easier for a cdn to fu-
ture-proof your image loading strategy as trends change
– doing this on your own requires maintenance, tracking
browser support for emerging formats, and following the
image compression community.

Both services provides so developers can access the cdns
programmatically and automate their processing. Client
libraries, framework plug-ins, and documentation are also
available, with some features restricted by price.

153	 http://cloudinary.com/
154	 https://www.imgix.com/
155	 https://smashed.by/thumbor

361images in browsers  Image Content Delivery Networks

http://cloudinary.com/
https://www.imgix.com/
https://github.com/thumbor/thumbor

For static images, both Cloudinary and imgix offer a range
of image manipulation methods, and both support prima-
ry functions such as compression, resizing, cropping,
and thumbnail creation.

Cloudinary’s Media Library. By default, Cloudinary encodes non-progressive
jpegs. To opt in to generating them, check the “Progressive” option in “More
options,” or pass the fl_progressive flag.

Cloudinary lists seven broad image transformation156 cate-
gories, with a total of 48 subcategories within them. Imgix
advertises over 100 image processing operations.157

There are so many uncontrolled variables in image manipu-
lation that a head-to-head performance comparison between

156	 https://smashed.by/transformation
157	 https://smashed.by/operations

362 Image Optimization  part three

http://cloudinary.com/documentation/image_transformations
http://cloudinary.com/documentation/image_transformations
http://cloudinary.com/documentation/image_transformations
http://cloudinary.com/documentation/image_transformations
http://cloudinary.com/documentation/image_transformations
http://cloudinary.com/documentation/image_transformations
http://cloudinary.com/documentation/image_transformations
https://docs.imgix.com/apis/url?_ga=2.52377449.1538976134.1501179780-2118608066.1501179780
https://docs.imgix.com/apis/url?_ga=2.52377449.1538976134.1501179780-2118608066.1501179780
https://docs.imgix.com/apis/url?_ga=2.52377449.1538976134.1501179780-2118608066.1501179780
https://docs.imgix.com/apis/url?_ga=2.52377449.1538976134.1501179780-2118608066.1501179780
https://docs.imgix.com/apis/url?_ga=2.52377449.1538976134.1501179780-2118608066.1501179780
https://docs.imgix.com/apis/url?_ga=2.52377449.1538976134.1501179780-2118608066.1501179780

the two services is difficult. So much depends on how much
you need to process the image – which takes a variable

amount of time –
and what size and
resolution
are required for
the final output,
which affects
speed and down-
load time. The
most important

factor for you might ultimately be cost. If you’re determined
to set up your own image cdn, in the following section we’ll
take a close look at Thumbor and the optimization features
it can provide.

success story  “Our average page

weight went from 4 MB to 400 KB after

implementing [optimization with an

image CDN]. […] Best of all, we have

seen a 100% increase in conversions

and a 20% decrease in bounces”

—Furnspace (May, 2018)

363images in browsers  Image Content Delivery Networks

Using Thumbor to Roll
Your Own Image CDN

Thumbor158 is an open-source, smart image optimization
service that can be used as a self-hosted image cdn. Like
any other image cdn159 it includes features to crop, resize,
flip, and transform images or apply filters on demand. It
supports multiple image compression formats like jpeg,
png, webp, and gif.

If you already have a background in how image cdns can
be used to improve image load performance (you read the
previous chapter, right?), dive straight in to this guide. We
will explore the image optimization features included in
Thumbor and available options for hosting it.

API Basics

The Thumbor consists of smart urls that can be used to
specify the original image url and the transformation re-
quired. Let’s illustrate this with an example. For an original
image url like this one:

<img src="<your-server>/500x300.jpg" alt="original"/>

158	 http://thumbor.org/
159	 https://smashed.by/imagecdns

364 Image Optimization  part three

http://thumbor.org/
https://web.dev/image-cdns/
https://web.dev/image-cdns/
https://web.dev/image-cdns/

The following smart url can be used to apply a Thumbor
transformation that would display the image in grayscale
and resize it:

<img src="<thumbor-server>/unsafe/300x200/filters:g
rayscale():format(jpeg)/<your-server>/500x300.jpg"
alt="thumbnail"/>

Here’s what it looks like before and after applying
the transforms:
Before After

In general, a Thumbor url can be written with this formula:

http://<thumbor-server>/hmac/trim/AxB:CxD/fit-in/-
Ex-F/HALIGN/VALIGN/smart/filters:filtername(arguments)
:filtername(arguments)/<image-uri>

365images in browsers  Image Content Delivery Networks

It consists of the following components:

url
component description

<thumbor-server> The url and port number of the
server where the Thumbor service is
hosted.

hmac A 28-character security key or
authentication code to prevent url
tampering. In the absence of a secu-
rity key, the word “unsafe” may be
used in this part of the url.

trim Removes surrounding space in im-
ages using top-left pixel color unless
specified otherwise.

crop (AxB:CxD) Used to manually crop the image at
left-top point AxB and right-bottom
point CxD.

size (-Ex-F) Specifies the desired size of the
image (300×200 in the previous
example, with E as width in pixels, F
as height). This is optional and can
be skipped to use the original size of
the image. The - (minus) sign can
be used to indicate the direction in
which the image should be flipped.

366 Image Optimization  part three

fit-in Specifies that the generated image
should not be cropped and should
just fit into the dimensions specified
in the size component of the url.

HALIGN Indicates the horizontal alignment
of the crop. Possible values are left,
right or center.

VALIGN Indicates the vertical alignment of
the crop. Possible values are top,
middle or bottom.

smart Requests smart detection of focal
points.

filters:

filtername

(arguments)

Specifies the desired filters (gray-
scale() and format(jpeg) in the
example above). Filters may be omit-
ted completely or multiple filters
may be specified as a colon-separat-
ed list.

<image-uri> This is the original image url.

Details about each of these components are available in
Thumbor’s documentation.160 Now we’ll explore some of the
key features supported in Thumbor, and illustrate how they
can be used through examples.

160	 https://smashed.by/thumbordocs

367images in browsers  Image Content Delivery Networks

https://thumbor.readthedocs.io/en/latest/usage.html
https://thumbor.readthedocs.io/en/latest/usage.html
https://thumbor.readthedocs.io/en/latest/usage.html
https://thumbor.readthedocs.io/en/latest/usage.html
https://thumbor.readthedocs.io/en/latest/usage.html
https://thumbor.readthedocs.io/en/latest/usage.html
https://thumbor.readthedocs.io/en/latest/usage.html

Features

IMAGE COMPRESSION FORMATS

Thumbor supports webp, jpeg, png, and gif formats and
format()161 may be used in the filters section of the url to
convert images to any of these formats. The following
example shows how an image may be converted from
jpeg to webp.

Source file: <your-server>/images/local-test-file.jpeg

Transform using the format() filter:

<thumbor-server>/unsafe/740x380/
filters:format(webp)/<your-server>/images/local-test-
file.jpeg

Output:

161	 https://smashed.by/thumborformat

368 Image Optimization  part three

https://thumbor.readthedocs.io/en/latest/format.html
https://thumbor.readthedocs.io/en/latest/format.html

TRANSFORM WITH FILTERS

A list of all the filters Thumbor supports162 can be found in
the documentation. We will see how these can be used or
combined in the following examples.

Convert to WebP and Blur

Source file: <your-server>/images/dice.png
Transform using the format() and blur()163 filters togeth-
er. Here we apply a radius of 4 and sigma of 3 in blur().

<thumbor-server>/unsafe/filters:blur(4,3):format(web
p)/<your-server>/images/dice.png" alt="Blurred dice
converted to WebP."

The webp image output by Thumbor from the jpeg original
shows the blur filter applied in the smart url.

162	 https://smashed.by/thumborfilters
163	 https://smashed.by/thumborblur

369images in browsers  Image Content Delivery Networks

https://thumbor.readthedocs.io/en/latest/filters.html
https://thumbor.readthedocs.io/en/latest/filters.html
https://thumbor.readthedocs.io/en/latest/filters.html
https://thumbor.readthedocs.io/en/latest/filters.html
https://thumbor.readthedocs.io/en/latest/filters.html
https://thumbor.readthedocs.io/en/latest/filters.html
https://thumbor.readthedocs.io/en/latest/filters.html
https://thumbor.readthedocs.io/en/latest/filters.html
https://thumbor.readthedocs.io/en/latest/filters.html
https://thumbor.readthedocs.io/en/latest/blur.html

Convert to JPEG and Add a Fill color

Source file: <your-server>/images/dice.png
Transform using the fill()164 and format() filters together.
The hex code for the color to be filled is specified here in the
fill() function as C0C0C0 and the 1 indicates that we want
to fill the transparent areas of the image as well.

<thumbor-server>/unsafe/filters:fill(C0C0C0,1):format(
jpeg)/<your-server>/images/dice.png" alt="Filled dice
converted to JPEG."

As well as converting from png to jpeg, the background
color has been filled.

OPTIMIZATION

Thumbor can also perform on-the-fly optimizations on
images without transforming them. You can enable these
by configuring Thumbor to use any of the available plug-ins

164	 https://smashed.by/thumborfill

370 Image Optimization  part three

https://thumbor.readthedocs.io/en/latest/filling.html
https://thumbor.readthedocs.io/en/latest/filling.html

like mozjpeg, pngquant, jpegtran, and gifv. The following
examples illustrate how this can be done.

Optimizing a JPEG Using Thumbor’s MozJPEG

encoder

Source file: <your-server>/images/500x300.jpg
Use Thumbor to render it without any transform:

<thumbor-server>/unsafe/<your-server>/images/500x300.
jpg" alt="An image with MozJPEG encoding."

For an image of comparable quality, the file size goes down
from 33.03 kb to 25.75 kb.

371images in browsers  Image Content Delivery Networks

Optimizing an Animated GIF MP4 Video Using

Thumbor’s GIFv Optimizer

Source file: <your-server>/images/local-test-file.gif
Thumbor’s gifv optimizer uses ffmpeg (see chapter 15) to
convert gifs to video for reduced file size:

<thumbor-server>/unsafe/740x380/
filters:gifv(mp4)/<your-server>/images/local-test-
file.gif

Automating the conversion of a large animated gif to a video (x264 mpeg4)

CONFIGURATION

When self-hosting Thumbor installations, you can custom-
ize the configuration file. Default configurations are avail-
able as a Python script and can be changed by writing them
out to a commented text file using the command below:

thumbor-config > ./thumbor.conf

372 Image Optimization  part three

Required default configurations may be edited. Some of the
generally relevant configurations are shown below.

1.	 Minimum and maximum height and width: allow
users to set the lowest and highest dimensions
for generated images. The available configuration
parameters are as follows:
MIN_WIDTH = 1

MIN_HEIGHT = 1

MAX_WIDTH = 1200

MAX_HEIGHT = 800

2.	 Quality: allows users to set the quality at which jpeg
images will be generated, with a default value of 80.

3.	 Maximum age: defines the number of seconds after
which the image will expire from the browser cache.
For example, here’s how to set MAX_AGE to enable
cache for 24 hours:
MAX_AGE = 24 * 60 * 60

4.	 AUTO_WEBP: tells Thumbor to always send webp imag-
es if the request indicates that the browser supports
the format.
AUTO_WEBP = True

5.	 SECURITY_KEY: specifies the security key that
Thumbor can use to sign secure urls.

373images in browsers  Image Content Delivery Networks

Details about all configurable parameters165 can be found in
Thumbor documentation.

HOSTING

Thumbor can be run locally in the development or pro-
duction environment, or hosted in the cloud through
major service providers including Google Cloud Platform.
When self-hosting, users also need to address other
requirements such as:

•	 Configuration: updating configuration file as per re-
quired defaults.

•	 Load balancing: configuring a static ip address and
global load-balancer.

•	 Security: ensuring security by enabling the security
key feature.

•	 Monitoring: monitoring the application using Supervi-
sor or other solutions.

•	 Logging: capturing event logs and metrics.

The maintenance overhead due to these requirements should
be considered when hosting an image cdn like Thumbor.

165	 https://smashed.by/thumborconfig

374 Image Optimization  part three

https://thumbor.readthedocs.io/en/latest/configuration.html
https://thumbor.readthedocs.io/en/latest/configuration.html
https://thumbor.readthedocs.io/en/latest/configuration.html

Thumbor provides a rich set of features for image optimi-
zation and transformation, and this guide highlights some
of them. It also supports intelligent cropping and resizing
functionality and other features that are well documented.166
Another recommended starting point for your Thumbor
journey is the web.dev Thumbor guide.167

Thumbor can help to optimize the image delivery pipeline
without relying on a third-party cdn infrastructure provid-
er. While there would be additional maintenance required,
installation and operational procedures are similar to any
other application and can be easily addressed in most cases.

166	 https://smashed.by/thumborfeatures
167	 https://smashed.by/thumborguide

375images in browsers  Image Content Delivery Networks

https://thumbor.readthedocs.io/en/latest/
https://thumbor.readthedocs.io/en/latest/
https://thumbor.readthedocs.io/en/latest/
https://thumbor.readthedocs.io/en/latest/
https://thumbor.readthedocs.io/en/latest/
https://thumbor.readthedocs.io/en/latest/
https://thumbor.readthedocs.io/en/latest/
https://thumbor.readthedocs.io/en/latest/
https://thumbor.readthedocs.io/en/latest/
https://web.dev/use-thumbor/
https://web.dev/use-thumbor/
https://web.dev/use-thumbor/
https://web.dev/use-thumbor/
https://web.dev/use-thumbor/
https://web.dev/use-thumbor/
https://web.dev/use-thumbor/

New Image
Formats

Part Four

	chapter 17		 HEIF and HEIC 382

	chapter 18		 AVIF . 398

	chapter 19		 JPEG XL 416

	chapter 20		 Comparing New
			 Image Formats 433

New and Emerging Image Formats
for the Future of the Web

While jpeg is the most widely used and sup-
ported standard for image compression, the
industry has been on a constant lookout for a

new format that will be widely accepted and supported by
all the major browsers across mobile and desktop. There are
several reasons for wanting to switch to a new file format.

•	 Despite innovations in recent years like the mozjpeg
optimizer and Guetzli (see chapter 7), popular jpeg
compression techniques are generally quite old. With
the increased use of images in e-commerce and social
media sites, there is a need for rendering good-quality
images at a high speed without stressing cpus. This
implies a need for better compression techniques that
can further reduce the size of images without affecting
image quality, thereby reducing the bandwidth needed
to render quality images.

•	 JPEG supports a maximum file size of 65,535×65,535
pixels. Newer cameras and photography equipment are
already exceeding this limit.

•	 JPEG compression is not lossless, although solutions
like lossless jpeg have existed for some time (1993). In-
creasing the compression of the image usually means
the picture will look pixelated and a little blurry.

380 Image Optimization  part four

•	 JPEG images have a long header which cannot be com-
pressed. This makes them unsuitable for use in lqips,
which are used to display low quality images while the
actual image is still loading.

•	 JPEG images are not fully responsive by design,
meaning you cannot always render variants of the
same image based on the user’s screen size and display.

•	 JPEG does not support transparency or
transparent backgrounds.

•	 JPEG does not support new photo technology
like bursts of shots, panoramas, live photos and
3D scene data.

•	 JPEG does not support adding stickers or overlays
(heif, avif and jpeg xl can do this).

JPEG 2000 and jpeg xr were introduced to replace jpeg but
were never able to secure broad adoption. jpeg 2000 is sup-
ported only in Safari and on iOS, while jpeg xr is supported
only in Edge and IE.

The webp format was developed by Google to overcome
the limitations of jpeg: namely, support for lossless
compression and transparency. Even though it achieves

381new & emerging image formats  Introduction

15–20% better compression compared with jpeg, it has
failed to gain maximal adoption. (See chapter 9 for a full
discussion of webp.)

To be widely adopted and supported by all the major players
in the mobile and browser world, a new image format has
not only to overcome the limitations of jpeg, but also be
royalty-free. Currently, the contenders for the place of jpeg
in the future are: heif, avif, and jpeg xl.

The following chapters explore each new format in detail
and provide insight into their potential adoption.

chapter 17

HEIF and HEIC

The high-efficiency image file format (heif) made its
consumer debut on Apple’s iPhones in iOS 11, offer-
ing smaller file sizes and higher image quality than

jpeg. It achieves this using more advanced compression
methods and is based on the high efficiency video coding
(hevc) format. HEIF includes features like transparency and
16-bit color, which are a nice upgrade over jpeg’s 8-bit color.
HEIF has very limited browser and platform compatibility,
but on iPhones and iPads heif images are converted back to
jpegs when sharing. While other image formats covered in
this part of the book may offer broader compatibility, heif is
worth being familiar with as you may have users wishing to
work with this format on iOS.

HEIF: The High Efficiency
Image File Format

In 2017 anyone who upgraded to iOS 11 from an older
version, most likely noticed the new ability in iPhones to
capture “Live Photos.” These live photos capture a series of
frames over three seconds rather than a single frame.

382 Image Optimization  part four

HEIF
HEIC

When you transfer these photos over a messaging app or
email, they are sent as still jpeg image files since jpegs
cannot store multiple frames. If you were to transfer these
images to a laptop or desktop computer running macOS
High Sierra (10.13) or above, you would notice the images
still work as live photos and the files have an .heic extension.
This is the new image file format that was introduced with
iOS 11 and has been used to store photos on iPhones and
iPads since then.

To understand this new format better, we will try to dis-
cuss everything about the heif format from which heic is
derived. We will also see how it fares as compared to jpeg
and other image formats in terms of image optimization,
support available, and the possible advantages and disad-
vantages of using heif (or heic) on web pages.

WHAT HEIF IS

HEIF stands for high efficiency image format and it is a
container format: a wrapper that can contain a variety of
different types of data compressed by standardized
coders. Containers handle packaging, transport, and
presentation but don’t specify what codec the container
format uses. MPEG-4 is a container often represented by
the .mp4 file type.

383

HEIF
HEIC

new & emerging image formats  HEIF and HEIC

While the current standard allows heif to contain hevc,
Advanced Video Coding (avc), or jpeg-encoded bitstreams,
iOS uses hevc encoding. HEVC – also known as h.265
– was developed by the Moving Picture Experts Group
(mpeg) as a successor to avc and offers a 25% to 50% better
compression for the same video quality. Thus, hevc-encod-
ed images contained in heif files use the same advanced
compression methods to achieve image files which are half
the size of jpeg files for the same or better picture quality.

HEVC, however, is patented technology, and using it for
encoding or decoding photos requires a license.1

The technical specification for heif was finalized in 2015
and the heic format was released on iOS in 2017. HEIF files
can store the following types of data, illustrated in examples
from Nokia Technologies.2

1	 https://smashed.by/hevc
2	 https://smashed.by/nokia

384 Image Optimization  part four

HEIF
HEIC

https://www.hevcadvance.com/licensing/#licensing-information
https://www.hevcadvance.com/licensing/#licensing-information
https://www.hevcadvance.com/licensing/#licensing-information
https://www.hevcadvance.com/licensing/#licensing-information
https://www.hevcadvance.com/licensing/#licensing-information
https://nokiatech.github.io/heif/examples.html
https://nokiatech.github.io/heif/examples.html
https://nokiatech.github.io/heif/examples.html
https://nokiatech.github.io/heif/examples.html
https://nokiatech.github.io/heif/examples.html
https://nokiatech.github.io/heif/examples.html
https://nokiatech.github.io/heif/examples.html

Still Images

Each heif file includes a high-quality image, its thumbnail,
and their related metadata (e.g. exif).

Thumbnail image.

High-res image.

385

HEIF
HEIC

new & emerging image formats  HEIF and HEIC

Image Collections

Each file contains a group of images, their thumbnails,
and related metadata.

An example image collection within one heif file.

Image Sequences

HEIF allows image bursts or cinemagraphs that are
time-related, along with their associated properties and
thumbnails. Since these images are very similar in
nature, the compounded file size of all frames is much
smaller than expected. Different algorithms may be used
to reduce the overall size of the image sequence based
on predicted similarities.

386 Image Optimization  part four

HEIF
HEIC

A burst of images of a perching bird, all stored in one heif file.

Image Derivations

These store editing instructions separately in the image file
along with the original image(s). Derivations can include ro-
tation, overlay, and grid view (as seen in the example). These
are stored alongside the original image so that it is never lost.

The information to create the grid view is stored in the heif file
alongside the images.

387

HEIF
HEIC

new & emerging image formats  HEIF and HEIC

388 Image Optimization  part four

HEIF
HEIC

Auxiliary Image Items

Image data which complements another image item can be
stored in the heif file, such as a depth map or alpha plane.
The example shown includes a derived image that is com-
posed of two overlays and one of the images has a gradient
alpha mask that provides gradual transparency.

Original image.

The image with the mask derived from auxiliary image data in the heif file.

Image Metadata

EXIF, Extensible Metadata Platform (xmp), or any other
metadata that may accompany the image can be contained
in an heif file.

