
Design
Systems
A practical guide to

creating design languages

for digital products.

by Alla Kholmatova

To Alyona

Published 2017 by Smashing Media AG, Freiburg, Germany.
All rights reserved.
ISBN: 978-3-945749-58-6

Cover design: Espen Brunborg
Copyediting: Owen Gregory
Interior layout: Markus Seyfferth
Ebook production: Cosima Mielke
Typefaces: Elena by Nicole Dotin, Mija by Miguel Hernández,
and Maison Neue by Timo Gässner.

Design Systems was written by Alla Kholmatova
and reviewed by Karen McGrane and Jeremy Keith.

Please send errors to: errata@smashingmagazine.com

Table Of Contents

PART 1: FOUNDATIONS

Design Systems

Design Principles

Functional Patterns

Perceptual Patterns

Shared Language

PART II: PROCESS

Parameters Of Your System

Planning And Practicalities

Systemizing Functional Patterns

Systemizing Perceptual Patterns

Pattern Libraries

	 Conclusion

1

2

3

4

5

6

7

8

9

10

18

46

63

82

107

134

166

184

212

243

285

About The Author

A lla Kholmatova is a UX and interaction designer
with a nine-year experience of working on the
web, for a range of products and companies. Most

recently she was a senior product designer at the open edu-
cation platform, FutureLearn.

She’s particularly interested in design systems, language,
and collaborative ways of working. In the last two years
she spent an enormous amount of time working on and
researching the subject. She’s been sharing her insights
with people through articles, workshops, and projects. Alla
contributes to design publications, such as A List Apart, and
speaks at conferences around the world.

About The Reviewers

Karen McGrane has helped businesses create better digital
products through the power of user experience design and
content strategy for the past twenty years. She is Manag-
ing Partner at Bond Art + Science,1 a UX consultancy she
founded in 2006, and formerly VP and national lead for user
experience at Razorfish. Karen teaches design management
in the MFA in Interaction Design program at the School of
Visual Arts in Manhattan. She co-hosts A Responsive Web
Design Podcast with Ethan Marcotte, and her first book,
Content Strategy for Mobile,2 was published in 2012 by A
Book Apart.

Jeremy Keith is co-founder and technical director at Clearleft,3
a digital design studio based in Brighton, UK. When he’s
not making websites, he talks at conferences about making
websites. Sometimes he even writes books about making
websites, like the web book at ResilientWebDesign.com
that you can have for free. But he mostly spends his time
goofing off on the internet, documenting his time-wasting
on his website adactio.com where he has been writing for
over fifteen years.

1	 http://bondartscience.com/
2	 http://smashed.by/contentmob
3	 https://clearleft.com/

http://bondartscience.com/
http://smashed.by/contentmob
https://clearleft.com/

Foreword

I f you have a moment, look up the work of artist Emily
Garfield. She creates exquisite, intricately detailed
maps in watercolor — each of them stunning, and

each of them depicting a place that doesn’t exist. Instead of
depicting a city’s real, actual landscape, she begins by cre-
ating a single, complex pattern — a knotted road or twisty
river, or a compact grid of city blocks — and repeating it.
Garfield iterates on that pattern, changing it slightly each
time, spiraling out until her not-map is finished. As a result,
her art has a generative, fractal-like quality: it’s built from
patterns, yes, but feels part of a cohesive whole.

In fact, Garfield once said, “I describe my process as grow-
ing the drawing.” While reading this wonderful book, I
thought about that line a lot. Maybe you will, too.

In recent years, web designers have started embracing more
modular, pattern-driven design practices. And with good
reason: we’re being asked to create compelling experiences
for more screens, more devices, more places, more people
than ever before. As a result, we’ve started to break our inter-
faces down into tiny, reusable modules, and begun using
those patterns to build products, features, and interfaces
more quickly than ever before.

But by themselves, design patterns aren’t enough. They
need to live within a larger process, one that ensures these
little interface modules feel unified, cohesive, connected.
Part of a whole. In other words, they need a design system
to thrive — and that’s where Alla’s book comes in.

In these pages, Alla shows us precisely how to create sys-
tems to support our digital designs. With clear writing, case
studies, and detailed examples, Alla shows us how to estab-
lish a common, shared language among our teams, which
allows us to more effectively collaborate; she’ll tell stories of
how different organizations have created their design sys-
tems, and put them into practice; and she’ll discuss different
models for evolving these systems over time.

In other words, this isn’t just a book. Alla has drawn a clear,
bright map for us, one that outlines a more sustainable
model for digital design. And if we walk the paths she’s
drawn for us, we’ll learn to grow better design systems —
and with them, better designs.

 — Ethan Marcotte

What This Book Is About

A s the web continues to change rapidly and become
more complex, thinking of it in terms of static
pages has become untenable, and many of us have

started to approach design in a more systematic way.

And yet not all design systems are equally effective. Some
can generate coherent user experiences, others produce con-
fusing patchwork designs. Some inspire teams to contribute
to them, others are neglected. Some get better with time,
more cohesive and better functioning; others get worse,
becoming bloated and cumbersome.

What are the key qualities of a well-functioning, enduring
design system? This question intrigued me so much I spent
a huge amount of time researching and thinking about it.
My research and thoughts provide the basis of this book.

Drawing on the experience of companies of various sizes
and approaches to design systems, I set out to identify what
makes an effective system that can empower teams to
create great digital products.

Who This Book Is For

This book is aimed mainly at small and medium-sized
product teams trying to integrate design systems thinking

viii Introduction

into their organization’s culture. Everyone in the product
team could benefit from reading this book, but particularly
visual and interaction designers, UX practitioners and
front-end developers.

Scope Of The Book

This book presents a perspective on design systems based
on my experience as an interaction and visual designer.
I don’t touch on other related areas, such as information
architecture, content strategy or design research. Equally,
this is not a technical book. You won’t find any code samples
or in-depth analysis of development tools and techniques,
although there will be plenty of discussion directly related
to front-end practices.

This is a design book, but it isn’t about what to design.
Neither is it an attempt to create a comprehensive guide to
designing digital products.1 It is about how to approach your
design process in a more systematic way, and ensure your
design system helps to achieve the purpose of your product
and fits with the culture of your team.

1	 For that I recommend About Face: The Essentials of Interaction Design
by Alan Cooper; Lean UX: Applying Lean Principles to Improve User
Experience by Jeff Gothelf; and Designing for the Digital Age: How to
Create Human-Centered Products and Services by Kim Goodwin.

ix

How This Book Is Organized

The book has two parts.

PART 1: FOUNDATIONS

In the first part we’ll talk about the foundations of a design
system – patterns and practices. Design patterns are
repeatable, reusable parts of the interface, from the concrete
and functional (like buttons and text fields) to the more
descriptive (like iconography styles, colors and typography).
Patterns interconnect, and together they form the language
of your product’s interface.

Shared practices are how we choose to create, capture, share
and use those patterns – by following a set of principles, or
by keeping a pattern library.

PART 2: PROCESS

A design system cannot be built overnight – it evolves
gradually with your product. But there are certain principles
and practices that we can follow to make sure the system
develops in the right direction and provide us some degree
of control over it. The second part of the book focuses on
practical steps and techniques to establish and maintain a
design system, including: planning the work; conducting
an interface inventory; setting up a pattern library; creating,
documenting, evolving and maintaining design patterns.

x Introduction

Terminology

Before we dive into the topic, let’s establish the terms we’ll
use throughout the book.

PATTERN OR DESIGN PATTERN

I use the word pattern to refer to any repeating, reusable
parts of the interface (such as buttons, text fields, iconog-
raphy styles, colors and typography, repeating user flows,
interactive behaviors) that can be applied and repurposed to
solve a specific design problem, meet a user need, or evoke
an emotion. Throughout the book, I distinguish between
functional patterns related to behaviours, and perceptual
patterns related to brand and aesthetics.

FUNCTIONAL PATTERNS OR MODULES

These terms are used interchangeably throughout the book,
to refer to tangible building blocks of the interface, such as a
button, a header, a form element, a menu.

PERCEPTUAL PATTERNS OR STYLES

These are more descriptive and less tangible design pat-
terns, such as iconography styles or colors and typography,
typically used to create a certain kind of aesthetic and
strengthen an emotional connection with a product.

xi

PATTERN LANGUAGE OR DESIGN LANGUAGE

A set of interconnected, shareable design patterns forms
the language of your product’s interface. A pattern language
combines functional and perceptual patterns, as well as
platform-specific patterns (such as the hamburger menu),
domain patterns (such as modules specific to an e-com-
merce site, or finance software, or a social app), UX and
persuasive patterns, and many other types meshed together
in an interface for a specific product.

DESIGN SYSTEM OR SYSTEM

There isn’t a standard definition of “design system” within
the web community, and people use the term in different
ways – sometimes interchangeably with “style guides” and
“pattern libraries.” In this book, by design system I mean a
set of connected patterns and shared practices, coherently
organized to serve the purposes of a digital product.

PATTERN LIBRARY AND STYLE GUIDE

A pattern library is a tool to capture, collect and share design
patterns and guidelines for their usage. Creating a pattern
library is an example of a (good) design practice. Tradi-
tionally, a style guide focuses on styles, such as iconogra-
phy styles, colors and typography, while a pattern library
includes a broader set of patterns.

xii Introduction

Design System Insights

This book is based on insights from real-world products.
Most of them are drawn from my experience of working
at FutureLearn, an open education company in London.
During my three years working there as a designer, I have
had an opportunity to observe and influence how a design
system evolves, from initial concepts to a mature system.

I also closely followed five other companies of different
sizes and approaches to design systems: Airbnb, Atlassian,
Eurostar, Sipgate, and TED. Over the course of 18 months
I’ve been interviewing members of their teams, to under-
stand the challenges they face as their systems evolve.

AIRBNB2

Roy Stanfield (principal interaction designer) gave me
plenty of detail about the Design Language System (DLS)3
at Airbnb. The distinguishing aspect of DLS is its strictness.
Patterns are specified and used precisely, and rules are
followed closely. The team has placed a number of practices
and tools in place to achieve that. They still have some chal-
lenges with adoption, speed of integrating new patterns,
and with keeping art direction and engineering in sync.

2	 https://www.airbnb.com/
3	 http://smashed.by/airbnblanguage

xiii

https://www.airbnb.com
http://smashed.by/airbnblanguage

ATLASSIAN4

Jürgen Spangl (head of design), James Bryant (lead
designer), and Kevin Coffey (design manager) shared
their perspectives on ADG (Atlassian Design Guidelines)5
in November 2016. While there’s a dedicated team which
curates the patterns, they also have an open source model
for contributions. Everyone in the company is not only
allowed, but encouraged to contribute to the system. The
challenge with this model is to find a balance between giv-
ing people enough freedom to contribute, yet making sure
the system stays managed and curated.

EUROSTAR6

Dan Jackson (solutions architect) was very forthcoming
about what they’ve been doing at Eurostar. At the time of
writing, the team was in the process of building their first
pattern library.7 They initially experienced some challenges,
particularly with prioritizing the project and encouraging
everyone on the team to contribute. After a year, they were
given the resources to allocate a dedicated team, which is
now leading the work on the system.

4	 https://www.atlassian.com/
5	 https://atlassian.design/
6	 http://www.eurostar.com/
7	 https://style.eurostar.com/

xiv Introduction

https://www.atlassian.com
https://atlassian.design
http://www.eurostar.com
https://style.eurostar.com

SIPGATE8

Tobias Ritterbach (experience owner) and Mathias Wege-
ner (web developer) both gave me a lot of insight into their
work. The Sipgate pattern library9 was established in 2015,
but after a year the team found that there were too many
patterns, mainly due to a lack of communication between
the product teams. More recently, they were in the process
of working on a new pattern library, with a goal to unify the
design language across several product websites.

TED10

Michael McWatters (UX architect), Aaron Weyenberg (UX
lead) and Joe Bartlett (front-end developer) all provided input
into discussions in fall 2016. Among the people who support
TED.com, a small handful of UX practitioners and front-end
developers are responsible for design system decisions. The
team has a deep shared knowledge of their patterns, which
are documented in a simple way.11 So far they haven’t felt a
need to establish a comprehensive pattern library.

8	 https://www.sipgate.de/
9	 https://design.sipgateteam.de/
10	 http://www.ted.com/
11	 http://ted.com/swatch

xvDesign System Insights

http://TED.com
https://www.sipgate.de
https://design.sipgateteam.de
http://www.ted.com
http://ted.com/swatch

Acknowledgements

I want to thank everyone at FutureLearn for their
support of this book, in particular: Lucy Blackwell,
for reviewing the early drafts and for guiding and

inspiring me to do my best work; Mike Sharples, for the
thought-provoking feedback on the early draft and for
challenging me; Gabor Vajda, for helping me to shape many
of the ideas described in the book; Jusna Begum, for bring-
ing some order and structure to my chaotic thoughts; and
Sam McTaggart, Dovile Sandaite, Kieran McCann, Storm
MacSporran, Katie Coleman, Nicky Thompson, James
Mockett, Chris Lowis and Matt Walton, for taking the time
to listen and for sharing their feedback.

Huge thanks to the Smashing crew and everyone who
helped me shape this book and make it happen. Special
thanks to Karen McGrane, Jeremy Keith and Vitaly Fried-
man, for the thoughtful and constructive feedback which
made this book so much better; Owen Gregory, for editing
the book; to Ethan Marcotte for the foreword; and Espen
Brunborg for the beautiful cover design.

xvi Introduction

I would particularly like to thank the many people who
kindly agreed to share their experiences and perspectives,
many of which contributed to the material in the book: the
teams mentioned in Design Systems Insights, as well as
Sarah Drasner, Laura Elizabeth, Matt Bond, Trent Walton,
Geri Coady, Joel Burges, Michal Paraschidis, Heydon Picker-
ing, Léonie Watson, Bethany Sonefeld and Chris Dhanaraj
(IBM), Amy Thibodeau (Shopify), and Joe Preston (Intuit).
					
Finally, I want to thank my family: my husband, Hakan, and
my little daughter, Alyona, for the patience and understand-
ing they gave me in the 18 months it took to reach a final
draft. Writing a book while having a full-time job was an
enormous amount of work and it would have been impos-
sible without my husband’s support. I’m sorry, Alyona, for
all the times I couldn’t play with you because I was busy
working. I love you and I promise to make up for it!

xvii

Design Systems

There isn’t a standard definition of “design system” within the web
community, and people use the term in different ways. In this chap-
ter, we’ll define what a design system is and what it consists of.

A design system is a set of interconnected patterns
and shared practices coherently organized to achieve
the purpose of digital products. Patterns are the

repeating elements that we combine to create an interface:
things like user flows, interactions, buttons, text fields,
icons, colors, typography, microcopy. Practices are how we
choose to create, capture, share and use those patterns, par-
ticularly when working in a team.

Take a look at these two screens of unrelated products.
One is from Thomson Reuters Eikon, a trading and market
analysis application; the other is from FutureLearn, an open
education social learning site (see facing page).

In each example the patterns work together to achieve
different purposes. For Thomson Reuters, it’s about han-
dling data, utility, quick scanning and multitasking; for
FutureLearn, it’s about thoughtful reading, informal learn-
ing, reflection and connecting with like-minded people. The
purpose of the product shapes the design patterns it adopts.

18 Part I

Chapter 1

The Thomson Reuters layout is panel- and widget-based, to
allow users to multitask. The design is dense, fitting large
amounts of information on the screen. Density is achieved
through tight spacing, compact controls, flexible layouts
and typographic choices, such as a condensed typeface and
relatively small headings.

On the other hand, the FutureLearn layout is much more
spacious. Each screen is typically focused on a single task,
such as reading an article, engaging in a discussion, or com-
pleting an interactive exercise. The layout here is mostly a
single column; there’s high-contrast typography with large
headings, chunky controls, and generous white space.1

1	 The patterns on FutureLearn are chosen to support reflective
learning. The learner needs to focus on the task at hand and not be
distracted by displacement activities. The goal was to create an atmos-
phere that feels calm and contemplative.

A screen from Thomson Reuters Eikon (left) and a screen from FutureLearn.

19Design Systems

The choice of design patterns is influenced by many factors.
Some of them come from the domain the product belongs to,
and from its core functionality: those are functional patterns.
To use trading and market analysis software, for instance,
you’d need to be accustomed to task bars, data fields and
grids, charts and data visualization tools. For an online
learning site, it could be articles, videos, discussion threads,
progress indicators and interactive activities. An e-com-
merce site would most likely include a product display, list
filters, shopping cart and a checkout.

The ethos of a product (or the brand, depending on your
definition of a brand) also forms patterns which together
shape how a product is perceived; throughout this book I’ll
refer to them as perceptual patterns. By that I mean things
like tone of voice, typography and color choices, iconogra-
phy styles, spacing and layout, specific shapes, interactions,
animations, and sounds. Without perceptual patterns you
wouldn’t feel that much difference between products from
within the same domain, which have similar functionality.

20 Chapter 1

The choice of design patterns is influenced by many factors.
Some of them come from the domain the product belongs to,
and from its core functionality: those are functional patterns.
To use trading and market analysis software, for instance,
you’d need to be accustomed to task bars, data fields and
grids, charts and data visualization tools. For an online
learning site, it could be articles, videos, discussion threads,
progress indicators and interactive activities. An e-com-
merce site would most likely include a product display, list
filters, shopping cart and a checkout.

The ethos of a product (or the brand, depending on your
definition of a brand) also forms patterns which together
shape how a product is perceived; throughout this book I’ll
refer to them as perceptual patterns. By that I mean things
like tone of voice, typography and color choices, iconogra-
phy styles, spacing and layout, specific shapes, interactions,
animations, and sounds. Without perceptual patterns you
wouldn’t feel that much difference between products from
within the same domain, which have similar functionality.

Although HipChat and Slack have similar purposes and functionality,
they feel quite different, largely due to how brand is expressed throughout
their interfaces.

Patterns are also shaped by platform conventions. A product
can feel distinctly web-y or distinctly app-y because of a
platform-specific design language. An iOS application for
a product can behave and feel entirely different from its
Android equivalent.

There are many kinds of patterns at play when it comes to
creating digital products. That’s why design is hard. Patterns
need to interact, connect, yet still work seamlessly together.
Let’s take a closer look at them.

21Design Systems

Design Patterns

The idea of design patterns was introduced by the architect
Christopher Alexander in his seminal books, The Timeless
Way of Building and A Pattern Language. One question that
runs through the books is why some places feel so alive and
great to be in, while others feel dull and lifeless. According
to Alexander, the way places and buildings make us feel is
not due to subjective emotions merely. It’s a result of certain
tangible and specific patterns. Even ordinary people can
learn and use them to create humane architecture.

A Pattern Language contains 253 architectural design pat-
terns, starting from the larger ones, such as a layout of a
city and road systems, down to the smallest ones, such as
lighting and furniture in a family house.

A pattern is a recurring, reusable solution that can be
applied to solve a design problem.

Each pattern describes a problem that occurs over and over again
in our environment, and then describes the core of the solution to
that problem.”

— Christopher Alexander, A Pattern Language

“

22 Chapter 1

Similarly, when creating interfaces we use design patterns
to solve common problems: we use tabs to separate con-
tent into sections and indicate which option is currently
selected; we use a dropdown to display a list of options at
the user’s request.2

Some of the patterns from Bootstrap, a front-end framework for developing
responsive websites.

We use patterns to offer feedback, to show how many steps
are left in a process, to allow people to interact with each
other, to view and select items. Design patterns can intrigue
and encourage, make tasks easier, create a sense of achieve-
ment or an illusion of control.

2	 http://ui-patterns.com/ is a great source of common design patterns,
grouped by purpose and the design problem it solves. For a compre-
hensive read on UI patterns, I also recommend Designing Interfaces:
Patterns for Effective Interaction Design by Jenifer Tidwell.

23Design Systems

http://ui-patterns.com/

Example of persuasive pattern “recognition over recall” on UI Patterns.3

Most of the design patterns are established and familiar.
They make use of people’s mental models and allow design
to be understood intuitively. Entirely new patterns require
users to learn and adopt them first — they are relatively
rare.4 What makes a product distinct from its competitors
is not the novelty of patterns it uses, but how those patterns
are executed and applied, and how they interconnect to
achieve a design purpose.

3	 http://smashed.by/patternsrecognition
4	 Until the swipe gesture had emerged as a mobile pattern, no one
would have known how to engage with it. Now we see whole products
built on this pattern (such as Tinder). The transition to using what
people know and exploring something new is very delicate; products
live and die based on when and how they do this.

24 Chapter 1

http://smashed.by/patternsrecognition
http://smashed.by/patternsrecognition

A set of interconnected patterns forms the design language
of your product’s interface.

A design language emerges as we work on a product. We
don’t always know what this language is. Sometimes,
effective and interesting designs are based on intuition, and
we struggle to articulate exactly how and why they work.
Designers and developers might know it instinctively, but
intuition is not always reliable or scalable. In his article
“Researching Design Systems,”5 designer Dan Mall noted
that one of the main goals of a design system is “extending
creative direction.” If you need to get a group of people to
follow a creative direction consistently, reliably and coher-
ently, patterns need to be articulated and shared.

When you articulate your design language it becomes
actionable and reproducible. You start approaching design
with a system in mind. For example, instead of discussing
how to tweak an item to make it stand out more, you can
have a suite of promotional patterns, each one targeted to
achieve a different level of visual prominence. The visual
loudness guide6 by Tom Osborne is an example of how
buttons and links can be approached systematically. Instead
of listing them individually, they are presented as a suite,
each one having a different “volume” corresponding to its
intended visual prominence.

5	 http://smashed.by/researchingsystems
6	 http://smashed.by/visualloudness

25Design Systems

http://smashed.by/researchingsystems
http://smashed.by/visualloudness
http://smashed.by/visualloudness
http://smashed.by/researchingsystems
http://smashed.by/visualloudness

The visual loudness guide by Tom Osborne.
Source: http://smashed.by/visualloudness

Articulating your language allows you to gain more control
over the system. Rather than making small tweaks, you
can affect it in much more profound ways. If you discover
a small design change which made a positive impact on
user experience, you can apply it to the pattern across the
system rather than to one place. Instead of spending hours
on designing a dropdown, you can spend that time with
the users and domain experts, finding out if a dropdown
is needed in the first place. When the design language is
shared knowledge, you can stop focusing on the patterns
themselves and instead focus more on the user.

26 Chapter 1

http://smashed.by/visualloudness

Throughout the book we’ll talk a lot about articulating,
sharing and documenting a pattern language for a digital
product. In particular, we’ll look at two types of design
patterns: functional and perceptual. Functional patterns are
represented as the concrete modules of the interface, such
as a button, a header, a form element, a menu. Perceptual
patterns are descriptive styles that express and communi-
cate the personality of the product visually, such as color
and typography, iconography, shapes and animations.

To extend the analogy with language, functional patterns
are a bit like nouns or verbs — they are concrete, actiona-
ble parts of the interface; whereas perceptual patterns are
similar to adjectives — they are descriptive. For example,
a button is a module with a clear function: allow users to
submit an action. But the typographic style in the label of
the button, its shape, background color, padding, interactive
states and transitions are not modules. They are styles; they
describe what kind of button it is. From a front-end perspec-
tive, modules always have a basis in HTML, and perceptual
patterns are typically CSS properties.

A design system contains many other kinds of patterns: user
flows (such as completion of forms with errors and success
messages), domain-oriented design patterns (like learning
patterns for EdTech systems, and e-commerce patterns),
and persuasive UX patterns. The focus of this book is on
the functional and perceptual patterns as the core building
blocks of a design system.

27Design Systems

But, of course, what matters is not only the patterns
themselves, but how they are evolved, shared, connected
and used.

Shared Language

Language is fundamental to collaboration. If you work in a
team, your design language needs to be shared among the
people involved in the creation of the product. Without a
shared language, a group of people can’t create effectively
together — each person will have a different mental model
of what they’re trying to achieve. Let’s return to the button
example. Even such a basic unit of the interface can have
different meanings. What exactly is a button? An outlined
area that you can click on? An interactive element on a page
that links somewhere? A form element that allows users to
submit some data?

In her book How to Make Sense of Any Mess, Abby Covert
suggests that a shared language should be established
before you think about interfaces, by discussing, vetting
and documenting our language decisions. This idea could
be applied to describing high-level concepts as well as the
day-to-day language we use to talk about design decisions.
Having a shared language would mean that we have the
same approach to naming interface elements and defining
design patterns, or that the same names are used in design
files and front-end architecture.

28 Chapter 1

Even that might not be enough. Sometimes, people in a
group think they have reached a mutual understanding
because they share the same vocabulary and use it expres-
sively, but they still retain fundamental differences in
understanding. For example, after a year of using the term
“Scenario” as a key concept in a project, you might discover
that different people are interpreting it in entirely different
ways. It’s not only about developing a shared language — we
need also to develop a shared use of language. It’s not enough
to have a shared understanding of the term button. People
must also know why and how to use a button, in what con-
texts, and the purpose a button can serve.

Suppose we use an element called “Sequence” in the inter-
face. By presenting it as “Sequence” we aim to communicate
to users that the steps should be looked at in a specific order.

Example of “Sequence” module.

Ideally, everyone involved in the creation of the product
should know what this element is: its name and purpose,
why it’s been designed that way, and how and when it

29Design Systems

should be used.7 The stronger this shared knowledge is,
the higher the chances that it will be used appropriately.
Designers and front-end developers should have this knowl-
edge, but it helps if people from other disciplines (content,
marketing, product management) have some idea too.

It should be known to everyone as “Sequence,” not “Wizard
control” or “Fancy bubbles.” If designers refer to it as “Fancy
bubbles,” developers call it “Wizard control” and users inter-
pret it as set of optional tabs, then you know your language
doesn’t work. Why is the user’s interpretation important?
We can remember here Don Norman’s pioneering work,
The Design of Everyday Things, where he talks about the gulf
between the system image (the interface) and the user’s
model (the perception of the interface formed by the user
through interaction with it). If the user has a mental model
of the interaction that doesn’t fit with the system image
provided by the design team, then the user will be contin-
ually challenged by unexpected behavior from the system.
An effective design language bridges the gap between the system
image and the (assumed) user model.

7	 The challenge is also not to impose one definition or conception
of “Sequence,” but to understand and work with its context of use so
that, for example, the UX team can support different types of sequenc-
ing (for FutureLearn, sequencing of courses, runs, steps, user actions,
etc.) within a coherent framework.

30 Chapter 1

As your language becomes richer and more complex, you
need an efficient way to capture and share it. On today’s
web, a pattern library is one of the key examples of good
practice in supporting a design system.

Pattern Libraries And Their Limitations

A design system consists not only of patterns, but also
techniques and practices for creating, capturing, sharing and
evolving those patterns. A pattern library is a tool to col-
lect, store and share your design patterns, along with the
principles and guidelines for how to use them. Even though
pattern libraries have become popular on the web relatively
recently, the concept of documenting and sharing design
patterns in various forms has existed for a long time.

Palladio’s The Four Books of Architecture, first published in
1570 in Venice, is one of the most important and influential
books on architecture. It is also one of the earliest examples
of system documentation. Drawing inspiration from Greco-
Roman architecture, Palladio provided rules and vocabulary
for designing and constructing buildings, including princi-
ples and patterns, with detailed illustrations and explana-
tions of how they work.

31Design Systems

Types of staircases: spiral, oval and straight. Palladio described how and
when to use each type; for example, spiral staircases are suited for “very
restricted locations because they take up less space than straight stairs but
are more difficult to go up.”

In modern graphic design, systems have also long been
documented, from early typography and grid systems, to
Bauhaus design principles. For the last few decades, com-
panies have documented their visual identities in the form
of brand manuals, with NASA’s Graphics Standards Manual
from 1975 being one of the more well-known examples.

32 Chapter 1

Layout guidelines in NASA’s Graphics Standards Manual.8

On the web, pattern libraries started as extended brand
identity documents that focused on logo treatments,
corporate values and brand styles, such as typography
and color palettes.9 They then extended to include inter-
face modules, as well as guidelines for their use. Yahoo’s
pattern library was one of the first examples of docu-
mented interface patterns.

8	 http://smashed.by/nasastandards
9	 Perhaps this is how we can distinguish style guides from pattern li-
braries. Style guides traditionally focused on styles, such as colour and
typography. Pattern libraries can include styles, as well as functional
patterns and design principles, among other things.

33Design Systems

http://smashed.by/nasastandards
http://smashed.by/nasastandards

Yahoo’s pattern library was one of the first examples of documented
interface patterns.

For companies less resourceful than Yahoo, a pattern library
would typically live in a PDF or a wiki, which meant that it
was static and difficult to keep up to date. The aspiration for
many designers and developers today is a more dynamic or
“living” pattern library that contains the design patterns, as
well as the live code used to build them. A living style guide
or pattern library is more than a reference document — it’s
the actual working patterns used to create an interface for a
digital product.

34 Chapter 1

MailChimp’s pattern library 10 is one of the most influential early examples of
living pattern libraries on the web.

THE LIMITATIONS OF PATTERN LIBRARIES

Pattern libraries are sometimes thought of as interchangea-
ble with design systems. But even the most comprehensive
and living pattern library is not the system itself. It’s a tool
that helps to make a design system more effective.

A pattern library doesn’t guarantee a more cohesive and
consistent design. It might help to correct small inconsist-
encies or make a codebase more robust, but a tool alone will
have very little impact on the user experience.

10	 http://smashed.by/mailchimppatterns

35Design Systems

http://smashed.by/mailchimppatterns
http://smashed.by/mailchimppatterns

No pattern library will fix bad design. Patterns can still be
badly designed, misused or combined in ways that don’t
work as a whole. As Michael McWatters, UX architect at
TED, noted in an interview: “Even a Squarespace template
can be ruined by sloppy design thinking.” And conversely,
a product with a coherent user experience can be created
without a comprehensive pattern library (as we will see in
chapter 6 in the example with TED’s design system).

A living pattern library is associated with better collabo-
ration. Yet you might end up in a situation where only a
small group of people uses it, or there might be too many
disconnected patterns as a result of a lack of communica-
tion between the teams. When up-to-date, a pattern library
is a glossary for the shared language. But that doesn’t mean
there isn’t still room for interpretation. It’s the discussions
around the interpretation which are often the key to a pat-
tern library’s success or failure.

On the other hand, pattern libraries are sometimes blamed
for stifling creativity, leading to generic looking websites.
But again, a pattern library reflects the design system
behind it. If your system is fundamentally rigid and restrict-
ing, the pattern library can reveal and emphasize the rigid-
ity. If it allows plenty of creative experimentation, a good
pattern library can make the experimentation easier.

36 Chapter 1

With all the automated tools and style guide generators
available today, setting up a library of components can be
done much quicker than in the past. But without a founda-
tion of a coherent design system that integrates the patterns
and practices, its impact will be limited. When a pattern
library is used to support a solid design language founda-
tion, it becomes a powerful design and collaboration tool.
Until then, it’s a collection of modules on a web page.

What Makes An Effective Design System

The effectiveness of a design system can be measured by
how well its different parts work together to help achieve
the purpose of the product. For example, the purpose of
FutureLearn is “to inspire lifelong learning in everyone, any-
where.” We could ask, how effective is the design language
of the interface to help us achieve this, and how effective are
the practices of the team? If the interface is confusing and
people don’t achieve their goals, then the design language
is not effective. If it takes too long to build a new area of
the site because patterns have to be recreated from scratch
every time, then we know our practices can be improved.

A design system can be considered effective when it com-
bines cost-effectiveness in the design process, and efficiency
and satisfaction of the user experience in relation to the
product’s purpose.

37Design Systems

SHARED PURPOSE

In Thinking in Systems, Donella Meadows explains that one
of the most important qualities systems have is how they’re
connected and organized: subsystems are aggregated into
larger systems, which in turn form part of something larger.
A cell in your liver is part of an organ, which is a part of you
as an organism. No system exists in isolation. Your design
system might have a smaller subsystem within it: editorial
rules to control the layout of the page; or it might include a
method for scaling your logo responsively in a certain way.
At the same time, it is also part of other larger systems: your
product, your team, your company culture.

The Whitney Museum of American Art’s logo, a “dynamic W,”11 is a sim-
ple yet remarkably adaptable system in its own right. The W responds
to the artworks and words around it, allowing a huge range of flexi-
ble layout possibilities.

11	 http://smashed.by/whitneyidentity

38 Chapter 1

http://smashed.by/whitneyidentity
http://smashed.by/whitneyidentity

In highly effective systems, we see that subsystems are
connected and aligned toward a shared purpose: a design
approach is mirrored in the front-end architecture; design
patterns follow the guiding principles; the pattern language
is applied consistently in design, code and the pattern
library. We see harmony in the way those systems function:
their workflow is more efficient, and the user experiences
they generate feel more meaningful and coherent.

IDENTIFYING PROBLEMS

When there are gaps, it’s also easy to see them. A frag-
mented design system leads to a fragmented user experi-
ence, full of conflicting messages. We want the user to sign
up for our newsletter, but we also want them to check out
our latest products. We want them to progress through the
steps, but we also need to make sure they rate each recipe.
“Sequence” is used to preview the steps in one area of the
site; in another, it is suddenly a tabbed navigation. The inter-
face is full of various shades of the same color and multiple
versions of the same button. The team’s productivity is also
affected: making the tiniest change is time-consuming and
fiddly because of the confusing, tangled up code. Designers
spend their time copying pixels and reinventing solutions
to the same problems, instead of understanding and solving
real user needs.

39Design Systems

How do we reduce the gaps and make our design system
more effective? By understanding what it is and how it
works. We’ll start by looking at how a pattern language
evolves in a new product, by taking a simple fictional
ten-minute recipe website as an example.

Example: A Ten-Minute Recipe Site

Imagine we are creating a website for sharing recipes with
people who love healthy food but don’t want to spend a lot
of time cooking. If we were to approach it with a system in
mind and define design patterns early on, where would we
start? Before we begin, let’s make some assumptions. We
understand the domain of cooking, and enough research
has already been done to inform our design decisions. So
what we’re trying to do is not figure out what the experi-
ence should be, but see how we can establish design system
thinking for this new website.

PURPOSE AND VALUES

One of the first things we’d do is try to understand who
our users are, their goals, needs and motivations. To keep it
simple, let’s say that we know they are busy professionals
and their goal is to get a tasty, healthy meal without hassle
and hours spent cooking. There are many ways we can help
them achieve this goal: connect them with chefs, deliver
food to their doorstep, build a conversational app. But we

40 Chapter 1

want to do it through a website with ten-minute recipes.
If we were to express the purpose in a single sentence, it
would be along the lines of: Motivate and empower people to
cook delicious healthy meals in no more than ten minutes. This
purpose is the core of the product, and it should inform
design and development decisions. The team should recog-
nize that purpose and believe in it — it shouldn’t feel forced.

Another important element is the ethos that captures the
values and spirit we try to portray through the site. For us
it can be simple healthy food and experimentation with
common ingredients. For other cooking sites it can be haute
cuisine and mastery of culinary skills.

DESIGN PRINCIPLES

To make sure the purpose of the product is expressed clearly
through everything we do, we would need to establish a few
grounding principles and values. They might be discussed
informally or written as a manifesto — what’s important is
that the people involved in the creation of the product agree
on those values and commit to them.

For example, everyone on the ten-minute cooking recipe
site team understands the value of time. They are moti-
vated by having a time limit on the recipes, and as a result
they all strive to make interactions on the site short, simple,
fast and smooth.

41Design Systems

This principle will be expressed not only through design
patterns, but the performance of the site, its tone of voice,
and even how the team operates.

These principles might not necessarily be official or even
written down. But having an agreement and awareness in
the team on what they are is essential to keep everyone’s
effort and priorities in sync. It can also help with deci-
sion-making: from which feature to build first and which
approach to use, to working out UX flows, or how buttons
should look and the choice of typeface.12

BEHAVIORS AND FUNCTIONAL PATTERNS

We’d work out some of the key behaviors we want to
encourage or enable in our users that will help them achieve
their goals.

•	 We want people to always choose a healthy home-
cooked meal over fast or microwaved food. This means
that our meals need to look delicious and healthy, and
be more enticing than microwaved food. Good imagery
with irresistibly delicious yet simple-looking food can
help us here.

12	 In the next chapter we will look in more detail at the qualities of
effective design principles and how they can form a foundation of
your design language.

42 Chapter 1

•	 We want to enable people to achieve good results
in under ten minutes. This means that we’ll need to
present the recipes in a few simple steps. The steps
should be short, clear and focused. Perhaps we could
have a timer on each step, to make sure we keep to
the ten-minute promise.

•	 We want to encourage people to be spontaneous and
feel like they can prepare something whenever they like.
Start with what you have already, rather than with what
you need to get — no need to shop for extravagant ingre-
dients. In terms of UI, this could be supported by easily
selectable ingredient thumbnails with clear labels.

•	 We want to encourage people to be creative and spon-
taneous, and to have fun. Show which ingredients are
optional and what they can be replaced with. Show unex-
pected combinations that could be interesting to try.13

Naturally, the design details will change as we work on the
site, but those key behaviors would remain the same. Those
behaviors will inform the core functional modules and inter-
actions of the site: ingredient thumbnails, recipe cards, step
sequence, timer.

13	 For further reading on understanding what people want, and shap-
ing a vision for a new product, see We Don’t Sell Saddles Here by Stewart
Butterfield, CEO of Slack (http://smashed.by/saddles).

43Design Systems

http://smashed.by/saddles
http://smashed.by/saddles

AESTHETICS AND PERCEPTUAL PATTERNS

Around the same time, we’d need to work out how we want
to be perceived by someone using the ten-minute cooking
recipes site. Are we simple and down-to-earth or glamor-
ous and sophisticated? Are we serious or playful? Bold or
subdued? Utilitarian or emotional? What are the aesthetics
that capture the personality and ethos we want to portray
through the interface? We’d start thinking about the brand.

We’re passionate about healthy food, so we want it to come
through the site. Perhaps it would have an organic, warm,
wholesome feel. We also believe that cooking doesn’t need
to take a lot of planning and preparation; it can be spontane-
ous and fun, and you can experiment and be creative in the
ten-minute time limit.

At this point we would probably put together some mood
boards and start experimenting with visuals until the brand
feels right.14 Once we achieve this, we can define core visual
brand elements such as typography, color palette, tone of
voice, and any distinguishing features of the brand; for
example, illustrations, image styles, specific shapes, unique
interactions that capture the essence of our service and
present content in the best way.

14	 More about the process of defining perceptual patterns in chapter 4.

44 Chapter 1

Let’s say we come up with a warm, earthy color palette,
hand-drawn icons, typography with a focus on readability,
quality photography of healthy food, and a few simple inter-
face elements and controls. These styles will become our
perceptual patterns.

SHARED LANGUAGE

Alongside this process we will be making language deci-
sions by choosing to refer to concepts in certain ways. What
is a “recipe”? What do we mean by “steps”? What makes a
“delightfully simple” interaction? The words we choose will
influence how the team thinks. And indirectly, they will
shape the design.

At first, the patterns and language choices will be shared
informally. But as our team and the product grow, so will
the language. Eventually we’ll need a more structured way
to capture, share and organize our design vocabularies.15

Now that we’ve looked at the design process in a nut-
shell using a fictional site, we can look at how systems
evolve, using examples from real-world digital products
and companies.

15	 In chapter 5, we will see how effective names and a collaborative
naming process can become part of the foundation of a design lan-
guage system. In chapter 10 we will look at pattern libraries as a way
to capture language choices and establish a shared vocabulary.

45Design Systems

46 Part I

Chapter 2

Design Principles

Solid principles are the foundation for any well-functioning system.
In this chapter we’ll discuss the qualities of effective design principles
and look at some of the ways of defining them.

Earlier we talked about the importance of starting
with the purpose and ethos of the product when
designing the interface. Having clarity on the

purpose is paramount because all other decisions should be
shaped by it, even if indirectly.

How do we make sure that the purpose of the product is
manifested through design? By establishing a few ground-
ing values and principles.

In some companies, especially early on, trying to articulate
shared guidelines can be hard. Design principles are not
something that can be measured and quantified, and defin-
ing them can take a few iterations.

There might also be some confusion about what principles
are exactly. Depending on the company, they can be more
focused on the brand, the team culture, or the design
process. The principles at Pinterest1 are more brand-
focused (“Lucid,” “Animated,” “Unbreakable”),

1	 http://smashed.by/pinterestredesign

http://smashed.by/pinterestredesign
http://smashed.by/pinterestredesign

47Design Principles

whereas at the UK’s Government Digital Service2 (GDS)
they’re directed more at how the team operates (“Do less,”
“Iterate. Then iterate again”).

Sometimes principles are used for a limited time, for a
specific project. Designer Dan Mall likes to write a “design
manifesto” at the start of every project, to make sure crea-
tive direction and objectives are clearly expressed.3 In other
cases, principles are more long-lasting, and their heritage
becomes part of the company ethos. Take Jack Daniel’s
values of “confidence,” “independence” and “honesty,”
which have remained the same for the last century.4

Larger companies might have separate sets of principles for
the user experience, the brand and the design system.5 Addi-
tionally, each team working in a company might also have
their own team principles. While this works for some,
others can find that having multiple sets of guidelines can
contribute to a design system’s fragmentation.

2	 http://smashed.by/govukprinciples
3	 http://smashed.by/whatdoimake by Dan Mall
4	 http://smashed.by/jack by Avi Dan
5	 Google has well known broad-brush design principles such
as “Focus on the user and all else will follow,” and a more specific
set of principles for its material design language, such as “Motion
provides meaning.”

http://smashed.by/govukprinciples
http://smashed.by/govukprinciples
http://smashed.by/whatdoimake
http://smashed.by/jack

48 Chapter 2

At Atlassian, an enterprise software company, the principles
for marketing and for the product were initially different.
Over time, the team brought them closer together, and they
are now working on a unified set of principles, with the goal
of having a shared philosophy to bridge the gap between the
disciplines of marketing, product and support.

It is one system. The principles are there to connect the dots.”
— Jürgen Spangl, head of design, Atlassian

Instead of having a separate set of principles for different
teams and parts of the system, Atlassian aims to have a few
key values — such as “Bold,” “Optimistic” and “Practical,
with a wink” — going across all the touchpoints in the cus-
tomer journey of Atlassian products. While those values are
the same throughout the journey, they are not represented
with the same level of intensity at different stages.

There is a lot of “boldness” in the sales and marketing areas
of the site, to showcase the products and help people under-
stand their value. But once you get to the product itself and
support areas, the experience becomes more about getting
the work done and making sure people are able to be as
effective as possible. So the boldness is toned down and the
“practical” value is shifted up. As Kevin Coffey, design man-
ager at Atlassian noted: “Nobody wants a bold support page.”

“

49Design Principles

Qualities Of Effective Design Principles

Approaches to design principles are unique to every com-
pany and can take many forms. Principles can be overar-
ching or more granular, temporary or long-lasting. What
matters is how effective they are at unifying design think-
ing and distributing creative direction in the team. In the
context of this book, design principles are shared guidelines that
capture the essence of what good design means for the team, and
advice on how to achieve it; in other words, agreed criteria for
what constitutes good design in your organization and for
your product.

Regardless of your approach, effective guidelines typically
have these qualities in common.

1. THEY’RE AUTHENTIC AND GENUINE

I’m sure you’re familiar with these principles: “Simple. Use-
ful. Enjoyable.” They are ubiquitous, we hear them every-
where. There’s no argument that products that are designed
well follow a certain set of common principles (take Dieter
Rams’ ten commandments of good design, for example). But
qualities like these should be a given — they should be done
by design — along with other concerns, such as accessibility
and performance.

50 Chapter 2

I’ve yet to see a consumer digital product which has
“Complex,” “Useless,” and “Painful to work with” among
its principles.

Knowing that your product should be useful and enjoyable
is not going to be hugely helpful in guiding your design
decisions, because these qualities can be interpreted in a
variety of ways. What would make them more helpful is
knowing exactly what those words mean to your team and
your product. What does innovative entail? When is a design
considered useful? How do you know if it’s really delightful?
Good design principles define qualities that can be inter-
preted in different ways, and ground them in the context of
a specific product.

Let’s take TED as an example. One of TED’s design princi-
ples is “Be timeless, not cutting edge.” The word timeless
is specific not only to TED’s interface but its entire brand
and design approach. And this means they are not going to
adopt a new technology or introduce a design element for
the sake of following a trend. First and foremost, it has to
serve a purpose, and it has to work for as many users as pos-
sible. For TED, timeless means not only simplicity but also
being conscious of stylistic features that have no proven
benefits to users. The team wouldn’t introduce a parallax
effect, for example, even though it feels very current, unless
it solved a real design problem.

51Design Principles

2. THEY’RE PRACTICAL AND ACTIONABLE

A principle should offer practical guidance on how to
solve a design problem within the context of a specific
product. Compare these two versions of one of Future-
Learn’s principles:

Make it simple. Make it so simple it’s almost invisible! We should
always work to remove friction on the platform, creating an experi-
ence that allows users real freedom to the content. If our platform is
easy to understand, people can and will use it more.”

This statement makes perfect sense — no one can argue
with the need to have a simple and usable interface. How-
ever, it’s not clear from this advice exactly what simplicity
means and how to achieve it. Compare it with this version:

No needless parts. Every design element, from the largest to the
smallest, must have a purpose, and contribute to the purpose of a
larger element it is part of. If you can’t explain what an element is for,
most likely it shouldn’t be there.”

In practice, the question “Is it simple?” is much harder to
answer objectively than “Does this contain needless parts?”
The latter can be acted on by going through the interface
and questioning the purpose of every element.

52 Chapter 2

To phrase the principles in a more practical way, try think-
ing of them not as something that should merely sound
good, but something that offers actionable advice. Imagine
a new person joined your team and you’ve been asked to
share five things that are most important when designing
for your project.

If you tell them “We like things to be delightful here. Make
it delightful!” it’s probably not going to help them do their
job. You’d need to define what delight means and share
practical examples of what delight looks like in the context
of your interface.

Let’s take a look at a couple of examples of design principles
and how they can be made more practical.

Vague: “Make it clear.”
Practical: “Only one number 1 priority. What do you want
your users to see and do first?”

Vague: “Make it simple.”
Practical: “Make it unbreakable. Just like a children’s toy,
make sure it is designed for exploration and impossible
to mis-tap.”6

6	 Pinterest design principles: http://smashed.by/pinterestredesign

http://smashed.by/pinterestredesign

53Design Principles

Vague: “Make it useful.”
Practical: “Start with needs. If you don’t know what the
user needs are, you won’t build the right thing. Do research,
analyze data, talk to users. Don’t make assumptions.”7

But even the best-worded principle can still be interpreted
in different ways. Nothing can make a principle more prac-
tical than pairing it with a real-life example to show how it
can be applied in practice.

Find specific parts of your interface where a principle is
clearly represented and connect the two together. Can you
point to a place which clearly shows having “only one num-
ber 1 priority”? Can you demonstrate how a pattern can be
truly “unbreakable” despite having rich interactions?

3. THEY HAVE A POINT OF VIEW

Design is shaped by the choices we make. Should this page
be more visually alive or more utilitarian? Is it appropriate to
be more playful or more serious here? Can we justify making
this module more usable at the cost of making it less flexible?

By achieving some things we often have to say no to others.
Good design principles help to work out priority and bal-
ance, even if there are conflicting factors to consider.8

7	 GDS design principles: http://smashed.by/govukfirst
8	 See http://smashed.by/matterofprinciple by Julie Zhuo

http://smashed.by/govukfirst
http://smashed.by/matterofprinciple

54 Chapter 2

Take the Salesforce Lighting Design System9 principles as
an example: “Clarity. Efficiency. Consistency. Beauty.” It’s
emphasized that they must be applied in the priority order
above. Beauty should not be promoted over efficiency or
consistency, and clarity should always come first. Ranking
the principles in this way communicates to the team what
should take priority when making design decisions.

It can be useful to acknowledge the conflicting values and
suggest how to find a balance. One of the early design prin-
ciples at Medium was “Direction over Choice.” This princi-
ple was often referred to while the team was designing the
Medium editor. They purposely traded a variety of format-
ting options for guidance and direction to allow people to
focus on writing.10

The few options available in Medium’s minimal editor clearly illustrated one
of Medium’s principles, “Direction over Choice.”

9	 http://smashed.by/lightning
10	 http://smashed.by/usefulprinciples by Dustin Senos

http://smashed.by/lightning
http://smashed.by/lightning
http://smashed.by/usefulprinciples

55Design Principles

Good principles don’t try to be everything for everyone.
They have a voice and actively encourage a designer to take
a perspective. This idea has been emphasized by Dan Mall
in “Researching Design Systems:”11

A design system should have guidelines for: perspective, point of
view, extending creative direction to everyone that decides to build
something with the design system. That stuff should be baked
in. Otherwise, we all might as well use Material Design and call
it a day.”

— Dan Mall

4. THEY’RE RELATABLE AND MEMORABLE

Here’s a fun test. Try asking people in your company what
your design principles are. If no one can remember them,
chances are they can be improved. To be memorable, the
principles must be in constant use. They should be referred
to in everyday conversations, included in presentations and
design critiques, displayed where they can be seen. And to
be in use, they must be genuinely useful, possessing the
qualities above.

It also helps not to have too many of them. Human memory
is limited and remembering more than four things at a

11	 http://smashed.by/researchingsystems

“

http://smashed.by/researchingsystems
http://smashed.by/researchingsystems

56 Chapter 2

time can be hard.12 The optimal number of design princi-
ples — if you want them to be in use — is between three and
five. When the teams at TED, Atlassian and Airbnb were
asked about their design principles during interviews for
this book, they were all able to recall them instantly. There
wasn’t a moment’s hesitation; no one got confused or tried
to look up the principles in a brand manual. How could they
remember them so well? Their principles were simple, relat-
able, useful — and there weren’t many of them.

Most importantly, the teams used them on a daily basis for
making design decisions. Airbnb’s four design principles
(“Unified,” “Universal,” “Iconic,” “Conversational”) are deeply
engrained in its design process:

When we design a new component, we want to make sure it
addresses all four of those. If we didn’t have a set of principles it
would be difficult to agree on things. We want to make sure each
piece lives up to it.” 13

— Roy Stanfield, principal interaction designer, Airbnb

12	 For further reading on the limitations of human working memory
see “The Magical Mystery Four: How is Working Memory Capacity Limit-
ed, and Why?” by Nelson Cowan (http://smashed.by/workingmemory)
13	 Interview with Roy Stanfield, principal interaction designer,
Airbnb, August 2016

“

http://smashed.by/workingmemory

57Design Principles

The team at Spotify came up with the acronym TUNE (tone,
usable, necessary, emotive) to make their design principles
more memorable. Asking if a design is “in TUNE” during
critiques and QA sessions has become part of Spotify’s
design process.14

Making sure your principles possess the qualities above
takes time, commitment and teamwork. But it’s worth
the effort — a core set of principles are at the heart of
any design system.

Defining Your Principles

Expressing your design approach in five sentences is not easy.
Every team arrives at their principles in their own way: some
go through rounds of workshops, others might get input from
their CEO or a creative director. Regardless of how you get
there, the following tips can be useful to keep in mind.

START WITH THE PURPOSE

Design principles must support the larger purpose of the
product and help express the product’s ethos. If you aren’t
sure where to start, look first at your company’s overarching
values or a product vision, and then try to work out how
design principles can contribute to that larger goal.

14	 http://smashed.by/designscale by Stanley Wood

http://smashed.by/designscale

58 Chapter 2

The main purpose of TED’s website can be captured in one
sentence: “Spread the talks as far and as wide as possible.”
In terms of TED’s ethos and values, this means reaching as
many people as they can, lowering the barrier to entry, and
making the product inclusive and accessible. It means pri-
oritizing performance and accessibility over flashy features,
clarity of message over bold experimental design. Their
“timelessness” principle encompasses that.

FIND SHARED THEMES

If you’re still in the process of defining your principles, a
useful exercise is to ask a few team members (or everyone,
depending on size of the team) to write them down indi-
vidually. What, in their opinion, does good design mean for
your product? How would they explain it in five sentences
to a new member of the team, in a way that’s practical and
easy to grasp?

Ask them to find a practical example in your product’s inter-
face and include it alongside each principle.

Comparing your team’s answers can reveal how much unity
you have in your design approach. Are there many shared
themes and overlaps? Have different disciplines ended
up with similar principles? It’s always interesting to see
everyone’s responses, in particular how they differ between
people who have just joined the team, and those who’ve

59Design Principles

worked on the product for some time. These answers can be
a valuable starting point in further work on the principles,
as you identify common themes and agree on priorities.