OTHER FEATURES OF HEIF

As noted, heif is a media container format. It is not itself
an image or video encoder. Hence, the quality of the visual
media depends highly on the proper usage of the visual
media encoder (e.g. hevc). Thus, the heif standard might be
easily extended in the future to other visual media codecs.

HEIF has many powerful features, some of which are
currently not present in other image file formats like jpeg,
png, or gif, such as:

•	 Encapsulation of images encoded using hevc, scalable
hevc (shvc), multiview hevc (mv-hevc), avc, or jpeg,
which may be extended to other codecs in the future.

•	 Encapsulation of image sequences with audio encoded
using hevc, shvc, mv-hevc, or avc.

•	 Support for efficient storage of image bursts and cine-
magraphs.

•	 The use of widely adopted iso base media file format
(iso bmff) for storage.

389

HEIF
HEIC

new & emerging image formats  HEIF and HEIC

•	 Support for both lossy and lossless image data storage.

•	 Support for transparency and 16-bit colors allowing for
pictures with a wider range of colors.

•	 Support for image editing without altering the original
image. The editing information is stored as metadata
that can be undone to revert to the original image.

•	 Easier distribution of still images, image collections,
and related metadata.

This image compares the jpeg and heif versions of an image with respect to
their quality and sizes. Left: 156 kb jpeg; right: 135 kb hevc. (Source: 500px3)

3	 https://smashed.by/nokia

390 Image Optimization  part four

HEIF
HEIC

https://iso.500px.com/heif-first-nail-jpegs-coffin/
https://iso.500px.com/heif-first-nail-jpegs-coffin/

HEIC: A Subset of HEIF

HEIC (high efficiency image container) is the file format for
image files which use the heif standard and are encoded
using hevc. Apple uses the heic container format to store
both still images and live photos encoded with hevc. Since
heic files sizes are much smaller than jpeg, photos will use
less of the limited storage available on iPhones and iPads.
With the increasing quality of images, sizes of jpeg image
files were growing, and space for storing a growing library
of photos was always an issue on these devices.

With the implementation of heic format for images, Apple
hopes that users will be able to easily store a large number
of photos on their devices. Features like Live Photos and
advanced editing also improve the overall photography
experience using iPhone and iPad.

Using the features supported in heic files, the inbuilt
photo editor on iPhone and iPad is able to offer distinct
editing features:

•	 Ability to revert to original photos even after you
have saved the changes because editing instructions
are saved separately.

•	 Remove effects like background blur or depth control
which you applied to your photos when clicking them.

391

HEIF
HEIC

new & emerging image formats  HEIF and HEIC

•	 Edit Live Photos with options to turn off the audio and se-
lect a particular key photo from the series of frames which
will be used when sharing the photo as a still image.

Both heic and av1 (see chapter 18) support a smaller pixel
volume as they are based on a video standard. To over-
come this, the format containers support tiling to allow
for very large megapixel files, as is highlighted in the table
below from Cloudinary:4

4	 https://smashed.by/universality

format

maximum image
dimensions
(in a single
code stream)

maximum bit
depth, maximum
number
of channels

JPEG 4,294 megapixels
(65,535 × 65,535)

8-bit, three channels
(or four for cmyk)

PNG Theoretically 4
megapixels (1018)
but no way to
efficiently
decode crops

16-bit, four channels
(rgba)

WebP 268 megapixels
(16,383 × 16,383)

8-bit, four channels
(rgba)

HEIC 35 megapixels
(8,192 × 4,320)

16-bit, three channels

(alpha or depth as
separate image)

392 Image Optimization  part four

HEIF
HEIC

https://cloudinary.com/blog/how_jpeg_xl_compares_to_other_image_codecs#universality

Transfer and Conversion

So, time to get real – can we use heic and heif cross-plat-
form today? The short answer is… yes and no. While Apple
devices (iOS, macOS) have strong native support for view-
ing these formats, and popular image sharing services are
starting to improve their support for reading the format, the
tools for converting to heic and heif could be better.

IOS AND MACOS

iOS automatically converts heic photos to jpeg when shar-
ing them on other platforms, so a naive user may not notice
what format the photo is in. HEIC (and heif) files may be
viewed, edited, or saved as jpeg using the Preview software
on macOS 10.13+. HEIC Converter5 by Sindre Sorhus is a

5	 https://smashed.by/heicconverter

AVIF 9 megapixels
(3,840 × 2,160)

12-bit, three channels

(alpha or depth as
separate image)

JPEG XL 1,152,921,502,459
megapixels
(1,073,741,823 × 
1,073,741,824)

24-bit (integer)
or 32-bit (float),

up to 4,100 channels

393

HEIF
HEIC

new & emerging image formats  HEIF and HEIC

https://sindresorhus.com/heic-converter
https://sindresorhus.com/heic-converter
https://sindresorhus.com/heic-converter

macOS app that also makes it easy to quickly convert imag-
es in the heic format to jpeg or png.

Converting heic images using HEIC Converter.

ANDROID

Android started supporting heif photos with Android 9 Pie,6
released in August 2018, to improve compression of pictures
and reduce the amount of storage needed. It is available for
Google Pixel devices. Phones running Android Pie cannot
create heif files yet, due to the special hardware and li-
censes required for this. However, Android Pie supports
compression of images using heic7 and viewing them.
Android app developers can use this format in their apps8
targeted for Android Pie and above.

6	 https://smashed.by/pie
7	 https://smashed.by/androidsupport
8	 https://smashed.by/media

394 Image Optimization  part four

HEIF
HEIC

https://www.android.com/versions/pie-9-0/
https://www.android.com/versions/pie-9-0/
https://www.android.com/versions/pie-9-0/
https://www.androidcentral.com/android-p-features-we-love-hdr-and-heif-support
https://www.androidcentral.com/android-p-features-we-love-hdr-and-heif-support
https://www.androidcentral.com/android-p-features-we-love-hdr-and-heif-support
https://www.androidcentral.com/android-p-features-we-love-hdr-and-heif-support
https://www.androidcentral.com/android-p-features-we-love-hdr-and-heif-support
https://www.androidcentral.com/android-p-features-we-love-hdr-and-heif-support
https://www.androidcentral.com/android-p-features-we-love-hdr-and-heif-support
https://www.androidcentral.com/android-p-features-we-love-hdr-and-heif-support
https://www.androidcentral.com/android-p-features-we-love-hdr-and-heif-support
https://www.androidcentral.com/android-p-features-we-love-hdr-and-heif-support
https://www.androidcentral.com/android-p-features-we-love-hdr-and-heif-support
https://developer.android.com/about/versions/pie/android-9.0#media
https://developer.android.com/about/versions/pie/android-9.0#media
https://developer.android.com/about/versions/pie/android-9.0#media
https://developer.android.com/about/versions/pie/android-9.0#media
https://developer.android.com/about/versions/pie/android-9.0#media
https://developer.android.com/about/versions/pie/android-9.0#media
https://developer.android.com/about/versions/pie/android-9.0#media
https://developer.android.com/about/versions/pie/android-9.0#media
https://developer.android.com/about/versions/pie/android-9.0#media
https://developer.android.com/about/versions/pie/android-9.0#media
https://developer.android.com/about/versions/pie/android-9.0#media

WINDOWS

Microsoft has released heif Image Extensions9 for Windows 10
which enables reading and writing of heif files. A third-party
image viewer or conversion software such as CopyTrans HEIC10
is required to view the original heif/heic on older versions of
Windows. The iMobie HEIC Converter,11 another free online
tool, provides batch conversion of photos from heic to jpeg.

THIRD-PARTY TOOLS AND SERVICES

Google Photos supports photos uploaded in heif and heic
formats, and these can be easily viewed in the web and na-
tive app versions of the service. Photos can be downloaded
as heic or jpegs on other devices with Google Photos using
the Save as… function.

Releases of Adobe Lightroom and Camera Raw12 since June
2018 support heic image files on capable operating systems.
Similarly, heic is also supported in other image editing soft-
ware like gimp and Pixelmator. There are other third-party
tools that allow conversion of existing jpegs to heif and
heic files: jpgtoheif.com13 provides steps to convert files
using ffmpeg; and a sample implementation of heif is
provided by Nokia Tech.14

9	 https://smashed.by/heifextensions
10	 https://smashed.by/copytrans
11	 https://smashed.by/imobie
12	 https://smashed.by/heiclightroom
13	 http://jpgtoheif.com/
14	 https://smashed.by/nokiaheif

395

HEIF
HEIC

new & emerging image formats  HEIF and HEIC

https://www.microsoft.com/en-us/p/heif-image-extensions/9pmmsr1cgpwg?activetab=pivot:overviewtab
https://www.microsoft.com/en-us/p/heif-image-extensions/9pmmsr1cgpwg?activetab=pivot:overviewtab
https://www.microsoft.com/en-us/p/heif-image-extensions/9pmmsr1cgpwg?activetab=pivot:overviewtab
https://www.microsoft.com/en-us/p/heif-image-extensions/9pmmsr1cgpwg?activetab=pivot:overviewtab
https://www.microsoft.com/en-us/p/heif-image-extensions/9pmmsr1cgpwg?activetab=pivot:overviewtab
https://www.copytrans.net/copytransheic/
https://www.copytrans.net/copytransheic/
https://www.copytrans.net/copytransheic/
https://heic.imobie.com/heic-to-jpg/
https://heic.imobie.com/heic-to-jpg/
https://heic.imobie.com/heic-to-jpg/
https://heic.imobie.com/heic-to-jpg/
https://heic.imobie.com/heic-to-jpg/
https://helpx.adobe.com/lightroom-cc/kb/heic-files-support.html
https://helpx.adobe.com/lightroom-cc/kb/heic-files-support.html
https://helpx.adobe.com/lightroom-cc/kb/heic-files-support.html
https://helpx.adobe.com/lightroom-cc/kb/heic-files-support.html
https://helpx.adobe.com/lightroom-cc/kb/heic-files-support.html
https://helpx.adobe.com/lightroom-cc/kb/heic-files-support.html
https://helpx.adobe.com/lightroom-cc/kb/heic-files-support.html
https://helpx.adobe.com/lightroom-cc/kb/heic-files-support.html
https://helpx.adobe.com/lightroom-cc/kb/heic-files-support.html
http://jpgtoheif.com/
http://jpgtoheif.com/
http://jpgtoheif.com/
https://github.com/nokiatech/heif
https://github.com/nokiatech/heif
https://github.com/nokiatech/heif

HEIF and HEIC for Web Developers

The heif and heic image formats are not supported in the
html element, and no browsers (including Safari)
support heif or heic images at the moment. As such, if an
application allows users to upload these images, developers
need to take special care to be able to display these images
on all browsers. All browsers support h.264 playback and a
JavaScript parser could be used to pass the frame data to the
h.264 decoder to read the image file as video.

The libheif15 library, an encoder and decoder for heif files,
may be used in browsers by compiling it to JavaScript using
Emscripten.16 The demo17 for this library allows users to
upload and view heif and heic files. Alternatively,
Cloudinary also supports heif and heic images18 and can
be used to embed images on web pages.

While there are many benefits to using heif and heic, the
fact remains that hevc is patent-encumbered and, hence,
difficult to implement and support. Apple managed to incor-
porate it in its ecosystem, but since Android and Windows
operating systems are used by a variety of device manufac-

15	 https://smashed.by/libheif
16	 https://emscripten.org/
17	 https://smashed.by/libheifdemo
18	 https://smashed.by/cloudinarysupport

396 Image Optimization  part four

HEIF
HEIC

https://github.com/strukturag/libheif
https://emscripten.org/
https://strukturag.github.io/libheif/
https://cloudinary.com/documentation/image_transformations#supported_image_formats
https://cloudinary.com/documentation/image_transformations#supported_image_formats
https://cloudinary.com/documentation/image_transformations#supported_image_formats
https://cloudinary.com/documentation/image_transformations#supported_image_formats
https://cloudinary.com/documentation/image_transformations#supported_image_formats
https://cloudinary.com/documentation/image_transformations#supported_image_formats
https://cloudinary.com/documentation/image_transformations#supported_image_formats

turers, the image format is yet to be universally adopted by
them. Since browsers do not support the format, developers
have to take additional steps to display the format.

Even two years after its launch and speculations that it
would replace jpeg, the format has yet to find solid ground
in web and mobile applications. Meanwhile, jpeg still rules
and we wait for a format that will be as widely accepted in
the future as jpeg is today.

Next we’ll discuss a potential competitor, avif, which also
uses the heif specification with av1 encoding.

397

HEIF
HEIC

new & emerging image formats  HEIF and HEIC

chapter 18

AVIF

The av1 image file format (avif) is an open-source
image format for storing still and animated images
that supports very efficient lossy and lossless com-

pression modes. You can think of it as a royalty-free cousin
of heif. Images can be up to ten times smaller than jpegs of
similar visual quality.

AVIF is the image version of the popular av1 video for-
mat, which is compatible with high dynamic range (hdr)
imaging, allowing images to reproduce a broader range of
luminosity than is possible with standard digital imaging
techniques. AVIF also supports ten bits of color depth and
monochrome channels.

AVIF compresses much better than most popular formats
on the web today (jpeg, webp, jpeg 2000, and so on),
with some tests showing it offers a 50% saving in file size
compared to jpeg and 20% compared to webp. Below is a
high-level breakdown from Daniel Aleksandersen’s Ctrl
blog,19 comparing avif to jpeg and webp images of the
same visual quality:

19	 https://smashed.by/webpvsavif

398 Image Optimization  part four

AVIF

https://www.ctrl.blog/entry/webp-avif-comparison.html
https://www.ctrl.blog/entry/webp-avif-comparison.html
https://www.ctrl.blog/entry/webp-avif-comparison.html
https://www.ctrl.blog/entry/webp-avif-comparison.html

File Size Comparison

.jpeg

.webp

.avif50% smaller than .jpeg

30% smaller than .jpeg

Daniel Aleksandersen’s file-size comparison of jpeg, webp and avif images of
the same visual quality.

AVIF aims to produce high-quality compressed images that
lose as little quality as possible during compression. These
images can support transparency (for ui elements, similar
to alpha png), lossy or lossless compression, hdr color
(think better color bit depth and brightness), wide color
gamut, and can support a sequence of animated frames (giv-
ing us a lighter, high-quality version of animated gifs).

Context

In February 2019, the Alliance for Open Media20 (aomedia)
officially released the first specification for the av1 image
file format.21 AOMedia itself is a non-profit organization
supported by industry heavyweights such as Mozilla,
Google, Microsoft, Netflix, and others.

20	 https://aomedia.org/
21	 https://smashed.by/av1spec

399

AVIF

new & emerging image formats  AVIF

https://aomedia.org/
https://aomedia.org/
https://aomedia.org/
https://aomedia.org/
https://aomedia.org/
https://aomedia.org/
https://aomedia.org/
https://aomedia.org/
https://rawcdn.githack.com/AOMediaCodec/av1-avif/67a92add6cd642a8863e386fa4db87954a6735d1/index.html
https://rawcdn.githack.com/AOMediaCodec/av1-avif/67a92add6cd642a8863e386fa4db87954a6735d1/index.html
https://rawcdn.githack.com/AOMediaCodec/av1-avif/67a92add6cd642a8863e386fa4db87954a6735d1/index.html
https://rawcdn.githack.com/AOMediaCodec/av1-avif/67a92add6cd642a8863e386fa4db87954a6735d1/index.html
https://rawcdn.githack.com/AOMediaCodec/av1-avif/67a92add6cd642a8863e386fa4db87954a6735d1/index.html
https://rawcdn.githack.com/AOMediaCodec/av1-avif/67a92add6cd642a8863e386fa4db87954a6735d1/index.html
https://rawcdn.githack.com/AOMediaCodec/av1-avif/67a92add6cd642a8863e386fa4db87954a6735d1/index.html
https://rawcdn.githack.com/AOMediaCodec/av1-avif/67a92add6cd642a8863e386fa4db87954a6735d1/index.html
https://rawcdn.githack.com/AOMediaCodec/av1-avif/67a92add6cd642a8863e386fa4db87954a6735d1/index.html
https://rawcdn.githack.com/AOMediaCodec/av1-avif/67a92add6cd642a8863e386fa4db87954a6735d1/index.html
https://rawcdn.githack.com/AOMediaCodec/av1-avif/67a92add6cd642a8863e386fa4db87954a6735d1/index.html
https://rawcdn.githack.com/AOMediaCodec/av1-avif/67a92add6cd642a8863e386fa4db87954a6735d1/index.html
https://rawcdn.githack.com/AOMediaCodec/av1-avif/67a92add6cd642a8863e386fa4db87954a6735d1/index.html
https://rawcdn.githack.com/AOMediaCodec/av1-avif/67a92add6cd642a8863e386fa4db87954a6735d1/index.html

The av1 standard was developed as a new open-source
video coding format which is both state of the art and
royalty free. Additionally, the av1 format is free of patent
licensing requirements, reducing the friction for tools to
adopt it. It claims to offer 20% better data compression
than hevc (high efficiency video coding, also known as
h.265 – see chapter 17) and 50% better than avc (advanced
video coding, or h.264).

Even though new image file formats have been introduced
in the past, because of the intrinsic support available for
avif from the beginning, it is highly likely that adoption of
avif across web and mobile devices will be quicker
than that of its predecessors. Early adopters of avif are
likely to benefit more from the advantages provided by
this new file format.

Some image compression experts consider avif a compel-
ling new format that could get near universal acceptance
and replace jpeg over the years. This is mainly because avif
may offer up to 50% better compression compared to jpeg
for similar image quality.

Let’s cover the basics of avif and why we need it. I will also
provide a list of resources available to developers who want
to start using avif immediately.

400 Image Optimization  part four

AVIF

Browser Support for AVIF

The av1 video format is already supported by Chromium-
based browsers and Firefox.

Browser support for the av1 video format. (Source: caniuse.com)

At the time of writing, support for avif can be found in a
growing number of browsers, with Chrome 85+ able to dis-
play the format and Firefox 77+ support activated via a flag.
While avif images have relatively limited support, they can
be used as a progressive enhancement.

401

AVIF

new & emerging image formats  AVIF

Browser support for the avif image format. (Source: caniuse.com)

AVIF AS A PROGRESSIVE ENHANCEMENT

While avif is not supported in all browsers at the time of
writing, it can still be used in html via the <picture> ele-
ment. As <picture> allows browsers to skip images they do
not recognize, images can be included in our order of prefer-
ence, and the browser will select the first one it supports.

<picture>
 <source srcset="img/photo.avif" type="image/avif">
 <source srcset="img/photo.webp" type="image/webp">
 <img src="img/photo.jpg" alt="Description"
width="360" height="240">
</picture>

402 Image Optimization  part four

AVIF

Features of AVIF

The avif specification provides a method for using av1 com-
pression for still images or image sequences. AVIF allows
the storage of an av1 bitstream in a heif file compatible
with iso bmff. This is similar to the heif and heic formats
mentioned in chapter 17, except that it uses the royalty-free
av1 encoding instead of hevc. AVIF claims the following
advantages over jpeg:

•	 High-quality images with up to 50% more effective
compression than jpeg.

•	 Features for supporting animations, live photos,
and more through multilayer images stored in
image sequences.

•	 Better support for graphical elements, logos, and
infographics where jpeg had limitations.

•	 Better lossless compression than jpeg.

•	 Support for high dynamic range (hdr) and wide
color gamut (wcg) images with a better span of
bright and dark tones.

•	 Support for monochrome images as well as
multichannel images.

403

AVIF

new & emerging image formats  AVIF

The upper end of the 50% savings may only
apply to large images with high pixel den-
sity (over two megapixels). This is unsur-
prising as there tend to be more duplicate
pixels in large canvases meaning compres-
sion algorithms can be more successful at
optimizing them. Keep in mind that this
upper end may not be indicative of the
savings you will see. Your savings will also
be influenced by the type of imagery being
compressed. If the content is photographic,
it may compress well. If it contains text
overlays on top of photographic content,
however, these savings might well be lost,
as you will likely have to increase the effec-
tive quality levels to avoid the visible sub-
sampling blur on the text.

404 Image Optimization  part four

AVIF

AVIF Performance

Many of the major players in the industry have been quick
to announce support for avif files. Netflix published the
first avif images in December 2018. VLC media player
has recently added support for avif files. Microsoft added
support for avif in Windows 10 (version 1903) in May 2019,
which includes support for avif in File Explorer and Micro-
soft Paint. Mozilla is working to support avif in Firefox, and
it’s expected that Apple and Google will soon build support
for avif files in their browsers.

At the moment, however, most of this is still either specula-
tion or work in progress. Web and image performance ana-
lysts are trying various hacks to embed avif images in their
web pages and test the overall performance of avif images
compared with other formats in terms of compression ratio,
image quality, and decoding speeds while rendering. Here’s
a summary of their findings.

1.	 In an analysis published in Web Performance Calen-
dar22 at the end of 2018, av1 demonstrated a 50% gain
in image compression over jpeg, and a 26% gain over
webp when comparing av1, webp, and jpeg images at
a similar quality to a lossless png.