FOCUS ON THE RIGHT AUDIENCE

A surefire way to end up with vague design principles is to
have no idea who they’re for. Are you writing for a corpo-
rate identity brochure? For the company website? A careers
website? Potential partners and customers? Try writing
your principles for yourself and for your colleagues, first
and foremost: designers, developers, content producers,
marketing professionals, domain experts — people directly
involved in the creation of the product. Aim to come up with
an informal agreement on what constitutes good design for
your product, and offer practical guidelines for achieving it.

TEST AND EVOLVE YOUR PRINCIPLES

As your product evolves, so will your principles. They will
be shaping the design language, which in turn will be
shaping the principles. Your principles might be very loose
and abstract in the beginning, gradually gaining more
and more clarity. Or they might start off being clear and
focused, but over time become more diluted and lose their
authenticity. To make sure your design principles continue
to improve, they need to be constantly tested, evaluated and
refined. This can only be done by being conscious of them

60 Chapter 2

and applying them in your work every day. By making your
principles part of design critiques, for example, you can
continuously test if they help in your design process, and if
not, continue iterating them.

From Principles To Patterns

One of the challenges I’ve had in my work as a designer
is working out how to materialize higher-level concepts,
such as design principles and brand values, into concrete
UI elements. How exactly are they embodied in the design
patterns we create?

A lot of it is about choice and execution of patterns. For
Medium, on the functional level a rich-text editor was
required. It could have been any kind of editor, with
any degree of complexity. But out of all the possibilities,
Medium chose the simplest one, guided by its principle,
“Direction over Choice.”

For TED, clarity of message is valued over aesthetics. Trying
to distill a talk into a single sentence can be hard, and some-
times titles can be long. It would be easier to clip the title,
but for the team the message of the talk must always take
priority. Instead of opting for an easier solution, they make
sure that their design patterns can accommodate long titles.

61Design Principles

and applying them in your work every day. By making your
principles part of design critiques, for example, you can
continuously test if they help in your design process, and if
not, continue iterating them.

From Principles To Patterns

One of the challenges I’ve had in my work as a designer
is working out how to materialize higher-level concepts,
such as design principles and brand values, into concrete
UI elements. How exactly are they embodied in the design
patterns we create?

A lot of it is about choice and execution of patterns. For
Medium, on the functional level a rich-text editor was
required. It could have been any kind of editor, with
any degree of complexity. But out of all the possibilities,
Medium chose the simplest one, guided by its principle,
“Direction over Choice.”

For TED, clarity of message is valued over aesthetics. Trying
to distill a talk into a single sentence can be hard, and some-
times titles can be long. It would be easier to clip the title,
but for the team the message of the talk must always take
priority. Instead of opting for an easier solution, they make
sure that their design patterns can accommodate long titles.

There’s a sense of prioritization also from the brand stand-
point. The TED team chose not to introduce a new image-
rich home page until they developed a compression tool to
minimize the impact such imagery would have on perfor-
mance.

For the team at Atlassian, the “optimistic” principle is
embodied in an “optimistic interface.”15 In JIRA, for exam-
ple, when a user has to move a card from “In progress” to
“Done,” cards are allowed to be moved right away, providing
an instant response to the user, even though in the back-
ground there are a lot of checks and validations, and many
things that can go wrong. They aim to express the “practical
with a wink” principle through the friendly language of
the copy, feedback messages, on-boarding, and other places
throughout the site.

15	 http://smashed.by/truelies

The hero banner pattern on a TED.com talk
screen can accommodate long titles, which is
in line with their design principles.

http://smashed.by/truelies
http://smashed.by/truelies

Design patterns are shaped by the core idea of how a prod-
uct works. Think about how an ethos of “transparency and
collaboration” is embodied through open channels on Slack;
how the idea of “capturing life’s unique moments” trans-
lates into Instagram’s photo feed and interactions; or how
cards on Trello (a functionality that goes back to the seminal
HyperCard system) encourage a certain type of workflow.

The choice and execution of the patterns and their unique
combination are influenced by a product’s purpose, ethos
and design principles. You can view design principles as
grammar rules for creating patterns and combining them in
ways that make intrinsic sense.

Equally, as the brand and functional patterns evolve and
become more refined, they shape the design principles.
Principles and patterns are refined and influenced by one
another continuously.

Over the next two chapters we’ll talk about design patterns
in more detail, taking real-life products as examples. We’ll
see how design patterns emerge and how they are affected
by a product’s purpose and ethos, user behaviors, brand,
business requirements, and other factors.

Functional Patterns

In this chapter, we’ll discuss the role of functional patterns and
why they should be defined early in the design process.

F unctional patterns are the tangible building blocks of
the interface. Their purpose is to enable or encourage
certain user behaviors.

On the ten-minute cooking site, some of those behaviors
included selecting ingredients, choosing a recipe, and
following steps within an allocated time. The functional
patterns we design will be informed by those behaviors.
Functional patterns, or modules,1 are largely shaped by the
domain a product belongs to. The patterns in our cooking
app would be quite different from, say, finance software.
Instead of recipe cards we’d be dealing with task bars, data
fields, grids, charts and graphs.

Functional patterns can be simple or they can combine to
create more complex patterns. A recipe card is made of a meal
title, image, ingredients, and an action button. Each module
within the recipe card has its own goal: the title tells us what
the meal is; the image provides a preview of the final result;
ingredient icons allow us to scan the cards more easily.

1	 I see functional patterns in a more generic way, as a kind of a
Platonic ideal, and modules as the embodiment of functional patterns,
which can be different in different interfaces.

Chapter 3

63Part I

Together, those modules help to achieve a shared purpose: to
encourage people to cook the meal shown on the recipe.

As the product evolves, so do the patterns. We might start
allowing our users to rate the recipes, and the rating display
will become part of the recipe card. Or we might decide that
the layout of the card can be improved, or that ingredient
icons should be made clearer, or that we need to introduce a
compact version of the card. We test and iterate the patterns
to try to make them work better to achieve their purpose;
that is, encouraging the behaviors more effectively.

Articulating the purpose of the patterns early in the design
process can help prevent duplication as the product grows.
At first, it might not seem to be worth the effort; after all,
a product can change too fast in its early days to be able to
pin down all the interface parts. But do the core functional
patterns really change that much? Let’s take FutureLearn as
an example and see how the interface evolved in the three
years since the initial design.

Patterns Evolve, Behaviours Remain

Since it was founded by the Open University in 2013,
FutureLearn’s vision has been to “inspire all to learn through
telling stories, provoking conversation, and celebrating
progress.” To be able to do that, as a minimum we had to
make sure people could discover and join an online course,

64 Chapter 3

motivate them to progress through, and make the learning
experience rewarding and stimulating. This vision informed
the initial functional patterns on FutureLearn.

Courses are arranged in units and there’s a linear flow to
them — one part leads to another. On the interface level,
this translates into a weekly structure. Each week is broken
down into activities, and activities into steps. The course
progress module is one of the core functional patterns: it
allows learners to navigate the content of the course, shows
their progress, and where the course is currently active.

Course progress module on FutureLearn

These patterns went through a few changes after they were
first designed over three years ago. Their styles, and even
functionality and interactions, have changed. Yet their pur-
pose fundamentally stayed the same, as it’s connected to the
core idea of how FutureLearn works.

65Functional Patterns

The To Do page went through several revisions over the course of three years
but the purpose of the core modules stayed the same.

Similarly, discussion threads on FutureLearn have evolved
over time, as the volume of people participating has
increased: the layout of the threads, the interactions and
the filtering features have evolved, but their core purpose
remains largely the same — to engage learners in conversa-
tion and allow them to learn from each other.

Discussion pages went through several iterations once they were designed
but the purpose of the core modules was unchanged.

66 Chapter 3

The core unit for displaying course details has also evolved
over three years, to allow users to see a larger selection
of course listings before needing to scroll down the page.
But again, the purpose of the pattern remains the same
— to allow people to discover and join the courses they’re
interested in.

Course list evolved over years, to allow users to see a larger selection of
course listings.

As often happens in the early start-up days, because of time
constraints and other priorities, many core functional pat-
terns weren’t defined. As FutureLearn’s interface and edu-
cational functionality grew, patterns were duplicated. We
ended up with several course progress modules, variations
of a comment module, and a few different course blocks and
course cards across the site. Perhaps this was inevitable. Or
could some of those duplications have been prevented?

67Functional Patterns

When a pattern is not defined and shared in the team,
you start recreating it to accomplish similar goals:
another promotional module, another news feed, another
set of sharing links, another dropdown. Before you know
it, you end up with 30 different product displays and
pop-over menus.

Patterns are the physical embodiment of the behaviors we’re
trying to encourage or enable through the interface. Their
execution, content, interactions and presentation can change.
(In fact, patterns don’t even have to be visual — they can be
read out by a voice, or embodied in another way). But the core
behaviors they’re designed to encourage remain relatively
stable, as they stem from the purpose of your product and
the idea of how it works. Being conscious of the purpose of
your key patterns can help you understand how your system
works and prevent it from fragmenting as it evolves.

Defining Functional Patterns

Defining patterns early in the design process doesn’t have to
take a lot of time. There are techniques that can be inte-
grated into your process without extra effort. Here are a few
that I find particularly helpful.

68 Chapter 3

CREATE A PATTERN MAP

To map out your customers’ needs, goals and motivations
you might have done customer experience mapping,2 “job to
be done,”3 or a similar exercise around customer journeys.
The outcomes typically feed into the early design explora-
tions and prototypes. At this point, there’s usually a fairly
clear understanding of the behaviors we want to encourage
or enable in our users: learn about a course, join a course,
engage in a discussion.

But once we focus on the interface, sometimes we get lost
in the details. We spend time making the most impressive
page header, forgetting what this header is for and how it
affects the user in different parts of their journey. In other
words, we lose the connection between user behaviors and
the exact patterns that encourage or enable those behaviors.

To see how your patterns fit into a bigger picture, try to map
some of your core modules to the sections of a user journey.

2	 http://smashed.by/mappingxp
3	 “Job to be done” (JTBD) is an exercise that helps you focus on the
underlying motivation behind using a product or service, rather than
on the product itself. For example, even though customers say that
they buy a lawnmower to “cut grass,” their higher purpose might be to
“keep the grass low and beautiful at all times,” which might indicate
that a lawnmower is not the right tool for the job in the first place.

69Functional Patterns

http://mappingexperiences.com
http://smashed.by/jobstobedone
http://smashed.by/jobstobedone
http://smashed.by/mappingxp

Think about what each section is for and what behaviors it’s
designed to encourage. You don’t need to worry about cap-
turing every icon or button at this point. Focus on the big
picture: understand the parts of the system and how they
work together. For FutureLearn, it was primarily focused on
three areas: discovering content, learning on a course, and
achieving a goal.

Some of FutureLearn’s functional patterns mapped to three key stages of a
user journey.

Keeping this map in my mind helped me to think in families
of patterns joined by a shared purpose, rather than individual
pages. For example, instead of designing a course list page,
I’d think of the “Discovery” area as a whole.

70 Chapter 3

What are the behaviors we need to encourage at this stage
of the user journey? What are the patterns that can support
those behaviors? Where else on the site do they exist and
how do they work there? If it’s a new pattern, how does it
contribute to the whole system? Thinking of all these ques-
tions is part of designing systematically.

CONDUCT AN INTERFACE INVENTORY

The interface inventory process,4 described by Brad Frost,
has become a popular way to start modularizing an inter-
face. The idea is simple. You print out the screens of your
interface on paper, or collect them in Keynote or Power-
Point. You then separate out various components either by
cutting them out or pasting them in Keynote.

An interface inventory showing some of the interactive elements.

4	 http://smashed.by/uiinventory

71Functional Patterns

http://smashed.by/uiinventory
http://smashed.by/uiinventory

You end up with a collection of parts which can be grouped
into categories: navigation, forms, tabs, buttons, lists, and so
on. Going through this process allows you to see duplicated
patterns, and identify problem areas that need attention.
This is when you discover that you have dozens of headers
or pop-over menus, and start thinking about how to bring
some order to all that.

An inventory doesn’t have to encompass everything
(although the very first one you do should be comprehen-
sive). It can focus on one pattern group at a time, such as
promotional modules, headers, or all the product display
modules. You can do an inventory focused specifically on
typography, or color, or animations.

To be most effective, interface inventories should be done
regularly. Even if your team maintains a pattern library,
new patterns will emerge that need to be folded into the
system. If you get into a habit of running inventories every
few months, each time shouldn’t take more than a couple
of hours. And every time you do it, you understand your
system better and can improve it.5

5	 In chapters 7 and 8, we will look at the interface inventory process
in depth, starting from the purpose of the system and going down to
the smallest patterns, such as icons and colors.

72 Chapter 3

VIEW PATTERNS AS ACTIONS

To understand the purpose of a pattern, try focusing on
what it does rather than what you think it is. In other words,
try to find an action that best describes the behavior a pat-
tern is designed for. Describing a pattern with a verb rather
than a noun can help you to broaden potential use cases for
a pattern and define its purpose more accurately.

Say you’ve introduced a simple module to promote an
online course. If you try to describe what it is, you might
refer to it as “Image header” or “Course banner.”

UI component promoting an online course on FutureLearn.

But by describing a pattern in this way, you could be making
it too specific to its presentation or content. You might end
up limiting its use to a particular context. On the other
hand, if you define it in terms of actions — from your user’s
perspective as well as your own — you can uncover its pur-
pose: “Promote a course” and “Discover a course”; and “Get
inspired to join a course” and “Encourage people to join.”

73Functional Patterns

By focusing on the action, you connect pattern with behav-
ior and keep it open for various use cases. What else can
this pattern promote? An online discussion? A new event?
The name you give it should also reflect this. In the exam-
ple above, we named the module “Billboard” to reflect its
action-focused, promotional function.

DRAW A PATTERN’S CONTENT STRUCTURE

To get a shared understanding of how a pattern works, draw
its structure: the core types of content a module needs to
be effective.

Designers, developers and content strategists can do it
together when working on a new module, or when refac-
toring an existing one. Start by listing the core content
elements a module needs to be effective. For example, you
might agree that in your interface a promotional module
like “Billboard” needs:

•	 a heading
•	 a strong call to action

•	 an eye-catching background (solid color or image)

Next, try to determine the hierarchy of elements and decide
how they should be grouped; for example: is the image part
of the content? Is a label always necessary? While doing
that, make a few sketches to visualize the structure.

74 Chapter 3

Example of the content structure for a course list item on FutureLearn.

To give you an idea of what it might look like, above is an
example of the content structure for a course list item
module on FutureLearn.

At this point you might be thinking: “It’s just a sketch or
a wireframe. I do that all the time anyway.” But it’s a bit
different. This is a sketch focused specifically on the content
structure of a module, and the hierarchy and grouping of
the elements.

Once you have a shared understanding of a pattern’s struc-
ture, it’s easier to make sure that the way the module is
designed is reflected in the markup. A designer can work on
the visual explorations, while a developer can start putting
together a prototype (or both can prototype, depending on

75Functional Patterns

how you work). Designers understand how much they can
push a pattern visually before it becomes something differ-
ent. Developers know the reasons for the design choices and
don’t get unexpected designs thrown to them over the wall.

Here’s another example. On FutureLearn we used to have
four different versions of a social feed in different areas
of the site — two versions of “Comment,” a “Reply” and
a “Notification.”

Four different versions of social feed modules on FutureLearn.

While at first glance they looked similar, they didn’t share
the same styles; that is, if you changed one of them, the
changes wouldn’t apply to others, there were visual incon-
sistencies in spacing and typography, and so on. Breaking
them down and drawing their structures allowed us to see
if they could be unified into one pattern, and to design that
pattern in a way that works in all four use cases.6

6	 In chapter 8, we’ll discuss in more detail when to unify patterns,
when to split them up, and when to create variants.

76 Chapter 3

The content structure for a “Feed item” module on FutureLearn.

Content structure is closely linked to the purpose of a
pattern, as these examples have shown. Knowing how a
module is structured helps us understand how it works.

PLACE PATTERNS ON A SCALE

Try placing similar patterns on a scale, in relation to one
another. For example, there could be a few promotional
patterns in your system, with varying degrees of intensity.
Similar to the visual loudness scale7 I mentioned in chapter 1,
promotional modules can be compared with one another.

7	 http://smashed.by/visualloudness

77Functional Patterns

http://smashed.by/visualloudness
http://smashed.by/visualloudness

Promotional modules can be placed on an imaginary visual loudness scale.

Placing patterns on a scale can help make sure they’re used
appropriately and don’t compete for attention across the
system. It also helps prevent modules being recreated need-
lessly, since you can see when you already have a module at
the same “volume.”

Another way to think about it is to imagine that your
interface is not visual, but that it’s being read out by a voice.
When would that voice need to get louder and change into-
nation? Think about how that volume and intonation can
be expressed visually, through the relationships between
the elements within the modules, as well as their hierarchy
in the overall design. Thinking of it this way, of course, also
has an additional advantage of making it more accessible to
screen readers.

TREAT CONTENT AS A HYPOTHESIS

Here’s a paradox. We’re expected to design content-first,
but at the same time we’re expected to build modules in a
way that can fit any kind of content. A way to do this is not

78 Chapter 3

necessarily by starting with content, but with the purpose.
Then we can treat content not as a known asset but as a
hypothesis. This allows us to test if we’ve defined the purpose
of the module well, and if the design works for that purpose.

Suppose we have a module, which was designed for display-
ing product features.

An example of a module designed for presenting product features.

We could define its purpose as “Supporting the main mes-
sage with additional bits of easily scannable information.”
The “bits” could be key features, short pieces of advice, or
quick steps. We can build a pattern for content that fits this
hypothesis (concise and scannable, supplementary rather
than the main content on the page), and then test it.

If content consistently ends up being unsuitable for this
pattern, it’s typically caused by one (or more) of these
three reasons:

79Functional Patterns

•	 We didn’t correctly define the purpose of the pattern.
Go back to trying to understand the behaviors it’s been
designed for.

•	 We didn’t design the pattern in a way that achieves its
purpose best. Try a different design for this pattern.

•	 We’re trying to force the content into a pattern that’s
not quite right for it. Consider revising the content, or
try another pattern.

When we don’t start with the purpose and the structure, we
can end up with modules that are too closely tied to their
content. For example, we had a case at FutureLearn where
the copy was pushing important tabs below the visible area.

An example of a fragile module, which was too specific to its content.

The tabs were meant to stay visible. To get around the prob-
lem, we almost introduced a custom smaller size heading,
simply to nudge the tabs up a bit. But had we done that, we
would have ended up with a module that wasn’t robust.

80 Chapter 3

If the title got longer or if we added an extra line, we would
have been stuck with the same problem. Had we started
with the purpose of the module and its structure, the tabs
would probably have been placed at the top, since they’re
such an important element of design.

These are just some of the tools and techniques you can try
to define functional patterns in your interface. The most
important thing is to understand how patterns link to the
behaviors they were originally designed for: their purpose.

The purpose determines everything else that follows: the
structure of the pattern, its content, its presentation. Know-
ing the purpose of the pattern (knowing which behaviors
it’s designed to encourage or enable) can help us design and
build more robust modules.

It can help us know how much a pattern can be modified
before it becomes something entirely different. And it can
reduce duplication by giving the whole team a common
point of reference, and connecting them with the original
design intent. Being clear on the purpose also makes it eas-
ier to test the patterns to see how effective they really are.

If functional patterns are objects in the interface, then per-
ceptual patterns are more like styles — they describe what
kind of objects they are and how they feel. Let’s take a closer
look at them.

81Functional Patterns

Perceptual Patterns

In this chapter we’ll discuss how perceptual patterns work and their
role in a design system.

Imagine we both have a house, with the same set of
furniture: a table, a few chairs, a bed, and a wardrobe.
Even though the furniture is the same, our houses can

feel distinctly different: it could be because of the style of
the furniture, the materials, colors, textures, the fabric on
the bed covers, the style of the ornaments, how we lay out
the room, the lighting, or even the music we play inside.
I refer to such attributes as perceptual patterns. Because of
them, your house might feel like a bohemian lair, and mine
like a warehouse.6

Examples of perceptual patterns in digital products include
tone of voice, typography, color palette, layouts, illustra-
tions and iconography styles, shapes and textures, spacing,
imagery, interactions or animations, and all the specific
ways in which those elements are combined and used in
an interface.

6	 This way of thinking can make visiting places a whole different ex-
perience. Be it a coffee shop, a new city, or a picnic spot, I like to think
about how a place feels and then try to determine some of the patterns
that combine to create that atmosphere.

82 Part I

Chapter 4

Perceptual patterns are always present, even if they’re not
purposefully designed. Even a purely functional tool has
an aesthetic.

Sometimes such qualities are seen as styling or the skin of
a product – a layer on top. But to be effective they must live
not only on the surface but at the core of the brand, and they
should evolve with the product. When effective, perceptual
patterns become powerful product differentiators.

PERCEPTUAL PATTERNS HELP TO EXPRESS

BRAND IMAGE

Products can feel different, even if they belong to the same
domain and have similar modules. To write this book I tried
dozens of word processors with very similar functionality.
Only a couple of them, including the one I’m using now, had
the kind of writing environment that helped me focus and
be most productive.7

I can describe it as crisp and calm, exhibiting a distrac-
tion-free aesthetic with an accent on important things, such
as the display of the document outline, or the small circles
which turn green as I approach my “writing goal.” This
environment is created through a combination of certain
patterns, although at a first glance it’s not easy to pinpoint
what they are.

7	 It’s http://smashed.by/ulysses, in case you wanted to know.

83Perceptual Patterns

http://smashed.by/ulysses

Let’s take another example: Spotify. To me it feels warm and
personal. What exactly are the patterns that create the ambi-
ence of intimacy in this digital music service interface with
over 100 million monthly users? As well as the functionality,
it’s largely due to the imagery styles, color combinations
(particularly the ratio of green to black), the subtle and calm
feel of interactions, and the typography choices.8

The ambience of intimacy on Spotify is the result of a combination of percep-
tual patterns, such as subtle interactions, subdued imagery and color accents.

On the other hand, the playful, creative, openly enthusias-
tic and slightly offbeat character of Smashing Magazine is
conveyed through a different set of patterns – from the bold
color palette and illustrations, down to the smallest details,
such as a slight angle on some of the interface elements.

8	 Spotify’s vision, “The right music for every moment,” and their
design principle “emotive” are inline with the feel created through
perceptual patterns.

84 Chapter 4

Let’s take another example: Spotify. To me it feels warm and
personal. What exactly are the patterns that create the ambi-
ence of intimacy in this digital music service interface with
over 100 million monthly users? As well as the functionality,
it’s largely due to the imagery styles, color combinations
(particularly the ratio of green to black), the subtle and calm
feel of interactions, and the typography choices.8

The ambience of intimacy on Spotify is the result of a combination of percep-
tual patterns, such as subtle interactions, subdued imagery and color accents.

On the other hand, the playful, creative, openly enthusias-
tic and slightly offbeat character of Smashing Magazine is
conveyed through a different set of patterns – from the bold
color palette and illustrations, down to the smallest details,
such as a slight angle on some of the interface elements.

8	 Spotify’s vision, “The right music for every moment,” and their
design principle “emotive” are inline with the feel created through
perceptual patterns.

The character of the new Smashing Magazine is conveyed through a variety
of perceptual patterns – from typographic treatments to the playful angle of
the images and icons.

Perceptual patterns express the brand through the interface
and help to make it memorable. Take a look at the images
on the next page: can you recognize which products they
represent?

85Perceptual Patterns

Can you recognize which products these two images represent?

There isn’t a lot of information in these images: typography
styles, some shapes and colors, and a few icons. But those
visual cues are so distinct that you might still have been able
to recognize which products they belong to (Slack and TED).
By being applied purposefully and repeatedly, they form pat-
terns, which is why we can recall and associate them, even
when they appear out of context.

Perception is influenced not only by the building blocks
such as color palette and typeface, but the relationships
between them. It’s not enough to use headings and colors
across the modules consistently. We should also be aware
of the unique proportions and combinations that make the
product feel a certain way. How do the colors relate to one
another? How does the imagery relate to the typography?
How does the typography relate to the spacing?

86 Chapter 4

Michael McWatters, UX architect at TED, shared in an
interview how important it is for TED’s brand that the color
red appears in the right proportions: “Red should be used spar-
ingly and thoughtfully. Use it in the wrong places, or too much,
and it doesn’t feel like TED anymore.”9

PERCEPTUAL PATTERNS CONNECT THE SYSTEM

In modular systems, achieving visual coherence and seam-
lessness can be tricky. Modules are created by different
people for different goals. Since perceptual patterns perme-
ate through different parts in the system, they connect the
parts. When the connections are effective, users perceive
the unity that links the modules together.

Look how Vox and the Guardian apply perceptual patterns
to bring together different elements, integrating them in a
cohesive whole. At Vox, eye-catching imagery overlaid with
large headings, crisp typeface pairings and generous white
space all come together to convey the feeling of a lifestyle
magazine under the Vox banner – it’s spacious, informal
and perhaps even a little rebellious. In contrast, typography,
spacing, imagery and color in the Guardian create a denser,
more credible feel, more fitting for a source of serious jour-
nalism and opinion.10

9	 Interview with Michael McWatters, UX architect, TED, Aug. 2016
10	 These screenshots were taken in March 2017. A couple of weeks lat-
er Vox changed their design to a denser newspaper-like feel, to come
across as more “credible and smart.” See http://smashed.by/behindvox

87Perceptual Patterns

http://smashed.by/behindvox

Connections can be made not only between the modules but
across different platforms and contexts. Platform-specific
standards such as material design take quite an authori-
tative view on how patterns should be designed and built.
When companies follow native platform conventions
strictly, they are very much reliant on perceptual patterns to
make the product feel like part of the same brand.

Sometimes it’s the smallest things that can help make a
connection. Even though there are differences between
Twitter’s apps for web, native and third-party platforms,
small details such as the “Like” interaction of the heart, help
to propagate Twitter’s pattern language.

88 Chapter 4

A still from Twitter’s heart animation, introduced in 2015 on Twitter for iOS,
the web, Android, TweetDeck, Twitter for Windows 10, and other platforms.

Exploring Perceptual Patterns

If functional modules reflect what users want and need,
then perceptual patterns focus on what they feel or do
intuitively. Rather than coming from user behaviors and
actions, they are influenced by the personality or ambience
a product strives to project.

In Designing for Emotion, Aarron Walter suggests how, in
a simple way, teams can capture key personality qualities
by creating a “design persona,” which embodies the traits
they wish to include in your brand. Walter recommends
basing a persona on an actual image of a person, to make
it feel less abstract. If that’s difficult, I sometimes find it
helpful to think of a place and its ambience instead, rather
than someone’s personality traits. For example, what is the
ambience that suits focused writing as opposed to relaxed
social chatter?