22	 https://smashed.by/webperfcal

405

AVIF

new & emerging image formats  AVIF

https://calendar.perfplanet.com/2018/is-avif-the-future-of-images-on-the-web/
https://calendar.perfplanet.com/2018/is-avif-the-future-of-images-on-the-web/
https://calendar.perfplanet.com/2018/is-avif-the-future-of-images-on-the-web/
https://calendar.perfplanet.com/2018/is-avif-the-future-of-images-on-the-web/
https://calendar.perfplanet.com/2018/is-avif-the-future-of-images-on-the-web/
https://calendar.perfplanet.com/2018/is-avif-the-future-of-images-on-the-web/
https://calendar.perfplanet.com/2018/is-avif-the-future-of-images-on-the-web/
https://calendar.perfplanet.com/2018/is-avif-the-future-of-images-on-the-web/
https://calendar.perfplanet.com/2018/is-avif-the-future-of-images-on-the-web/
https://calendar.perfplanet.com/2018/is-avif-the-future-of-images-on-the-web/
https://calendar.perfplanet.com/2018/is-avif-the-future-of-images-on-the-web/
https://calendar.perfplanet.com/2018/is-avif-the-future-of-images-on-the-web/

Following are the test images published by Performance
Calendar that were used for the above comparison:

jpeg webp avif

The following comparison uses the dssim scores to
judge the image quality and shows the gain in com-
pression in each case:

image
type dssim

image
data
weight

gain
compared
with jpeg

JPEG 0.005833 49,314 0 %

WebP 0.006170 36,426 26.1 %

AV1 0.005782 23,796 51.7 %

2.	 On the downside, the same analyst also observed that
decoding an avif file with the decoders available at
present may require 10 to 15 times more processing
power and time as compared to webp. With more
efficient decoders, the processing time could be
improved. Eventually, web developers who want to

406 Image Optimization  part four

AVIF

use avif images will have to consider if the gain due
to compression is enough to offset the additional
processing time required.

3.	 Kornel Lesiński of ImageOptim confirmed in his
talk at 2018’s performance.now() conference23 that
avif provides optimization gains of about 50%
compared with jpeg.

4.	 Various independent analysts have published the
results of a comparison between different formats24
in a Google spreadsheet.

NETFLIX AVIF EXPLORATIONS

In early 2020, Netflix shared details of its work on improve-
ments to hdr images25 for the ui and aims to use avif for
encoding these images.

From Netflix’s avif comparison tests, we can see an image
from the Kodak dataset (second row) with jpeg subsam-
pling 4:4:4 at 13,939 bytes and avif 4:4:4 at 4,176 bytes.
Notice how the jpeg has more blocky artifacts around the
slanted edge and more visible color distortions. In con-
trast, the avif looks clearer, despite being 66% smaller
than the jpeg. This is impressive given the compression
factor of 282×.

23	 https://smashed.by/kornelperfnow
24	 https://smashed.by/formatcomparison
25	 https://smashed.by/avifnextgen

407

AVIF

new & emerging image formats  AVIF

https://www.youtube.com/watch?v=jTXhYj2aCDU
https://www.youtube.com/watch?v=jTXhYj2aCDU
https://www.youtube.com/watch?v=jTXhYj2aCDU
https://www.youtube.com/watch?v=jTXhYj2aCDU
https://www.youtube.com/watch?v=jTXhYj2aCDU
https://www.youtube.com/watch?v=jTXhYj2aCDU
https://www.youtube.com/watch?v=jTXhYj2aCDU
https://www.youtube.com/watch?v=jTXhYj2aCDU
https://www.youtube.com/watch?v=jTXhYj2aCDU
https://www.youtube.com/watch?v=jTXhYj2aCDU
https://www.youtube.com/watch?v=jTXhYj2aCDU
https://www.youtube.com/watch?v=jTXhYj2aCDU
https://www.youtube.com/watch?v=jTXhYj2aCDU
https://www.youtube.com/watch?v=jTXhYj2aCDU
https://docs.google.com/spreadsheets/d/1TE5iLE08oV90EqOmFHnzBLwiPtQSs1XAvI3QfoMgKQM/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1TE5iLE08oV90EqOmFHnzBLwiPtQSs1XAvI3QfoMgKQM/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1TE5iLE08oV90EqOmFHnzBLwiPtQSs1XAvI3QfoMgKQM/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1TE5iLE08oV90EqOmFHnzBLwiPtQSs1XAvI3QfoMgKQM/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1TE5iLE08oV90EqOmFHnzBLwiPtQSs1XAvI3QfoMgKQM/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1TE5iLE08oV90EqOmFHnzBLwiPtQSs1XAvI3QfoMgKQM/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1TE5iLE08oV90EqOmFHnzBLwiPtQSs1XAvI3QfoMgKQM/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1TE5iLE08oV90EqOmFHnzBLwiPtQSs1XAvI3QfoMgKQM/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1TE5iLE08oV90EqOmFHnzBLwiPtQSs1XAvI3QfoMgKQM/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1TE5iLE08oV90EqOmFHnzBLwiPtQSs1XAvI3QfoMgKQM/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1TE5iLE08oV90EqOmFHnzBLwiPtQSs1XAvI3QfoMgKQM/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1TE5iLE08oV90EqOmFHnzBLwiPtQSs1XAvI3QfoMgKQM/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1TE5iLE08oV90EqOmFHnzBLwiPtQSs1XAvI3QfoMgKQM/edit?usp=sharing
https://netflixtechblog.com/avif-for-next-generation-image-coding-b1d75675fe4
https://netflixtechblog.com/avif-for-next-generation-image-coding-b1d75675fe4
https://netflixtechblog.com/avif-for-next-generation-image-coding-b1d75675fe4
https://netflixtechblog.com/avif-for-next-generation-image-coding-b1d75675fe4
https://netflixtechblog.com/avif-for-next-generation-image-coding-b1d75675fe4
https://netflixtechblog.com/avif-for-next-generation-image-coding-b1d75675fe4
https://netflixtechblog.com/avif-for-next-generation-image-coding-b1d75675fe4
https://netflixtechblog.com/avif-for-next-generation-image-coding-b1d75675fe4
https://netflixtechblog.com/avif-for-next-generation-image-coding-b1d75675fe4
https://netflixtechblog.com/avif-for-next-generation-image-coding-b1d75675fe4
https://netflixtechblog.com/avif-for-next-generation-image-coding-b1d75675fe4
https://netflixtechblog.com/avif-for-next-generation-image-coding-b1d75675fe4

A Netflix image comparison of avif and jpeg comparing subsampling at 4:4:4.

408 Image Optimization  part four

AVIF

In the third row is the same comparison under a higher
bit-budget. The jpeg 4:4:4 clocks in at 19,787 bytes ver-
sus the avif 4:4:4 at 20,120 bytes.

Notice how the jpeg still appears to show blocky artifacts
around the slanted edge, but the avif encode looks very
close to the original source.

Developer Resources

In addition to the avif specification (and current working
draft)26 on GitHub, and in the absence of browser support,
there are multiple resources being published on how to
use avif in development. This section summarizes the
various available resources and techniques suitable for
different use cases.

AVIF IMAGE SAMPLES

Both Netflix27 and Microsoft28 have published avif file sam-
ples that can be used for initial testing.

26	 https://smashed.by/avifworkingdraft
27	 https://smashed.by/netflixsample
28	 https://smashed.by/microsoftsample

409

AVIF

new & emerging image formats  AVIF

https://aomediacodec.github.io/av1-avif/
https://aomediacodec.github.io/av1-avif/
https://aomediacodec.github.io/av1-avif/
https://aomediacodec.github.io/av1-avif/
https://aomediacodec.github.io/av1-avif/

ENCODING AND DECODING AVIF IMAGES

Several open-source projects demonstrate different meth-
ods to encode/decode avif files:

•	 AOMedia has produced the reference software libaom29
for av1 encoding and decoding.

•	 libavif30 is a portable C implementation of the avif
specification based on libaom, that can encode and
decode avif images.

•	 Squoosh,31 a web app that lets you use different image
compressors, now also supports avif, making it
relatively straightforward to convert and create
.avif files online.

Using Squoosh to compare and create avif files.

29	 https://smashed.by/aom
30	 https://smashed.by/libavif
31	 https://squoosh.app

410 Image Optimization  part four

AVIF

https://aomedia.googlesource.com/aom/
https://aomedia.googlesource.com/aom/
https://aomedia.googlesource.com/aom/
https://aomedia.googlesource.com/aom/
https://aomedia.googlesource.com/aom/
https://github.com/AOMediaCodec/libavif
https://squoosh.app

•	 go-avif32 implements an avif encoder for Go using
libaom. As shown below, it can be used to convert other
image files to avif using different settings:

Encode jpeg to avif with default settings
avif -e cat.jpg -o kitty.avif
Encode PNG with slowest speed and quality 15
avif -e dog.png -o doggy.avif --best -q 15
Fastest encoding
avif -e pig.png -o piggy.avif --fast

•	 The mp4box33 application from the gpac multimedia
open-source project can create avif files from frames in
an av1 video stream by specifying the timestamp of the
frame. MP4Box.js is a decoder based on mp4box with
support for avif files. An avif file may be inspected
online using the mp4box.js demo.34

•	 AVIF.js35 provides support for displaying avif files
in a browser. It repacks the avif image as a sin-
gle-frame av1 video and decodes it using the native
av1 decoder, which is already supported in the latest
versions of Chrome and Firefox. The av1 video
embedded in a mp4 video file can be decoded and
displayed using a standard <video> tag. Demo files36
for this are available.

32	 https://github.com/Kagami/go-avif
33	 https://smashed.by/mp4box
34	 https://smashed.by/mp4boxdemo
35	 https://smashed.by/avifjs
36	 https://smashed.by/avifjsdemo

411

AVIF

new & emerging image formats  AVIF

https://github.com/Kagami/go-avif
https://github.com/Kagami/go-avif
https://github.com/Kagami/go-avif
https://github.com/gpac/gpac/wiki/MP4Box
https://github.com/gpac/gpac/wiki/MP4Box
https://github.com/gpac/gpac/wiki/MP4Box
https://github.com/gpac/gpac/wiki/MP4Box
https://github.com/gpac/gpac/wiki/MP4Box
https://github.com/gpac/gpac/wiki/MP4Box
https://gpac.github.io/mp4box.js/test/filereader.html
https://gpac.github.io/mp4box.js/test/filereader.html
https://gpac.github.io/mp4box.js/test/filereader.html
https://gpac.github.io/mp4box.js/test/filereader.html
https://github.com/Kagami/avif.js
https://github.com/Kagami/avif.js
https://github.com/Kagami/avif.js
https://github.com/Kagami/avif.js/tree/master/demo
https://github.com/Kagami/avif.js/tree/master/demo
https://github.com/Kagami/avif.js/tree/master/demo

•	 The latest version of the ffmpeg37 can be used in com-
bination with libaom to convert other image file types
using av1 compression and stored in an mkv container.
The following is the snippet of code used to generate
the avif image shown earlier:

$ ffmpeg -loglevel panic -i 400px-President_
Barack_Obama.png -c:v libaom-av1 -crf 41 -b:v 0
-strict experimental -vf format=yuv420p 400px-
President_Barack_Obama.av1.mkv
$ ffmpeg -loglevel panic -i 400px-President_
Barack_Obama.av1.mkv 400px-President_Barack_Obama.
av1.mkv.png

VIEWERS AND EDITORS

Browsers, like Chrome, that support avif allow you to open
.avif files on supported platforms. Here, I’ve opened up the avif
output of Squoosh without the need for a separate viewer.

Viewing an avif in Chrome.

37	 https://smashed.by/ffmep

412 Image Optimization  part four

AVIF

http://ffmpeg.org/download.html
file:///Users/aristiles/Downloads/#id.4d34og8

In time, as support for avif improves, my hope is that we’ll
start to see better native support outside of the browser
in macOS’s Finder and QuickLook, as well as in Windows
File Explorer. Windows File Explorer in Windows 10 (build
18305 or above) can edit metadata fields from avif files and
rotate these files. The Paint app in the same build can also
be used to view and edit avif files. AVIF files can be viewed
in vlc media player or Windows Media Player in Windows
10 (build 18317 and above).

The sentiment around avif is relatively positive at this point
in time, and we will need to wait and see just how much
industry adoption it gets over the long term. The main con-
cerns right now seem to be to get sufficient tooling ready to
easily start incorporating the avif format at every stage in
the life cycle of an image. For avif to become the next jpeg,
tooling would be required at the following stages:

1.	 Ability to save to avif in all sources where images are
generated: cameras and other photography equip-
ment, including dslrs and point-and-shoot cameras
on mobile devices.

2.	 Ability to save as avif in tools used for generating im-
ages for infographics, flowcharts, icons, and similar.

413

AVIF

new & emerging image formats  AVIF

3.	 Ability to save screenshots as avif images on all ma-
jor operating systems on desktop and mobile devices
alike. Windows, macOS, Linux, iOS, and Android
should support avif images at the minimum.

4.	 Support in commonly used image editors (Photo-
shop et al.) and the default image editors provided by
different OS vendors.

5.	 Ability to export to avif in image conversion software.

6.	 Support in html to embed avif source files.

7.	 Browser support across all commonly used browsers
to understand avif requests and decode and render
the corresponding images.

Work has already begun in most of the areas above, and
with time, tools are expected to be widely available. While
the future of avif looks promising at this early stage, much
depends on the availability of better tooling from the major
vendors of operating systems, browsers, and other image
processing software. Apple has not yet made any announce-
ments on how and when it will start supporting avif imag-
es, and the web community seems to be waiting in anticipa-
tion for some indication from Apple.

414 Image Optimization  part four

AVIF

While performance analysts have accepted the higher
compression rate and corresponding data savings that could
be gained by using avif, they hope for better performance
when encoding and decoding the images in the future.
In the long run, we may see avif used for many kinds of
images on the web, with jpeg xl (see chapter 19) used for
large images that need progressive rendering support or to
be fully lossless. While avif is still rolling out to browsers in
2021, it’s worth keeping an eye on it as tooling, browser, and
image cdn support for avif improves.

415

AVIF

new & emerging image formats  AVIF

chapter 19

JPEG XL

With thanks to Jon Sneyers, co-chair of the jpeg xl ad-hoc group for his
input to this chapter.

Jpeg xl38 is an advanced image format aiming to deliver
very significant compression benefits over jpeg. Look-
ing specifically at compression performance, jpeg xl’s

lossless jpeg transcoding reduces jpeg file sizes by
 16–22%.39 Starting from pixels, jpeg xl is visually lossless
at approximately half the bit rate required by jpeg. For
lossy encoding, jpeg xl is up to 60% smaller than jpeg40
for the same visual fidelity.41

The jpeg xl codec comprises a broad range of up-to-date
features that include optimization for responsive web
environments, and a number of decoding methods
(parallel, progressive, and partial). Layers, thumbnails, and
animation are also supported, with different options avail-
able for blending frames.

JPEG XL was designed with three primary criteria in mind:

•	 Output must be of high-fidelity compared to
the source image.

•	 Encoding and decoding speed must be competitive.

38	 https://smashed.by/jpegxl
39	 https://smashed.by/whitepaper
40	 https://smashed.by/visualfidelity
41	 https://smashed.by/jxl

416 Image Optimization  part four

JPEG
XL

https://jpeg.org/jpegxl/
https://jpeg.org/jpegxl/
https://jpeg.org/jpegxl/
https://jpeg.org/jpegxl/
http://ds.jpeg.org/whitepapers/jpeg-xl-whitepaper.pdf
http://sneyers.info/jxl/
http://sneyers.info/jxl/
http://sneyers.info/jxl/
http://sneyers.info/jxl/
http://sneyers.info/jxl/
https://cloudinary.com/blog/what_to_focus_on_in_image_compression_fidelity_or_appeal
https://cloudinary.com/blog/what_to_focus_on_in_image_compression_fidelity_or_appeal
https://cloudinary.com/blog/what_to_focus_on_in_image_compression_fidelity_or_appeal

•	 Compression ratios are high (generally 20:1 to 50:1).

Building on this set of criteria, jpeg xl is designed to
be a universal and future-proof image codec whose
features also include:

•	 Lossless jpeg transcoding.

•	 Parallelization in the encoder and decoder.

•	 Support for additional channels like alpha, depth,
spot colors, and potentially other spectrums used
in scientific research.

•	 High bit depth, wide gamut, and hdr.

•	 Progressive decoding (for both image resolution
and precision). For low-quality placeholders (lqip),
a discrete cosine (dc) component representing the
average (arithmetic mean) of the entire image can
be encoded as a subimage which itself can be
progressively encoded.

•	 Region of interest decoding

•	 Support for any kind of image content across pho-
tography and synthetic imagery. This includes: pho-
tographs, illustrations, screenshots, rendered images,
document scans, medical imaging, game graphics,
and ui elements.

417

JPEG
XL

new & emerging image formats  JPEG XL

•	 Coverage of the quality spectrum from very low bit
rates all the way to lossless. JPEG XL has smoother
quality degradation across a wide range of bit rates.

•	 Support for optimizing screen content. Images with
non-photographic or repetitive elements such as font
glyphs can be encoded separately as a “sprite sheet”
subimage that can be applied as patches to the main
image. This is useful for screenshots.

•	 Various trade-offs between encoding and decoding
speed and compression density.

History

JPEG XL has been free, royalty-free, and open-source soft-
ware from its inception. In early 2018 the jpeg committee
declared its intention to establish a new image standard that
would combine considerably more efficient compression
with a wide variety of online use cases. jpeg xl inherits
some of the best properties of efforts to offer new image
formats over the years, such as strong focus on preserving
detail and texture (from Google’s pik),42 being responsive
by default (from Cloudinary’s free universal image format
(fuif)),43 and from both of these efforts has legacy-friendli-
ness as a strong cornerstone. This makes it smooth to transi-
tion from existing file formats, like jpeg and png, to jpeg xl.

42	 https://smashed.by/pik
43	 https://smashed.by/fuif

418 Image Optimization  part four

JPEG
XL

https://github.com/google/pik
https://github.com/google/pik
https://github.com/google/pik
https://github.com/google/pik

Coefficient
decoding

Color transform

Color Transform

Image feature
extraction

Transform
selection

Predictor and
context model

selection

Image feature
extraction

Color correlation
and filter param-

eter selection

Variable-sized
DCT with adap-
tive quantization

JPEG bitstream
reconstruction

Image
reconstruction

Reconstructed
JPEG bitstream

Output JPEG Output image

Prediction

Entropy coding

JPEG
bitstream

reconstruction
data

JPEG XL
codestream

Lossless?

Coefficient
decoding

Input JPEG
bitstream

Input Image

Progressive?

Refinement
passes

Metadata

JPEG bitstream
reconstruction
data extraction

Sub-image

Content?

YES

NO

Entropy coding

NO

YES

NATURAL

SYNTHETIC

JPEG XL file format

Only if input
was JPEG

Alpha, depth, extra channels

An overview of the jpeg xl encoder architecture. The three supported
modes are: lossless transcoding of jpeg input (purple); lossy encoding of
photographs with an emphasis on human visual perception (green); and
mathematically lossless encoding (pink). (Source: jpeg xl Whitepaper)44

44	 https://smashed.by/whitepaper

419

JPEG
XL

new & emerging image formats  JPEG XL

http://ds.jpeg.org/whitepapers/jpeg-xl-whitepaper.pdf
http://ds.jpeg.org/whitepapers/jpeg-xl-whitepaper.pdf
http://ds.jpeg.org/whitepapers/jpeg-xl-whitepaper.pdf
http://ds.jpeg.org/whitepapers/jpeg-xl-whitepaper.pdf
http://ds.jpeg.org/whitepapers/jpeg-xl-whitepaper.pdf

JPEG XL is built on years of research into
the formats that came before it. One of
them is flif (free lossless image format),
a format created by Jon Sneyers in 2015
that eventually evolved into fuif. FLIF
supports lossless as well as progressive
image rendering. Cloudinary supports
dynamic conversion of any image format
to flif, such that flif could be served to
a browser that supports it, and png or
webp to browsers that don’t.

JPEG XL aims to provide significantly smaller image file
sizes at subjectively equivalent quality, and reversible
encoding of existing jpeg files. It has yet to have broad
browser support, but once this improves it should be a
great option for most photo (lossy/lossless) or non-photo
(lossless) use cases.

Responsive Design

JPEG XL was conceived with responsive web design in
mind. Because people use many different kinds of devices
to visit websites, responsive images and web design adapt

420 Image Optimization  part four

JPEG
XL

https://cloudinary.com/blog/author/jon_sneyers
https://cloudinary.com/blog/author/jon_sneyers
https://cloudinary.com/blog/author/jon_sneyers

users’ experiences to best fit their screens whether phone,
tablet, or desktop. But outputting and serving responsive
images remains cumbersome.

An image format designed with responsivity in mind
could allow it to handle image quality and decoding
speeds more efficiently. This enables jpeg xl to render im-
agery well on a wide range of devices. Its “modular” mode
allows jpeg xl to recover subresolution images using a
Haar-like integral transform.

It can also compress images more effectively through a
meta-adaptive context model which evolved from flif. This
model uses a decision tree known in advance by the encoder
and which can be heavily tuned to adapt based on the con-
tent of the image. The “vardct” mode has several features
aimed at responsive delivery: a 1:8 preview is always avail-
able quickly, and further progressive scans for 1:4 and 1:2
can be added; scans do not have to go from top to bottom
(they can, for example, also go “middle out”), and “saliency
scans” are possible (first scanning details in a face, for exam-
ple, and later in the background); and the 1:8 preview can
recursively be encoded progressively. It can take existing
jpeg images and encode them in a more progressive way
using the vardct mode (covered later in this chapter in the
“Transcoding Legacy jpegs” section).

421

JPEG
XL

new & emerging image formats  JPEG XL

For responsive web design a set of individual images has to be generated.

Above is a visualization of the current approach to respon-
sive images from Jon Sneyers’ excellent jpeg xl talk,45
where a series of images at different resolutions must be
generated and served to devices of different screen sizes.
Below is how jpeg xl handles responsive images, where a
single file can offer multiple subresolutions efficiently.

JPEG XL can serve the same image file responsively.

45	 https://smashed.by/jpegxltalk

422 Image Optimization  part four

JPEG
XL

https://www.youtube.com/watch?v=lqi5U6dxeZU
https://www.youtube.com/watch?v=lqi5U6dxeZU
https://www.youtube.com/watch?v=lqi5U6dxeZU
https://www.youtube.com/watch?v=lqi5U6dxeZU
https://www.youtube.com/watch?v=lqi5U6dxeZU

Transcoding Legacy JPEGs

JPEG XL has strong support for features to help users tran-
sition from legacy jpegs. Existing jpegs can be losslessly
transcoded to jpeg xl, while potentially reducing their size
significantly. It has a light, lossless conversion process for go-
ing back to jpeg, ensuring compatibility with existing clients,
such as older phones and browsers that might only support
jpegs. This unlocks a nice serving story as servers can store a
single jpeg xl file that will serve both jpeg and jpeg xl users.

•	Same quality
•	Same

transfer size
•	Lower

storage size

•	Better quality
•	Same

transfer size
•	Better

storage size

•	Same quality
•	Lower

transfer size
•	Lower

storage size

•	Better quality
•	Lower

transfer size
•	Lower

storage size

•	Best quality
•	Lowest

transfer size
•	Lowest

storage size

Transit ion from JPEG to JPEG XL
Mostly legacy clients Mostly updated clients

Server
(cloud)
Storage

JPEG
bitstream

Encoding Image

EncodingEncodingTranscoding

JPEG XL
bitstream

JPEG XL
bitstream

JPEG XL
bitstream

JPEG
bitstream

JPEG bitstream
with app marker

Transcoding Transcoding

JPEG
Decoding

JPEG
Decoding

JPEG XL
Decoding

JPEG XL
Decoding

JPEG XL
Decoding

JPEG XL
Decoding

Diagram visualizing the cloud serving the transition from jpeg to jpeg xl.
(adapted from a diagram by Jon Sneyers)

423

JPEG
XL

new & emerging image formats  JPEG XL

The jpeg xl recompression format attempts to remedy
many of jpeg’s limitations. This mode is inspired by
Brunsli,46 Google’s lossless jpeg repacking library that al-
lows for up to a 22% decrease in file size while allowing orig-
inal jpeg source images to be recovered byte-for-byte. JPEG
XL also allows for parallel and efficient cropped decode and
additional compression of icc color profiles.

Additional benefits include the ability to add an alpha
channel or overlays to existing jpegs. JPEG XL supports dct
with variable block sizes (2×2 to 256×256) and adaptive quan-
tization (for jpeg recompression, all the blocks just happen
to be 8×8 and the quantization is constant throughout the
image). This mode uses a Butteraugli-driven,47 perceptually
optimizing encoder. (We covered Butteraugli – a tool for mea-
suring perceived differences between images – in chapter 2.)

DCT coefficients

JPEG XL

Pixels Palette Pixels

JPEG PNG24 PNG8 GIF

Existing Image Files

No additional loss, always smaller than the original!

JPEG XL

Legacy-Friendly

JPEG XL’s transcoding avoids pixels to remain lossless while reducing file sizes.

46	 https://smashed.by/brunsli
47	 https://smashed.by/butteraugligit

424 Image Optimization  part four

JPEG
XL

https://github.com/google/brunsli
https://github.com/google/butteraugli

Typically, when you transcode images in an old format with
a new encoder, it introduces generational loss. You begin
with something lossy and then you make it more lossy
leading to the accumulation of artifacts. JPEG XL directly48
encodes jpegs without going into the pixel domain by en-
coding dct coefficients (that is, an exact representation of
what the jpeg contains). This is lossless as you aren’t intro-
ducing additional loss to the process and can still produce a
smaller image than the original.

High-Quality Imaging

JPEG XL aims to meet the requirements of professional
photographers that demand high-quality imaging. It has
a color-managed processing pipeline with full 32-bit per
channel precision, enabling support for wide color gamut or
high dynamic range imagery. Psychovisual modelling plug-
ins allow it to reach high compression efficiency at visually
lossless quality. The use cases for jpeg xl range from photo
galleries to cloud-stored images, 360-degree images, image
bursts, and more.

The authors of jpeg xl feel other image codec efforts have
failed to deliver on psychovisual performance for a few
reasons. For example, they focus on trying to offer the
best performance at low bit-rates, yet don’t extend their

48	 https://smashed.by/directencoding

425

JPEG
XL

new & emerging image formats  JPEG XL

https://youtu.be/RYJf7kelYQQ?t=1210

approach to higher bit-rates without a loss of efficiency.
This can be seen in image codecs which have been derived
from successful video-encoding research. Video codecs
tend to focus on low bit rates as they have a lot of pixels to
encode. You typically only see a single frame for between 16
and 42 milliseconds. Video frames have a lot of smoothing
and distilling, which is great for video but not so great for
high-quality still images.

In order to give jpeg xl a strong chance of getting this
right, the community behind it collected and analyzed
real-world usage data on jpegs. Through independently run
experiments, they studied how this could map well to image
quality and bit-rate settings in jpeg xl. One of the outcomes
of this focus has been targeting higher image bit-rates than
other approaches.

JPEG XL has several other benefits. It offers a true lossless
mechanism that is more efficient than png or jpeg 2000.
This is useful for illustrations, and archival and other
scientific or forensic applications. JPEG XL also supports
many more channels, which will enable new color spaces
to emerge that might not be based on YCbCr or cielab or
cie xyz (all were attempts to match the color-receptor cells
in the human eye). This gives jpeg xl the opportunity to be
future-friendly. It also means that scientific research that
needs to capture the electromagnetic spectrum outside of
the visual spectrum can use this format to create images.

426 Image Optimization  part four

JPEG
XL

ADAPTIVE QUANTIZATION

The jpeg format we currently use applies the same quality
in every region. It limits the choice of quantization to a sin-
gle matrix per channel for the entire image. This results in
the same quantity of quantization in all regions of an image,
even though certain places are more detailed and might
benefit from improved quantization. In jpeg xl, quality can
be different in different regions: it’s adjusted automatically
based on perceptual metrics.

By default, the jpeg xl reference encoder produces a well-compressed
image that often can’t be distinguished from the original. Notice how jpeg
xl preserves text quality better than the larger jpeg at quality=95, which
includes noise around the letters. At a similar rate of compression, webp
heic, and jpeg all look less sharp than the jpeg xl. (Source: “How jpeg xl
Compares to Other Image Codecs”)49

49	 https://smashed.by/universality

427

JPEG
XL

new & emerging image formats  JPEG XL

https://cloudinary.com/blog/how_jpeg_xl_compares_to_other_image_codecs
https://cloudinary.com/blog/how_jpeg_xl_compares_to_other_image_codecs
https://cloudinary.com/blog/how_jpeg_xl_compares_to_other_image_codecs
https://cloudinary.com/blog/how_jpeg_xl_compares_to_other_image_codecs
https://cloudinary.com/blog/how_jpeg_xl_compares_to_other_image_codecs
https://cloudinary.com/blog/how_jpeg_xl_compares_to_other_image_codecs
https://cloudinary.com/blog/how_jpeg_xl_compares_to_other_image_codecs
https://cloudinary.com/blog/how_jpeg_xl_compares_to_other_image_codecs
https://cloudinary.com/blog/how_jpeg_xl_compares_to_other_image_codecs
https://cloudinary.com/blog/how_jpeg_xl_compares_to_other_image_codecs
https://cloudinary.com/blog/how_jpeg_xl_compares_to_other_image_codecs
https://cloudinary.com/blog/how_jpeg_xl_compares_to_other_image_codecs
https://cloudinary.com/blog/how_jpeg_xl_compares_to_other_image_codecs
https://cloudinary.com/blog/how_jpeg_xl_compares_to_other_image_codecs
https://cloudinary.com/blog/how_jpeg_xl_compares_to_other_image_codecs

JPEG XL has some tricks that allow it to lower the number
of artifacts found in more complex parts of an image. It
can achieve this without modifying the number of bits
used in other areas of the image. JPEG XL achieves this
through a global quantization matrix which can be locally
scaled; encoders can avoid big variations in image
artifacts by aiming for a more uniform quantity of loss
across the image. That is, if you combine this with a
measure of acceptable loss.

GROUP SPLITTING

You may have an image with a large dimension (such as
larger than 256px in any axis). When you encode such large
images with jpeg xl,
they get split into sub-
rectangles of 256×256
pixels. Each subrectan-
gle is independently
encoded and the bit-
stream position indices
of them are stored. This
allows decoders to seek
to the beginning of each
of them. Decoders can
process each subrectangle in parallel (for speed) and decode
specific areas of large images. If something goes wrong

trivia  JPEG XT defines

extensions to the 1992 jpeg

specification. For extensions

to have pixel-perfect rendering

on top of original jpeg, the

specification had to clarify

the old 1992 spec and libjpeg-

turbo was chosen as its

reference implementation

(based on popularity).

428 Image Optimization  part four

JPEG
XL

(perhaps if a prior rectangle fails because of data corrup-
tion), decoding can also be restarted.

ENTROPY CODING

When encoding images with legacy jpeg, developers have
the option to use Huffman coding or arithmetic coding.
Both options are used in lossless data compression as an
entropy coder. There are, however, some gotchas to look out
for when using either coding approach as they can be both
inefficient and lead to slow image decoding speeds. jpeg xl
can be up to 30 times faster through usage of asymmetric
numeral systems50 (ans), a pretty recent entropy coder that
can help achieve image compression ratios comparable to
arithmetic coding with the benefit of being faster to decode.

ADAPTIVE PREDICTOR

Next, let’s discuss compression ratios. In legacy jpeg, you may
enjoy significant savings from a primitive prediction mode.
This mode subtracts the dc coefficient value for the previous-
ly encoded block (the one to the left of the current block) from
the dc coefficient of the current block. Unfortunately, this
doesn’t factor in how bi-dimensional images can be.

JPEG XL tackles this by using a more advanced predictor
that is both bi-dimensional and adaptive, selecting any of

50	 https://smashed.by/ans

429

JPEG
XL

new & emerging image formats  JPEG XL

https://en.wikipedia.org/wiki/Asymmetric_numeral_systems
https://en.wikipedia.org/wiki/Asymmetric_numeral_systems
https://en.wikipedia.org/wiki/Asymmetric_numeral_systems
https://en.wikipedia.org/wiki/Asymmetric_numeral_systems
https://en.wikipedia.org/wiki/Asymmetric_numeral_systems

fourteen different prediction modes where the predictor
mode can depend on the meta-adaptive context. Both dc
encoding and lossless encoding gets done using this pre-
dictor. JPEG XL is visually lossless at about half the bit rate
required by jpeg.51

Tools

Popular online image compression tool Squoosh52 supports
jpeg xl with support for customizing lossy/lossless, auto-
matic edge-filter and progressive rendering features:

Squoosh allows you to compress images using several new modern image
formats including jpeg xl and avif.

51	 https://smashed.by/whitepaper
52	 https://squoosh.app

430 Image Optimization  part four

JPEG
XL

http://ds.jpeg.org/whitepapers/jpeg-xl-whitepaper.pdf
http://ds.jpeg.org/whitepapers/jpeg-xl-whitepaper.pdf
http://ds.jpeg.org/whitepapers/jpeg-xl-whitepaper.pdf
http://ds.jpeg.org/whitepapers/jpeg-xl-whitepaper.pdf
http://ds.jpeg.org/whitepapers/jpeg-xl-whitepaper.pdf
http://ds.jpeg.org/whitepapers/jpeg-xl-whitepaper.pdf
http://ds.jpeg.org/whitepapers/jpeg-xl-whitepaper.pdf
http://ds.jpeg.org/whitepapers/jpeg-xl-whitepaper.pdf
http://ds.jpeg.org/whitepapers/jpeg-xl-whitepaper.pdf
http://ds.jpeg.org/whitepapers/jpeg-xl-whitepaper.pdf
http://ds.jpeg.org/whitepapers/jpeg-xl-whitepaper.pdf
http://ds.jpeg.org/whitepapers/jpeg-xl-whitepaper.pdf
http://ds.jpeg.org/whitepapers/jpeg-xl-whitepaper.pdf
http://ds.jpeg.org/whitepapers/jpeg-xl-whitepaper.pdf
http://ds.jpeg.org/whitepapers/jpeg-xl-whitepaper.pdf
http://ds.jpeg.org/whitepapers/jpeg-xl-whitepaper.pdf
http://ds.jpeg.org/whitepapers/jpeg-xl-whitepaper.pdf
http://ds.jpeg.org/whitepapers/jpeg-xl-whitepaper.pdf
http://ds.jpeg.org/whitepapers/jpeg-xl-whitepaper.pdf
http://ds.jpeg.org/whitepapers/jpeg-xl-whitepaper.pdf
http://ds.jpeg.org/whitepapers/jpeg-xl-whitepaper.pdf
https://squoosh.app

I’m excited by the goals jpeg xl is striving for. I like that it
has a good interoperability with legacy jpeg, shrinking the
size of existing images without a perceivable loss of quality
and creating new images that could be transcoded back. This
gradual upgrade path benefits both image hosts and users.

While a number of new image formats are being explored,
jpeg xl looks promising as a direction that could reduce
user-experienced latency and simplify image serving. I’d
certainly recommend keeping an eye on it.

To learn more about jpeg xl, check out Jon Sneyers’ talk,53
his jpeg xl articles54 and the official project site.55

Similar to avif and webp, support for jpeg xl can be added
to a page as a progressive enhancement using the <picture>
element. Browsers that don’t yet support it will select the first
format in the list they support, be it avif, webp or otherwise:

<picture>
 <source srcset="photo.jxl" type="image/jxl">
 <source srcset="photo.avif" type="image/avif">

53	 https://smashed.by/jpegxltalk
54	 https://smashed.by/universality
55	 https://smashed.by/jpegxl

431

JPEG
XL

new & emerging image formats  JPEG XL

https://www.youtube.com/watch?v=lqi5U6dxeZU
https://cloudinary.com/blog/how_jpeg_xl_compares_to_other_image_codecs
https://jpeg.org/jpegxl/

 <source srcset="photo.webp" type="image/webp">
 <source srcset="photo.jpg" type="image/jpeg">

</picture>

JPEG XL Changes Image Compression
Recommendations

Once jpeg xl ships in a browser, it should be a great op-
tion for most photo (lossy/lossless) or non-photo (lossless)
use cases – probably better than webp. Legacy friendli-
ness is a plus.

AVIF (see chapter 18) may be better than jpeg xl if you need
to go to low bit rates, such as caring more about bandwidth
than image fidelity. At those bit rates I can imagine it look-
ing crisper than jpeg xl.

Until we have jpeg xl, I’d focus more on avif or webp.
WebP is lossless and a good option for lossy compared to
mozjpeg, while also being strong for non-photo images.
If analytics suggest most users can be served avif (great
for most use cases) or webp (and you care less about wide
gamut or text overlays, where chroma subsampling work-
arounds are required), these are good contenders. If not, a
mozjpeg/oxipng fallback seems reasonable.

432 Image Optimization  part four

JPEG
XL

chapter 20

Comparing New Image
File Formats

While the new image formats support roughly
the same sets of capabilities, the strength of
each differentiates between them. The fol-

lowing tables aim to offer a summary of some of the more
important features and how well each format handles
various image types.

High-Level Comparison

features heic avif jpeg xl

Lossless compression Approximate Approximate Yes

Bursts and sequences Yes Yes Yes
(intra-only)

Stickers and overlays Yes Yes Yes

Maximum bit depth 16-bit 12-bit 24-bit

Maximum number
of channels

3
(alpha or depth as

separate image)

3
(alpha or depth as

separate image)

up to 4,100

Maximum image
dimensions (in a
single code stream)

35 MP
(8,192 × 

4,320)

9 MP
(3,840 × 

2,160)

1.1tn MP
(1,073,741,823 

×

1,073,741,824)

1,152,921

terapixels

433

COMPARE

new & emerging image formats  Comparing File Formats

The grading system below (0–3 stars) reflects opinions
from book contributors based on first-hand experience. As
always, I encourage readers to also test and determine their
own opinions on grading as well.

PHOTOGRAPHS (CREATED FROM PHOTO SENSORS)

heic avif jpeg xl

Simple photographs   

Photos with text   

Isolated subject with
matte background
(typical for product
shots)

  

Medical and scientific
photographs
(such as X-rays)

  

434 Image Optimization  part four

COMPARE

GRAPHICS (COMPUTER-GENERATED)

heic avif jpeg xl

Illustrations,
diagrams, maps
and charts

  

Logos and icons   

Cartoons and hand-
drawn illustrations

  

Background images   

Screenshots   

Prints   

ANIMATIONS

heic avif jpeg xl

User-generated memes   

Cinemagraphs
and live photos

  

Animated
educational
illustrations

  

435

COMPARE

new & emerging image formats  Comparing File Formats

Lower-Level Comparison

Next is a more expansive comparison of image codec and
format qualities using a 0–5 star grading system. This
lower-level comparison is particularly helpful if you have a

deeper knowledge of image compression and would like to
compare a broader set of trade-offs between codecs. Special
thanks to Cloudinary’s Jon Sneyers for sharing his insights.56

56	 https://smashed.by/responsivebydesign

COMPRESSION (PHOTOGRAPHIC IMAGES)

jpeg png webp webp 2
jpeg 2000
(kakadu) avif heic jpeg xl

what is this?
why care about it?

Overall        
Reduce bandwidth and stor-
age for digital photos.

Low
fidelity        

On really slow networks,
low-quality but very small
image files might be useful.

Medium
fidelity        

On typical networks, a good
trade-off between fidelity
and density is useful.

High
fidelity        

On sufficiently fast
networks, high fidelity
is desired.

Lossless        
In image editing workflows,
lossless is needed.

  supported   not supported   okay   excellent

436 437Image Optimization  part four

COMPARECOMPARE

new & emerging image formats  Comparing File Formats

COMPRESSION (NON-PHOTOGRAPHIC IMAGES)

jpeg png webp webp 2
jpeg 2000
(k ak adu) avif heic jpeg xl

what is this?
why care about it?

Overall        
Reduce bandwidth and storage
for other types of digital images.

Lossy
(non-photographic)

       
For web delivery of non-
photographic images, lossy
compression is good.

Lossless
(non-photographic)

       
In image editing workflows,
lossless is needed.

Mixed
photographic
and non-
photographic

       
Memes, promotion images,
etc. are a combination of photo
and non-photo.

SPEED

jpeg png webp webp 2
jpeg 2000
(k ak adu) avif heic jpeg xl

what is this?
why care about it?

Overall        
If it’s too slow, it becomes less
practical.

Single-core
encode
speed

       
Compression speed matters for
editing workflows and latency
of on-the-fly encoding.

Single-core
decode
speed







     

If it decodes slowly, even if
bandwidth is reduced by supe-
rior compression, the overall
time to render suffers.

Parallelizable        
To what extent can encoders/
decoders benefit from multiple
CPU cores to speed things up?

  supported   not supported   okay   excellent

438 439Image Optimization  part four

COMPARECOMPARE

new & emerging image formats  Comparing File Formats

  supported   not supported   okay   excellent

LIMITS

jpeg png webp webp 2
jpeg 2000
(k ak adu) avif heic jpeg xl

what is this?
why care about it?

Overall         What are the limitations of the codec/format?

Supports
animation


( MJPEG)


(APNG)

  
 ( MJP2)

   Not very relevant for most use cases –

usually a video codec is a better choice.

Maximum
image
dimensions

65,535 

× 

65,535

2,147,483,647

 ×

 2,147,483,647

16,383 

× 

16,383

16,383 

× 

16,383

4,294,967,295

 × 

4,294,967,295

8,193 × 4,320

(or grid with

potential

boundary

artifacts)

8,193 × 4,320

(or grid with

potential

boundary

artifacts)

1,073,741,823 

× 

1,073,741,823

What’s the largest width and height in pixels

the codec supports?