89Perceptual Patterns

http://smashed.by/designingemotion

Whether you use a person or a place as a starting point, the
goal is to end up with a few (Walter recommends around
five to seven) traits that best describe your brand, along
with the traits to avoid. For MailChimp, those traits include
“Fun, but not childish. Funny, but not goofy. Powerful, but not
complicated. Hip, but not alienating. Informal, but not sloppy.”11

Teams can then identify ways to bring those traits to
life through the interface: the tone of voice, visually,
and in other ways, such as interactions and sounds. For
MailChimp, some of the visual perceptual patterns (or a
“visual lexicon,” as Walter refers to it) included a bright yet
slightly desaturated color palette, simple sans serif typogra-
phy, and flat interface elements with soft, subtle textures in
places, to warm up the space.

Here are some of the popular design techniques that can
help explore perceptual patterns.

11	 Designing for Emotion by Aarron Walter (see also “Personality in
Design” http://smashed.by/personality

90 Chapter 4

http://smashed.by/personality

MOOD BOARDS

Mood boards are a great tool for exploring different visual
themes. They can be created digitally (Pinterest12 is a pop-
ular tool for creating digital mood boards) or assembled
physically on a large board, using cutouts from magazines
and other printed material.

Some people use mood boards to research current trends or
gather ideas, while others generate them to work out what
their brand might feel like. Mood boards can be broad, or
they can focus on exploring specific parts of the brand, like
color or typography.

An example of a mood board that explores color and gradients.

12	 https://uk.pinterest.com

91Perceptual Patterns

https://uk.pinterest.com
https://uk.pinterest.com

STYLE TILES

Once a general brand direction is defined, style tiles can be
useful for exploring several variations in more detail. The
concept of style tiles was introduced by Samantha Warren,13
who describes them as “a design deliverable consisting of
fonts, colors and interface elements that communicate the
essence of a visual brand for the web.”14

The Washington Examiner 2012 Campaign Site (Image courtesy of
Samantha Warren: http://styletil.es/)

Like mood boards, style tiles can provide valuable discus-
sion points with users and stakeholders, and gauge their
initial reactions towards specific design directions. Compar-
ing and contrasting style tiles against each other can help
you make a choice of one direction over the other.

13	 http://samanthatoy.com
14	 http://styletil.es/

92 Chapter 4

http://samanthatoy.com
http://styletil.es
http://samanthatoy.com
http://styletil.es

ELEMENT COLLAGES

Riffing on style tiles, Dan Mall15 suggested the idea of an
element collage: an assembly of interface pieces that explore
how branding works in the interface. As a design deliver-
able, they can feel more concrete and tangible than style
tiles; yet element collages don’t come with quite as many
expectations as complete visual mock-ups. Element collages
explore not only a general brand direction but how brand is
expressed through the interface.

Element collage for RIF. (Image courtesy of http://danielmall.com)

15	 http://danmall.me

93Perceptual Patterns

http://danmall.me
http://danielmall.com
http://danmall.me

The differences between these techniques aren’t always
obvious, and people use them interchangeably. For me, the
distinction lies in their relative fidelity. Mood boards are
looser and more open; they combine existing materials from
various sources to create a certain visual feel. Style tiles and
element collages are more focused on a specific product and
the practical application of patterns in the interface. Ele-
ment collages provide the highest level of fidelity and can be
used as a starting point to transition into full comps.

Iteration And Refinement

The process of evolving the styles continues when they’re
integrated into the product. Trying out the brand in a more
realistic setting of the interface, with modules and inter-
actions, often results in refinement of both perceptual and
functional patterns. This is typically an iterative process,
where the patterns influence one another, until a design
language starts taking shape.

Let’s take a look at how FutureLearn’s styles were developed.
The image below shows the initial explorations by Wolff
Olins16 for the FutureLearn brand. While they capture some
of the personality FutureLearn was trying to project (mini-
mal, bold, bright, positive, celebratory), there’s a difference
between the initial direction and how it evolved over time.

16	 http://www.wolffolins.com

94 Chapter 4

http://www.wolffolins.com
http://www.wolffolins.com
http://www.wolffolins.com

Initial brand explorations for FutureLearn.

Here is how the core perceptual patterns looked a few
months later, after the visuals were passed on to the internal
design team at FutureLearn:

95Perceptual Patterns

Element collage for FutureLearn.

By applying them to the actual context they were going to
live in, the patterns had to become more grounded, more
specific and more practical. Here’s how FutureLearn’s ico-
nography evolved from initial concepts to the designs you
can see on the site today:

96 Chapter 4

Initial icon designs by Wolff Olins (left) and how they were evolved by Fu-
tureLearn’s design team. The gaps in the icons signify that a learning process
is never complete.

In the conceptual phase of brand development, it was
important to go broad and big, and not worry about every
detail. But when we started applying the concepts, they had
to be refined, so they felt appropriate for the new environ-
ment they occupied. The focus shifted from an open explo-
ration to refinement and consistency.

At this stage the challenge is to continue evolving the brand,
while keeping the patterns consistent. As Lucy Blackwell,
creative director at FutureLearn noted: “When you’re fully
focused on consistency, some of the important subtleties of what
makes a product feel a certain way can be lost.”

97Perceptual Patterns

BALANCING BRAND WITH CONSISTENCY

Just as introducing too many exceptions can weaken a
brand, too much focus on consistency can also stifle it.
Paradoxically, making design perfectly consistent doesn’t
guarantee it’s going to be “on brand.” Sometimes it can have
the opposite effect – there’s a fine line between consistency
and uniformity.

With seven designers working in several streams, at Future-
Learn we had to set up processes that allowed us to focus
on reusability and utility. But in some areas of the site we
found ourselves following them too closely, sometimes at
the cost of weakening the brand. Here’s how the courses
page has changed over time:

FutureLearn courses page in 2015 and late 2016

98 Chapter 4

It made sense to make the design more practical, clean and
organized. It was also a positive change for SEO and metrics,
and was more consistent with other pages on the site. But at
the same time we felt that in the process some of the visual
distinctiveness present at the beginning was lost. While we
accepted this change in some areas of the site, in others –
particularly in branded marketing campaigns – we started
experimenting more, in the attempt to make a stronger
brand statement.

If a design system only prioritizes perfect consistency, it
can become generic and rigid. Evolving perceptual patterns
requires room outside of the boundaries of the system, and
designers should be actively encouraged to explore. A good
design system strikes a balance between consistency and
creative expression of the brand.

A NOTE ON SIGNATURE MOMENTS

Perceptual patterns can be concentrated in the smallest
details. In his book Microinteractions,17 Dan Saffer coined
the term “signature moments” – small interactions that
become product differentiators, such as “an elegant ‘loading’
animation or a catchy sound (‘You’ve got mail!’).” Signature
moments are especially powerful when they have meaning
or a story behind them. For example, the subtle ripple effect
on TED’s play button was inspired by the iconic drop anima-
tion of their videos’ intros.

17	 http://smashed.by/microinteraction

99Perceptual Patterns

http://smashed.by/microinteraction
http://smashed.by/microinteraction

TED’s drop animation of their videos’ intros mirrored in the ripple effect on
the video play button.

In digital products, signature moments are not always seen
as a requirement, and some teams struggle to prioritize
them.18 But it’s the small details that can add an additional
layer of depth and meaning to the experience. In our efforts
to systemize and structure design it’s important to be con-
scious of the details that make something feel distinct. In
a design system, there always needs to be space to nurture
and evolve those moments.

SMALL-SCALE EXPERIMENTS

How can we make a space for creative explorations? And
how do we then fold the new styles into the system? At
FutureLearn, we found that it was most effective to experi-
ment on a small scale first. If some of the elements worked
well, we’d gradually integrate them into other parts of
the interface.

18	 For great practical advice on designing microinteractions and
integrating them into a product, see Microinteractions: Designing with
Details by Dan Saffer (http://microinteractions.com/).

100 Chapter 4

http://smashed.by/microinteraction
http://smashed.by/microinteraction
http://microinteractions.com/

For example, we felt that the purely functional toggle button
lacked the feel of celebration and accomplishment when
learners completed a step. It was replaced with a circular
style, a bouncy animation and a tick icon popping up.

Original progress button (left) and redesigned button on FutureLearn.

While the new button received positive feedback from our
learners, it didn’t feel like part of the system until we started
echoing the circular pattern, the bouncy animation and the
ticks in other areas of the site. Without these additions, the
element felt disconnected.

On occasion we tried out new patterns on promotional
areas, such as the home page or a campaign site. Future-
Learn’s brand used to employ primarily square shapes.
During a home page redesign, we introduced a trian-
gle pattern. It was strengthened when other designers
started applying it in other areas, such as image styles and
certificate designs.

101Perceptual Patterns

Initial experiments with triangles on the home page started off quite flat
(left), but were given a new twist by other designers who took the pattern and
applied it to their projects.

While experimenting with the triangle patterns, we were
aware that they were outside FutureLearn’s typical square
aesthetic, but wanted to give them a try to see what would
happen. We learned later that while triangles worked with
the brand, they had to be used sparingly and only as a visual
enhancement in the discovery and marketing areas of the
site, not on the in-course learning experience pages.

When exploring new styles, try them out on a small area of
the site. Be aware of what you’re doing differently, the pat-
terns that are outside of the system, and the reasons for try-
ing them. If they work, gradually fold them into the system
by applying them in other areas of the site. Be conscious of
the role they play. For FutureLearn, triangles are used to cre-
ate a dynamic effect; circles are used as a positive reassur-
ance of progress, typically in combination with a tick.

102 Chapter 4

BALANCING BRAND WITH BUSINESS REQUIREMENTS

Because perceptual patterns are sometimes seen merely as
styling or decoration, changing them can be less conten-
tious than, say, updating the flow of an interaction. As a
result, ad hoc business requirements can lead to introduc-
ing elements that don’t sit comfortably with the brand. For
example, we wanted to let our learners know when new
courses were starting, so we added yellow banners to the
course images.

 “Just started” banner on FutureLearn for highlighting recently
started courses.

103Perceptual Patterns

Even though the banner wasn’t perfectly on brand, it wasn’t
a problem since only a few courses were running at the
time. What we didn’t realize was how many more courses
would start within a few months. When it happened, the
balance of the course module shifted from feeling like
a highlight, to appearing a bit garish and sales-oriented,
which is a feeling we try to avoid in the FutureLearn brand.
Again, because this was seen as part of styling, it was hard
to prioritize and took a long time to address.

No matter how much we guard the brand, these things will
happen – new requirements demand custom patterns and
one-off tweaks. If we’re not conscious of them, such excep-
tions can dilute or weaken the brand.

Signature Patterns: A Team Exercise

Sometimes even a small change can alter perception. At
FutureLearn, we once almost replaced the square shapes in
the course progress module with circles, before we noticed
that doing so would completely change the feel of the inter-
face. To control how something feels, you need to under-
stand the exact patterns that influence it.

In your team, try running a quick exercise. Ask each per-
son to write down the most distinct perceptual patterns
for your product. Encourage people to look beyond the

104 Chapter 4

building blocks such as color palette and typeface, and
instead think of high-level principles, combinations and
treatments that are specific to your brand. Think not only
about the elements, but the meaning behind them – the
images they portray and the stories they tell. In Future-
Learn’s interface, some of those patterns are:

•	 Positive and encouraging tone of voice

•	 Primarily white color palette with pink accents

•	 Generous white space

•	 Generally large type size with a focus on readability

•	 High-contrast typography with proportionally large
headings

•	 Vibrant pink to blue gradient

•	 Pink to blue subtle hover interactions

•	 1px light-gray strokes

•	 1px square icons with a “break”

•	 Mostly square and occasionally circular shapes, trian-
gles in promotional areas

105Perceptual Patterns

Like the exercise with finding shared themes in you design
principles described in the second chapter, comparing your
team’s thoughts can surface different ways in which you
perceive your brand. The qualities might be vague and indis-
tinct at first but they’re a great basis for discussions. Reach-
ing a shared understanding of the most distinct perceptual
patterns is a useful starting point for your future work on
systemizing them.19

Patterns and principles are an important part of a design
system. But, of course, if you work in a team, they’re not
enough. A selection of words and rules doesn’t make a
language. It only starts becoming a language when you
attribute meaning to those words and other people start
sharing this meaning.

19	 In chapter 9, we’ll talk about conducting an interface inventory on
perceptual patterns and integrating them into the system.

106 Chapter 4

Shared Language

This chapter describes how to establish a shared language, which
allows a group of people to create and use patterns cohesively for a
particular product.

D igital products are built by teams. Everyone will
have their own specific goals to accomplish and
personal deadlines to meet. Inevitably, this means

that sloppy patterns will be added, or that modules will be
duplicated or misused.

Can we make sure a product still feels cohesive and whole,
even when many people work on it? Yes, if we have a shared
understanding in the team of what our design system is and
how it works. This means that we follow the same guiding
principles, that our vision of the brand lines up, that we
have a shared approach to design and front-end architec-
ture, and that we know our most effective patterns and
what makes them work. In other words, creating cohesive
design systems requires a shared language.

In The Timeless Way of Building, Christopher Alexander
introduced the idea of a “pattern language” as a way to
create buildings that feel alive and a pleasure to be in. At the
core of his book is the observation that many great build-
ings (Chartres, the Alhambra, Brunelleschi’s Dome) weren’t
created by one master architect working laboriously at the

Chapter 5

107Part I

drawing board. They were built by groups of people who all
had a deep, shared knowledge of the design patterns that
were capable of bringing those buildings to life.

…groups of people can conceive their larger public buildings, on the
ground, by following a common pattern language, almost as if they
had a single mind.”

— Christopher Alexander, The Timeless Way of Building

A similar idea can be applied to building digital products.
The language can empower people to create products that
feel whole, even when multiple contributors work on differ-
ent parts. Naturally, some people will be steeped in it more
deeply than others, but the idea is that everyone — design-
ers, developers, researchers, product managers, content
producers — should have some degree of fluency, and that
the fluency improves over time, as the team continues to
learn, use and evolve the language.

But what Alexander doesn’t mention in his book, is exactly
how much work the pattern language approach takes to
achieve. Medieval cathedrals took decades to build, and
stonemasons went through years of apprenticeship to learn
the pattern language. Similarly, it can take a lot of effort to
establish a shared language in a product team and make
it work.

“

108 Chapter 5

But it can be done, even in larger teams. We can start by pay-
ing attention to the language decisions we make.

Naming Patterns

James Britton, an influential British educator, explains in
Language and Learning6 that by conferring names on objects,
we start “bringing them into existence,” just like children
use language “to draw out of nothingness” the world around
them. Similarly, if an interface object doesn’t have a proper
name — a name that is known and makes sense to people
in your team — then it doesn’t really exist in your system as
an actionable unit to work with. Once you name an object,
you shape its future; if you give it a presentational name, its
future will be limited because it will be confined by its style:
a “pink” button can only be pink.

A well-chosen name can become a powerful tool for shaping
your design system, since names affect how patterns will be
used. And, of course, it is not only about the names them-
selves, but a shared approach to naming within your team.

6	 http://smashed.by/languagelearning

109Shared Language

http://smashed.by/languagelearning
http://smashed.by/languagelearning

LEARNING WHAT MAKES A GOOD NAME FOR

YOUR TEAM

A “good name” means different things for different teams.
Sometimes it takes experimentation to find an approach
that works. The team at Sipgate,7 a German telecommunica-
tions company, used presentational names initially. But they
found that names such as “Prominent tile” or “Circle with
a dot” weren’t effective and ultimately contributed to the
fragmentation of their system.

The main problem with presentation based naming is that you can’t
find what you are looking for when the number of patterns in your
library increases. It also gives you no guidance or inspiration for
where to use a specific pattern. People start to build more and more
new patterns instead of reusing and enhancing the existing ones,
which makes the problem worse and worse over time.”8

—Tobias Ritterbach, experience owner, Sipgate

At Atlassian,9 components are named from a user’s perspec-
tive. For instance, “Lozenges” and “Inline Edit” got their
names because that’s how their users referred to them.
At first it was seen as controversial and an overhead for
developers. But the team felt that naming modules this way
enabled engineers to think from a user’s perspective and
always have users in mind.

7	 https://www.sipgate.de
8	 Interview with Tobias Ritterbach, exp. owner, Sipgate, Aug. 2016
9	 https://www.atlassian.com/

“

110 Chapter 5

https://www.sipgate.de
https://www.sipgate.de
https://www.atlassian.com/

It’s a bit of an overhead for engineers, but to a certain extent we’re
driving user empathy.” 10

— Jurgen Spangl, head of design, Atlassian

At FutureLearn,11 we agreed that a good name means that it
is focused, memorable and embodies the purpose of the module
it represents. It is the name people relate to and want to use.
Like other teams, we tried different ways to name things —
from more precise and descriptive such as “Progress toggle
button,” to fun ones, such as “Whisperbox.”

Having looked how the team used the modules, we noticed
that the most effective names in our system had one or
more of these qualities: they were metaphorical, they had
a personality, and they communicated the purpose of
the pattern.

GOOD NAMES ARE BASED ON METAPHORS

A metaphor from other industries, such as architecture
or publishing, can inspire a good name. It can also make
the name more memorable for the team, as they’ll have an
association — something to imagine — when they think of
that module.

10	 Interview with Jurgen Spangl, head of design, Atlassian, Nov. 2016
11	 https://www.futurelearn.com

“

111Shared Language

https://www.futurelearn.com
https://www.futurelearn.com

Brackets in architecture are elements that support and
strengthen a structure; for example, helping to hold up a
roof. Similarly, in FutureLearn’s interface “Brackets” also
support the main content by presenting small chunks of
additional information.

“Brackets” support the main content of the page by providing additional
information.

Another example is “Spotlight”: a promotional element
designed to draw attention to a specific piece of content.

“Spotlight” is a promotional element designed to draw attention to a specific
piece of content.

112 Chapter 5

“Bracket” and “Spotlight” are examples of effective names —
people on the team know and use them. Conversely, names
that don’t have a visual metaphor associated with them
turned out to be less effective.

For example, hardly anyone can remember what a “Progress
toggle button” is, or what a “Binary radio button” looks like.

 Progress toggle button.

Binary radio button.

113Shared Language

The problem is that neither “Progress toggle button” nor
“Binary radio button” creates an image in your mind that
makes it easier to remember those patterns. Even if some
people preferred a more precise and descriptive name like
“Binary radio button,” the fact is no one remembered it. And
if no one remembers it, there’s a high chance that people
will recreate the pattern instead of reusing it.

GOOD NAMES HAVE A PERSONALITY

Some names for buttons worked much better. There are
small, secondary function buttons that are used all over
FutureLearn’s interface. They are called “Minions.”

Minion buttons.12

And, of course, where there are minions there should also be
a boss. FutureLearn’s “Boss” is a large button, typically the
main call to action on a page.

12	 Copyright Minions and Gru: Despicable Me, ©Universal Pictures.

114 Chapter 5

Boss button.

It’s also fun to see .minion and .boss class names used
in CSS.13

 .minion and .boss class names in CSS

13	 In the FutureLearn interface there are more button styles; the
examples shown here are some of the most effective ones.

115Shared Language

Names with personality are easier to remember. Not only
do they stick around, they also inspire other names, and can
even establish a family of names. A “Whisperbox” module
on FutureLearn was designed to be promotional without
being too distracting. When another team needed some-
thing more prominent, they created a “Boombox.” “Whis-
perbox” and “Boombox” are a pair, which helps to make the
vocabulary more connected and memorable.

GOOD NAMES COMMUNICATE THE PURPOSE

The best names offer guidance or inspiration for where to
use a specific pattern. It’s easy to remember there can be
many minions (on a page) but only one boss. People enjoy
using them and we don’t need to enforce guidelines because
they come with the name. Even a few names like this can
help make your vocabulary more compelling, and the team
will be more likely to use it and contribute to it.

Names let us not only identify and distinguish between
patterns, but also describe what they’re for. Naming pat-
terns is especially hard when we haven’t fully understood
their purpose. If you find yourself struggling to come up
with a name, chances are something isn’t quite right. Maybe
a module’s purpose is unclear, or it overlaps with another’s;
either way, it’s a red flag you should notice.

One of the modules in Eurostar’s new interface was intro-
duced specifically to improve SEO. During a pattern library

116 Chapter 5

workshop, the team struggled to come up with a name for
it: “It’s an SEO module! It doesn’t have a function. There’s no
meaning to its existence!”

A module introduced to the Eurostar interface specifically to improve SEO.

The name they gave it in the end was “le blurb.” And the pur-
pose of le blurb was something along the lines of: to provide
potentially interesting information aiming to improve SEO.

Approaching difficult naming decisions with humor can
help. And yet it’s almost never difficult for no reason. At
some point we have to ask ourselves: what’s wrong here?
Why can’t we come up with a name?

117Shared Language

NAMING COLLABORATIVELY

We can understand the purpose of a pattern better if the
naming process in our team is collaborative. That doesn’t
mean involving the whole company: it is not about the num-
ber of people, but a diversity of perspectives. Too often the
responsibility of naming modules falls on developers when
they write CSS, but it can be made easier if the naming pro-
cess is broadened to include more people from the team.

People from different disciplines will each view a module
slightly differently. Someone from a content background
might see it in a generic way because they’d need it to be
flexible. Developers might see technical specifics, because
they’re aware of how the module is built — they’ll know that
something is a radio button even though it might not look
like a radio button. Designers and user researchers might
be more familiar with the original behavior a pattern is
meant to support. Involving people with different points of
view can help make a more informed and objective decision
about the purpose of a module. And once you know the
purpose, coming up with a name is easier.

Collaborative naming will also help team members who
did not design or build the patterns understand their use.
Involving the content team, for example, can help engage
them as participants in this process, rather than simply
being handed a stack of boxes to fill in.

118 Chapter 5

SET UP A DEDICATED CHANNEL

One of the easiest ways to collaborate on naming is to set up
a dedicated space on your favorite everyday communication
app (like a “Design system” Slack channel). Share a design
mock-up or an existing module with the team, and describe
briefly what it’s for and what distinguishes it. You might
say: “This typically represents additional or supporting
information portioned into smaller chunks.” It can help to
share the names you’ve come up with so far.

”Nuggets of joy” could be a great name for a module, but we decided to settle
on “Brackets” in this case.

119Shared Language

A few people will join the discussion, ask questions, and
suggest their ideas. Some suggestions won’t be quite right,
others will be humorous or unexpected. That’s OK — the
point is to generate discussion. Talking through design deci-
sions and the purpose of patterns helps to strengthen and
evolve the shared language.14 If you come up with a good
name, remember to give people kudos and celebrate it. It’s
those moments that help unite the team and make collabo-
rative naming part of your culture.

TEST YOUR LANGUAGE WITH USERS

You might want to go even further and involve your users
in the language decisions. Try testing modules on paper
cards. Testing on cards differs from other user research
techniques, which use linear tasks and scenarios for users
to work through. Here, participants can pick up the cards,
move them around, discuss and scribble on them, actively
becoming part of the design process. This can give you a
chance to test your language choices and make sure that the
modules you’ve defined are aligned with your users’ poten-
tial behaviors and mental models. On some occasions you
might discover that your “Prominent tabs” are completely
ignored, or that your “Wizard control” is interpreted as a set
of optional tabs.

14	 What’s more, when sharing a new design, someone might spot that
a similar module already exists and you can prevent a duplication.

120 Chapter 5

User research with cut-out modules.

As useful as it is to involve team members and users in the
naming process, it’s important to stay focused and not get
stuck in a loop of endless discussion. Sometimes too much
input can lead to diluted or confusing names. To avoid this,
at FutureLearn we would take on board the suggestions, but
always leave the final decision up to the designer-developer
pair who worked on a module.

Immersing Your Team In The
Design Language

Naming things together, however, is not enough to establish
a shared language. The entire team should be immersed in
it. Make it omnipresent. If you create the right conditions,
even people who aren’t initially interested will learn pas-
sively, through exposure. Here are some tips for creating
such conditions.

121Shared Language

MAKE DESIGN PATTERNS VISIBLE

Set up a dedicated space on a wall to represent your design
system visually: a pattern wall.

A pattern wall in the FutureLearn office.

A pattern wall gives you a bird’s-eye view of your system.
This makes it a great space for naming conversations to
happen, as you can refer to things right there in front of you
— no need to search all over the site or remember what they
look like. Having a dedicated space also makes your system
more open: people feel like they are welcome to join in, ask
questions and contribute.

You don’t need a lot of space to create a pattern wall, and
not all the screens of your product have to appear there.

122 Chapter 5

Start with the ones that are the most crucial or used most
frequently. Print them out on A3 sheets, put them up on
the wall, and label the most prominent patterns. It can be
helpful to position the printouts in the order that follows
your most common user journeys; for example: discovery
screens, sign-in journey, comparing products, making
a purchase.

You can be creative when making your design patterns
visible. The team at MOO, a digital print and design com-
pany, printed some of the pages from their style guide onto
MOO postcards as handy sheets the employees can grab
for reference.

Some of MOO’s style guide postcards.

123Shared Language

Automated reminders can also be helpful. It only takes a few
minutes to set up a Slack bot that will occasionally remind
your team what different elements are called.15

A Slack bot reminding the team what “Signpost” looks like.

REFER TO THE OBJECTS BY THEIR NAMES

Like with any language, you need to use it to keep it alive. It
needs to be part of day-to-day conversations. That’s why it’s
important to make a conscious effort to keep referring to
the patterns by the names you agreed on — no matter how
bizarre this might sound.

15	 Some tools, such as Brand.ai and https://frontify.com, also have
integrations with Slack to ping channels when a pattern library is
updated. More about tools in chapter 10.

124 Chapter 5

http://Brand.ai
https://frontify.com

“Whisperbox” is a promotional module on FutureLearn. As
the name suggests, it is meant to be subtle and not draw too
much attention to itself.

“Whisperbox”: a subtle promotional module on FutureLearn.

Until we gave it a proper name, we kept referring to it as
“that thing with the lines and an icon in the middle.” It
was easy to call it that. It took more effort to start calling
it “Whisperbox.” But until you start calling a pattern by its
actual name, it doesn’t exist in your system as a solid action-
able block to work with. And every time you do use the
name, you strengthen the element you call on, and evolve
your design language.

Doing so requires a certain self-discipline in the team. It
can be hard, especially if you’re not used to it (imagine you
joined a team where everyone is talking about minions,
bosses and whisperboxes!). But very soon those names
become part of a normal conversation and people get used
to it. The goal is to get to the point where everyone knows
exactly what you’re talking about just by calling a name.