Efficient
cropped
decode

        For huge images (e.g. gigapixels), can a

crop (region of interest) be decoded without

having to decode all or most of the com-

pressed image?

Image
pyramids

        For huge images, can a lower-resolution

version of the image be decoded without

having to decode the entire image?

Precision
(max bit
depth)

8 16 7.5
(8 for

lossless)

10 38 10 10 32 For SDR image delivery, 8 bits are enough.

For HDR and/or (very) wide gamut image

delivery, 10 or 12 bits are needed. For

editing workflows, more precision is needed.

Can do
(lossy)
4:4:4

        Obligatory chroma subsampling puts a limit

on high-fidelity encoding, since it makes com-

pression artifacts unavoidable on some kinds

of images (e.g. colored text gets blurred).

Can do 4:2:0
chroma
subsampling

       

Can do 4:2:2
chroma
subsampling

       

Wide gamut
  not really      Can the codec accurately reproduce wide

gamut color (e.g. P3, ProPhoto or Rec.2020)?

HDR
        High dynamic range is already common on

television screens; is the codec ready for this?

Supports
JUMBF
extensions

      ?  ?  The JPEG universal metadata box format

(JUMBF) is a generic extension mechanism for

features like 360 images, privacy, and security

metadata, etc.

  supported   not supported   okay   excellent

440 441Image Optimization  part four

COMPARECOMPARE

new & emerging image formats  Comparing File Formats

DELIVERY FEATURES

jpeg png webp webp 2
jpeg 2000
(k ak adu) avif heic jpeg xl

what is this?
why care about it?

Overall        
How suitable is this codec for (web)

delivery of images?

Progressive
decoding        

Progressive decoding allows getting a

reasonable preview of the image (which

gets gradually refined) when only part of

the image data has been transferred

Progressive
with alpha

       
Do the progressive previews include the

alpha channel?

Separate/
redundant
preview image



(via EXIF)


(via EXIF)

     
Can you embed a (redundant) preview

image in the format?

Preview image
“for free”        

Can a decoder produce a good preview

image (e.g. a 1:8 resolution downscale)

from the first ~10% of the image data?

LQIP “for
free”

       

Can a decoder produce a low-quality

image placeholder (e.g. a 1:64 down-

scale) from the first 1-2 kilobytes of

image data?

“Responsive
by design”

       

Can an image file be truncated to get a

1:2 or 1:4 version of the image? Can the

truncation offset be derived from the

image header?

Low format
overhead

       

For small images, the overhead of

headers and other obligatory bitstream

elements can be significant, e.g. several

hundred bytes.

Perceptual
encoder  n/a  ?    

Does an encoder exist that encodes

based on a perceptual target (e.g.

multiples of just-noticeable-difference)

instead of based on technical parameters

(e.g. amount of quantization)

Compressed
ICC profile

       
ICC profiles are used to represent the

color space of an image. Uncompressed

ICC profiles add unnecessary overhead.

  supported   not supported   okay   excellent

442 443Image Optimization  part four

COMPARECOMPARE

new & emerging image formats  Comparing File Formats

NON-RGB COMPONENTS

jpeg png webp webp 2
jpeg 2000
(k ak adu) avif heic jpeg xl

what is this?
why care about it?

Overall        
Support for extra channels
besides the RGB color
image itself.

Maximum

number

of channels

4 4 4 4 16,384 5 5 4,099
e.g. satellite imagery can
use 12 channels.

Alpha

transparency
       

Useful for blending (over-
laying) an image over a
background, or to represent
non-rectangular images.

Depth map        

Contains information about
the distance from the cam-
era (useful to separate fore-
ground and background).

Thermal map        

Infrared cameras (already
deployed in some phones)
can create images represent-
ing estimated temperature.

CMYK        
Commonly used in the
printing industry.

Spot colors         Used in the printing industry.

  supported   not supported   okay   excellent

444 445Image Optimization  part four

COMPARECOMPARE

new & emerging image formats  Comparing File Formats

AUTHORING FEATURES

jpeg png webp webp 2
jpeg 2000
(k ak adu) avif heic jpeg xl

what is this?
why care about it?

Overall        
How suitable is this codec in an
authoring/editing workflow?

Overlays        
Can an image consist of multi-
ple layers that are overlaid (like
in GIMP or Photoshop)?

Named layers        
Can the name of the layers be
stored?

Selection
masks/multiple
alpha

       
Can selection masks (or
additional alpha channels)
be stored?

Lossless
floating point

       
Can the codec encode loss-
less floating point, like e.g.
OpenEXR, TIFF and PSD?

Fast weakly
compressed
lossless

 


(within

limits)



(within

limits)

   
Is there a way to very quickly
save an image (with weaker
compression)?

Compressed
EXIF/XMP
metadata

       
Does the format support
compressed metadata?

Generation
loss resilience  n/a      

How resilient is the codec
to degradation due to
repeated saving of an
image (e.g. memes)?

  supported   not supported   okay   excellent

446 447Image Optimization  part four

COMPARECOMPARE

new & emerging image formats  Comparing File Formats

TRANSITIONAL FEATURES

jpeg png webp webp 2
jpeg 2000
(k ak adu) avif heic jpeg xl

what is this?
why care about it?

Overall        
Are there any features aimed at
easing the transition from the
existing codecs to the new codec?

Lossless JPEG
recompression

n/a       
Existing JPEG files can be
transcoded (to a smaller file)
without introducing additional loss

Can it
replace PNG?

 n/a

(unless

16-bit)


(unless

16-bit)


not
really

not
really 

Existing PNG files can be convert-
ed to a smaller file

Can it
replace GIF?

       
Existing GIF files can be converted
to a smaller file

ROYALTY-FREE

jpeg png webp webp 2
jpeg 2000
(k ak adu) avif heic jpeg xl

what is this?
why care about it?

       
Is the codec patent-encumbered
(royalties need to be paid to use
the codec) or not?

  supported   not supported   okay   excellent

  supported   not supported

448 449Image Optimization  part four

COMPARECOMPARE

new & emerging image formats  Comparing File Formats

SOFTWARE SUPPORT

jpeg png webp webp 2
jpeg 2000
(k ak adu) avif heic jpeg xl

what is this?
why care about it?

Overall        
Current codec adoption or availability

of software support.

Desktop
Chrome/
Opera

        73% of desktop browser market share.

Mobile
Chrome/
Opera

        65% of mobile browser market share.

Safari  

(MacOS
11, ±)

    
17% of total browser market share
(24% of mobile).

Firefox      

(behind flag)
  8% of desktop browser market share

Edge         6% of desktop browser market share.

Internet
Explorer         2% of desktop browser market share.

Samsung
Internet/
UC

        9% of mobile browser market share.

Android        
(planned)

73% of mobile apps market share.

iOS         27% of mobile apps market share.

Image-
Magick       

 
(will happen)

Popular cross-platform FOSS batch

image processing/conversion library/

utilities.

GIMP     

(read only)
  

(planned)

GNU Image Manipulation Program,

popular FOSS image editor.

Adobe
Photoshop       

(Mac only)

 Popular proprietary image editor.

Apple
Preview   

(MacOS 11)
     Built-in image viewer of macOS.

Good FOSS
encoder and
decoder

       
Does a free and open source encoder/

decoder exist that produces state-of-

the-art compression results?

  supported   not supported   okay   excellent

450 451Image Optimization  part four

COMPARECOMPARE

new & emerging image formats  Comparing File Formats

SUMMARY

jpeg png webp
jpeg 2000
(k ak adu) avif heic jpeg xl

Compression (photo)       
Low fidelity       

Medium fidelity       

High fidelity       

Lossless       

Compression (other images)       
Lossy non-photographic       

Lossless non-photographic       

Mixed photo / nonphoto       

Speed       
Single-core encode speed       

Single-core decode speed       

Parallelizable       

Limits       

Maximum image dimensions
65,535 ×

65,535

2,147,483,647 ×

2,147,483,647

16,383 ×

16,383

4,294,967,295 ×

4,294,967,295

8,193 ×

4,320

8,193 ×

4,320

1,073,741,823 ×

1,073,741,823

Precision (max bit depth) 8 16 8 38 10 10 32

Can do (lossy) 4:4:4       

 Wide gamut / HDR       

Maximum number of channels 4 4 4 16,384 5 5 4,099

Features       
Supports animation   (MJPEG)  (APNG)    (MJP2)   

Progressive decoding       

Alpha transparency       

Depth map       

Overlays       

Authoring workflow suitability       

Generation loss resilience  n/a     

Lossless JPEG recompression n/a      

Royalty-free?       

  supported   not supported   okay   excellent

452 453Image Optimization  part four

COMPARECOMPARE

new & emerging image formats  Comparing File Formats

Further
Optimization

Part Five

	 Chapter 21	 	 Delivering Light Media
			 Experiences with
			 Data Saver 457

	 Chapter 22	 	 Optimize Images for
			 Core Web Vitals 471

	 Chapter 23	 	 Twitter Case Study 490

		 	 Conclusion. 505

chapter 21

Delivering Light Media
Experiences with Data Saver

Browsing the web with poor connectivity can be
a frustrating, slow, and expensive experience,
especially with data affordability being a huge

problem in many countries. Users currently have to ad-
just their behavior (not watch videos, for example, or use
the lightest available version of pages) to make the most
of their data plans.

Browsers with Data Saver features give users a chance to
explicitly tell us that they want to use a site without con-
suming so much data. The Save-Data header can be sup-
plied by any supported browser back to a site when a user
requests an experience that processes less data. At the time
of writing, this is primarily Chrome, Edge, Opera and other
Chromium-based browsers.

Given how heavy modern sites can be, reducing page
weight when this signal is present can lead to a better user
experience. The following code checks the value of the
Save-Data client hint request header:

458 Image Optimization  part five

// Check if `Save-Data` header is set to a value of
"on"
const isDataSaverEnabled() {
 if (strtolower($_SERVER['HTTP_SAVE_DATA']) ===
'on') {
 // `Save-Data` is on!
 return true;
 }
 return false;
}

When a Data Saver feature is on, a browser could send the
Save-Data header and not do anything to improve the user
experience directly itself. Historically, this has not been the
case as some browsers have used proxy services to rewrite
pages so they can be served much faster without developers
needing to do anything.

With most of the web now on https, the Data Saver land-
scape has changed to focus more on optimizing when or if
resources load, rather than heavily rewriting pages.

Chrome on Android’s Lite mode is one such Data Saver
feature that helps by automatically optimizing web pages
to make them load faster. On web pages that are expected to
load slowly, Chrome may modify loading behavior to

459further optimization  Data Saver

provide a faster page load, serving a “Lite” page instead.
Lite page modifications can take many forms, including
but not limited to:

•	 Applying interventions to improve page load speed (e.g.
automatic lazy loading or deferring the execution of
costly resources like JavaScript).

•	 Proxying pages (served over http), applying serv-
er-side optimizations to improve how quickly they load.

•	 Adding Save-Data http headers.

The first two optimizations are only implemented when
the loading experience would be painful. They are applied
when the network’s effective connection type is poor (2G,
for example) or when Chrome estimates the page load will
take more than five seconds to reach “first contentful paint”
(a Core Web Vital: see chapter 22) given current network
conditions and device capabilities.

To indicate when a page has been optimized, Chrome
displays an icon in the address bar. Tapping the icon allows
users to load the original page. Should a user frequently
choose the original, Chrome disables Lite mode on a per-site
or per-user basis.

The Lite mode icon in Chrome’s address bar can be tapped to allow users
to load the original page. (Source: “Chrome Lite Pages – For a faster, leaner
loading experience”1 by Ben Greenstein and Nancy Gao.)

Frequent recourse to Data Saver can indicate a user’s prefer-
ence for limiting their data usage. Perhaps their data plan is
restrictive, their connection speeds are often slow, or maybe
they’d just like pages to load a little more quickly.

Adaptive Loading with Data Saver

When a user has Data Saver on, developers can adapt how
they serve a light, low-fidelity version of their pages. Some
use cases for adaptive loading include:

•	 serving low-quality images and videos

•	 avoiding loading components requiring heavy JavaScript

1	 https://smashed.by/chromelitepages

460 Image Optimization  part five

https://all-markup-news.com/chrome-lite-pages-for-a-faster-leaner-loading-experience/
https://all-markup-news.com/chrome-lite-pages-for-a-faster-leaner-loading-experience/
https://all-markup-news.com/chrome-lite-pages-for-a-faster-leaner-loading-experience/
https://all-markup-news.com/chrome-lite-pages-for-a-faster-leaner-loading-experience/
https://all-markup-news.com/chrome-lite-pages-for-a-faster-leaner-loading-experience/
https://all-markup-news.com/chrome-lite-pages-for-a-faster-leaner-loading-experience/
https://all-markup-news.com/chrome-lite-pages-for-a-faster-leaner-loading-experience/
https://all-markup-news.com/chrome-lite-pages-for-a-faster-leaner-loading-experience/
https://all-markup-news.com/chrome-lite-pages-for-a-faster-leaner-loading-experience/
https://all-markup-news.com/chrome-lite-pages-for-a-faster-leaner-loading-experience/
https://all-markup-news.com/chrome-lite-pages-for-a-faster-leaner-loading-experience/
https://all-markup-news.com/chrome-lite-pages-for-a-faster-leaner-loading-experience/
https://all-markup-news.com/chrome-lite-pages-for-a-faster-leaner-loading-experience/
https://all-markup-news.com/chrome-lite-pages-for-a-faster-leaner-loading-experience/
https://all-markup-news.com/chrome-lite-pages-for-a-faster-leaner-loading-experience/
https://all-markup-news.com/chrome-lite-pages-for-a-faster-leaner-loading-experience/
https://all-markup-news.com/chrome-lite-pages-for-a-faster-leaner-loading-experience/

•	 throttling the frame rate of animations

•	 avoiding computationally heavy operations

•	 blocking third-party JavaScript

•	 disabling background images

•	 removing web fonts

•	 disabling service workers, prefetching, and precaching

•	 disabling tracking and third-party scripts

Adaptive loading allows you to serve a core experience to all
users and progressively add high-end features and resourc-
es for users without Lite mode on. Let’s look at two popular
patterns in more detail.

ADAPTIVE MEDIA LOADING

Adaptive media loading aims to serve low-quality images
and videos to reduce bandwidth and memory consumption.

 For sites relying heavily on media, this could mean:

•	 A photo gallery site might deliver lower resolution pre-
views, or use a less code-heavy carousel mechanism.

461further optimization  Data Saver

•	 A search site could reduce the quality of images in
search results or disable images altogether.

•	 An e-commerce site could replace large product videos
with static images or 3d models (via webxr) instead if
they are lighter in weight.

•	 A news site could rely less on rich images for article
hero images, and serve lo-fi versions or disable.

While conditionally serving different resources based on
device capabilities is a good strategy, sometimes it can be
even better to not serve a resource at all. Adaptive loading
unlocks this choice.

In an e-commerce site with a product page, adaptive media loading could
allow the page to deliver a small image on slow network connections, a
medium-sized image on median connections, and a high-resolution video of
the product on fast connections.

462 Image Optimization  part five

ADAPTIVE CODE LOADING

Adaptive code loading is all about shipping a light, core
interactive experience to all users and progressively adding
high-end features on top – device-awareness like this takes
progressive enhancement one step further. JavaScript is
costly in two main ways: the time it takes to download it,
and the time it takes to process it. On slow networks and
low-end devices, both of these costs can delay how soon a
page is ready.

When it comes to images, for the lightest experience a site
could disable features that require more JavaScript, like image
carousels and instead only serve one hero image. On high-
end devices, we can conditionally load more highly interac-
tive components or run more computationally heavy opera-
tions, while not sending these scripts to slower devices.

An example of adaptive code splitting and loading for an e-commerce site.

463further optimization  Data Saver

Shrink your images by removing unnecessary metadata
and compressing them to reduce the file size

CLEAN & COMPRESS

As shown in the illustration on page 463, an e-commerce
product page could have a product item component used to
render details about what is being sold. With adaptive code
loading, a low-end device could receive the core experience:
an image viewer with product details. A higher-end device
could be served the core experience plus a component
for zooming into the product image, and a product image
carousel. Users on both types of device are still delivered a
useful experience, but the higher-end device gets something
more enhanced as it can handle the extra functionality well.

Detecting Data Saver Mode

Let’s discuss navigator.connection.saveData, which
allows us to determine if a user has switched on Data Saver
in Chromium-based browsers.

The Network Information api provides details of the
quality of a user’s network connection in JavaScript. It is
exposed as navigator.connection and includes values
such as connection.effectiveType (3g, 4g, and so on).
This can be used to switch between delivering high-
quality and low-quality resources based on the user’s
effective connection quality.

In Chromium-based browsers (Chrome, Edge, and so on),
the connection object is also home to the Boolean

465further optimization  Data Saver

saveData. If true, a user likely has turned on their brows-
er’s Data Saver mode, meaning we can conditionally deliver
data-saving strategies. Keep in mind that not all browsers
support the Network Information api, so check for the exis-
tence of the connection object before using it.

if ('connection' in navigator) {
 if (navigator.connection.saveData === true) {
 // Implement data saving approach
 }
}

This can also be logged to your analytics and real user
monitoring (rum) to get a sense of the percentage of your
users who have a Data Saver feature turned on. Below is an
example2 of checking for the Save-Data value from inside a
service worker. It can be combined with other signals, such
as checking for whether an effective connection was slower
than typical 3g or had low ram.

if (
 // Save-Data is on
 fetchEvent.request.headers.get('save-data')
 // bandwidth or RTT is slower than a typical 3G
connection
 || (navigator.confirmWebWideTrackingException.
effectiveType.match(/2g/))
 // we have less than ~1GB of RAM

2	 https://smashed.by/fastapps

466 Image Optimization  part five

https://www.google.com/url?q=https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/save-data&sa=D&ust=1607204787544000&usg=AOvVaw3rlSfWdsmwksJ_dQBG0bnD

467further optimization  Data Saver

 || (navigator.deviceMemory < 1)

)

Furthermore, you can check for the Save-Data client hint
request header3 to assess if Data Saver mode is on. This lets
you conditionally deliver the lighter experience to your
users. When Data Saver is on, the browser appends the
Save-Data request header to all outgoing requests (both
http and https). At the moment, only one on- token is
output in the header (Save-Data: on); this is likely to be
expanded as time goes on to reveal further user preferences.

// Check the `Save-Data` header exists and is set to a
value of "on".
if (isset($_SERVER["HTTP_SAVE_DATA"]) && strtolower($_
SERVER["HTTP_SAVE_DATA"]) === "on") {
 // `Save-Data` was detected
 $saveData = true;
}

Web developers can choose to opt out of Data Saver trans-
formations by including the Cache-Control: no-
transform directive in the header of the original page’s
main html response. no-transform indicates to brows-
ers that no transformations should be made to resources.
Chrome respects this directive to disable Lite mode.

3	 https://smashed.by/savedataheader

https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/save-data
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/save-data
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/save-data
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/save-data
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/save-data
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/save-data
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/save-data
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/save-data
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/save-data
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/save-data
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/save-data

Production Examples

SHOPIFY

Popular sites are becoming Save-Data-aware. Shopify saw a
13% reduction in page weight as a result of this change, with
data showing that 20% of requests from users in India and
Brazil contain a value for the Save-Data header.

Shopify serves 1x images instead of 2x when the Save-Data header is
present. Tests show there shouldn’t be a perceivable difference because of the
oversizing of many of the images.

TINDER

Tinder uses checks for Save-Data in production to keep
the user experience fast for everyone. On slow networks

468 Image Optimization  part five

or when Data Saver is enabled, video autoplay is disabled,
route prefetching is limited, and loading the next image
in the carousel is restricted so they load just one at a time.
Tinder has seen great improvements in the average swipe
count for each user on Tinder Lite (for example, 7% more
swipes in Indonesia).

Tinder Online limits image loads when Data Saver is enabled so that they only
load one at a time. This improves performance for users who are data-conscious.

Thankfully, there is not much complexity in the Save-Data
header: it is either on or off. We carry the responsibility of
delivering appropriately light experiences to users who
have the feature enabled.

469further optimization  Data Saver

It is worth keeping in mind, however, that people may use
Data Saver in many different ways. While some might use it
to keep the pages
they view as
light and quick to
load as possible,
others could be
cautious if they
worry pages will
lose some im-
portant functionality. It’s a good idea to assume users prefer
the full experience until they provide a signal they would
prefer a lighter version.

We can choose to allow the browser to automatically try
delivering more lightweight pages if Data Saver is on, or use
Data Saver as a signal to further customize the optimized
experience they get when in a Lite mode.

success story  “After adding webp

support, we saw a 30% improvement

in page load time on WebP supported

browsers. We also saved 15 gb per

million image requests!”

—The Tribune (Nov, 2018)

470 Image Optimization  part five

chapter 22

Optimize Images for
Core Web Vitals

A high-quality user experience is critical to the
success of your site in the long term. Over the
years, Google has developed several metrics

and tools to help identify opportunities to improve user
experience, helping millions of sites along the way. At the
same time, having so many metrics can sometimes create
its own challenges. Which metrics should you focus on if
unsure where to start? Which ones help you optimize for
user-centric outcomes?

That’s where Core Web Vitals4 come in. Core Web Vitals
is an initiative from Google to offer developers unified
guidance on page quality signals. There are many ways to
measure if a user experience is high quality, but Core Web
Vitals focuses on a set of metrics considered critical for all
experiences on the web. This set of metrics aims to evolve
over time with a predictable cadence.

The Core Web Vitals look at three key aspects of user experi-
ence. There’s the page loading experience, interaction read-
iness, and the visual stability of the page. Let’s take a quick
look at the three metrics that correspond to these quality
signals and their respective thresholds:

4	 https://smashed.by/vitals

471further optimization  Core Web Vitals

http://web.dev/vitals
http://web.dev/vitals
http://web.dev/vitals
http://web.dev/vitals
http://web.dev/vitals

Largest contentful paint5
threshold recommendations.

First input delay6 threshold
recommendations.

Cumulative layout shift7
threshold recommendations.
(Source: https://web.dev/
vitals/)

5	 https://smashed.by/lcp
6	 https://smashed.by/fid
7	 https://smashed.by/cls

472 Image Optimization  part five

•	 Largest contentful paint (lcp) measures loading
performance. To provide a good user experience, lcp
should occur within 2.5 seconds of when the page
first starts loading.

•	 First input delay (fid) measures interactivity. To pro-
vide a good user experience, pages should have a fid
of less than 100 milliseconds.

•	 Cumulative layout shift (cls) measures visual stability.
To provide a good user experience, pages should main-
tain a cls of less than 0.1.

Google’s set of developer tools that support the Core Web
Vitals8 consider a page reaching these targets at the 75th per-
centile9 of page loads (on both mobile and desktop) as a pass.
For the latest details, consult the official documentation.10

During 2020, Google announced11 that it would incorporate
the Core Web Vitals alongside existing signals for page ex-
perience into a Google Search ranking change. Interest from
the web community led to a median 70% increase in devel-
opers using tools like Lighthouse and PageSpeed Insights,
and several using Search Console to identify how they could
improve. Now is a great time to think about optimizing for
Core Web Vitals, as these signals can be influenced by how
you load resources like images.

8	 https://smashed.by/vitalstools
9	 https://smashed.by/corewebvitals
10	 https://smashed.by/learnwebvitals
11	 https://smashed.by/pageexperience

473further optimization  Core Web Vitals

https://web.dev/lcp/
https://web.dev/lcp/
https://web.dev/lcp/
https://web.dev/lcp/
https://web.dev/lcp/
https://web.dev/lcp/
https://web.dev/lcp/
https://web.dev/lcp/
https://web.dev/lcp/
https://web.dev/lcp/
https://web.dev/fid/
https://web.dev/fid/
https://web.dev/fid/
https://web.dev/fid/
https://web.dev/fid/
https://web.dev/fid/
https://web.dev/fid/
https://web.dev/fid/
https://web.dev/fid/
https://web.dev/fid/
https://web.dev/cls/
https://web.dev/cls/
https://web.dev/cls/
https://web.dev/cls/
https://web.dev/cls/
https://web.dev/cls/
https://web.dev/cls/
https://web.dev/cls/
https://web.dev/cls/
https://web.dev/cls/
http://web.dev/vitals-tools
http://web.dev/vitals-tools
http://web.dev/vitals-tools
http://web.dev/vitals-tools
http://web.dev/vitals-tools
http://web.dev/vitals-tools
http://web.dev/vitals-tools
http://web.dev/vitals-tools
http://web.dev/vitals-tools
http://web.dev/vitals-tools
http://web.dev/vitals-tools
http://web.dev/vitals-tools
http://web.dev/vitals-tools
http://web.dev/vitals-tools
http://web.dev/vitals-tools
https://web.dev/vitals/#core-web-vitals
https://web.dev/vitals/#core-web-vitals
https://web.dev/vitals/#core-web-vitals
https://web.dev/vitals/#core-web-vitals
https://web.dev/vitals/#core-web-vitals
https://web.dev/learn-web-vitals/
https://web.dev/learn-web-vitals/
https://web.dev/learn-web-vitals/
https://webmasters.googleblog.com/2020/05/evaluating-page-experience.html
https://developers.google.com/search/blog/2020/11/timing-for-page-experience
https://developers.google.com/search/blog/2020/11/timing-for-page-experience
https://developers.google.com/search/blog/2020/11/timing-for-page-experience

Let’s dive into how to optimize image loading to minimize
their impact on the Core Web Vitals. These will primarily be
cumulative layout shift and largest contentful paint.

Optimize Largest Contentful Paint

When browsing the web, you can find yourself asking
why it sometimes takes so long for the main content to
appear. Developers haven’t had a reliable metric which
correlates well with the visual rendering experience en-
countered by their users.

While some of the existing metrics like first contentful
paint12 look at initial rendering, they don’t assess the impor-
tance of what is being painted. This means they might miss
times when the user is still waiting for a page to be useful.
Largest contentful paint (lcp)13 aims to address this gap,
better correlating with user experience and being easier for
developers to reason about.

Largest contentful paint (lcp) measures
a point during page load when a page’s
main content has likely loaded

12	 https://smashed.by/timing
13	 https://smashed.by/firstcontentfulpaint

474 Image Optimization  part five

https://web.dev/first-contentful-paint/
https://web.dev/first-contentful-paint/
https://web.dev/first-contentful-paint/
https://web.dev/first-contentful-paint/
https://web.dev/first-contentful-paint/
https://web.dev/lcp/
https://web.dev/lcp/
https://web.dev/lcp/
https://web.dev/lcp/
https://web.dev/lcp/

LCP captures the speed of delivering the largest contentful
element to the screen – that is, the main content a user
might look at. This main content could be a hero image
(such as an article header or product image) or it could be
a block-level element that includes text, like the paragraph
in a news article.

A filmstrip highlighting in green the element considered the largest
contentful paint element as a page load progresses.

Good lcp values are 2.5 seconds; poor values are greater than
4.0 seconds; and anything in between needs improvement.

ELEMENTS CONSIDERED FOR LCP

At the time of writing, the elements14 taken into account for
largest contentful paint are:

•	 elements

•	 <image> elements inside an <svg> element

14	 https://smashed.by/lcp

475further optimization  Core Web Vitals

https://web.dev/lcp/

•	 <video> elements (the poster image is used)

•	 elements with a background image loaded via the
url() function (as opposed to a css gradient)

•	 Block-level elements containing text nodes or other
inline-level text elements children

LCP looks at the largest element as a way to approximate
what the main content on the page is. As the size of ele-
ments can change during page load, lcp uses the size of
the first paint of an element to determine which is largest.
For pictorial elements like images, this first paint is the one
after the image is fully loaded.

This use of initial size can affect pages where the images
move. A good example of this happens with animated image
carousels. Carousel images that are initially not in the view-
port and slide in may see lcp consider their painted size
when added to the dom (zero) but this could change.

To learn more about how browsers report largest content-
ful paint, check out the guidance in Philip Walton’s article15
at web.dev.

15	 https://smashed.by/lcp

476 Image Optimization  part five

https://web.dev/lcp/
https://web.dev/lcp/
https://web.dev/lcp/
https://web.dev/lcp/
https://web.dev/lcp/
https://web.dev/lcp/
https://web.dev/lcp/
https://web.dev/lcp/
https://web.dev/lcp/
https://web.dev/lcp/
https://web.dev/lcp/
https://web.dev/lcp/
https://web.dev/lcp/

IMPROVING A POOR LCP SCORE

The most common causes of a poor lcp score are:

•	 slow resource load times

•	 slow server response times

•	 render-blocking JavaScript and css

•	 content loading delayed by client-side rendering

Images can certainly have slow loading times. They’re
frequently the largest contentful element immediately
visible to users on many websites. News articles and blog
posts often have large hero images, while product pages
on retail sites may have an image of a product as their lcp
element. It’s important for these images to load and render
as quickly as possible. When images are the largest page
element, improve lcp by:

•	 compressing images

•	 using responsive images where possible

•	 serving images in modern formats

•	 considering if the image really adds value: if not,
remove it.

477further optimization  Core Web Vitals

IDENTIFYING THE

LARGEST CONTENTFUL PAINT ELEMENT

The Lighthouse16 panel in the Chrome DevTools can run
an audit to discover the largest contentful element. You
will also find this audit in the Lighthouse section of
PageSpeed Insights.17

The largest contentful paint element audit in the Lighthouse panel of
Chrome’s DevTools.

LCP can also be measured in the Chrome DevTools Perfor-
mance panel. When you perform a recording, the Timings
section will include lcp. If you click on an lcp record and
hover over its related node, you’ll see which element was
the largest contentful paint element. In this case, we can see
that it’s the hero image for the page.

16	 https://smashed.by/lighthouse
17	 https://smashed.by/pagespeedinsights

478 Image Optimization  part five

https://developers.google.com/web/tools/lighthouse/
https://developers.google.com/speed/pagespeed/insights/
https://developers.google.com/speed/pagespeed/insights/
https://developers.google.com/speed/pagespeed/insights/

Using the Performance panel in Chrome’s DevTools to identify the largest
contentful paint element.

Optimizing for Cumulative Layout
Shift from Images

“I was about to click that! Why did it move?”

Layout shifts can be distracting. Imagine you’ve started
reading an article when all of a sudden elements shift
around the page, throwing you off and requiring you to find
your place again. This is very common on the web, includ-
ing when reading the news, or trying to click those “Search”
or “Add to Cart” buttons. Such experiences are visually
jarring and frustrating. They’re often caused when visible

479further optimization  Core Web Vitals

elements are forced to move because another element was
suddenly added to the page or resized.

Cumulative layout shift (cls)18 is a user-centric experience
metric measuring the instability of content by summing
shift scores across layout shifts that don’t occur within
500ms of user input. It looks at how much visible content
shifted in the viewport as well as the distance the affected
elements were shifted.

Cumulative layout shift (cls) is
a metric that measures the visual
stability of a page.

Good cls values are under 0.1; poor values are greater than
0.25; and anything in between needs improvement.

The most common causes of a poor cls score are:

•	 images without dimensions

•	 ads, embeds, and iframes without dimensions

•	 dynamically injected content

18	 https://smashed.by/cls

480 Image Optimization  part five

https://web.dev/cls
https://web.dev/cls
https://web.dev/cls
https://web.dev/cls
https://web.dev/cls
https://web.dev/cls
https://web.dev/cls

•	 web fonts causing a flash of invisible text (foit) or
unstyled text (fout)

•	 actions waiting for a network response before
 updating dom

Let’s look at the most common causes of poor cls score and
how to address them in more detail.

IMAGES MISSING DIMENSIONS

Always include width and height attributes on your images
and video elements. Similarly, reserve the required space
with css aspect ratio boxes.19 This approach ensures that
browsers can allocate the correct amount of space in the
document while images load.

Images without width and height specified.

19	 https://smashed.by/ratioboxes

481further optimization  Core Web Vitals

https://css-tricks.com/aspect-ratio-boxes/
https://css-tricks.com/aspect-ratio-boxes/
https://css-tricks.com/aspect-ratio-boxes/
https://css-tricks.com/aspect-ratio-boxes/
https://css-tricks.com/aspect-ratio-boxes/
https://css-tricks.com/aspect-ratio-boxes/
https://css-tricks.com/aspect-ratio-boxes/

Images with width and height specified.

Lighthouse report showing the before and after impact to cumulative layout
shift of setting dimensions on images.

History

In the early days of the web, developers would add width
and height attributes to their tags to ensure
sufficient space was allocated on the page before the
browser started fetching images. This would minimize
reflow and redrawing.

<img src="puppy.jpg" width="640" height="360"
alt="Puppy with balloons.">

482 Image Optimization  part five

You may notice that width and height above do not include
units. These pixel dimensions would ensure a 640 × 360
pixel area would be reserved. The image would stretch to fit
this space, regardless of its true dimensions.

When responsive web design20 became mainstream, devel-
opers began to omit width and height, and started using css
to resize images instead:

img {
 width: 100%; /* or max-width: 100%; */
 height: auto;
}

A downside to this approach was that space could only be
allocated to an image once it began to download and the
browser could determine its dimensions. As images loaded
in, the page would reflow as each image appeared on screen.
It became common for text to suddenly pop down the
screen – not a great user experience at all.

This is where aspect ratio comes in. The aspect ratio of an
image is the ratio of its width to its height. It’s common to
see this expressed as two numbers separated by a colon (for
example, 16:9 or 4:3). For an x:y aspect ratio, the image is x
units wide and y units high.

20	 https://smashed.by/rwdguidelines

483further optimization  Core Web Vitals

https://www.smashingmagazine.com/2011/01/guidelines-for-responsive-web-design/
https://www.smashingmagazine.com/2011/01/guidelines-for-responsive-web-design/
https://www.smashingmagazine.com/2011/01/guidelines-for-responsive-web-design/
https://www.smashingmagazine.com/2011/01/guidelines-for-responsive-web-design/
https://www.smashingmagazine.com/2011/01/guidelines-for-responsive-web-design/
https://www.smashingmagazine.com/2011/01/guidelines-for-responsive-web-design/
https://www.smashingmagazine.com/2011/01/guidelines-for-responsive-web-design/

This means if we know one of the dimensions, the other can
be determined. For a 16:9 aspect ratio:

•	 If puppy.jpg has a height of 360px, its width is
360 × (16÷9) = 640px

•	 If puppy.jpg is 640px wide, its height is
640 × (9÷16) = 360px

Knowing the aspect ratio allows the browser to calculate and
reserve sufficient space for the height and associated area.

Modern Best Practice

Modern browsers set the default aspect ratio of an image
based on its width and height attributes, so it’s valuable
to set them to prevent layout shifts. Thanks to the css
Working Group, developers just need to set width and
height as normal:

<!-- set a 640:360 i.e a 16:9 - aspect ratio -->
<img src="puppy.jpg" width="640" height="360"
alt="Puppy with balloons.">

… and the user agent style sheets21 of all browsers add an in-
trinsic aspect ratio22 based on those attributes of the element:

img {
 aspect-ratio: attr(width) / attr(height);
}

21	 https://smashed.by/useragent
22	 https://smashed.by/intrinsic

484 Image Optimization  part five

https://developer.mozilla.org/docs/Web/CSS/Cascade#User-agent_stylesheets
https://developer.mozilla.org/docs/Web/CSS/Cascade#User-agent_stylesheets
https://developer.mozilla.org/docs/Web/CSS/Cascade#User-agent_stylesheets
https://developer.mozilla.org/docs/Web/CSS/Cascade#User-agent_stylesheets
https://developer.mozilla.org/docs/Web/CSS/Cascade#User-agent_stylesheets
https://developer.mozilla.org/docs/Web/CSS/Cascade#User-agent_stylesheets
https://developer.mozilla.org/docs/Web/CSS/Cascade#User-agent_stylesheets
https://html.spec.whatwg.org/multipage/rendering.html#attributes-for-embedded-content-and-images
https://html.spec.whatwg.org/multipage/rendering.html#attributes-for-embedded-content-and-images
https://html.spec.whatwg.org/multipage/rendering.html#attributes-for-embedded-content-and-images
https://html.spec.whatwg.org/multipage/rendering.html#attributes-for-embedded-content-and-images
https://html.spec.whatwg.org/multipage/rendering.html#attributes-for-embedded-content-and-images
https://html.spec.whatwg.org/multipage/rendering.html#attributes-for-embedded-content-and-images

This calculates an aspect ratio based on the width and
height attributes before the image has loaded. It provides
this information at the very start of layout calculation. As
soon as an image is told to be a certain width (for example
width:100%), the aspect ratio is used to calculate the height.

If you’re having a hard time understan-
ding aspect ratio, aspectratiocalculator.com
is available to help.23

These image aspect ratio changes have shipped in Firefox
and Chromium, and are coming to WebKit (Safari). For a
fantastic deep-dive into aspect ratio with further thinking
around responsive images, see “Jank-free page loading with
media aspect ratios”24 by Craig Buckler.

If your image is in a container, you can use css to resize
the image to the width of this container. We set height:
auto; to avoid the image height being a fixed value (for
example, 360px).

img {
 height: auto;
 width: 100%;
}

23	 https://smashed.by/ratiocalc
24	 https://smashed.by/jankfree

485further optimization  Core Web Vitals

https://bugzilla.mozilla.org/show_bug.cgi?id=1547231
https://bugs.chromium.org/p/chromium/issues/detail?id=979891
https://twitter.com/smfr/status/1220051332767174656
https://blog.logrocket.com/jank-free-page-loading-with-media-aspect-ratios/
https://blog.logrocket.com/jank-free-page-loading-with-media-aspect-ratios/
https://blog.logrocket.com/jank-free-page-loading-with-media-aspect-ratios/
https://blog.logrocket.com/jank-free-page-loading-with-media-aspect-ratios/
https://blog.logrocket.com/jank-free-page-loading-with-media-aspect-ratios/
https://blog.logrocket.com/jank-free-page-loading-with-media-aspect-ratios/
https://blog.logrocket.com/jank-free-page-loading-with-media-aspect-ratios/
https://blog.logrocket.com/jank-free-page-loading-with-media-aspect-ratios/
https://blog.logrocket.com/jank-free-page-loading-with-media-aspect-ratios/
https://blog.logrocket.com/jank-free-page-loading-with-media-aspect-ratios/
https://blog.logrocket.com/jank-free-page-loading-with-media-aspect-ratios/
https://blog.logrocket.com/jank-free-page-loading-with-media-aspect-ratios/
https://blog.logrocket.com/jank-free-page-loading-with-media-aspect-ratios/
https://blog.logrocket.com/jank-free-page-loading-with-media-aspect-ratios/
https://blog.logrocket.com/jank-free-page-loading-with-media-aspect-ratios/
https://blog.logrocket.com/jank-free-page-loading-with-media-aspect-ratios/

Responsive Images

When working with responsive images,25 srcset delineates
the images you allow the browser to select between and what
size each image is. To ensure width and height attri-
butes can be set, each image should use the same aspect ratio.

<img width="1000" height="1000"
 src="puppy-1000.jpg"
 srcset="puppy-1000.jpg 1000w,
 puppy-2000.jpg 2000w,
 puppy-3000.jpg 3000w"
 alt="Puppy with balloons"/>

What about art direction?26 Pages may wish to include a
cropped shot of an image on narrow viewports with the full
image displayed on desktop.

<picture>
 <source media="(max-width: 799px)" srcset="puppy-
480w-cropped.jpg">
 <source media="(min-width: 800px)" srcset="puppy-
800w.jpg">

</picture>

It’s very possible these images could have different as-
pect ratios. Browser makers are still evaluating the most

25	 https://smashed.by/servingresponsive
26	 https://smashed.by/responsiveartdirection

486 Image Optimization  part five

https://web.dev/serve-responsive-images/
https://web.dev/serve-responsive-images/
https://web.dev/serve-responsive-images/
https://developer.mozilla.org/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images#Art_direction
https://developer.mozilla.org/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images#Art_direction
https://developer.mozilla.org/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images#Art_direction

efficient solution here, including if dimensions should
be specified on all sources. Until a direction is chosen,
redrawing is still possible here.

IDENTIFYING ELEMENTS THAT SHIFTED

There are a number of tools available to measure and debug
cls. Lighthouse27 includes support for measuring cls in
a lab setting on your desktop. The Lighthouse “Avoid large
layout shifts” audit also highlights the dom elements con-
tributing most to the cls of the page.

The Lighthouse report includes an “Avoid large layout shifts” audit.

You can hover over any of these dom elements to highlight
them, or click to view them in the Elements panel.

27	 https://smashed.by/lighthouse

487further optimization  Core Web Vitals

https://developers.google.com/web/tools/lighthouse

The Chrome DevTools Performance panel also has an
Experience section28 that can help you discover unexpected
layout shifts. This is helpful for finding and fixing visual
instability issues on your page.

A layout shift being highlighted in the Experience section of Chrome DevTools.
Clicking it expands a summary that includes further detail about what shifted.

Select a Layout Shift to view its details in the Summary tab.
To visualize where the shift itself occurred, hover over the
Moved from and Moved to fields.

To measure cls from the perspective of your users, you
can also use the Chrome User Experience Report29 or mea-
sure the metric yourself30 via your analytics provider and
real user monitoring (rum).