125Shared Language

Everyone knows the purpose of sequence navigation and
refers to it as “Sequence navigation”, and not “Fancy bub-
bles” or “Wizard control.” Naturally, it also means that
names in the design file and code match.

MAKE IT PART OF THE INDUCTION PROCESS

It’s easier to introduce new employees to your design
system if it’s part of your induction process. New team
members at Atlassian are taken through the story of how
the guidelines were created so they can understand why
and how the decisions had been made. At FutureLearn, we
created an internal induction online course, which includes
a dedicated chapter about the pattern library, with quizzes
and bite-size lessons.

A chapter on the pattern library in the FutureLearn’s online induction course.

126 Chapter 5

ORGANIZE REGULAR DESIGN SYSTEM CATCH-UPS

Everyone hates meetings. But design system catch-ups are
worthwhile if you want to keep everyone on the same page
when evolving your system. It’s the time when all designers
and developers can fully focus on the system together.

The catch-ups can work with a group of around 16–20 peo-
ple, and for larger groups people can take turns to attend.
They don’t have to take long — half an hour is usually
enough, if you have a well-structured agenda. Initially, you
can run them weekly, and then fortnightly when the team
finds its rhythm. Teams can use this time to agree on the
overarching patterns, such as icons or typography across the
product. It is also a good opportunity to share new modules
and discuss their purpose, usage, and any problems and
questions people might have.

ENCOURAGE DIVERSE COLLABORATION

Try pairing on designing and building patterns as much
as possible. All the exercises described in the previous two
chapters can help collaboration and establish shared lan-
guage between disciplines:

•	 Creating a pattern map

•	 Conducting an interface inventory focused on a
specific pattern

127Shared Language

•	 Drawing pattern structure

•	 Agreeing on the purpose of a pattern and coming up
with a name

•	 Articulating the patterns that make your product feel a
certain way

•	 Running small scale experiments with new patterns

In any team there will be people who are more fluent in
your pattern language and more enthusiastic to work on
the system, and they might naturally gravitate towards
working with each other. But try to encourage them to
work with everyone, so that they have an opportunity to
share their knowledge and enthusiasm with people who
are less immersed in the system. By spreading out the
knowledge across an organization, a design system becomes
more resilient.

KEEP A GLOSSARY

One of the most effective practices for sharing and evolving
a design language is to keep a glossary of the terms you
use. Creating and keeping a glossary allows you to be con-
sciously aware of the words you use, as you have to articu-
late things to write them down. For example, at Intercom, a
customer messaging platform, the team keep a glossary of
terms to make sure they use “the same language from code
to customer.”

128 Chapter 5

The Intercom Glossary 16

And, of course, an up-to-date, easily accessible pattern
library can also be a reliable glossary of design patterns
and a reference point for the entire team (as well as being
the actual toolkit of patterns for designing and building
an interface).17

16	 http://smashed.by/intercom
17	 We’ll discuss pattern libraries in detail in chapter 10.

129Shared Language

http://smashed.by/intercom
http://smashed.by/intercom

The value of a glossary is not only in the tool it provides: it
is also in the language practices it cultivates. By establishing
and keeping a glossary, you get into a habit of vetting, dis-
cussing and articulating your language decisions as a team
— you acknowledge that words matter.

Not all teams are equally collaborative and open to discuss-
ing design principles and patterns every day. Establishing
a shared language requires a certain kind of team culture.
But it can also work the other way around — integrating
language-focused processes can lead to better collaboration.
Three years ago at FutureLearn we didn’t have a working
shared design language and we didn’t collaborate nearly as
much as today. Designers were documenting patterns in a
PDF brand document and developers built their front-end
style guide. Although both documents were useful for each
of the disciplines, they didn’t provide a shared language
foundation to work with. But by putting practices and pro-
cesses in place, we gradually transformed how we work.

Establishing a shared language is always a gradual, piece-
meal process. Sometimes it will be messy and slow, but if
you just keep going, you’ll see your language evolving and
strengthening. Eventually, the effects will ripple out within
your team, with other teams, and with stakeholders, as they
start to understand what you’re trying to achieve and join
you in this process.

130 Chapter 5

Summary Of Part I

In this first part of the book we’ve talked about establishing founda-
tions for a design system. Here’s a summary of the key points.

PURPOSE

The purpose of a design system is to help achieve the pur-
pose of the product: “Cook a healthy meal in ten minutes”;
“Spread the talks as far and as wide as possible”; “The right
music for every moment.” Everything in a system — from
how a team operates, down to the smallest pattern — should
be optimized toward that purpose.

PRINCIPLES

Teams choose how to achieve the product’s purpose through
design. Their design approach and priorities can be cap-
tured in a set of principles: “Design for first impressions”;
“Appropriate over consistent”; “Timeless, not cutting edge.”
The more aligned the team are on their principles, the more
cohesive the patterns they create.

PATTERNS

Through the interface we aim to help people accomplish
certain goals and feel a certain way: learn a new recipe; focus
on writing; feel productive; feel inspired. Our design intent is
rendered through design patterns. Functional patterns
support user behaviors and actions: “select ingredients,”
“choose a recipe,” “follow recipe steps,” “rate a recipe.”

131Summary

Perceptual patterns focus on how a product should feel
intuitively: “utilitarian,” “newspaper-like,” “openly enthusi-
astic.” The purpose of the patterns needs to be thoroughly
understood by the team. Only then can we make sure it is
interpreted as intended by our users.

SHARED LANGUAGE

The patterns should be connected through a shared lan-
guage — a deeply rooted knowledge in the team about how
to create and use design patterns for a particular product to
create effective and coherent user experiences. This knowl-
edge is propagated through a shared design approach, front-
end architecture, brand vision, and daily practices such
as collaborative naming, cross-discipline pairing, making
patterns visible, conducting regular interface inventories,
and maintaining a pattern library. The language should be
evolved, strengthened, iterated and continuously tested.

Understanding How Your System Works

A design system is not built overnight, but shaped gradually,
through our daily practices. If you are working on a digital
product, the foundations of your system probably already
exist. One way or another, interfaces are designed and built,
and end up in front of users. Unless this process is entirely
random, you have a system.

132 Part I

The question is, what kind of system is it? Is it flexible and
adaptable, or is it designed for one specific purpose? Is it
cohesive or fragmented? Is it easy to work with, or is it
time-consuming? Does your system thrive on freedom and
autonomy, or is it strictly hierarchical?

To make a design system more effective, we need to know
how it works, what it consists of, what makes it function
well and what doesn’t. If we don’t have this knowledge, the
same problems keep occurring (systematically!). We tidy up
all the buttons and six months later end up with too many
buttons again. We can solve a problem but if the mecha-
nism that created it remains, the same problem will keep
coming back.

Different design systems work in different ways. Your
organization, team culture, design approach, the project,
and even the physical space you’re in, will shape your sys-
tem. In the next part of the book we’ll start by looking at the
underlying structures that influence design systems. We’ll
then focus on techniques for establishing and maintaining a
design system, including:

•	 Planning
•	 Conducting a functional interface inventory
•	 Setting up a pattern library
•	 Creating, documenting, evolving and maintaining

design patterns

133Summary

Parameters Of Your System

This chapter introduces some of the qualities a design system can
have and the ways in which risks and downsides can be managed.

T he team at Sipgate ran into a problem. Duplications
and inconsistencies across their product websites
were diluting the brand and creating needless extra

work for the whole team. They decided to address the issue
by establishing a pattern library. After weeks of workshops
and interface inventories, patterns across the product sites
were standardized. A few months later, the team rolled out a
brand new pattern library.

In some companies you might struggle to excite people
about your pattern library. They won’t see its value, they
won’t contribute. This was not the case at Sipgate. All the
product teams documented their patterns diligently and
efficiently.

There was no shortage of enthusiasm. But a year later, there
were so many modules that it became extremely difficult to
find the one they were looking for, and to understand which
one to use. It became easier to just add a new one. After a
year of maintaining a pattern library, their product web-
sites were still full of duplicated patterns, albeit thoroughly
documented ones.

134 Part II

Chapter 6

A design system doesn’t start or end with building a pattern
library. There are many factors that shape a system: the
structure of your organization, your team culture, the type
of product you’re working on, and your design approach,
among other things.

To see how these factors play out, I find it useful to charac-
terize design systems using three attributes: strictness of
the rules, modularity of the parts, and distribution of the
organization.

These parameters are not binary and all companies lie
somewhere on each continuum. As we take a closer look at
them, we’ll draw on examples from different companies to
see the benefits and drawbacks of each direction.

135Parameters Of Your System

Rules: Strict Or Loose

Some systems are strict, others benefit from being more
loosely set up. Let’s take two teams as examples: Airbnb
and TED.

AIRBNB

Airbnb has over 2,000 employees worldwide and around 60
product designers working across multiple work streams.
The system is managed entirely by their Design Language
System (DLS) team which consists of six designers and
their engineering partners for web, native mobile, and React
Native platforms.

The design system at Airbnb is strict: there are precise rules
and processes in place that are rigorously followed.

Standardized Specifications

To minimize deviations, modules in Airbnb’s DLS are
specified precisely. For example, typography treatments are
strictly defined; there is an eight-pixel grid used for spacing;
interactions are documented; naming conventions are con-
sistent. Here’s how a module called “Marquee” is specified
in the master Sketch file. Notice that there are two examples
of each one, to show some options available to the designers.

136 Chapter 6

“Marquee” module in Airbnb’s master Sketch file.

Design is Fully Synchronized with Engineering

In Airbnb’s system, design and engineering are fully syn-
chronized. Specifically this means three things:

•	 Design modules in the master Sketch file have an exact
equivalent in the code, and they are in sync.

•	 Names in the Sketch file and the code match.

•	 All modules are cross-platform: every component
drawn in the Sketch file has a matching component
that is as similar as possible in iOS, Android, React
Native, and responsive web libraries.

137Parameters Of Your System

The synchronization is seen as a priority. The team creates
custom tools, such as Sketch plug-ins, to achieve that.

A gateway to all DLS resources.

Strict Process for Introducing New Patterns

The DLS team aims to provide all the patterns required by
the product designers across the company. Their goal is to
reuse around 90% of the existing modules, so creation of
new patterns is relatively infrequent. There’s a strict process
for introducing new components:

138 Chapter 6

1.	 A designer submits a proposal using a Sketch template
with instructions about related behavior and rules.
They suggest a suitable name and provide an exam-
ple of how the proposed component can be used in
context.

2.	 The proposal then goes to the product support team
via JIRA, along with the Sketch file. In many cases,
the support team finds that a similar module exists
already, or that an existing module should be updated.

3.	 If a need for a new module is justified, the propos-
al goes through to the DLS team, who consider the
requirement and decide if the proposed design will
work. Sometimes they use the proposed solution,
sometimes they adapt or redesign it, to make sure it
fits with the system.

Comprehensive Detailed Documentation

The design language is documented in the internal web-
site, DLS Guidelines, generated from the master Sketch
file. Airbnb’s tools team built an automated process that
generates screenshots and metadata about the compo-
nents, and publishes them to the guidelines site. Needless
to say, documentation is fully in sync with the Sketch file
and the code.

139Parameters Of Your System

The internal DLS Guidelines website.

These are some of the practices that make DLS function
well as a strict system. On the opposite end of the strict-
ness scale we have companies with looser structures. Such
systems are optimized more towards experimentation and
sensitivity to context. They can be effective too.

TED

The team at TED is small, with only five or six key peo-
ple responsible for the design system decisions: two UX
practitioners and four front-end developers. TED’s system
is loosely set up. Brand feel and the utility of the page take
priority over perfect visual consistency.

140 Chapter 6

“

For example, introducing an additional color or diverging
from the standard layout as an exception is not a major con-
cern, as long as it helps to achieve the right effect:

Design what’s right, not what’s most consistent. The best utility
of the page is a priority. We’ll modify the page to make it work.
Dogmatic consistency and established patterns are not what should
drive design decisions.” 1

—Michael McWatters, UX architect, TED.

There’s a lot of scope for creative experimentation with
this kind of system. Because each page can be fine-tuned,
it can adapt to specific contexts and use cases. The designs
such a system generates can be coherent, but they’re not
necessarily perfectly consistent. In contrast to Airbnb, TED’s
processes are also more relaxed and informal.

Simple Sketch over Detailed Specs

Instead of detailed specs, TED’s team can often use a white-
board or low-fi paper sketch with rudimentary notes. It is
then shared in person or posted in Dropbox or InVision,
where the team exchanges comments and feedback. Design-
ers and developers then work collaboratively as they bring it
to a higher fidelity.

1	 Interview with Michael McWatters, UX architect, TED,
August 2016

141Parameters Of Your System

At TED a simple sketch with notes is often used instead of detailed design specs.

Simple Documentation

The documentation is also simple. The team doesn’t have
a comprehensive pattern library. Instead there’s a simple
collection of what they call swatches on a web page and
in a Sketch file, which contains some of their core design
patterns — but by no means everything.

142 Chapter 6

Some of the TED’s swatches, saved in a Sketch file.

Perhaps you’re thinking that this is because TED is small
and it simply doesn’t have the time and resources to set
up a comprehensive pattern library. But that’s not exactly
the case. So far, there just hasn’t been a need to document
everything in detail. If the team starts growing, that might
change, but they emphasize that even with a pattern library
in place, patterns are not going to drive the design. “Design
acumen and sensitivity to context will always come first,
even if it means that in some cases patterns will be ignored
or modified,” says Michael McWatters.

143Parameters Of Your System

Even though TED’s interface designs adapt to unique con-
texts, sometimes breaking from established patterns, the
team still considers their system to be effective at generat-
ing designs that work for their users.

What makes such systems work is not strict rules and
processes — it’s the shared design knowledge, deeply rooted
in the culture. The team is fully in sync on their product
vision (“Spread the ideas as far and as wide as possible”) and
their design approach. The design of patterns is guided by
the shared principles (such as “Timeless, not cutting edge”),
and there’s a deep mutual understanding of the purpose
of patterns and their usage. This shared knowledge is the
foundation that makes this system effective, even though it
is loosely set up.

Managing Downsides and Choosing Direction

These were two contrasting examples, but, of course, these
parameters are not binary: all teams sit somewhere along
this scale. It can seem that strictness is related to company
size — younger, smaller systems tend to be (and can get
away with) being looser, to allow more freedom and exper-
imentation. As a system grows, it becomes stricter. But
maybe it’s not as simple as that. I once worked in a small
team with a brilliant but authoritarian creative director, who
closely monitored all design output. It was a small but very
strict system. On the other hand, you can imagine a larger

144 Chapter 6

company having a loosely set up system, to encourage each
team to experiment and make their own decisions. Perhaps
it’s not so much to do with the size, but a team’s approach
and their priorities.

In general, stricter systems provide precise and predictable
outcomes and visual consistency. But at the same time, a
strict system can become rigid, to the point that you start
making UX compromises for the sake of consistency.

To make sure this doesn’t happen, there should be opportu-
nities outside the boundaries of the system, such as creative
experiments and side projects. People need to understand
the rules and be able to challenge them. If there’s no under-
standing, rules will be ignored or overridden. That’s why
clear, comprehensive and compelling documentation is
fundamental to this type of system.

Loosely set up systems are well suited to products that
prioritize sensitivity to context and experimentation. But
a loose system, which works so well for TED, can quickly
become too messy and fragmented in other companies.

To have a simple, flexible system like TED’s, everyone on
the team needs to be fully aligned on a product’s purpose
and the design approach, which both need to be ingrained
deeply into their culture. Even a loosely set up system needs
a solid foundation.

145Parameters Of Your System

Parts: Modular Or Integrated

All systems are made of parts. But in the context of design
systems, modularity means not just that a system is made
of parts, but that the parts are interchangeable and can be
assembled together in various ways to meet different or
changing user goals.

A modular design, such as the iconic Bauhaus Bauspiel construction set, can
adapt to different requirements.

A modular approach has many known advantages:

•	 It’s agile, because multiple teams can design and build
modules in parallel.

•	 It’s cost-effective, because those modules can be reused.

•	 It’s relatively easy to maintain, since you can fix a prob-
lem in one module without affecting the others.

146 Chapter 6

•	 It’s adaptable, because modules can be assembled in the
ways that meet different user needs.

•	 It can have a generative quality, which means that you
can create entirely new outcomes by introducing new
patterns or combining them in new ways.

The opposite of a modular structure is an integrated design
approach. An integrated design can also be made of parts,
but those parts are not interchangeable because connections
between them are not designed to fit in different ways.

 Integrated design is optimised towards a specific goal.

Integrated designs also have a number of benefits:

•	 They can be specific to a particular content, context,
story or art direction.

•	 They tend to be more coherent and connected (unlike
modular structures which can feel disjointed).

147Parameters Of Your System

•	 They can be built quicker as one-offs, because there’s no
need to spend time on making the parts reusable.

•	 They are easier to coordinate, since everyone on the
team works towards one purpose.

Our conversations about design systems on the web have
been in favor of modularity and standardization of compo-
nents. We talk about how patterns should be modular and
reusable, how everything should be just like Lego. But the
extent of modularity should depend on your team and your
product.

MODULARITY AND THE USER EXPERIENCE

As well as efficiency and cost savings, consider how a

modular approach can benefit your users and enhance the

experience of your product. In architecture, there are exam-

ples where modularity doesn’t only add to the experience

but becomes its core characteristic.

Puma City is a retail store made of 24 cargo containers that

can be dismantled and reassembled. What allows this build-

ing to travel around the world is its modularity. It is also key

to its design: the containers are put together in a way that

shapes the personality of the building. Shifting the contain-

ers in different ways can create outdoor spaces and terraces,

148 Chapter 6

as well as the interior. Even the way the logo is fragmented

as a result of moving the containers is part of the composi-

tion, part of the unique feel of this building.

Puma City, LOT-EK (image credit: “The Box” by Sibyl Kramer)

Now let’s look an an example of integrated architecture. The
Greendo apartment complex in Takamatsu, Japan is built
into the side of a mountain and has five levels; each unit’s
roof serves as another’s garden. Not only is the building
embedded in the landscape, it also lives and breathes with
the land, taking advantage of natural insulation and heat
from the earth to maintain a stable temperature inside.

149Parameters Of Your System

“Greendo”, Keita Nagata (Image credit: http://www.designboom.com)

Sometimes modularity makes sense at the implementation
level but not in the design, or the other way round. This
student accommodation in Paris is made to look modular,
as though it’s constructed of shifting baskets rotated at
different angles.

“Basket apartments”, OFIS architects
(Image credit: http://www.archdaily.com and http://www.ofis-a.si/)

150 Chapter 6

http://www.designboom.com
http://www.archdaily.com
http://www.ofis-a.si

But in fact it’s the placement of the balconies and the way
they protrude from the building that gives it this feel. In this
case it didn’t make sense to make the building fully mod-
ular, but the modular aesthetic still suited that particular
building. The opposite could be the case too.

In short, more modular is not always better. The extent of
modularity should depend on what you’re trying to achieve.

EXTENT OF MODULARITY AND PROJECT NEEDS

In general, the modular approach is suited for products that:

•	 need to scale and evolve
•	 need to adapt to different user needs
•	 need a large number of repeating parts
•	 have multiple teams working on them concurrently

and independently

Examples can include large-scale sites for e-commerce,
news, e-learning, finance, government — anything that
needs to scale, evolve and cope with different user needs.

I find it especially interesting when modularity becomes
part of the brand and the experience of the product. In Flip-
board, for example, modular layouts are at the heart of the
design and the brand. This is what helped make the brand

151Parameters Of Your System

distinct: “Each magazine page layout feels hand-crafted and
beautiful—as if editors and designers created it just for you.”2

Flipboard’s modular layouts are at the core of its experience.

On the other hand, integrated systems are suited for prod-
ucts that:

•	 are designed for one specific purpose
•	 don’t need to scale or change
•	 require art direction outside the boundaries of the

system
•	 have few shared repeating parts
•	 are one-offs that are unlikely to be reused

2	 “Automating Layouts Bring Flipboard’s Magazine Style To Web And
Windows” by Charles Ying. http://smashed.by/flipboard

152 Chapter 6

http://smashed.by/flipboard

Examples of an integrated approach can include creative
conference websites, one-off marketing campaigns, creative
portfolios and showcases.

Circles Conference is a conference for designers and other creatives. Their site
features bold design, with a number of unique modules that can make full
modularisation not worthwhile. (KIKK.be, 2016)

Spotify’s campaigns feature entirely different designs when
promoting specific music events.

Examples of Spotify’s music event campaigns.

153Parameters Of Your System

http://KIKK.be

While you can spot some reuse of a few of the brand styles
(such as shapes, color and typography), it is less common to
see larger building blocks from the main consumer prod-
ucts in these campaigns. To allow more flexibility and crea-
tive expression, it made more sense to create these designs
outside their modular system for consumer products.3

MANAGING DOWNSIDES AND CHOOSING
A DIRECTION

A modular approach is adaptable, scalable and cost-ef-
fective in the long run. But modularity comes with some
drawbacks.

First, building reusable modules is typically more time-con-
suming than creating a one-off solution designed to accom-
plish a specific goal. You have to think through different
use cases and plan how they will work across the system.
To become cost-effective, modules need to be reused, which
can take time. Some teams struggle for a while to see a
return on investment in a modular system, which makes it
hard to justify the investment in the first place.

3	 The brand and creative team at Spotify, which manages the cam-
paigns, has a simple system that allows for a very flexible combination
of brand styles. This is how they can create a whole range of cam-
paigns which all fit within the Spotify brand.

154 Chapter 6

Second, modules typically have to be fairly generic to
accommodate a variety of cases. The result can be predicta-
ble generic designs where power of composition and story
are lost in favor of efficiency. When teams choose a modular
approach they need to find other ways to innovate — dis-
tinct content or service, a strong voice, or effective use of
perceptual patterns.

Third, to make modularity worthwhile, teams sometimes
force the reuse of the modules. At FutureLearn we ended up
occasionally sacrificing the potential impact a page could
have for the sake of reusability. To prevent this from hap-
pening, technical efficiency should always be balanced with
the benefits modularity brings to the user experience.

Finally, one of the main challenges is making modules
connect seamlessly. With modular design the expectation
is that you can mix and match the parts, and they should fit
perfectly together. But sometimes people combine modules
in ways that don’t work as a whole. And paradoxically, even
though there is a lot of consistency across the modules,
there is little coherence in the overall experience.

To prevent that, we should focus not only on the modules,
but also on the connections between them: the rules of how
they relate to one another, their relative importance (such as
visual loudness), their role in the overall user journey, their
hierarchy in the overall composition.

155Parameters Of Your System

Integrated designs can be more specific because they’re
optimized for one purpose. They also tend to be more coher-
ent and work better as a whole. But they don’t scale well.
Integrated designs aren’t adaptable or reusable, which is
often exactly what we need on the web.

The degree of modularization can change over time. Your
system can start with a few shared styles and principles. As
it grows, you might notice more and more repeating pat-
terns, and increased modularity becomes a logical progres-
sion for your product.

Equally, it can develop in the opposite direction. At Future-
Learn we have a largely modular system. But we noticed
that having to work with reusable patterns on high-impact
sales pages can feel limiting. Since FutureLearn started to
do more branded marketing campaigns, we work with more
custom sections, to make a stronger brand statement.

156 Chapter 6

Organization: Centralized Or Distributed

Another important aspect of a design system is how it is
organized.

CENTRALIZED MODEL

In a centralized model, rules and patterns are managed pri-
marily by one group of people. Typically this means that:

•	 they define the patterns and rules
•	 they have veto power over the system
•	 they manage the pattern library or other resources

where patterns are stored

The most obvious advantage of this structure is owner-
ship. If someone is responsible for it, it is more likely that
the system will be curated, maintained and evolved. It also
helps the creative direction to be focused and opinionated,
because it comes from one source. This is probably why
sometimes we find this model in design-led companies,
such as Apple or Airbnb.

DISTRIBUTED MODEL

An alternative approach is a distributed model, where every-
one who uses the system is also responsible for maintaining
and evolving it.

157Parameters Of Your System

This type of structure provides autonomy for individuals
and empowers them to make decisions. It tends to be more
agile and resilient — if one team misses something, another
one can pick it up. Design knowledge and creative direction
are distributed, rather than concentrated in the minds of a
few people.4

This is the approach used at TED, and it’s also the structure
we tried to establish at FutureLearn. For a small company
like FutureLearn, it was impractical to have a dedicated
design systems team. All the designers and front-end devel-
opers who work on the product also actively contribute to
the system. And because everyone contributes a little, run-
ning a system in this manner doesn’t take that long. That’s
the only way we have been able to maintain the pattern
library for the last three years.

ORGANIZATIONAL CHALLENGES

While a distributed approach works for FutureLearn, it’s not
for everyone. Many companies I spoke to had a different
experience when trying it. People were enthusiastic at first
but without someone in charge, the work could slow down
or stop completely.

4	 As we discussed in chapter 5, this approach works through close
collaboration and shared knowledge. Christopher Alexander refers to
a similar concept as a “pattern language” approach in The Timeless Way
of Building.

158 Chapter 6

The team at Eurostar is not large: it consists of four design-
ers, four product managers and ten front-end developers. A
distributed approach initially made practical sense to a team
of this size. But after a year, they still struggled to make
everyone contribute evenly.

We wanted to see everyone contributing a little. But instead we saw
a couple of people contributing a lot”.

—Dan Jackson, Solutions Architect, Eurostar

After switching to a centralized approach, the team made a
much better progress.

Eurostar’s Pattern Library, 2017 https://style.eurostar.com/

“

159Parameters Of Your System

https://style.eurostar.com

A fully distributed approach seems to require a certain type
of team culture to work. Equally, a strict system also fails
without a culture to back it up. At the BBC, a centralized
approach didn’t quite work with GEL. Ben Scott, a technical
lead at the BBC, shared in an interview how despite investi-
gation into centralizing their system, it was not worthwhile
because each product team always had their own strong
views on what their design should be. So the distributed
approach worked much better.5

MANAGE DOWNSIDES AND CHOOSE DIRECTION

A centralized approach provides ownership and reliability.
At the same time, it can work against the team. Because the
responsibility falls on one group of people, they can become
a bottleneck, slowing down the entire product’s life cycle.6
For smaller teams, it may also be impractical taking some-
one away from the product to allow them to dedicate most
of their time to focusing on the system.