28	 https://smashed.by/devtoolscls
29	 https://smashed.by/chromeux
30	 https://web.devlc

488 Image Optimization  part five

https://developers.google.com/web/updates/2020/05/devtools#cls
https://developers.google.com/web/updates/2020/05/devtools#cls
https://developers.google.com/web/updates/2020/05/devtools#cls
https://developers.google.com/web/tools/chrome-user-experience-report
https://developers.google.com/web/tools/chrome-user-experience-report
https://developers.google.com/web/tools/chrome-user-experience-report
https://developers.google.com/web/tools/chrome-user-experience-report
https://developers.google.com/web/tools/chrome-user-experience-report
https://developers.google.com/web/tools/chrome-user-experience-report
https://developers.google.com/web/tools/chrome-user-experience-report
https://web.devlc
https://web.devlc
https://web.devlc
https://web.devlc
https://web.devlc
https://web.devlc
https://web.devlc
https://web.devlc

Hopefully these tips will help keep your pages just a
little less shifty.

Ensuring images load quickly while not causing layout
shifts to the page will help ensure you’re delivering a great
user experience.

Although the Core Web Vitals metrics measure three im-
portant facets of user experience, there are other aspects
Google intends to expand on, including new metrics to
measure smoothness, and support better delivery of instant
and privacy-preserving experiences on the web.

Google aims to update Core Web Vitals annually and pro-
vide developers with updates on potential candidates for
new metrics and the motivation behind them as time goes
on. To keep up to date, follow web.dev for further updates.

489further optimization  Core Web Vitals

chapter 23

Case Study:
Twitter’s Image Pipeline

With special thanks to Nolan O’Brien for his years of work on Twitter’s
image optimization pipelines.

Twitter has fast become a platform for sharing news,
views, and more with the world. In some cases peo-
ple are more likely to consume the latest news from

around the world as short tweets rather than full-length
articles online or through other media.

Tweets are often accompanied by images to illustrate,
amuse, and increase user engagement. There are around 330
million monthly active users around the world who con-
sume, create, and share information on Twitter and 80% of
them are on mobile.

It’s important for Twitter that users get the most out of the
images they upload or see on their timelines. That is why it
places so much emphasis on a strong image optimization
process. This article focuses on the different steps that Twit-
ter has taken to load images faster while ensuring they are
as impactful as intended.

490 Image Optimization  part five

Progressive JPEGs

Progressive jpegs (see chapter 7) consist of multiple inter-
laced layers of the image. The layers are rendered one at
a time and merged with the previously rendered layers to
display the image. Displaying images as progressive jpegs
improves the perceived image-loading performance.

All jpeg images uploaded to Twitter are transcoded to pro-
gressive jpegs, with an 85% quality setting if the image has
a higher quality. To achieve this transformation Twitter uses
libjpeg-turbo31 with a few customizations. Additionally, even
though webp is a supported upload format, all webp images
uploaded are served as progressive jpegs at 85% quality. A
WebPageTest report for Google’s page on Twitter32 shows
that all jpegs loaded were progressive jpegs.

Twitter evaluated the perceived latency (time to first scan
and overall load time) with different image formats like
progressive jpeg, webp, and jpeg 2000. The goal was to
achieve low file sizes for images of comparable quality with
acceptable transcode and decode times. They found that,
overall, progressive jpegs were better at addressing these
requirements when compared with webp and jpeg 2000.

31	 https://libjpeg-turbo.org/
32	 https://smashed.by/vitals

491further optimization  Twitter’s Image Pipeline

Twitter’s research33 into user-perceived
latency involved conducting a number of
experiments. This was a long churn of
trying out formats of different settings
until they settled on formats that were
promising. A feature switch allowed them
to put 50% of users on a current control
format and 50% on the treatment format.
This required full user base splits to re-
move bias from cdn hydration of com-
peting formats. Even a 60/40 split could
incur bias to the higher allotted format.
Remember to a/b test properly, kids!

Users with fast internet connections may not perceive a
difference between progressive jpeg and baseline jpeg,
but those with slow connections see images on screen much
faster. Twitter achieved a 10-fold speed-up after implement-
ing progressive jpegs with respect to the time it took a user
to go from a blank screen to something with content. This
resulted in an increase in the number of tweets consumed.
Users in India and Indonesia experienced a 90-fold im-
provement for a progressive first scan of low-quality jpeg
when compared to png.

33	 https://smashed.by/twitterperf

492 Image Optimization  part five

Image Pixel Density

If you work with images, it’s important to know about reso-
lution, pixels per inch and dots per inch.

Resolution refers to the number of pixels on a device in each
dimension (width × height) that it is possible to display on
a screen: a device with a resolution of “2,880×1,800” is 2,880
pixels wide and 1,800 pixels high.

Pixels per inch (ppi) or pixel density represents a measure-
ment of sharpness on a display screen. It’s the number of
pixels per inch on the display, or how much detail is in an im-
age based on the concentration of pixels. Higher pixel density
means greater sharpness when viewing images on the device.

A lower ppi results in less detail and a pixelated image. A higher ppi results in

more detail and a sharper image.

Dots per inch (dpi) represents the resolution of a printer.
Printers produce images by throwing out small dots, and

493further optimization  Twitter’s Image Pipeline

the quality of dots per inch affects the amount of detail and
quality you see in the print. As a good rule of thumb, ppi is
for digital images and dpi is for print.

Equipped with this knowledge, we know that displays with
a higher pixel density show sharper images. When Apple
unveiled its Retina display, Steve Jobs34 mentioned that with
a pixel density of 300 ppi the human eye could no longer
distinguish between individual pixels for a device held 10
to 12 inches from the eye. Later, some experts35 agreed that
this claim was correct for a person with average eyesight or
20/20 vision. This also implies that an average human eye
cannot distinguish pixel densities beyond this.

For an average-sized phone display the pixel density of
300 ppi corresponds to 2×2 pixels per dot, also known as a
2x scale screen. However, phone manufacturers, including
Apple, are now adopting screens with ultra-high resolutions
of 458 ppi (iPhone xs) and 570 ppi (Samsung Galaxy S9)
which corresponds to a 3x or more than 3x resolution.

With these ultra-high-resolution screens, the number of pix-
els per inch required for an image is much higher, leading to
increased data usage and load latency.

The following illustration shows the difference between
these resolution types.

34	 https://smashed.by/retina
35	 https://smashed.by/experts

494 Image Optimization  part five

Twitter realized that it is unnecessary to serve images with
a pixel density higher than the Retina density of 2x since
a human eye cannot perceive that level of detail. Twitter
started capping image density to 2x for all images served
on the timeline for ios, Android, and mobile web clients.
For screens with resolutions higher than 2x, Twitter now
calculates the variant and size of the image to load it as if it
were for a 2x resolution.

Above are the uncapped and capped versions of the same image provided on
the Twitter engineering blog.36 Twitter observed that there is no perceivable
difference between the two images, yet it achieved a 38% saving on data and
32% on latency for this particular image.

36	 https://smashed.by/twittereng

A visual comparison of increasingly high pixel density values. Higher pixel
density can result in sharper images; however, beyond a certain pixel density
the human eye can’t distinguish meaningful differences.

495further optimization  Twitter’s Image Pipeline

Latency refers to the total duration time
to load. On a 3G connection, the time it
took to load an entire image reduced by
32% (whether preview or full size). On
faster connections, the delta was less for
preview images but effectively the same
for full size images.

This change is not applicable to images viewed in the gal-
lery or full-screen images where users may pinch-zoom.
The full image will always be loaded in these scenarios.

The change is especially beneficial for users with the latest
high-end devices and ultra-high resolution screens. On
these devices, images now load roughly 33% faster with the
amount of data used reduced by one third.

Data Saver Mode

Across all applicable platforms, Twitter is designed to
minimize data usage. In October 2018, Twitter introduced
data saver mode for images on its native iOS and Android
apps. This feature had previously been available on Twit-
ter Lite,37 Twitter’s progressive web app. Once data saver

37	 https://smashed.by/twitterlite

496 Image Optimization  part five

mode is enabled, images in tweets are presented as a small
blurred preview on Twitter Lite and as a lower quality image
on iOS and Android. The data saver mode can be enabled
in Settings > Data Usage on both iOS and Android apps
as shown. Even when data saver is not enabled, users can
choose to load high-quality images only on Wi-Fi to con-
serve cellular data, which is expensive in many countries.

Users in the Twitter native apps on iOS and Android can toggle on “Data
saver” mode but also control when high-quality images should be loaded (e.g
only when on Wi-Fi)

On Twitter Lite, the image initially shown (1, overleaf) is a
highly optimized 64×64 pixel image (a 1,000-byte jpeg) that
is blurred using a technique similar to low-quality image
placeholders (lqip: see chapter 12). The actual image is load-
ed only when you tap on the preview (2).

On iOS and Android, the preview image is not blurred, but
it has a slightly lower resolution than normal (3). Tapping to
open the image will just expand that preview image and you

497further optimization  Twitter’s Image Pipeline

need to long-press or select the More options, then choose
Load High Quality.

On Twitter Lite
before download

On Twitter Lite
after download

Image loaded on iOS
native app

Detail:
iOS native Twitter Lite

498 Image Optimization  part five

With these improvements Twitter observed a 50% reduction
in data usage from images on iOS and Android, and an 80%
reduction on the Twitter website. Since videos do not play
automatically in data saver mode, a 96% improvement in
data usage was observed by disabling video autoplay. Such
savings add up and are especially beneficial for users on
limited data plans.

PNG-8 Support for Digital Artwork

Another optimization Twitter explored took advantage of
certain kinds of png artwork only needing a limited color
palette. Before we get into that, let’s see what palettes mean
for pngs. Per the png specification,38 pngs can be:

1.	 palette-based (with or without transparency)

2.	 grayscale (with or without transparency/alpha channel)

3.	 red/green/blue (rgb) (with or without transparency/
alpha channel)

A color palette39 is a one-dimensional array of color values.
Using a palette, image data can be stored as a series of index
values. This can significantly reduce the size of pixel data
when only a limited number of colors needs to be represented.

38	 https://smashed.by/pngspec
39	 https://smashed.by/palettes

499further optimization  Twitter’s Image Pipeline

4-bit pixel data could be used to represent 16-color images. Such colors are
often defined in a palette in the image file. Applications that render images
read pixel values from a file and use it as an index into a palette. This is used
to specify colored pixels on the device outputting the image.

The number of bits used per pixel differs for each of the png
types listed above. Palette-based images are supported in four
pixel depths: 1, 2, 4, and 8 bits. These correspond to a maxi-
mum of 2, 4, 16, or 256 palette entries. Thus, a png-8 image (8
bits per pixel) is much larger than a png-4 image (4 bits per
pixel). Similarly, an rgb TrueColor image which is supported
in two depths (24 and 48 bits per pixel) is even larger.

People specializing in digital art would often share and
advertise such png-24 and png-32 images on Twitter. When
served to a global audience these large pngs proved to be
very expensive and slow for those browsing Twitter on slow

500 Image Optimization  part five

network connections. At the same time, artists did not like
the idea of serving such images as lossy jpegs.

Digital artists usually do not need more than 256 colors, as
they wish to share high-quality versions of their artwork
but not at full resolution so they can sell or license the origi-
nal high-resolution images. This implies that pixel art needs
to be high quality but not high resolution. Twitter recog-
nized this use case when it made changes to its png image
support40 in February 2019.

An example of digital pixel artwork shared on Twitter. This image does not
require more than 256 colors, nor does it need to be high-resolution, but it
does need to be presented to users in high quality.

Images uploaded as png-8 and below are left untouched
when presented on Twitter, including any transparency.

40	 https://smashed.by/twitterpng

501further optimization  Twitter’s Image Pipeline

This is because png-8 images are almost equivalent to
their jpeg counterparts with respect to performance. At the
same time, compromise on image artifacts that result from
jpeg compression can be avoided. This serves as an encour-
agement for artists who would have previously uploaded
their images as large png-24 or png-32 files. They can now
upload their images as png-8 and simultaneously reach a
wider audience of people on slow connections. This leads to
images that are four to eight times smaller in size overall,
which is a huge win.

PNG-24, png-32, or higher are served as jpeg images on
Twitter if the file size is considerably higher than the ex-
pected file size after converting to jpeg. This check offers
a chance for image creators to sufficiently compress their
png before upload so that it is more likely to be served as a
lossless quality png. Images dominated by solid colors have
a good chance of falling into this category.

Client-Side Compression of
Uploaded Images

The changes above were all targeted at enhancing the user
experience when viewing images in the Twitter timeline.
However, slow network connections also mean that it would
take a long time to upload high-resolution or hdr images

502 Image Optimization  part five

taken using the latest smartphone cameras. To enhance the
image upload experience, Twitter now checks if an image
appears to be above a particular pixel/byte threshold. In
such cases, it is drawn to a canvas and output at 85% quality
jpeg to check for size reduction.

This often reduces phone-captured images in the range of
4 mb to around 500 kb with no discernible quality differ-
ences. Since image upload is especially slow over 2G and
3G, when such connections are detected Twitter rescales the
image such that the image file does not exceed 150 kb. On
its native iOS app, Twitter converts all images to jpeg at 85%
quality before upload. Similarly, on Android, webp images
are posted unmodified, but all other images, including webp
images modified in the app, are converted to jpeg at 85%
quality before upload.

An image (of my dog
Elvira) being uploaded to
Twitter on a slow network
connection. Twitter
rescales the image and
converts it to jpeg at 85%
quality prior to uploading.

503further optimization  Twitter’s Image Pipeline

Slow image uploads are frustrating, leading to users cancel-
ing the upload on many occasions. As such, Twitter mea-
sured the number of canceled uploads before and after the
changes and found there was an overall reduction of 9.5% in
the number of canceled photo uploads after these changes
which is significant.

Twitter’s investments in image performance have led to large
improvements in its user experience. This is a great example
of how research into image compression and serving tech-
niques can benefit not just the web, but all platforms.

504 Image Optimization  part five

Conclusion

Throughout this book, we’ve looked at ways to reduce
image size through modern compression techniques
with minimal impact to quality. The smaller in file

size you can make your images, the better a network experi-
ence you can offer your users – especially on mobile.

Choosing an image optimization strategy will come down
to the types of images you’re serving to your users and what
you decide is a reasonable set of evaluation criteria. It might
be using ssim or Butteraugli, or – if it’s a small enough set
of images – relying on human perception for what makes
the most sense.

Compress Images Efficiently

We should all be compressing our images efficiently.

At minimum: use ImageOptim.41 It can significantly reduce
the size of images while preserving visual quality. Windows
and Linux alternatives42 are also available.

More specifically: run your jpegs through mozjpeg43 (q=80
or lower is fine for web content) and consider progres-

41	 https://imageoptim.com/
42	 https://smashed.by/imageoptimversions
43	 https://smashed.by/mozjpeg

505further optimization  Conclusion

Lots of small changes can lead to big gains.

PERFORMANCE IS
A JOURNEY

sive jpeg44 support, pngs through pngquant,45 and svgs
through svgo.46 Explicitly strip out metadata (--strip for
pngquant) to avoid bloat. Instead of crazy huge animated
gifs, deliver h.26447 videos (or webm48 for Chrome, Firefox,
and Opera). If you can’t, at least use Giflossy.49 If you need
higher-than-web-average quality and you are ok with slow
encoding times and using extra cpu cycles, try Guetzli.50

Some browsers advertise support for image formats via the
Accept request header. You can use this to conditionally
serve different formats; for example, lossy webp51 for Blink-
based browsers like Chrome, and fallbacks like jpeg and
png for other browsers.

Automate Image Compression

Image optimization should be automated.

It’s easy to forget, best practices change, and content that
doesn’t go through a build pipeline can easily slip. To auto-
mate: use imagemin,52 libvips,53 or one of many alternatives
for your build process.

44	 https://smashed.by/martians
45	 https://pngquant.org/
46	 https://smashed.by/svgo
47	 https://smashed.by/h264
48	 https://www.webmproject.org/
49	 https://smashed.by/giflossy
50	 https://smashed.by/guetzlisize
51	 https://smashed.by/webp
52	 https://smashed.by/imagemin
53	 https://smashed.by/libvips

507further optimization  Conclusion

Most content delivery networks, like Akamai,54 for example,
and third-party solutions, like Cloudinary,55 imgix,56 Fastly’s
Image Optimizer,57 or ImageOptim58 offer comprehensive
automated image optimization solutions.

The amount of time you’ll spend reading blog posts and
tweaking your configuration is probably worth the
monthly fee for a service (Cloudinary has a free59 tier).
If you don’t want to outsource this work because of cost
or latency concerns, the open-source options mentioned
above are solid. Projects like imageflow60 or Thumbor 61
enable self-hosted alternatives.

Do More

There’s always more you can do.

Tools exist to generate and serve srcset breakpoints. Re-
source selection can be automated in Blink-based browsers
with client hints,62 and you can ship fewer bytes to users
who opted into “data savings” in-browser by heeding the
Save-Data63 hint.

54	 https://smashed.by/whyakamai
55	 https://cloudinary.com
56	 https://imgix.com
57	 https://smashed.by/fastly
58	 https://smashed.by/imageoptimapi
59	 https://smashed.by/cloudinarypricing
60	 https://smashed.by/imageflow
61	 https://smashed.by/thumbor
62	 https://smashed.by/resourceselection
63	 https://smashed.by/savedata

508 Image Optimization  part five

Here are my closing recommendations.

If you can’t invest in conditionally serving formats based on
browser support:

•	 Guetzli and mozjpeg’s jpegtran are good optimizers for
jpeg quality > 90.

•	 For the web, q=90 is wastefully high. You can get away
with q=80, and on 2x displays even with q=50.
Since Guetzli doesn’t go that low, for the web you
can mozjpeg.

•	 Kornel Lesiński recently improved mozjpeg’s cjpeg
command to add a tiny srgb profile to help Chrome
display natural color on wide-gamut displays.

•	 PNG pngquant + advpng has a pretty good speed/com-
pression ratio.

If you can conditionally serve (using <picture>, the Accept
header,64 or Picturefill65):

•	 Serve webp to browsers that support it.

64	 https://smashed.by/acceptheader
65	 https://smashed.by/picturefill

509further optimization  Conclusion

•	 Create webp images from original 100% quality imag-
es. Otherwise you’ll be giving browsers that support it
worse-looking images with jpeg distortions and webp
distortions! If you compress uncompressed source im-
ages using webp it’ll have the less visible webp distor-
tions and can compress better too.

•	 The default settings used by the webp team (-m 4 -q 75)
are usually good for most cases where they optimize for
speed/ratio.

•	 WebP also has a special mode for lossless (-m 6 -q 100),
which can reduce a file to its smallest size by exploring
all parameter combinations. It’s an order of magnitude
slower but is worth it for static assets.

•	 As a fallback, serve mozjpeg-compressed sources to
other browsers.

Happy compressing!