A distributed approach promotes more autonomy and
empowers the whole team to create. It’s more agile, more
resilient, because it doesn’t depend on a small group of
people. But it’s challenging to make it work in a way that’s
sustainable and that doesn’t dilute creative direction.

5	 Informal interview with Ben Scott, May 2017
6	 At Airbnb the process of adding a new module can take up to two
weeks. This is one of the things the team is trying to improve.

160 Chapter 6

Like the relative strictness of a system’s rules and its degree of
modularity, ways of organizing a system don’t depend on the
size of the team. In a small company, creative direction can
come from a single source, such as CEO or a creative director.
In larger companies, a distributed system can work also.

For example, Atlassian is a relatively large organization with
over 2,000 employees. There’s a dedicated team that curates
the patterns, but there is also an open source model for con-
tributions. Everyone in the company is not only allowed but
also actively encouraged to contribute.

We want people not just consent the design language but embrace it
and move it forward.”

— Jürgen Spangl, head of design, Atlassian

Atlassian’s design guidelines run an open source model where everyone is
allowed to contribute but contributions are managed and curated.

“

161Parameters Of Your System

At the BBC, GEL provides “platonic ideal” versions of patterns,
and then each department has its own implementation.

SUMMARY

In this chapter we’ve looked at several teams, with different
approaches to design systems. Here’s how I would place
them on the three scales introduced earlier.

The Airbnb system is strict, modular and centrally organ-
ized. It operates through rules and processes which are
followed strictly. There’s a lot of certainty and consistency
with this kind of system.

On almost the opposite end of the scales we have systems
like TED’s, which are much more loosely set up and where
creative direction is distributed throughout the team. These
systems typically allow more experimentation, fine-tuning
and sensitivity to context.

162 Chapter 6

Somewhere in the middle between the two, we have teams
like FutureLearn. As a young and growing company, the
design system at FutureLearn has moved along the scales.
It started as more centralized and integrated, gradually
becoming more distributed and more modular. The rules
of the system have also become stricter over time, once we
started focusing on consistency.

163Parameters Of Your System

THE RIGHT SYSTEM FOR YOU

Another important aspect is, of course, a team culture, which
is inevitably reflected in the design system they will pro-
duce. As Conway’s law states:7

Organizations which design systems […] are constrained to produce
designs which are copies of the communication structures of these
organizations.”

The team at Sipgate are now rebuilding their pattern library.
What’s interesting is not that they switched their model
from distributed to centralized, but that in order to make
the centralized model work they had to first demonstrate to
the company what full autonomy would look like. At first,
the free-spirited and enthusiastic teams at Sipgate couldn’t
imagine their designs being “controlled” by someone else.
But with an autonomous culture like theirs, they realized
that that’s exactly what they needed to keep their system
coherent and unified.

7	 Conway’s law emerged out of an observation made in 1967 by
Melvin Conway, a computer scientist and programmer.

“

164 Chapter 6

To make it work, they had to make a few changes in their
design process and how they collaborate. The team now put
more emphasis on having a shared methodology and the
design approach, rather than efficient documentation of the
patterns. For them it wasn’t only a change in direction — it
was also a cultural shift.

The right system for you is not some else’s system. What-
ever works for one team might not work for another.
Sometimes we think other teams have got it right and aspire
to build a system just like Airbnb. But every approach has its
downsides. The right system for you is the one where you’re
able to manage the downsides.

At the heart of every effective design system aren’t the
tools, but the shared design knowledge about what makes
good design and UX for your particular team and your
particular product. If that knowledge is clear, everything
else will follow.

165Parameters Of Your System

Planning And Practicalities

In this chapter we’ll look at finding support for establishing a
design system in your organization, and planning the work.

How does a team start thinking about design more
systematically? Typically, when they notice issues
with their current workflow. Designers become

frustrated always solving the same problems, or not being
able to implement their designs properly. Developers are
tired of custom styling every component and dealing with
a messy codebase. Both struggle to meet the deadlines and
demands of a growing product. Without shared design
language and practices, collaboration is difficult.

Some people start making improvements — standardizing
buttons, setting up a master Sketch file, creating a simple
library of existing components. Others notice the benefits
and join their efforts. The team might standardize more
patterns, align the design vocabulary, set up new tools and
processes. After some trial and error, they will see improve-
ments in how their system functions. These first initiatives
contain valuable lessons. But to make a real difference,
working on a design system as a side project is not enough.
You need widespread support — not only from your peers
but also the senior stakeholders in the business.

166 Part II

Chapter 7

Getting Support From Senior Stakeholders

Getting buy-in is not always easy. Some teams start by
collecting examples of the visual inconsistencies across the
product. An image of inconsistent buttons might be a com-
pelling graphic but it’s not always enough to make a CEO or
your manager see the value of the changes you’re proposing.

To get support from the business, you need to demonstrate
that an effective design system will help to meet business
goals faster and at lower cost. In other words, you need to
make a business case for it.

Sometimes it helps to use familiar language in your pitch.
If the idea of a “comprehensive design system” sounds too
broad and abstract to your audience, try to present it as “a
modular interface” instead. Modularity has many proven
practical benefits, which we discussed in the previous chap-
ter. As long as it is the right direction for you, those benefits
can be demonstrated in relation to your team and your
product. Here are a few examples.

1. TIME SAVED ON DESIGNING AND BUILDING
MODULES

Naturally, reusing an existing element, rather than build-
ing one from scratch, is quicker. You might even be able to
work out roughly how much time it can save. At Future-

167Planning And Practicalities

Learn, building a relatively simple custom component for
the first time can take about three hours. Building the same
component in a modular way (getting the structure right,
making it flexible for various use cases, coming up with a
good name, adding it to the pattern library) can take twice
as long. But when the same component is used again, it’s
almost free. In the long run this can save a lot of time, if you
work in a way that emphasizes repeatable choices.

Even seemingly simple elements like buttons take time
and effort to design and build. To get senior stakeholders to
understand the value of reusing components, design system
consultant and author of Modular Web Design Nathan Curtis
uses a story about button complexity. In a few slides he
demonstrates how buttons can cost hundreds of thousands
of dollars to design and build.

If your enterprise has 25 teams each making buttons, then it costs
your enterprise $1,000,000 to have good buttons.”1

— Nathan Curtis

Quantifying and demonstrating the cost of inefficiency is
often the most effective way to get executive buy-in.

1	 http://smashed.by/goodbuttons

“

168 Chapter 7

http://smashed.by/goodbuttons

2. TIME SAVED ON MAKING SITE-WIDE CHANGES

A bloated and inefficient system means that even the
smallest changes are time-consuming and fiddly to make.
In his article “Designed for Growth”2 Etsy’s Marco Suarez
described how technical and design debt slow their team
down. He shared an example of a diff of Jessica Harllee’s
work for updating the styling of buttons on etsy.com. The
deleted code is shown in red, and the code written in green.
Evidently, far too much code was touched in order to make a
simple visual change.

A diff of file for updating the styling of buttons on etsy.com where the code
deleted is shown in red and the code written in green.

Not only are changes time-consuming to make, sometimes
the same change has to be applied in different places.
Conversely, a reusable pattern will be updated automati-
cally everywhere that pattern is used. This makes site-wide
updates quicker to make.

2	 http://smashed.by/designforgrowth

169Planning And Practicalities

https://medium.com/etsy-design/designed-for-growth-cdc2a01a8a8a#.nklkpbnum
http://etsy.com
http://smashed.by/designforgrowth

In the long run, modules should get better the more they are
used. Different teams come up with different use cases and
solutions to meet them. By improving individual compo-
nents, the whole system becomes more robust and easier to
maintain. And the less time a team spends fixing bugs and
untangling messy code, the more time they have to work on
things that bring value to their users and the business.

3. FASTER PRODUCT LAUNCH

If you visit a patisserie and order a selection of ready-made
pastries you will get an entirely different quote from order-
ing a custom-made cake. At FutureLearn, product managers
understand the different timescales for developing a feature
made from existing modules versus new ones. Building a
page using the patterns from the library is typically a matter
of days; a new design can take weeks. So if we need to test a
concept or pilot a new feature, sometimes existing modules
are used to release a feature quickly. It might not be perfect,
but it gives the team time to test, collect feedback, and work
out a better solution.

Tobias Ritterbach noted how the teams at Sipgate that use
their new pattern library are many times faster when deliv-
ering new features than the ones that don’t:

170 Chapter 7

Having a pattern library for sipgate.de allows us to build pages
10–20 times faster than for other product sites which are not connect-
ed to the library.”

— Tobias Ritterbach, experience owner, Sipgate

These examples show that a modular system helps to meet
the demands of a growing product by enabling teams to
prototype and ship features faster.

OTHER BENEFITS

When making a case for a design system, the winning argu-
ments tend to focus on demonstrating and quantifying the
cost of inefficiency. But, of course, there are other important
benefits, which may be valued in some organizations.

Brand Unity at Scale

It’s not uncommon for companies to end up in a situation
where their different products (or sometimes even parts
of the same product) all look like they belong to different
brands. Unifying a growing product or line of products
under the same brand requires an effective design system.

Visual Consistency

Design is a form of language — through design we commu-
nicate a mental model of the product. A consistent visual
representation helps people learn the interface quicker and

“

171Planning And Practicalities

http://sipgate.de

reduce cognitive load by making things familiar and pre-
dictable. It helps to make an interface feel intuitive.

Creating consistency is like making small promises through-
out the interface (when you see a pink button it is always an
action; the “Cancel” button always comes before “Submit”).
When people can be confident of what will happen, they can
rely on the product. Consistency helps to build trust.

Teamwork and Collaboration

A shared language is fundamental to collaboration, and
that’s exactly what an effective design system provides.
It gives people the tools and processes to create things
together. They can build on one another’s work, rather than
recreate the same things from scratch. Even after simply
collecting components in one place, designers at Airbnb
began to see improvements in productivity.

We collected components in a master Sketch file. After a week or two
we began to see huge leaps in productivity by using the library when
iterating on designs.”3

— Karri Saarinen, design lead, Airbnb.

3	 See “Creating the Airbnb Design System” by Karri Saarinen
	 (http://smashed.by/airbnbsystem)

“

172 Chapter 7

http://smashed.by/airbnbsystem

Presenting these cases in ways specific to their situations
has helped teams get the support they needed. Using a test
project to demonstrate the benefits can also be effective, as
designer Laura Elizabeth advised in one of her talks:4

Trying a design system on a small test project allows you to see the
effect it can have on your work and to demonstrate how much time
you’re saving.”

Not everyone can establish a dedicated design system team
or formalize their plans right away, but even spending one
sprint with a couple of dedicated people could be a helpful
starting point to demonstrate what could be achieved.
The success of these first steps can be used to get more
support later.

4	 See “Selling Design Systems” by Laura Elizabeth
	 (http://smashed.by/sellingsystems)

“

173Planning And Practicalities

http://smashed.by/sellingsystems

Where To Start

As we saw in the previous chapter, every team will have dif-
ferent requirements, and different strategies will work for
them. But here are a few tips that have been helpful for most
people, regardless of their situation.

AGREE ON YOUR GOALS AND OBJECTIVES

What are the main outcomes you’re hoping to accomplish
with this work? Having clear goals gives a team direction
and motivation. It helps them organize their time and
balance priorities. A goal should include a few objectives —
specific measurable steps to achieve it.

If you, like me, see design systems in relation to patterns
and shared practices, your goals can reflect that. For
instance, one of them can be focused on the interface, and
the other on the way team operates.

1. Systematize the Interface(s)

•	 Define guiding design principles
•	 Define and standardize reusable design patterns
•	 Establish a pattern library
•	 Set up master design files with up-to-date patterns
•	 Refactor code and front-end architecture to support the

modular approach

174 Chapter 7

2. Establish Shared Processes and Governance

•	 Set up knowledge-sharing processes through conversa-
tions, collaboration, pairing, training

•	 Promote the pattern library and encourage its use
across the company

•	 Promote shared design language across teams and
disciplines

•	 Make introduction to the design system part of the
induction process

Objectives can be broken down into smaller tasks and
stories. To plan how your goals will be achieved over time,
at this stage it is also helpful to create a simple road map for
your design system. This can be done in software such as
Trello, or even on a whiteboard with sticky notes. What mat-
ters is that the road map gives the team a collective under-
standing of their priorities and how the system should
evolve over time.5

At FutureLearn we also integrated design system stories
into the main product’s road map. This helped to make the
rest of the team aware of the work we were doing and bal-
ance it with other priorities.

5	 See “Road maps for Design Systems” by Nathan Curtis
	 (http://smashed.by/systemsroadmap)

175Planning And Practicalities

http://smashed.by/systemsroadmap

Having clear goals and milestones also helps manage expec-
tations in the rest of the company. A design system is a long-
term investment – its value increases gradually over time.
It’s important that people expect to see gradual and steady
improvements rather than quick dramatic ones.

MAKE YOUR PROGRESS TRANSPARENT

In my observations, teams who have made public some of
their work on the design systems tend to progress faster
than those who kept everything under wraps. Dan Jackson at
Eurostar explained in an interview the importance of mak-
ing their style guide public early on, even when it wasn’t
perfect. Knowing that others might have been learning from
their work provided additional motivation:

I wanted the style guide to be a public-facing product that we’re
proud of. Other people may be looking at it and using it as a resource.
It makes us feel that we have to keep up.”

— Dan Jackson, solutions architect, Eurostar

Some teams write short blog posts about their system as
it evolves. This is especially useful if you describe not only
your successes, but also your mistakes, stumbling blocks
and things you’d do differently next time. Documenting
your progress in an open and honest way is a powerful way
to help your team learn and stay motivated.

“

176 Chapter 7

Doing that also makes transparent the work done behind
the scenes. Writing and talking regularly about our design
system at FutureLearn was invaluable in getting more peo-
ple to understand the value of the work we were doing.

CREATE A CULTURE OF KNOWLEDGE SHARING

As we saw in the example of Sipgate in the previous chapter,
a team can have an up-to-date pattern library, but it won’t
provide as much as value without effective cross-team col-
laboration. Getting your team to think in a more systematic
way requires powerful knowledge-sharing practices. We
discussed some of them in chapter 5, “Shared Language:”

•	 Set up a dedicated Slack channel to collaborate on
defining and naming design patterns and to discuss
system-related questions.

•	 Create a pattern wall to make the process open and
transparent to the rest of the company and encourage
more people to join in.

•	 Make introduction to the design system part of the
induction process.

•	 Organize regular catch-ups to keep everyone on the
same page as your system evolves.

•	 Encourage collaboration not only within individual
teams but across teams and disciplines. In particular,
encourage people who are more knowledgeable about

177Planning And Practicalities

the design system to work with everyone, so they have
an opportunity to share their knowledge and enthusi-
asm with people who are less immersed in the system.

•	 Organize workshops and tutorials to introduce the
team to the changes as the system evolves. At Future-
Learn, the most effective presentations had a “problem–
solution” format. First, we talked people through cur-
rent problems then explained how the changes we were
proposing would help to solve the problem. For exam-
ple: “Current typography means that text is too small
on large screens and too large on small screens; reading
experience is affected; it’s not clear which headings to
use, and there are too many styles, which creates incon-
sistencies, and so on. Here’s how the new typography
system solves these problems.”

•	 One of the guerilla tactics Vitaly Friedman and his team
have been applying is dedicating each day to a compo-
nent in the interface. They’d have a carousel day, a light-
box day, an accordion day, and so on. Everybody would
receive a printout highlighting the component and its
variants, including front-end code and related styles.

We put it next to the kitchen sink and in the bathroom. A month
later, everybody remembers the naming of all the components,
including the cleaning personnel!”

— Vitaly Friedman, editor-in-chief, Smashing Magazine

“

178 Chapter 7

KEEP UP THE TEAM’S MORALE

Working on a design system is a long-term process. Your
team might not see the rewards of what you’re doing for
some time.

You don’t always get the personal satisfaction right away — the
reward comes when you see other people using the module you cre-
ated in their work, or when someone comments on how helpful the
information was for them.”

— Jusna Begum, front-end developer, FutureLearn

There are a few things you can do to help keep up the team’s
morale during the process.

Rather than chipping away at an endless list of tasks, aim to
complete the bulk of the work in one go, and then con-
tinue the rest as part of ongoing work. At Atlassian, initial
progress was made through design spikes by two or three
people. Matt Bond, a product designer who led the initial
work on the Atlassian Design Guidelines (ADG), explained
in one of his blog posts that having a two-phase approach
allowed the team to get through the initial stages quickly
and to then maintain momentum:

“

179Planning And Practicalities

It was high output, getting many new patterns to 80% completion in
a short amount of time. We’d then spend the next week or so dedicat-
ing small amounts of time to refine a pattern and get the guidelines
and code up to scratch to include in the ADG.6”

For some of the work, such as conducting an interface audit
or setting up a pattern library, it’s useful to get the whole
team (or representatives from multiple teams) involved, at
least in the initial stages. Doing so provides a shared sense
of ownership. If it’s not possible owing to other priorities,
let a smaller group do the groundwork and involve others as
needed. At FutureLearn, two of us (a designer and a front-
end developer) spent a sprint fully focused on the system,
roping others in as required once we’d figured out how it
should work.

It also helps to plan the tasks in a way that affords the most
benefit for the least effort. At FutureLearn, our goal was to
make all the components living. This meant that the code
for the modules on the website, and in the pattern library,
would need to be the same. But achieving that involved
refactoring every module. As we refactored them, we added
them to the pattern library, one by one. It was a painfully
slow process and the team started to lose motivation.

6	 See “How we made the Atlassian Design Guidelines” by Matt Bond. 	
	 (http://smashed.by/makingofatlassian)

“

180 Chapter 7

http://smashed.by/makingofatlassian

We then realized that we could provide value quicker by
adding all the patterns in one go and displaying them as
screenshots instead of code. This allowed the team to start
using the pattern library for reference right away. In the
following months we gradually replaced the screenshots
with living modules, as we continued refactoring them. Had
we not done that, it would probably have taken another year
before all the patterns were documented.

Practice Thinking In Systems

One of our first experiments with modularity at Future-
Learn was an attempt to redesign the home page. A visual
designer created modular slices, and we then held a work-
shop where we tried to organize them into full comps.
That’s what we thought (perhaps naively) a modular design
process looked like.

One of our first experiments with modularity.

181Planning And Practicalities

We ended up with three designs that eventually became
fully functioning prototypes. But even though it was a use-
ful exercise, the result wasn’t truly modular:

•	 Modules didn’t have a clear purpose. The differences
between them were mostly presentational.

•	 We didn’t define and name them.

•	 We didn’t put a lot of thought into how they would be
reused.

•	 Their role in the overall system was unclear.

The prototypes never made it into production. But it’s these
type of experiments that helped make our design process
more systematic. By trying different things we realized that
modular design is much more than cutting up the interface
and putting the pieces back together. If your team is new to
this way thinking, it’s useful to first explore what modular
means by experimenting on a side project or on a small area
of your product first.

After trying out a few different approaches, we arrived at a
more structured team exercise for systemizing an interface.

182 Chapter 7

The next two chapters describe this exercise in detail. In a
nutshell, it will follow three steps:

1.	 Identify key behaviors or aesthetic qualities
2.	 Audit existing elements
3.	 Define patterns

The steps are slightly different for functional and percep-
tual patterns. With functional patterns, the focus will be
on the user behaviors, on defining individual modules and
naming them. We will look at perceptual patterns more
as a whole, focusing on the feel and aesthetics, and on the
general principles of how they work together.

The order you do it is not critical. Some teams find it helpful
to look first at the foundational styles, such as typography;
others start with core functional modules. It is also possible
to look at both simultaneously in parallel.

In both cases, we consider the big picture first, and then
deconstruct the interface into smaller parts. Approaching it
this way helps us think not only of individual modules but
also how they work together, and how they help to achieve
the purpose of the product.

183Planning And Practicalities

Systemizing Functional Patterns

The exercise in this chapter describes an approach to systemizing
functional patterns, starting with a product’s purpose.

I n the town where I live there’s a small bookstore. As
you walk in, you see a few shelves of book covers.
Some have small handwritten notes attached to them:

reviews from the people who read them. Even if you don’t
know what you’d like to read, there’s a good chance you’ll
stumble upon something intriguing. Once you do, there’s a
quiet area with sofas to look through the books over coffee.
You might decide to buy something or you might not,
there’s no pressure. The ethos of the store is discovery and
reading; sales appear secondary. Its patterns — the notes,
quiet areas, sofas and coffee table — reflect that.

Similarly, digital products encourage or enable certain
behaviors. Consider how Slack supports ways of working
which are more collaborative compared with email or other
chat apps. Or think how Tinder promotes casual, commit-
ment-free relationships with its swiping interaction. Prod-
ucts can be designed around similar user goals and needs,
while encouraging entirely different behaviors.

184 Part II

Chapter 8

That’s why thinking of behaviors can be helpful when
connecting patterns with the design intent and ethos of
the product.1

Design intent can be rendered in countless ways — patterns
don’t have to be visual. They can be represented in physical
objects (like the interior of a bookstore), or they can be read
out by a voice. Articulating the behaviors helps to define pat-
terns in a way that is more future-proof, because behaviors
are platform-neutral.

A PURPOSE-DIRECTED INVENTORY

The interface inventory2 is a popular exercise to start
systemizing an interface. It involves taking screenshots of
various UI elements, and then grouping similar-looking
things together.

But while the idea is straightforward, it can be done in a
variety of ways. Sometimes inventories focus on the visual
consistency of the interface; for example, making sure all
buttons look the same, all menus are consistent, and so on.

1	 Equally, design patterns can be used to create behaviors that hijack
user attention or manipulate people to spend time and money on
something they’ll regret later (https://darkpatterns.org/). Remaining
conscious of behaviors can help make sure that user interests are
always at the heart of the design.
2	 http://smashed.by/uiinventory

185Systemizing Functional Patterns

https://darkpatterns.org
http://smashed.by/uiinventory

The main goal of the process described in this chapter is not
to account for all the visual inconsistencies; it’s to define the
most essential design patterns and get mutual understanding
in the team on how they should work across the system.
Going through this process will give your team an idea of
which areas need more attention. A typical outcome would
be a list of elements that need to be standardized, along with
some sketches and ideas of how patterns should be defined.

While a visual inventory typically groups things by appear-
ance and type (buttons, tab controls, and so on), in the follow-
ing exercise you might end up with things in the same group
that look different, because you’re grouping them by purpose
(the behaviors they’re designed to encourage or enable.)

In a purpose-directed inventory, things in the same category might look
different because they’re grouped by purpose rather than visually.

186 Chapter 8

This means, rather than focusing on making all buttons
look consistent, we will first try to understand when to
use a certain type of button, when to use a link instead of a
button, and when not to use a button at all and instead click
directly on the object. Of course, in the process of doing that
we will improve visual consistency, but it won’t be the focus.

PREPARATION

Timing

To be most effective, this process should be run after the
foundational UX work — user research, content strategy,
information architecture, design direction — has been
worked out. If the design has fundamental flaws and usabil-
ity issues, they would be distracting and counterproductive
to deal with. For similar reasons, if your interface is about
to go through a major redesign, it’s best to get clarity on the
new design direction first.

People

Having different perspectives can help you to be more
objective and account for more use cases. It’s important that
designers and front-end developers take part, but ideally
involve a back-end developer, someone with a content
background, and a product manager. The ideal group size is
around 4–8 people. If a larger group needs to be involved,
consider running the initial exercise with a few represent-

187Systemizing Functional Patterns

atives from different disciplines, and then hold follow-up
sessions to debrief more people.

Interface Printouts

Identify the key screens and user flows that are absolutely
fundamental for your product, those without which the
product couldn’t exist. Typically, about 10–12 screens is
enough, sometimes fewer. They can be design mock-ups, or
screenshots of an existing interface.

Let’s say you’re working on a public library website. The
purpose of the website is to extend the experience of the
physical library, perhaps by making sure that readers can
reserve books in advance and so avoid queueing up and
waiting for materials once they are at the library.

The key screens help to achieve that purpose by allowing
you to find specific books, discover new books, reserve
materials for collection, and download the materials. Of
course, there’s a lot more to a library website: events and
exhibitions, memberships, online collections. While we
should take note of the other areas, usually every single
view is not needed to get started.

Print out two copies of each screen. Put the first set on the
wall, in the order of a typical user journey. The second set
will be used for cutting out patterns and grouping them.

188 Chapter 8

You will be constantly shifting from the system as a whole
to individual patterns throughout the exercise. Having two
sets of printouts will help you focus on both the details and
the bigger picture, without losing the context of where the
patterns come from once you’ve cut them out.

You will also need scissors, markers, sticky notes, and plenty
of wall and desk space to work on.

1. Identify Key Behaviors

Start by identifying the key user needs and behaviors you
want to support at each segment of the user journey. For a
small app with only a few screens, you’ll be looking at the
individual screens or different states on the same screen.
For larger products it helps to group pages into segments of
the user journey.

To return to the public library website example, you might
group some of your pages based on these behaviors:

•	 Discovery: Encourage people to discover books they
might be interested in. To draw an analogy with a
bookstore, this area is like the staff picks or new books
showcase shelves. If someone doesn’t know what
they’re looking for, they might be inspired by the selec-
tion on display.

189Systemizing Functional Patterns

•	 Catalog: Find specific books. Searching through a cat-
alog is like approaching a member of staff and making
a request.

•	 Wish list: Allow people to view and manage their
shortlisted books. In a physical store, you would put
some of the books aside so you can decide later which
ones to keep.3

Some of the core screens grouped by the behaviors they support throughout
the user journey.4

3	 If you have too many pages in the same segments supporting
similar behaviors, it’s an indication that your information architecture
might need work.
4	 The example pages are taken from https://www.nypl.org, for
illustrative purposes.

190 Chapter 8

https://www.nypl.org

Take note of the pages with conflicting behaviors: situations
where we encourage people to look at new books, download
something, sign up for a newsletter, and check the latest
events all at the same time. Even if a screen supports several
behaviors, the most important actions should be clear and
not in conflict with one another. When dealing with mul-
tiple behaviors, focus on the core user journeys and most
important behaviors first. In this example: discovering, find-
ing and reserving books.

Wording Is Fundamental

The words we choose matter. They influence how we think.
For a few months the team I worked in at FutureLearn
had “retention” as our metric. It focused on getting more
people to continue learning on a course after it began.
Designing for retention was hard. It also wasn’t clear how
exactly retention benefited our users. Had the metric been
called “engagement,” it might have led to different design
outcomes. And perhaps even more, had the metric been
centered on quality and satisfaction of learning, rather than
the time spent on the site. (Someone could have spent half
an hour at FutureLearn and learned what they needed, but it
wouldn’t have counted as success.)