510 Image Optimization  part five

alpha transparency . 148, 152,
154

Amazon S3 190

Android 78, 122,
187, 301, 303, 333, 394–395,
397, 414, 458, 495–497,
499, 503

Android Pie 394

Animated GIFs v, 174,
222, 399, 507

replacing
Chapter 15: 314–335

animations vi, xi,
337, 340, 345, 403, 435, 461

anti-aliasing 152, 157,
161–163

API 364
fetch 269

Apple 131, 382,
391, 393, 397, 405, 414, 494

art direction xxii, 223,
231–233, 354, 486, 515

7-zip 158

accessibility xii, 206,
226, 348, 359

adaptive
code loading 463, 465
media loading . . . 461–462
predictor 429
quantization 424, 427

Adobe
Illustrator 202, 213
Lightroom 395
rgb color space . . 71–73

Advanced Video
Coding (AVC) . . 384

advdef 165

AdvPNG 158, 509

Akamai 242, 508

Aleksandersen,
Daniel 398–399

aliasing 161–162

Alliance for Open Media
(aomedia) 399

Index

511  Index

bandwidth xix, 119,
194, 202, 261, 298, 314–316,
354, 379, 432, 461, 466

savings 45

Base64-encoded . . . 38

Bash 186, 197

Bazel 50

British Broadcasting
Company (BBC) . 313

Beamtic 148

Bendell, Colin ii, xvi,
130, 336

Better Portable Graphics
(BPG) 133

Blink 98, 188

blur filter, CSS 244, 253,
369

Book of Speed 241

Brunner, Gunther . . 239

Butteraugli 47,
49–51, 54–55, 133, 138–139,
142, 424, 505

Bynens, Matthias . . . ii, 290,
307

artifacts 43–44,
51, 128, 135, 161–162, 172,
178, 184, 196, 324, 351, 353,
407, 409, 425, 428, 502

aspect-ratio 42–44,
484

attributes
decoding 37, 96
poster 327, 333
sizes 32
srcset 33, 224,

230

Atwood, Jeff 155

Authoring Features . 447

av1 video codec . . . 131

 avc 384, 389,
400

AVIF Chapter
18: 398–415
v, xiii, xxiv, 131, 199, 283,
378, 380–381, 430–432

background image . 38, 476

Backups 348

Baldauf, Tobias . . . 245

512 Image Optimization 

backgrounds . . . 38, 251,
288

blur filter 244, 253,
369

dimensions viii
display 208, 249
pixel volume viii
pseudo-selector . . 252
sprites 278
Working Group . . 484

Chocolatey 319

chroma 55,
57–58, 124–131, 159

subsampling . . . 57, 61, 67,
87, 124–128, 130–131, 135,
178, 193–196, 432

upsampling 90
values 195

Chrome on Android 78, 458

Chrome DevTools …
audits panel 46
elements panel . . 32, 487
lighthouse panel . 100, 236,

288, 478
network panel . . . 34-35,

188, 251, 260, 514
performance panel 84, 93,

329, 478-479, 488, 514

C++ 50

cache 98,
193, 256–258, 260–261,
263–274, 276, 278, 287, 373

duration 260
enabler 193
hit ratios 265
lifetime 266
miss 265
offline caching . . 269-271,

274
opportunities . . . 268

Cache-Control 257–260,
262–263, 467

Caching Image Assets
Chapter 13: 256–289

Calibre 106–107

Camera Raw 395

Cascading Style Sheets
(CSS) ix, x, xx,
33, 40, 43–44, 81, 92, 201,
204, 207–208, 210, 218, 226,
230, 246–247, 251–253, 271,
273, 277–278, 281, 297, 302,
310, 476–477, 483–485

aspect ratio 481

513  Index

Adobe RGB 71–73
ProPhoto RGB . . . 72
SRGB 71–74,

77–78, 132, 143, 509

compression
client-side 502–504
modes 115, 398
photographic images

comparison . . . 437
non-photographic images

comparison . . . 438

Consistent
Aspect-Ratio . . . 42

constant rate factor
(CRF) 320–324

content delivery network
(CDN) xxiv,
192–193, 265–267, 276, 315,
415, 492

conversion 192
Image CDN Chapter

16: 337–379
performance 358

CopyTrans 395

Core Web Vitals . . . v, xxv,
456,
Chapter 22: 471–489

CIELAB 71, 129,
426

client-side 94, 281,
477, 502

Clipping Path Zone . 73

Cloudinary 46,
54–55, 59, 119, 142, 242, 333,
338, 343–346, 350, 356–357,
361–362, 392, 396, 418, 420,
437, 508

content management
system (CMS) . . 340–341,
348

CodePen 325

color management
Chapter 4: 68–79

color models 68–69,
71, 129

additive 69
cmyk 69
rgb 69, 71
subtractive 69

color profile 76–78,
172

color space 71–72, 74,
76, 78, 87, 89–90, 159, 175

514 Image Optimization 

Deflate 158, 165

Delivery Features
comparison 442–

443, 452–453

Derivations 387

device pixel ratio . . viii–ix,
xxvi, 104, 225–227, 230

digital asset management
(DAM) 348

discrete cosine transform
(DCT) 53,
87–90, 177, 424–425

display:none 249–252

distance threshold . 303, 310

DOM tree 82

dots per inch (DPI) . 493–494

Drasner, Sarah 79

DSSIM 48, 54,
67, 350, 406

Edge 78, 83,
96, 130–131, 151, 234, 261,
279, 299, 301, 333, 343, 354,
380, 407, 409, 457, 465

Efficient Compression Tool
(ECT) 165–166

CPU xxiii, 80,
122, 141, 173, 244, 329, 331,
507

CSS Tricks 277

cumulative layout
shift (CLS) 307,
472–474, 479–480, 482,
487–488

cyclic redundancy
code (CRC) 145

Data Saver
Chapter 21: 457–470

Data Saver mode . . xxv,
xxvi, 333, 465–467,
496–497, 499

decoding iv, xvii,
39, 42, 80–81, 83–85, 87,
89–99, 121, 131–132, 143,
178, 199, 315, 331, 344, 384,
405–406, 410, 415–418, 421,
429

asynchronous . . . 37, 95–97
attribute 37, 96
decode() method . 95,

97–98, 416
developer-controlled	 94
image performance	

Chapter 6: 100–113

515  Index

extensible markup
language (XML) 39, 136,
200, 207, 210–211, 244

Facebook 118, 120,
179, 346

fallback image 234, 284

Fetch api 269

FFmpeg 317–320,
323, 372, 396, 411–412

Figma 202

Firefox 78,
96–97, 131, 188, 279, 299, 301,
312, 401, 405, 411, 485, 507

First input delay
(FID) 472–473

free lossless image format
(FLIF) 53,
420–421

free universal image format
(FUIF) 418

freshness 261–263,
276

Furnspace 362

gamma correction . 75

element
img Chapter

1: 29–40
picture 44,

189–190, 231–235, 249, 297,
308, 402, 431, 486, 509

source 189–190,
231–234, 308, 323, 327–328

video 323,
325–328, 411, 476

Elements panel . . . 32, 487

encoding xiv, xxi,
47, 51, 75, 85, 88, 104, 111,
132, 134, 137, 139, 171, 175,
177, 183, 194, 196, 320, 325,
331–334, 344, 371, 384, 397,
403, 407, 410–411, 415–420,
425, 429–430, 507

Entropy Coding . . . 429

Erdmann,
Christoph 128

ETag 257–260

Everts, Tammy 255

EXIF 117, 129,
172, 385, 389

516 Image Optimization 

gradient image placeholders	
246–247

graphics 75,
81, 111, 133, 144, 147–148,
162–163, 223, 244, 278, 315,
417, 435

graphics processing unit
(GPU) 80, 244,
246

portable network graphics
(PNG) Chapter 8: 144–169

raster 111, 162
scalable vector graphics

(SVG) Chapter 10: 200–219
vector 111, 162,

202, 518, 525

Greenstein, Ben . . . 460

Group Splitting . . . 428

Guetzli 51, 111,
134, 138–143, 379, 507, 509

gulp 123, 136,
140, 166–167, 184–185

Gumby 243

gzip 158, 211,
217, 265

Hansen, Patrick . . . 153–154

gamut 57,
72–74, 78, 130–131, 178, 346,
399, 403, 417, 425, 432

Gao, Nancy 460

Gaussian blur 246

Gifsicle 334

GIMP viii, 187,
351, 395

Giphy 174

GitHub 139, 190,
245, 409, 411

Gmyr, Chris 357

Google xiii, xx,
49, 51, 131, 133, 138, 170,
175–177, 181, 187, 206, 211,
217, 238–239, 274, 278, 306,
339, 380, 394–395, 399,
405, 407, 418, 424, 491

Core Web Vitals . v, xxv,
456, Chapter 22: 471–489

Cloud Platform . . 374
doodle 157, 176
Offline Cookbook 272
Pixel 394
Workbox Recipes 272

517  Index

Image Formats
Comparing Chap-
ter 3: 54–67; Chapter 20:
433–453

ImageMagick 47, 53,
122, 136, 187, 237

imagemin 122–123,
136, 140, 167, 183–185, 507

ImageOptim 43, 77,
135–136, 140, 164–165, 407,
505, 508

 iv, xxvi,
44, 98, 189, 202–204,
206–207, 224, 231–232, 235,
243, 281, 283, 285, 298, 300,
306–308, 325, 329, 332, 396,
475, 482, 486

element . . Chapter
1: 29–40

imgix 243, 357,
361–362, 508

Instagram 232

interlaced display . . 154

Intersection Observer
… 294–295, 298

hashing 263

high dynamic range (HDR)	
130–131, 398–399, 403, 407,
417, 425, 502

High Efficiency Image File
Format (HEIF) . . v, xxiv,
61, 64–65, 67, 131, 133, 356,
378, 403

Chapter 17: 382–397
HEIC v, xiii,

356, 378, 382–385, 387, 389,
391–397, 403, 427

HEIC Converter . . 393–395
high efficiency video cod-

ing (HEVC) 133, 382,
384, 389–391, 396, 400, 403

Hidayat, Ariya 143

histogram 159

.htaccess 190–192

Huffman coding
algorithm 88

International Color
Consortium (ICC) 	
77–78, 172, 424

color profiles . . . 424

518 Image Optimization 

encoders 58, 61,
89, 119, 134, 138, 142

jpeg2png 353
standard 89
XL v, xxiv,

132, 199, 254, 378, 380–381,
Chapter 19: 416–432

XR xiii, 130,
380

XT 428
whitepaper 416

Kayser, Frédéric . . . 126

KeyCDN 193

Kobes, Steve 82–83,
91

Kodak 407

largest contentful
paint (LCP) 279,
282–283, 288–289, 309,
472–476, 478–479

Last-Modified 257–258,
260, 268

latency 92, 120,
122, 262, 358, 431, 491–492,
494–496, 508

iOS 118, 120,
122, 130–131, 327, 380, 382–
384, 393, 414, 495–497, 499,
503

ISO BMFF 389, 403

jank 91–92,
97–99, 329

JavaScript x, xx,
xxiii, 81, 84, 94, 97, 201,
218, 243, 247, 249, 251–253,
260, 269, 271, 274, 279,
281, 283–285, 293, 295,
298–299, 303, 305, 311, 396,
459–461, 463, 465, 477

libraries xxiii,
274, 295, 298–299

Jetpack 193

Jobs, Steve 494

JPEG chapter
7: 115–143

2000 xiii, 61,
63, 65, 67, 130, 133, 380, 398,
426, 491

compression
modes 115

decoding 131

519  Index

Linux 165, 319,
414, 505

Liquid Web 240

live photos 380,
382–383, 391–392, 403

lossy files 171

low quality image
placeholders (LQIP)	
38, 242–243, 245–246,
252–255, 295, 417, 497

luma values 195

LZ77 158

macOS 31, 130,
164, 179–180, 182, 187, 319,
383, 393–394, 413–414

Magento 348

McAnlis, Colt 160, 176

McComb, Glenn . . . 254

Median Cut 166

metadata 159, 164,
172, 183, 210, 334, 385–386,
389–390, 413, 507

Microsoft Paint . . . 405

MKV container . . . 412

lazy loading xii, xv,
xxiii, 36, 290–291, 293–295,
297–298, 302–303, 305,
307, 310–311, 459

images, Chapter 11: 223–237

Lempel-Ziv-Welch
algorithm 158

Leptonica 187

Lesinski, Kornel . . . 48, 142,
407

libaom 410–411

libHEIF 396

libjpeg-turbo 58–61,
67, 119, 128, 135, 351, 428,
491

libvips 53, 507

licensing 133, 354,
356, 360, 400

Life of a Pixel 83, 91

Lighthouse panel . . 100, 236,
288, 478

Lightroom 72, 395

limits 106, 427,
441, 469

comparison tables 440, 452

520 Image Optimization 

OpenGL 81

optimizing
Image Quality . . . Chapter

2: 43–53
JPEG 134
largest contentful paint

(LCP) 279
reoptimizing . . . 352
SVG 219
Thumbor 341, 361,

363–365, 367–375, 508

Optimus 193

optipng 165–167

Orback, Vincent . . . 190, 192

padding-top hack . . 42–44

PageSpeed Insights . 46, 289,
473, 478

Parallelization 417

performance
AVIF 405
budget 106-107
CDN 358
impact xx, 347,

359
page load 40, 269
panel 84, 93,

329, 478-479, 488, 514

Moving Picture Experts
Group (MPEG) . 384

mpeg-4 319–325,
328–329, 331, 383

Mozilla 51, 135,
399, 405

mozjpeg 51–52,
58–61, 67, 111, 117, 119–120,
128, 133–138, 142–143, 186,
371, 379, 432, 505, 509

mp4box 411

natural pixels viii

Navbharat Times . . 194

Netflix 175, 399,
405, 407–409

Netlify 348

Nginx 192, 349

Nine Degrees Below 78

Node.js 48, 101,
183

Nokia 356, 384,
390, 396

Offscreen Content . 40

opacity 144, 148-
149, 152-153

521  Index

Beamtic 148
Chapter 8: 144–169
compression 158
palette modes . . . 146
png-8 146–147,

150, 153, 156–157, 163,
499–502

png-24 146–148,
153–154, 156, 163, 500, 502

png-32 146, 148,
153–154, 156, 500, 502

posterizer 166

PNGcrush 164,
166–167

PNG Optimization
Tools 164

pngOptimizer . . . 168

PNGout 164,
168–169

PNGquant 164, 168,
371, 507, 509

PNGwolf 169

polyfill 310–311,
344

Portis, Eric 142

perceived 39, 115,
117, 238, 252, 523

photographs xxii, 115,
417, 419, 434

Photoshop viii, 47,
72–73, 76, 123, 128, 144, 160,
187, 212, 351, 414

PIK 418

Pingo 167

Pinterest 120–121,
238–239

pixel
density viii, 33,

229–230, 493–495
fitting 162–163
hinting 162
Pixelmator 187, 395
Pixels per inch (ppi)	 493

pjpeg 115,
118–119, 121

placeholder 38–40,
42, 93, 98–99, 239, 245,
247–248, 252–253, 291

Portable Network Graphics
(PNG) 144, 518

522 Image Optimization 

quantization 52–53,
57–58, 88, 135–136, 353,
424, 427–428

QuickLook 180, 413

Quick Sync Video . . 331

RGB
color model 69, 71
transparency . . . 172

raster 83, 111,
144, 161–162, 201, 212–214,
218

rasterization 82–85

real user monitoring
(RUM) 466, 488

recompression 52,
352–353, 424

responsive
breakpoints 235
design xxii, 203,

420
images Chapter

11: 223–237
image techniques 234

Retina ix, 223,
230, 494–495

density 495
display 494

Posterization 160–161

Potts 313

Preloading 256,
279–281, 284, 288

progressive v, 40,
98, 115–118, 120–124, 131,
135, 154–155, 222, 270, 293,
337, 362, 415–417, 420–421,
430–431, 496

decoding 178, 417
enhancement . . . 401–402,

431, 463
image rendering . 155, 239,

252, 255
jpeg xv, 115,

117-118, 123, 241, 491-492, 505
png 155
scans 421
rendering techniques	

Chapter 12: 238–255

ProPhoto RGB 71–74

Proxying pages . . . 459

Peak signal-to-noise ratio
(PSNR) 54

quality index 44, 47,
321

523  Index

SOASTA xx

Software Support . .
comparison 450,452

speed
comparison 438, 452

SpeedCurve 106–107

spriting 277–279

SQIP 38,
244–246, 252–255, 295

Squoosh 43, 164,
181, 197, 410, 412, 430

srcset 32–33,
36–38, 93, 189, 203, 224–
225, 227, 229–236, 249, 297,
308, 402, 431–432, 486, 508

SRGB 71–74,
77–78, 132, 143, 509

SSIM 47–49,
51, 133, 137, 143, 350, 355,
505

SSIMulacra 54–55,
59, 67

stale-while-revalidate
(SWR) 262–263

Stefanov, Stoyan . . . 241, 247

revving 263, 267

Rigor 334

Rogers, Philip 82–83, 91

royalty-free 381, 398,
403, 418, 449

comparison 448, 452

Safari 36, 78, 97,
130–131, 241, 279, 301, 312,
332, 380, 396, 485

scalable vector graphics (SVG)
Chapter 10: 200–219

screen pixels viii

security 53, 204,
340–341, 345, 373–374

sequences 131, 386,
389, 403

service workers . . . 269–271,
274–276, 461

Shopee 98–99

Shopify 468

Sketch 43, 124,
144, 187, 202, 212, 219

Sneyers, Jon ii, 52,
416, 420, 422–423, 431, 437

524 Image Optimization 

Image Pipeline . . Chapter
23: 490–504

Lite 93,
496–497

URL 39, 101,
180, 193, 205, 251, 263–264,
266–267, 278, 325, 344,
364–365, 368–369, 476

Vary header 264

vector 161–162,
200–202, 214, 218

graphics 111, 162,
202

versioning 263,
266–267

video vi–xi,
xv, 65, 75, 92, 125, 133, 171,
242, 278, 314–328, 331–335,
342, 346, 356, 359, 371–372,
382, 384, 389, 392, 396, 398,
400–401, 411, 426, 462, 476,
481

autoplay 326-327,
469, 499

decoding 131, 331
Quick Sync Video 331

SVG
Chapter 10: 200–220
icons 205–206,

219, 270
maps 207, 209
svgo 186, 212,

214–216, 507
svgomg 212–213

Thumbor 341, 361,
363–365, 367–375, 508

TIFF 53

Tinder 469

transitional features
comparison 448, 452

transparency 55, 67,
144, 159, 163, 166, 168–170,
172–173, 184, 199, 344–345,
382, 388, 390, 499, 501

alpha 148, 152,
154

support 131, 149,
168, 380, 399

Tribune 470

Tumblr 174

Twitter v, xxv,
xxvi, 93–94, 120, 174, 456

525  Index

WebPShop 187

Website Speed Test . 46

WhatDoesMySiteCost.com	
 x

wide color gamut (WCG)	 131,
399, 425

width descriptor . . 229–230

Wikipedia 287, 341

Wiltzius 91

WordPress 193,
348–349

Workbox Recipes . . 272

XnConvert 182–183,
186

YCbCr 87, 90,
129, 178, 426

Yelp 58, 120

zopfli 158, 169

ZopfliPNG 165, 169

VLC media player . . 405, 413

VoxMedia 175

W3C 202

Wagner, Jeremy . . . ii, 114,
186

Web Almanac vi, ix, xii

WebM 317–319,
322–325, 328–329, 331, 507

WebP
browser support . 179
Chapter 9: 170–199
encoding 175
lossless 172
lossy files 171
serving 170, 175,

188, 192-193

WebPageTest 45–46,
281, 287, 347, 491

Web Performance
Calendar 405

526 Image Optimization 

More Smashing Books
Crafted with care for you, and for the Web

Smashing LibrarySmashing Library
Expert authors & timely topics
for Smashing Readers.

smashed.by/library

TypeScript in 50
Lessons

by Stefan Baumgartner

The Ethical
Design Handbook

by Trine Falbe,
Martin Michael Frederiksen
and Kim Andersen

Click!
How to Encourage Clicks
Without Shady Tricks

by Paul Boag

Inclusive
Components

by Heydon Pickering

Art Direction
for the Web

by Andy Clarke

Form Design
Patterns

by Adam Silver

This is a gentle and timeless journey through the tenets of TypeScript. If you’re a JavaScript programmer looking for a clear primer text to help you become immediately productive with TypeScript, this is the book you’re looking for. It’s filled with practical examples and clear technical explanations.”
—Natalie MarlenyNatalie Marleny, Application Engineer

Stefan walks you through everything from basic types to advanced concepts like the infer keyword in a clear and easy to understand way. The book is packed with many real-world examples and great tips, transforming you into a TypeScript expert by the end of it. Highly recommended read!”
—Marvin HagemeisterMarvin Hagemeister, Creator of Preact-Devtools

Stefan Baumgartner is a software architect based in Austria. He has published online since the late 1990s, writing for Manning, Smashing Magazine, and A List Apart.
He organizes ScriptConf, TSConf:EU, and DevOne in Linz, and co-hosts the German- language Working Draft podcast.

9 783945 749906

“

“

Trine Falbe Kim Andersen Martin Michael Frederiksen

Without forms, the web is a passive experience where content is just consumed. But with forms the web can be collaborative, creative and productive. Forms are at the center of every meaningful interac-tion, so they’re worth getting a firm handle on.

This book has ten chapters: each one tackles a real world and common problem. We’ll ask questions, weigh up the options and create technical solutions.
By the end of the book, you’ll have a close-to exhaustive list of components delivered as a design system that you can use immediately in your own projects.

By going through the process step by step, you’ll learn how to design simple, robust, light-weight, responsive, accessible, progressively-enhanced, interoperable and intuitive interfaces that let users get stu� done no matter what.

Art Direction
for the Web

Andy Clarke
A Hardboiled Web Design shot

How to Encourage Clicks
Without Shady Tricks

by Paul Boag

b
y P

aul B
o

ag

H
o

w
 to

 E
n

c
o

u
ra

g
e

 C
lic

ks
W

ith
o

u
t S

h
a

d
y Tric

ks

Paul Boag has been working in the web since 1993. He is a user experience strategist who helps companies make use of digital to better serve connected consumers. Paul also hosts the award-winning user experience podcast at boagworld.com. He is a regular speaker at conferences and author of four other books including Digital Adaptation.

The world is a miracle. So are you.

Thanks for being smashing.

Addy Osmani is an engineering manager working

on Google Chrome. His team focuses on speed,

helping keep the web fast. Devoted to the open-

source community, Addy’s past open-source

contributions include Lighthouse, Workbox,

Yeoman, Critical, and TodoMVC.

9 783945 749944

An incredibly comprehensive overview of image

optimization. This book will teach you everything you

need to know about delivering effective and performant

images on the web.”

—Katie Hempenius,Katie Hempenius, Google

“

Optimizing image delivery is key to building high-

performance web apps. This book explains everything

developers should know about choosing the right

image format, compressing image assets — and more!”

—Mathias Bynens,Mathias Bynens, Google

“

Images are the heart and soul of the web; they help

create that emotional connection with humans. Yet,

it is really easy to ruin that experience through slow

loading or worse, over quantizing the pixels and

distorting images. Understanding how images work

is essential for every engineer; the last thing we

want is to deal with open bugs from bad creative or

performance experiences.”

—Colin Bendell,Colin Bendell, Shopify

“

	Image-Optimization-by-Addy-Osmani.pdf
	IO-spreads-part4-436-453.pdf