191Systemizing Functional Patterns

Behaviors should be meaningful and work from the user’s
perspective, as well as the business’s.5 “Promotion” of the
books benefits only the library, but “Discovering” new books
also has value for the reader. This makes it a better language
choice and can influence the selection of the books being
displayed, as well as how they’re displayed.

Break Down Behaviors Into Actions

After you define the high-level behaviors, break them down
into more specific actions that feed into those behaviors.
Write them down next to each screen. For instance, the
actions that support “Book discovery” are:

•	 Scan for any inspiring or interesting books

•	 Refine list of recommended books

•	 Control how list is presented

•	 View and learn about a book

•	 Make a selection of books you might like

•	 Shortlist and reserve books

5	 Successful businesses join user goals with business goals. If you re-
ally struggle to join the two together, your product might have deeper
issues a design system won’t be able to solve.

192 Chapter 8

Behaviors should be meaningful and work from the user’s
perspective, as well as the business’s.5 “Promotion” of the
books benefits only the library, but “Discovering” new books
also has value for the reader. This makes it a better language
choice and can influence the selection of the books being
displayed, as well as how they’re displayed.

Break Down Behaviors Into Actions

After you define the high-level behaviors, break them down
into more specific actions that feed into those behaviors.
Write them down next to each screen. For instance, the
actions that support “Book discovery” are:

•	 Scan for any inspiring or interesting books

•	 Refine list of recommended books

•	 Control how list is presented

•	 View and learn about a book

•	 Make a selection of books you might like

•	 Shortlist and reserve books

5	 Successful businesses join user goals with business goals. If you re-
ally struggle to join the two together, your product might have deeper
issues a design system won’t be able to solve.

193Systemizing Functional Patterns

Actions feed into higher-level behaviors.

You might notice that some of the actions are repeated
throughout the interface. But the elements that represent
them aren’t always the same. On some occasions we refine a
list of books by clicking through tabs; on others, by selecting
an item from a menu. To reveal these inconsistencies, we
can audit the existing elements.

2. Group Existing Elements By Purpose

Taking one behavior at a time, look across all the pages to
find the elements that support it. For example, to “View
a book” we might be using different items on the promo
pages, in the catalog search results, and in the wish list.

Cut the related elements out using the second set of print-
outs. Arrange them into groups and label each group: “View
a book,” “Refine a list,” and so on. They are the candidates to
be defined as patterns. The elements should be grouped at
the same level of granularity, so you won’t have a “Book list”
module and a “Reserve” button in the same group.

Groups of items: candidates to define as patterns.

194 Chapter 8

3. Define Patterns

Now that you have groups of elements, decide how to deal
with the items in each group. Should they be merged into
one pattern or kept separate? Typically, this is worked out
on a case-by-case basis. But there are two techniques I find
particularly helpful: placing a pattern on a specificity scale,
and mapping out its content structure.

SPECIFICITY SCALE

The same pattern can be defined as more specific or more
generic. Say we need to display events and exhibitions on
the library site. If we define them as two separate patterns
we can make each one more specific. On the other hand,
unifying them into something like a “content block” would
make the pattern more generic.

Specificity scale.

While it seems like a simple concept, deciding the level
of specificity is one of the trickiest things about modular
design. The more specific something is, the less reusable it
is. And conversely, to make something more reusable, you

195Systemizing Functional Patterns

also need to make it more generic. With more specific parts,
the system becomes harder to maintain and to keep consist-
ent. But too many generic modules lead to generic designs.
Like with many things, there’s no right way to define pat-
terns and it all depends on what we’re trying to achieve.

Do we want visitors of the site to perceive exhibitions differ-
ently to events? Is there anything about events that might
conflict with the design of exhibitions? If so, we should
consider splitting them up. For example:

•	 The design of an exhibition module can be centered
around an image of the art. Since exhibitions are
unique, they can feature custom titles that complement
the art to give it a poster-like feel. The date could be set
in smaller type and positioned in the corner, so that it
doesn’t distract from the poster.

•	 Events are simpler. We could center design around a
prominent date and an icon of the event.

If there’s no reason to differentiate between the two types,
we should unify them into one pattern: things to do in
the library. Doing that will make the pattern more generic
because it would have to work for both cases. But it would
also mean that every change we make to events will apply to
exhibitions. Consistency will be easier to achieve but at the
expense of flexibility.

196 Chapter 8

CONTENT STRUCTURE

Another tool that I find helpful is mapping out a pattern’s
content structure. We covered it briefly in chapter 4 on
functional patterns. Here’s a reminder of what it involves:

1.	 List the core content slots a module needs to be effec-
tive. Can this module function without the image or
is the image essential to its purpose? Is a label always
necessary? Mark optional elements.

2.	 Determine the hierarchy of elements and decide how
they should be grouped: is the icon part of the key info
or is it part of the image?

3.	 Make sketches to visualize the structure. The same
pattern can be presented in countless ways and sketch-
ing helps find the optimal design.

Typically, elements that can be merged into one pattern
share the same underlying structure. On the other hand, if
you struggle to unify the structures of multiple elements
without compromising their purpose, it’s an indication that
they shouldn’t be merged.

Sometimes elements have a similar structure, but owing
to context or our design intent, they need to look or behave
differently. In this case we can create variants. A variant is a
modified version of the same pattern.

197Systemizing Functional Patterns

Take the library website again. Say you’ve ended up with
these items in your “View book” group.

Grouped book items: candidates to define as patterns.

You might decide that items A and B share the same pur-
pose: they both appear in lists and allow people to view a
book and learn about it. They also share the same content
structure:

198 Chapter 8

Content structure for book item.

Although actions and thumbnail are missing from item B,
there’s no obvious reason for that. Thumbnails are useful for
scanning the books and you should be able to reserve one
without having to leave your wish list.

On the other hand, items D and E are different. Their main
purpose is focused on providing inspiration and showcasing
new and noteworthy items. If we draw their structure, it
might look like this:

Content structure for book showcase.

199Systemizing Functional Patterns

You can check this by thinking about how you expect
changes to happen. Ask yourself: if I change this module,
do I want the others to change in the same way? For instance,
even though “cover” and “thumbnail” look similar we might
decide to treat them as entirely different things. Perhaps the
design of the discovery pages involves some specific inter-
actions and animation to draw attention to the showcased
books. We don’t want the same effect to apply to a standard
book item in a list.

Now let’s take a look at item C. It is similar to A and B and
shares their content structure. But it is more prominent
because of its context: the discovery and showcase parts of
the site. It is also more detailed and provides more infor-
mation than a book item in a list. In this situation it would
make sense to make this element a variant of the book item.

200 Chapter 8

With variants, you would normally have a default pattern
with the core styles. Variants would have additional styles.
It’s important to know which features are core to the pat-
tern, and which are specific to the variants. Then you can
predict how a change in one of them will affect the others.

In the example above, some of the elements in the core
default pattern vary in scale, making the pattern feel quite
different:

•	 large title
•	 large thumbnail
•	 more spacious layout

We know that we can change the title without affecting the
book item, but if we change the author style, for instance,
the change will apply in both places.

Looking at the relationship between the content structure
and styles can increase the reuse of more patterns. Try
going through all your patterns and match the underlying
content (“book title”) with style names (“large title,” “small
title,” “small metadata”). Similarly, this would be a good
place to start looking at character counts or image sizing
variations. A pattern will work with more content types if
different sizes are standardized.

201Systemizing Functional Patterns

NAMING

As we discussed in chapter 5 on shared language, names
affect how patterns are used. A well-chosen name is a pow-
erful tool for shaping your design system.

Try to find a name that reflects a pattern’s position on the
specificity scale. If in doubt, start with a more specific
name. For example, we used to see the process of learning
on a course on FutureLearn as a special kind of experience,
which came with its own set of modules, specific to the
course area.

Course tabs on the course overview area on FutureLearn.

In this case it made sense to use the name “Course tabs” —
we didn’t want to reuse them anywhere else. This name also
signalled to the rest of the team that they weren’t just any
generic tabs — they were specific to the course area. Later

202 Chapter 8

we decided that this module could also be useful in other
places and changed the name to “Page tabs.” The new name
was more generic, and again signaled to the team that it was
now available to be used in other areas.

Sometimes modules are named in the front-end, but naming
is also a UX decision and should be made collaboratively at
the design stage. Names need to take the content type into
consideration but shouldn’t be based solely on the content.
Effective names guide usage and reduce the chances of
duplicate patterns.

Repeat The Process At A Smaller Scale

Once you group the self-contained parts, repeat the process
with other elements. Typically, this would involve several
sessions: one to discuss big-picture user behaviors, and sep-
arate ones to look at more granular patterns such as:

•	 buttons and links
•	 headings
•	 lists
•	 tabs and menus
•	 radio buttons, toggle buttons and checkboxes
•	 feedback messages
•	 navigation
•	 images
•	 icons

203Systemizing Functional Patterns

If you have elements with similar purposes, think of them
in relation to each other rather than independently. How
are buttons different from links? How is tabbed naviga-
tion different to a list menu? How is a dropdown different
from a set of buttons? How is a checkbox different from a
toggle button? 6

Here are some points to consider when auditing links
and buttons.

CONSISTENCY OF ACTIONS

Buttons and Links

Traditionally in web development, links and buttons are
different. A link navigates the user away from the current
page. A button submits an action and toggles something in
the interface.7 But in practice, it’s not easy to make design
decisions based on this criterion alone.

6	 There are general guidelines and best practices (for an excellent re-
source see Designing Web Interfaces by Bill Scott and Theresa Neil; and
Designing Interfaces: Patterns for Effective Interaction Design by Jenifer
Tidwell), but some things might be specific to your situation. Even if
they’re common knowledge for some people, it is worth verbalizing
them so the rest of the team can learn.
7	 See http://smashed.by/linksvsbuttons by Marcy Sutton; and
http://smashed.by/properbuttons by Dennis Lembrée.

204 Chapter 8

http://smashed.by/linksvsbuttons
http://smashed.by/properbuttons

Suppose we have a book item with a “View book” button.
Clicking the button expands the module, revealing more
information about the book. Now imagine that the same
information opens on a different page instead. Does this
mean that the action should be presented as a link?

As with many other things, the confusion often lies in the
language. Some people (developers, often) define a button as
a trigger that submits data. So a link marked up as a but-
ton wouldn’t be considered a true button by them. Others
(often designers) view a button as a distinct, standalone call
to action. They would refer to a standalone element “View
book” as a button, even if it’s marked up as link.

Different systems also approach this differently. In IBM’s
Carbon,8 links are a navigational element. Buttons are only
used if the user’s action will change or manipulate data.
In Shopify Polaris,9 on the other hand, buttons can represent
any type of action, including navigation. Links are used both
for embedded actions and for navigation.

8	 http://smashed.by/ibmcarbon
9	 http://smashed.by/polaris

205Systemizing Functional Patterns

http://carbondesignsystem.com/components/button/code
http://carbondesignsystem.com/components/button/code
https://polaris.shopify.com/components/actions/button#navigation
http://smashed.by/ibmcarbon
http://smashed.by/polaris

Use of links in IBM’s Carbon.

To me, the most important aspect is a consistent expression of
purpose. Users (both those who access the interface visually
and via screen readers) need to know what to expect. If but-
tons are always used only for submitting data, then it would
be confusing to have one situation where they behave as
links. But if there’s a consistent use of links styled as but-
tons (such as for standalone calls to action) throughout the
interface, then it would be appropriate.

To avoid confusion and misuse of these essential elements,
it’s important to agree on their definitions. What are the
shared meanings of “button” and “link” in your team? What
are the basic guidelines for their usage?

206 Chapter 8

One of the simplest and most effective distinctions I’ve
come across was suggested by Heydon Pickering in Inclu-
sive Design Patterns.10 The idea is to differentiate between
links and calls to action (CTAs), rather than buttons and
links. An important standalone action can be presented
as a button, but be marked up either as a link or a button,
depending on the interaction. The question of whether it’s
a link or button is a matter of variants — first and foremost
it’s a CTA.

An example of a classification of buttons and links. Additionally, it helps to
make a subtle difference in the style of CTAs, to indicate a difference in the
interaction.

If the action occurs on the current page, use a CTA button. If
the action takes the user away from the current context, use
a CTA link. Calls to action are different from standard links,
which represent pathways to optional information and are
typically embedded in the content: body text, titles, images.

10	 http://smashed.by/inclusivedesignpatterns

207Systemizing Functional Patterns

http://smashed.by/inclusivedesignpatterns

Making a distinction in this manner allows you to meet
the design need for keeping the important calls to action
prominent, while at the same time keeping the code simple
and accessible.

VISUAL HIERARCHY

Most interfaces have equivalents of primary and secondary
buttons. But what does “primary” mean exactly? Does it
signify the most important action in the context of the whole
interface, or a specific screen or section? For example, should
a “Reserve book” button always be a certain style because of
the importance of the action on a library website?

In Marvel’s design system,11 “flat” buttons are used to sig-
nify “necessary or mandatory actions”; “ghost” buttons are
used to signify “optional, infrequent or subtle actions.” Flat
buttons can be used alongside each other, when actions are
equally important. I like this distinction because it’s simple,
clear, and specific to the button’s purpose.

But for more complex interfaces with a larger number of
buttons, it’s hard to keep their functions so specific. You
may also need to see how buttons relate to each other when
used together. In Atlassian’s system12 and Shopify’s Polaris,13

11	 http://smashed.by/marvel
12	 http://smashed.by/atlassian
13	 http://smashed.by/polaris

208 Chapter 8

https://marvelapp.com/styleguide/components/buttons
https://atlassian.design/guidelines/product/components/buttons
https://polaris.shopify.com/components/actions/button#navigation
http://smashed.by/marvel
http://smashed.by/atlassian
http://smashed.by/polaris

primary buttons represent “the most important actions
in any experience” and therefore should only appear once
per screen.

Some of the button types in Polaris, arranged by the level of prominence

They have a “basic” button, used by default. Other styles are
used only “if a button requires more or less importance.”
Think of it this way: if the interface were read out by a voice,
which action would be read out first? Which actions would
be announced more loudly or with a different intonation?

SPECIAL CASES

There will always be special cases. In the library website
example, the “Reserve” button could be treated differently.
It could include states specific to the action; for instance, its
label could change to “Cancel reservation” if the book hasn’t
been collected yet.

209Systemizing Functional Patterns

FutureLearn’s “Progress toggle” button can also be seen as
a special case. It is only used on learning steps, to indicate
if a step is complete. A bouncy animation and a tick icon
popping up are designed to give it a celebratory feel. It’s not
meant for anything else.

Progress toggle button.

Perhaps this specificity is why we struggled so much to
name it — we tried to come up with a generic name (“Pro-
gress toggle”) when in fact it could have had a name specific
to its function — even “Mark complete” could have been a
more appropriate and memorable name in this case.

Both the “Progress toggle” button and the library “Reserve”
button are things we might want to make more memorable.
They are key functions of the brand, and perhaps opportuni-
ties for signature moments.
Special cases like this should be occasional, both so they
appear distinct but also so the general pattern rules are
maintained.

210 Chapter 8

Summary

In this chapter we looked at systemizing a small section of
an interface. After following this process in your team, you’ll
have a better knowledge of your system and the areas that
need attention.

For the next steps, teams can dive into code and Sketch to
work on finalizing designs for the patterns – making sure it
works for all required use cases, defining states and behav-
iors, refactoring code.

The first time you do this exercise you might be over-
whelmed by the number of elements and patterns. You don’t
have to do it all in one go. Start with core patterns, funda-
mental to the experience, then move to another area. Most
importantly, this exercise needs to be done regularly, as your
system evolves. It’s a bit like gardening — the longer you
leave it, the harder it is to get it into a good shape.

Now, let’s look at perceptual patterns.

211Systemizing Functional Patterns

Systemizing Perceptual Patterns

The exercise in this chapter describes how to define perceptual
patterns and integrate them into the system.

Something grabbed my attention recently in the two
products I was using — the design of accordion con-
trols. In both interfaces the accordions looked similar

and had identical (standard) functionality: expanding and
collapsing sections of content. Both would be considered
“aesthetically pleasing” by most people. But somehow one
of them didn’t feel as robust as the other. The hover state
was too subtle, the transitions were a little slow, the selected
state didn’t stand out, and there didn’t seem to be enough
contrast between headings and body copy.

The design of the other accordion seemed to get all the
details just right. Not only that, the same patterns — color,
transitions, contrast, typography — were applied through-
out the interface which helped to make it feel sturdy and
well built. Even though the two products had similar utility,
one of them gave a perception of quality and reliability,
while the other came across flimsy and fragile.

Sometimes we think that if beauty is not what we’re after,
we don’t have to place any importance on aesthetics: “It’s
just a functional tool. It doesn’t have to feel like anything in
particular.” But then we miss a key opportunity to influence

212 Part II

Chapter 9

how a product is perceived. What’s important is, of course,
not the styles themselves but the effect they have. A func-
tional tool should be useful and usable, but it should also
feel simple, safe and robust.

To influence perception in a reliable and scalable way, we
need to be aware of the patterns that create it.

Looking Beyond Style Properties

The most obvious way to think of color, typography, spacing
and other styles, is in terms of their properties: color values,
text sizes, measurement units.

Take color, for instance. In many pattern libraries it’s repre-
sented by a set of values.

Pivotal’s (http://smashed.by/pivotal) color variables demonstrate a common
approach to represent color information.

213Systemizing Perceptual Patterns

http://smashed.by/pivotal

But even with a standardized color palette there’s still plenty
of scope for interpretation. What do the values represent?
Which variation of green should you use? How do the colors
work together?

Here’s a counterintuitive thought, for a design systems
enthusiast: slight diversions in color aren’t problematic.
In fact, having twenty shades of blue isn’t an issue, if blue
has a consistent meaning throughout the interface. But if
blue represents links in some parts of the site, and in others
there are blue headings users can’t click, it can cause usabil-
ity concerns. A set of shared colors is not enough — you also
need a shared use of color in the context of the product.

Likewise, a well-defined typographic scale alone won’t make
your typography more cohesive. Even after we standardized
all the text sizes on FutureLearn and introduced a unified
type scale, the headings still weren’t always used consist-
ently — designers and developers weren’t sure which size
to pick from the scale. A shared use of typography required
clear guidelines and patterns of usage which everyone could
understand.

214 Chapter 9

The typographic scale on FutureLearn provided a foundation for all typography.

How do we define the styles in a way that communicates
their purpose and encourages their consistent use? As
before, we’ll start at a higher level, and then go down into
the details. With functional patterns we looked first at user
behaviors. With perceptual patterns, we will start with
aesthetic qualities.

215Systemizing Perceptual Patterns

Aesthetic Qualities And Signature Patterns

Every interface has a certain feel, even if it’s only repre-
sented through text or voice. The most effective styles aren’t
applied on the surface but evolve with the product — they
will link to its ethos and core design principles (“Timeless,
not cutting edge,” “Direction over choice”). Think how those
qualities are embodied. What makes your product feel time-
less, or utilitarian, or traditional, or cutting edge, or warm,
or robust?

If the design has been around for a while, pinning down
those patterns isn’t always easy. We’ve seen (with the
FutureLearn examples in chapter 4) that as your product
grows, its core aesthetic can change. By the time you look
at the styles, you might notice that some of them are more
effective than others and have stronger associations with
your brand.

Signature patterns1 is a useful kick-off exercise to get the
whole team (not only designers) on the same page, especially
if they’re not used to thinking about perceptual patterns.

1	 See chapter 4

216 Chapter 9

Ask each person to write down the most memorable and
distinct elements that make your product feel a certain way.

•	 What are the styles and tones that first come to mind
when people think about your product?

•	 How do your users describe the aesthetic?

•	 Are there any moments frequently recalled in user feed-
back (“That pink tick always makes me smile”)?

It’s also helpful to identify places where the design is off-
brand; for example, “Small subtle animations, not quick
bouncy ones.”

Think not only about the properties but also high-level
principles, combinations of different elements, and the
relationships between them. For instance, instead of simply
listing the colors, describe the proportions between them:
“Primarily white with pink and blue accents.” Include
examples of a typical representation of the pattern.

Here’s what your list might look like:

217Systemizing Perceptual Patterns

Notes from signature patterns exercise for FutureLearn.

I find that capturing signature patterns as a team can pro-
vide guidance and inspiration for the whole process. When
looking at shapes, say, if circles are a distinguishing feature
in your interface, you might want to question why you use
squares in some cases.

Identifying Perceptual Patterns

Drawing on the signature patterns exercise, you should
then make your own list of individual styles to work
through. Here are some of the types of things that may
appear in your list:

218 Chapter 9

•	 color

•	 interactive states

•	 animations

•	 typography

•	 spacing

•	 iconography styles

•	 shapes and borders

•	 illustrations

•	 photography

•	 voice and tone

•	 sounds and audio cues

With each individual style you choose to focus on, there’s a
simple process to systemize them:

1.	 Start with the purpose.

2.	 Collect and group existing elements.

3.	 Define patterns and building blocks.

4.	 Agree on the guiding principles.

219Systemizing Perceptual Patterns

You won’t be able to go through all of the styles in one go.
Each one will need its own inventory (and possibly a sprint
or longer to integrate the changes afterwards).

As you go through them, there will be overlaps: between
typography and space, color and text, shapes and borders,
borders and iconography. This is good, because you can
build on the properties you’ve defined previously and you
can see how they relate to each other. For example, the
colors you define will be used in interactive states; inter-
active states will be used in animations. When looking at
typography and spacing, you can see how size of text affects
spacing around it.

Color

The goal of the first step is to make the use of color more
consistent. To do that we will start by listing the roles color
plays in your interface.

START WITH THE PURPOSE

Wording is important. How we phrase a purpose shouldn’t
be vague and obvious. A statement like this, from the gov-
ernment of Canada’s Web Experience Toolkit,2 wouldn’t be
particularly helpful: “Use color as a presentation element
for either decorative purposes or to convey information.”

2	 http://smashed.by/wetoolkit

220 Chapter 9

http://smashed.by/wetoolkit

Be specific. For example, color can be used to:

•	 Display different types and hierarchy of text (body,
headings, blockquotes).

•	 Highlight links and actions (main CTAs, supporting
CTAs, links).

•	 Draw attention to messages and differentiate between
them (affirmation, warning).

•	 Separate content or create emphasis (backgrounds,
borders).

•	 Differentiate between types of data (in charts, graphs).

The roles you define will determine the categories for your
inventory.

COLLECT AND GROUP EXISTING COLORS

Even though I prefer paper inventories because of their
tangibility, it’s tricky to audit styles by cutting them out on
paper. A Google doc3 can work better, and so can Keynote,
PowerPoint or Sketch — whatever suits you.

Set up a blank document with the categories. As you go
through the audit, you might adjust the headings or add
new ones, but it helps not to start with a blank page.

3	 http://smashed.by/coloraudit

221Systemizing Perceptual Patterns

http://smashed.by/coloraudit

Example of initial categories for auditing colors in a Google doc
(http://smashed.by/coloraudit).

For each category add:

•	 Type: Specify the type of object the color is applied to,
such as a call to action, a heading, a feedback message,
and so on.

•	 Example: Add a screenshot of the element, to show
where color is used.

•	 Value: Specify the hex value.
•	 Feel: If the purpose of the color is to create a certain

mood or feel, specify that.

222 Chapter 9

http://smashed.by/coloraudit

You’ll end up with a list of color instances grouped by pur-
pose. Here’s an example of an audit for links and buttons in
the public library’s interface. In the same manner, I would
collect and group text colors, feedback messages, back-
grounds, borders, and so on.

Audit of links and buttons, conducted in a Google doc.

Some colors will have a specific feel associated with them.
In TED’s interface, black headers are used to create a more
cinematic (and less informational) feel. On FutureLearn,
a full blue to yellow gradient helps to create a celebratory
mood when a learner completes a milestone.

223Systemizing Perceptual Patterns

Use of full gradient on FutureLearn for a milestone celebration.

If there are specific emotional qualities that color is meant
to bring into your product, it’s important to capture that.
Misuse can weaken the purpose colors were intended for.
Using a full gradient in promotional modules on Future-
Learn, for instance, would weaken its association with
celebration.

DEFINE PATTERNS

Next, you can define patterns of usage based on the purpose
of color (and feel, if appropriate). When do you use blue
links and when gray? What is the meaning of red calls to
action? Why are some backgrounds gray and others brightly
colored? What is the difference between black and red
headings?

224 Chapter 9

Don’t worry about the exact hex values just yet. What mat-
ters is that you agree on the use of color across the interface.
Here’s an example of how patterns could be defined for
links and buttons.

How color patterns for links and buttons could be defined for the library site.

Purpose first means that you’re sometimes changing the way
color is used. For instance, when interactive elements are
red, we’d expect all red elements to be interactive (like in the
image above). But in the example on the following page, you
can’t click the “Recommendations” heading to view recom-
mendations. In this case we can consider changing the color
of the heading to black or making the heading interactive.

225Systemizing Perceptual Patterns

A red heading on the library site
that is not interactive.

It’s important to note that these decisions can alter the over-
all aesthetic of the site. We might decide that links and calls
to action should be red instead of blue, but that could result
in a more noticeable overall change — suddenly there would
be many more red elements in proportion to blue.

In FutureLearn’s interface, we considered changing the
square shapes used in the course progress module to circles,
before we realised that the course navigation was a sig-
nature pattern and replacing the shapes would alter the
brand’s feel.

Understanding signature patterns can help you find the
right balance between making improvements and making
sure you don’t weaken or dilute the existing aesthetic. If
your goal is to change the current design, it should be done
prior to the systemizing exercise.

226 Chapter 9

SPECIFY BUILDING BLOCKS

During a color inventory it’s not uncommon to discover doz-
ens of variations of the same color (Marcin Treder discov-
ered 62 shades of gray while doing the color inventory for
UXPin4). Most of them are unnecessary and create needless
complexities in design and code.

The goal of this step is to make the color palette more
focused, precise and accessible. Typically this involves
reducing the number of variables for each color.

Here are a few tips that can be helpful in this process.

Start Only with What You Need

The advantage of a purpose-directed inventory is that it
helps you guide and limit color choices. When you start
with the role and meaning of color, you get an idea of how
many options you really need. By considering where and
how they’ll be used, you will know, for instance, that you
only need three variations of blue.

4	 http://smashed.by/colorinventory

227Systemizing Perceptual Patterns

http://smashed.by/colorinventory

The number of shades and tints will vary, depending on
your circumstances. In FutureLearn’s interface, we purpose-
fully avoided shades and tints (darker and lighter varieties
of the same color) to keep the palette crisp. It helped us
make the color system simple and focused.

On the other hand, UXPin, a prototyping tool, has light and
dark modes, which means the color palette needs several
shades of the same color to provide sufficient contrast in
both settings.

FutureLearn’s primary and secondary colors (left) and some of the UXPin colors
show how the need for color variation is different in different interfaces.

228 Chapter 9

Sometimes you need to have more options, particularly if
there are multiple themes, or if you’re dealing with data vis-
ualization. But it’s important to avoid including the colors
just to add more variety to your palette. The more choices
there are, the more complex the system is, then the harder
it is to achieve consistent use of color. Start with only what
you need and build on it.

If you have more than two variations of the same color, it
helps to specify a base value and then add additional shades
and tints: 20% lighter than base, 20% darker than base, and
so on. Base color values provide consistent defaults. When
there are many options to consider, defaults and meaningful
increments are easier to remember and work with. Spec-
ifying the base color and increments also works for other
perceptual patterns, such as typography (base font size),
spacing (base measurement unit), and animations, as we
will see later.

Make Sure Color Contrast Is Accessible

Test the color contrast between text and background.
Adjusting or removing the values as needed will limit your
palette. For example, among several variations of light
gray used for supporting links on the library site, one of
the frequently used values passes WCAG 2.0 standards.
This would make it an obvious choice for the default value
of supporting links.

229Systemizing Perceptual Patterns

There are plenty of tools to check color contrast, such as Lea
Verou’s Contrast Ratio,5 which is quick and straightforward
to use.

Lea Verou’s Contrast Ratio checker.

It’s worth mentioning that adjusting color values needs
careful balancing within the overall aesthetic. Change the
blue to a darker shade, for instance, and the whole interface
can suddenly feel different, perhaps less vibrant. If your
color palette was created without considering color accessi-
bility in the first place, getting the balance right will require
some finessing.6

5	 http://smashed.by/contrastratio
6	 In a project where color accessibility was a factor right from the
start, you wouldn’t end up with such widely different palettes.

230 Chapter 9

http://smashed.by/contrastratio

You can introduce different accent colors for light and dark
backgrounds, or change text on colored backgrounds from
light to dark, or vice versa. There are also plenty of tools for
generating contrast-compliant color combinations, or for
finding accessible alternatives to the original color, such as
Color Safe7 and Tanaguru8 Contrast Finder.9

AGREE ON THE GUIDING PRINCIPLES

Finally, agree on a few basic principles for color usage. Guid-
ing principles help you approach color holistically, and they
can be referred to when something doesn’t quite work. Some
principles can be general (such as “always use accessible color
contrast”); others will be more more specific to your brand
(and can be defined during the signature patterns exercise).

For example, in Sky’s toolkit10 the team explains the reasons
for a minimal color palette:

We allow our great content to be the color that brings the page to
life. We do not color code our sites, or sections within our sites.”

7	 http://colorsafe.co/
8	 http://smashed.by/contrastfinder
9	 For further reading on balance with aesthetics, I highly recommend
Color Accessibility Workflows by Geri Coady. http://smashed.by/colora11y
10	 http://smashed.by/skytoolkit

“

231Systemizing Perceptual Patterns

http://colorsafe.co
http://smashed.by/contrastfinder
http://smashed.by/skytoolkit

The University of Oxford explains clearly how and why to
use its colors:11

The (dark) Oxford blue is used primarily in general page furniture
such as the backgrounds on the header and footer. This makes for
a strong brand presence throughout the site. Because it features so
strongly in these areas, it is not recommended to use it in large areas
elsewhere. However it is used more sparingly in smaller elements
such as in event date icons and search/filtering bars.”

Animations

Even with more complex patterns, such as animations, we
can follow the same process: start with the purpose, collect
and group existing styles, define patterns and building
blocks. Let’s take FutureLearn as an example this time.

PURPOSE AND FEEL

Specify the roles animation plays. For example:

•	 Soften transitions between interactive states, such as
hover states.

•	 Add emphasis to specific information or an action; for
example, a nudge to encourage users to progress to the
next step.

11	 http://smashed.by/oxfordstyle

“

232 Chapter 9

http://smashed.by/oxfordstyle

•	 Hide and reveal extra information, such as a menu being
hidden to the side, a dropdown, or a popover.

The feel of the animation is another important aspect
to consider. In Designing Interface Animation,12 Val Head
explains how adjectives describing brand qualities can be
used for defining motion. A quick, soft, bouncy motion can
be perceived as lively and energetic, whereas steady ease-in-
outs feel certain and decisive.

To be meaningful and effective, animations should have a
purposeful feel across the interface.

AUDIT EXISTING ANIMATIONS

Once you have an idea of the role animation plays in your
interface, and how it should feel, the next step is to audit
existing animations. Collect the animations and group them
into categories, as we did with color earlier. The examples
can be captured with QuickTime or another screen record-
ing application.

12	 http://smashed.by/designingia

233Systemizing Perceptual Patterns

http://smashed.by/designingia

The “State Change” page from FutureLearn’s animation audit, conducted in
a Google doc.

234 Chapter 9

DEFINE PATTERNS

Define patterns of usage based on the purpose and feel.
In FutureLearn’s interface we noticed that emphasis ani-
mations typically feel more playful, and that state change
transitions are more subtle and calm.

If these are the tones you want to strike throughout the
system, try aligning all the animations to them. Like the
signature patterns exercise, take the examples that work
well (that is, achieve the purpose effectively and have the
right feel) and try out their properties with other anima-
tions from the same category. You’ll end up with a handful
of patterns:

Animation patterns on FutureLearn, grouped by purpose and feel.

235Systemizing Perceptual Patterns

SPECIFY BUILDING BLOCKS

There are two important concepts in animation, which go
hand in hand: timing and easing. Timing is how long an ani-
mation takes. In combination with distance, it determines
speed. Easing defines how something is animated: does it
start out slow and build up speed (ease-in), or does it start
out fast and gradually slow down (ease-out)? Additionally,
we would define the properties that are being animated,
such as color, opacity, scale, and so on.

Timing, especially, is crucial in animation. Getting the timing
right is not so much about perfect technical consistency as
making sure that the timing feels consistent. Two elements
animated at the same speed can feel completely different if
they are different sizes or travel different distances.

I like Sarah Drasner’s13 idea to deal with animation timing
like we deal with headings in typography.14 Instead of just
a single value, start with a base and provide several incre-
mental steps. For example, if the base time is 0.5 seconds,
smaller items that travel a shorter distance (such as an icon
scaling up) would take less time. Items that travel longer
distances (such as a menu popping up) would require more
time. A full-screen transition would be one or two incre-
ments above the base value.

13	 http://sarahdrasnerdesign.com/
14	 http://smashed.by/animationdesignsys

236 Chapter 9

http://sarahdrasnerdesign.com
http://smashed.by/animationdesignsys

AGREE ON THE GUIDING PRINCIPLES

If your team is not yet confident with animation, it may be
worth defining general principles, such as “Reserve anima-
tion for the most important moments of the interaction,” and
“Don’t let animation get in the way of completing a task.”

The most helpful principles are usually specific to how your
team approaches animation. For example, the Salesforce
Lightning Design System principles15 advise keeping the
timing short and the motion subtle.

Guiding principles can also include spatial metaphors,
which can provide a helpful mental model to animators.
Google’s Material Design16 is a great example of how view-
ing an interface as physical materials can provide a common
reference for designers and developers when thinking about
motion in their applications.17

15	 http://smashed.by/salesforcemotion
16	 http://smashed.by/materialmotion
17	 For a more detailed overview of the process, see my article “Integrat-
ing Animation into a Design System”. (http://smashed.by/animationala)

237Systemizing Perceptual Patterns

http://smashed.by/salesforcemotion
http://smashed.by/materialmotion
http://smashed.by/animationala

Voice And Tone

Voice and tone in UI copy play a fundamental role in how a
product is perceived. This is particularly the case in voice-
based interfaces but also for people who experience digi-
tal products through senses other than sight. In a recent
conversation with Léonie Watson,18 an accessibility expert
who is also a screen reader user owing to blindness, she
noted that her experience of digital products “often comes
through in the form of style of writing.”

However, team members who define the interactions and
patterns are often not the same people who will be working
on voice and tone. This can lead to a patchy and thought-
less style of writing across the experience. To make sure
voice and tone are expressed consistently and purposefully,
design, brand and marketing teams need to coordinate their
efforts when defining patterns.

AUDIT VOICE AND TONE PATTERNS

In addition to collecting all the UI copy in a Google doc,
there are more creative ways to audit voice and tone. In her
blog post,19 content strategist Ellen de Vries, shared how
she “harvested” the language patterns during Clearleft’s20

18	 https://tink.uk/
19	 “Take a closer look at the patterns in our language” by Ellen de Vries. 	
	 (http://smashed.by/voicetoneinventory)
20	https://clearleft.com/

238 Chapter 9

https://tink.uk
http://smashed.by/voicetoneinventory
https://clearleft.com

voice and tone refresh: from phrases people use in meetings
and pitch presentations, to informal conversations with the
founders. They even made a mood board to see how lan-
guage and imagery work together across Clearleft’s website.

Inventory of voice and tone patterns for Clearleft.

DEFINE PATTERNS

Once the copy and other materials have been gathered,
define the patterns and formulate guidelines for how they
can be applied in the interface. MailChimp’s Voice & Tone21
is one of the most effective examples of how language
patterns can be defined. The tone shifts to respond to the
emotional condition of the user: when it’s appropriate to
be humorous and lighthearted (“Fine piece of work”), and
when the copy needs to take a serious practical tone (“We’re
expecting a problem at one of our data centers”).

21	 http://voiceandtone.com/

239Systemizing Perceptual Patterns

http://voiceandtone.com

Similarly, Salesforce gives a breakdown of common use
cases and suggests patterns of copy to use with each one.
The goal of the message affects the emotional tone, such as
“suggest a solution using lighthearted language”.

Example of voice and tone patterns in Salesforce voice and tone guidelines

240 Chapter 9

AGREE ON THE GUIDING PRINCIPLES

Like the overarching design principles (see chapter 2), guid-
ing principles for individual styles shouldn’t be vague and
general. Not only does Intuit’s Harmony22 list the voice and
tone principles (“Lead the way,” “Keep it simple,” “Have fun”),
it also explains how to do all those things.

Intuit’s voice and tone guidelines explain how to apply the principles.

22	 http://smashed.by/intuit

241Systemizing Perceptual Patterns

http://smashed.by/intuit

Summary

Each style should be approached as a system in its own right
— typography system, layout system, color system, and so
on. They should be interconnected and directed towards
achieving a larger purpose: to help shape how a product is
perceived.

To do that, look at the big picture first. Capture the aes-
thetic qualities as a whole and identify the patterns that are
particularly effective at expressing it. Then you can follow
a similar process for all the styles: start with the key roles
a style has in the context of your product, audit existing
instances, and then define patterns and building blocks. The
guiding principles help to connect everything together and
link it back to the purpose.

Let’s now look at pattern libraries as a tool for documenting
and sharing the patterns.

242 Chapter 9

Pattern Libraries

In this chapter we’ll look at some practical techniques to set up foun-
dations for a long-lasting and multidisciplinary pattern library.

F or some teams, a systematic approach to designing
and building digital products is almost unthinkable
without a pattern library. But as we've discussed

throughout the book, a pattern library is not the system
itself, it is a tool for documenting and sharing design pat-
terns. To be effective, it needs a system foundation at its
root. In chapter 7 we looked at some of the general strate-
gies for establishing such foundation:

•	 Agree on the main goals and objectives, related to
both the interfaces and how the teams operate, such
as “Define and standardize reusable design pat-
terns,” “Define guiding design principles,”
“Establish a pattern library.”

•	 Break up objectives into manageable stories and
create a simple roadmap for your system.

•	 Make your progress transparent by documenting
and sharing it. For many teams, making their pat-
tern library public made a huge difference to their
progress and the team’s confidence in the work they
were doing.

Chapter 10

243Part II

•	 Create a culture of knowledge sharing by making
the design language visible and accessible to the
whole team.

•	 Practice thinking in systems through experiments,
workshops and group exercises.

In the experience of every team I spoke to, multidisciplinary
pattern libraries are more resilient and enduring. They facil-
itate a shared language across the organization and bring
value to everyone. Conversely, a pattern library built to serve
the needs of one discipline is more fragile.1

The technical complexity of Sipgate’s first pattern library
prevented designers being fully involved. Without the
knowledge of what patterns existed in the system, they
would sometimes create a page from scratch in Photoshop,
where existing patterns could be used.

It was often left to developers to fit the design with the existing pat-
terns, who had to tweak them until they fit. This led to numerous
if-statements, exceptions and duplicate patterns.

— Mathias Wegener, front-end developer, Sipgate

1 There are many other types of design documentation, such as brand
identity documents, front-end style guides for clients, and so on. In
this chapter we’re only talking about pattern libraries created by in-
house teams to support a design system.

“

244 Chapter 10

Even though developers were determined to make a pattern
library comprehensive and up to date, it was impossible
without designers’ active involvement.

Similarly, patterns designed without the content disci-
pline’s perspective can fall apart in everyday use. We end
up designing patterns that are too closely tied to specific
content, such as a module where an extra line of copy would
push an important call to action below the visible area. Or
we force content into patterns that aren’t designed for it,
compromising both content and design.

In this chapter we’ll focus on establishing foundations
for a pattern library that can support the goals of multiple
disciplines.

Content

Looking back, at FutureLearn we spent far too much time
researching tools and working out what the pattern library
should look like. There wasn’t full agreement on how it
should be designed and built, and the work progressed slowly.
Switching our focus to the content of the library made a big
difference — both to our progress, and the team’s morale.

245Pattern Libraries

Going through the process described in the previous two
chapters will give you a good grasp of what can go into your
pattern library. It can be documented simply, using Google
Docs or another collaborative writing app. There are two
main benefits of this:

•	 First, everyone on the team can access the content
to review, make edits and provide their feedback. By
using a tool that’s familiar and easily accessible, you
give more people an opportunity to be involved.

•	 Second, a folder in Google Docs is like an MVP
pattern library — the team can start using at as a
reference right away. Once you have the content,
it will be easier to figure out how the website for it
should be designed and built.

Here’s how Andrew Couldwell at WeWork2 captured some
of the patterns for the Plasma design system3 using Google
Docs:

2	 https://www.wework.com/
3	 http://smashed.by/plasmads

246 Chapter 10

https://docs.google.com/
https://docs.google.com/
https://www.wework.com/
https://medium.com/@andrewcouldwell/plasma-design-system-4d63fb6c1afc
https://www.wework.com
http://smashed.by/plasmads

Documenting patterns in Google Docs for the Plasma design system.3

The team was able to get down all the core patterns and
their definitions quickly, instead of being held back by build
and design constraints.

Organization Of Patterns

When documenting the content, the question will likely
arise of how the patterns should be organized. The naviga-
tional structure is one of the things teams tend to struggle
to agree on. Should buttons be separate or grouped with
form elements? Where does the footer go? Should pagina-
tion be part of the navigation section?

247Pattern Libraries

http://smashed.by/plasmads

The structure doesn’t have to be perfect at the start — you
can (and probably will) change it later. What’s important
is that the team are on the same page. Having a common
methodology to organizing patterns will make it easier to
add and find things as your pattern library grows. The same
thinking can apply not only to the pattern library, but front-
end architecture and the design files.

Let’s take a look at some of the common approaches.

ABSTRACTING PERCEPTUAL PATTERNS

The simplest way to think about the structure is in terms of
components and styles (functional and perceptual patterns).
As we saw in the previous chapter, perceptual patterns are
connected and work together. Abstracting them makes it
easier to be aware of their role in the system. Here are a few
examples of how perceptual and functional patterns are
referred to.

248 Chapter 10

Pattern library Functional patterns Perceptual patterns
Airbnb DLS Components Foundation

Atlassian Components Foundations

BBC GEL Design patterns Foundations

IBM Carbon Components Style

Lonely Planet Rizzo UI components Design elements

Marvel Components Design

Office Fabric Components Styles

Salesforce Lightning
Design System

Components Design tokens

Shopify Polaris Components Visuals

There seems to be a general consensus to refer to functional patterns as “com-
ponents,” but more diversity in terminology used for perceptual patterns.

ORGANIZING FUNCTIONAL PATTERNS

While the number of styles is limited, the list of functional
patterns can keep growing. The findability of modules is
one of the greatest barriers to pattern library adoption. If
team members don’t know that a pattern exists or can’t find
what they need, they are likely to create a new one or go
outside the pattern system.

Teams organize modules alphabetically, hierarchically, by
type (navigation, form elements, and so on), by purpose, or
in entirely different ways.

249Pattern Libraries

http://smashed.by/airbnblanguage
https://atlassian.design/guidelines/product/overview
http://www.bbc.co.uk/gel/guidelines/
http://carbondesignsystem.com/
http://rizzo.lonelyplanet.com
https://marvelapp.com/styleguide/overview/introduction
http://dev.office.com/fabric
https://www.lightningdesignsystem.com
https://www.lightningdesignsystem.com
https://polaris.shopify.com/

Alphabetical

In IBM’s Carbon design system, Sky Toolkit and Lonely
Planet’s Rizzo (among others) components are kept in one
list and arranged alphabetically.

Most components are arranged alphabetically in Lonely Planet’s Rizzo 4
(although navigation and form elements are in separate groups).

A single list makes decision-making easier — it avoids the
debates about how things should be categorized. If the
list grows and becomes unmanageable, teams start exper-
imenting with other options to make components more
discoverable.

4	 http://smashed.by/rizzo

250 Chapter 10

http://smashed.by/plasmads
https://www.sky.com/toolkit/components/
http://smashed.by/plasmads
http://smashed.by/plasmads
http://smashed.by/plasmads
http://smashed.by/rizzo

Hierarchical

Another way to classify functional patterns is in terms of
their complexity. Some teams separate granular elements
from more complex ones. The levels of granularity vary in
number and perceived complexity.

Atomic design,5 pioneered by Brad Frost, is a popular
example of hierarchical categorization. Atoms are the basic
building blocks, which combine to create more complex
standalone elements: molecules. For example, a form label,
input and button combine into a search form. Molecules
join together into organisms (such as a site header), and
organisms into templates and pages.

Components arranged hierarchically at https://style.eurostar.com/

5	 http://smashed.by/atomicdesign

251Pattern Libraries

http://bradfrost.com/blog/post/atomic-web-design/
https://style.eurostar.com
https://style.eurostar.com
http://smashed.by/plasmads
http://smashed.by/atomicdesign

As a methodology, atomic design can bring many benefits.
Thinking of patterns as nested matryoshka dolls can help to
reuse the elements, since you’re conscious of how the levels
build on each other. Defining the rules for combining and
encapsulating the patterns can promote consistency across
the system. For the team at FutureLearn, the analogy with
chemistry provided a shared point of reference when we
were new to modular design thinking.

But it’s important to remember that atomic design (or any
other methodology) might not be right for you right out of
the box. At FutureLearn we struggled to find a use for “tem-
plates” and “pages.” The team preferred to work with smaller
elements, so we could have greater flexibility over how they
were combined.

What’s more, we spent far too much time debating whether
something was a molecule or an organism. Since the team
didn’t see enough distinction between the two types, they
were merged together. We ended up with two levels of hier-
archy: atoms and molecules.

More than two types of functional patterns can get confusing,
but separating granular elements from more complex ones
makes sense — both in the pattern library and in the code.
Teams do it to varying degrees, with or without following
atomic design nomenclature.

252 Chapter 10

What I find interesting is that the strictness of a system
(discussed in chapter 6) may be reflected in how the pattern
library is structured. The more granular the patterns are, the
more loose and flexible is the system.

In a strict system, like Airbnb’s or GE’s Predix,6 the larger
patterns are documented: user flows, templates and pages.
In a system like TED’s or FutureLearn’s, you would docu-
ment smaller parts and leave it up to the individual design-
ers to combine them as they see fit.

By Purpose or Structure

At FutureLearn we never stopped experimenting with
ways to organize modules: in one long list, hierarchically
(following atomic design methodology), by compositional
role on the page (“intros,” “outros,” “heroes” and “bridges”).
But everything was either too restricting, or too complex to
work with.

6	 http://smashed.by/predix

Atomic Design Atoms Molecules Organisms Templates

Ceasefire Oregon Elements Components - -

ClearFractal Units Groups - -

GE Predix Basics Components Templates Features

Lewis+Humphreys Elements Components Compositions

WeWork’s Plasma Components Patterns - -

253Pattern Libraries

http://smashed.by/plasmads
http://smashed.by/predix
http://bradfrost.com/blog/post/atomic-web-design/
http://ceasefire-oregon-patterns.netlify.com/pages.html
http://fractal.clearleft.com/index.html
https://medium.com/ge-design/ges-predix-design-system-8236d47b0891
https://medium.com/@lewisplushumphreys?source=post_header_lockup
https://medium.com/@andrewcouldwell/plasma-design-system-4d63fb6c1afc

After two years of trial and error we settled on classifying
elements by purpose — promotional modules, modules
focused on encouraging learner progress, modules around
communication with the user, social modules, and so on.

Modules arranged by purpose in FutureLearn’s pattern library.7

Organizing patterns by purpose gives the team some guid-
ance and inspiration for where to use a specific module.
This structure also fit with our purpose-directed approach
for defining patterns.

In Shopify Polaris,8 components are also categorized based
on the team’s mental models. The initial grouping was the
outcome of an open card sort and usability testing.

7	 http://smashed.by/futurelearn
8	 http://smashed.by/polaris

254 Chapter 10

http://smashed.by/plasmads
https://design.sipgateteam.de
http://smashed.by/futurelearn
http://smashed.by/polaris

Even though there isn't perfect alignment among different
disciplines, the internal user research is continuously shap-
ing how patterns are organized:

Designers tended to think in terms of structure. Developers tended
to default to functionality. Content strategists tended to combine
both. We’re conducting a range of usability studies to understand
how well the grouping of components is working for people.”

— Selene Hinkley, content strategist, Shopify Polaris 9

Components in Shopify Polaris are arranged by structure and function.

9	 From email correspondence with Amy Thibodeau, UX lead at 		
	 Shopify, August 2017

“

255Pattern Libraries

These are just some of the ways teams organize patterns.
What’s important is that the choice is grounded in how
people who use it think. Find a structure that’s right for
your team. If it doesn’t work, if people struggle to find what
they’re looking for, continue experimenting with different
approaches. This can take time. The phrase I hear the most
from all the teams with effective patterns libraries is that
their “work is never done.”

Pattern Documentation

Although many things can be documented alongside each
pattern, trying to cover everything right away is not feasi-
ble, especially for smaller teams.

To see tangible benefits sooner, start with a lightweight
overview of the main patterns. Once you have a simple
foundation, you can improve the pattern library over time,
by adding features and information the team needs. Here
are some of the points to consider when documenting func-
tional and perceptual patterns.

DOCUMENTING FUNCTIONAL PATTERNS

To make documentation focused and easily scannable, start
with the basics:

256 Chapter 10

•	 name
•	 purpose
•	 example (visual and code)
•	 variants

Name

Throughout the book I’ve tried to emphasize the impor-
tance of a well-chosen name. A good name is focused and
memorable, and embodies the purpose of the pattern.
Ideally, someone should be able to glean the purpose from
the name, without needing to read the description. To help
make the page more scannable, names should be prominent
and stand out from the rest of the content.

Each pattern’s name is prominently displayed in IBM’s Carbon
(http://smashed.by/ibmcarbon).

257Pattern Libraries

http://smashed.by/ibmcarbon

Purpose

When browsing a pattern library, most people skip descrip-
tions, especially long ones. That’s why they should be
focused and to the point: typically, one or two sentences
explaining what a pattern is and what it’s for is enough.

Although this seems like a simple task, in practice capturing
the purpose of a pattern concisely and accurately is not easy.
Too often we come up with vague descriptions that don’t
have a lot of practical value.

Take a look at how the team at Sipgate initially described a
component called “Showcase”:

“Use Showcase to present multiple types of information with a
media file.”

Even though factually correct, it doesn’t communicate the
purpose of “Showcase,” which makes it more likely to be
misused or duplicated. Later, the team adopted a new prac-
tice for defining a pattern’s purpose, and writing descrip-
tions. Here’s how it was applied to another example:

“Fact Grid is a shortlist of facts or bits of interesting information.
Use Fact Grid to give the reader an immediate impression about the
upcoming content.”

258 Chapter 10

This second description is much more effective at commu-
nicating what the pattern is for. You might even be able vis-
ualize the “Fact Grid” just by reading these two sentences.

Additionally, there are design and content recommenda-
tions for making the pattern achieve its purpose in the most
effective ways, such as “Maximum of 3 lines per fact” or
“Maximum of 12 facts.” Collaborating with a content disci-
pline can be invaluable for defining these rules.

Fact Grid at https://design.sipgateteam.de/

Example
A good example helps to enhance the understanding of the
pattern’s purpose. In Marvel’s style guide,10 examples are
self-documenting and show multiple variants and use cases.
The UI copy in the pattern helps guide usage further.

10	 http://smashed.by/marvelds

259Pattern Libraries

https://design.sipgateteam.de
https://design.sipgateteam.de
http://smashed.by/marvelds
http://smashed.by/marvelds

Marvel’s style guide makes it easy to see how different pop-overs behave.

A lesser example doesn’t help to communicate the purpose.
Nothing in the way “Billboard” is presented in Future-
Learn’s library suggests that it’s a “prominent promotional
element.” Making small adjustments, such as changing the
default copy and the background image could help express
its purpose more clearly.

“Billboard” in FutureLearn’s pattern library is less than inspiring.

260 Chapter 10

A living instance of a pattern, with component code along-
side it, is usually preferred — it can show responsiveness,
interactions and animation. But in some cases a static
image or a GIF is more helpful, particularly when you need
to show a specific behavior or a state that can’t be recreated
in a living example.

Carbon uses a combination of live and static examples to illustrate specific
behaviors.11

Variants
Presenting variants alongside one another, as a suite, makes
it easier to see at a glance what is available within the pur-
pose. Not only that, we need to know how the options are
different from one another.

11	 http://carbondesignsystem.com/

261Pattern Libraries

http://smashed.by/ibmcarbon
http://carbondesignsystem.com

Although Office Fabric12 helpfully presents all the variants, it
doesn’t explain the differences between them.

Compare it with Carbon’s13 presentation, which clearly states
the purpose of each variant.

Types of date pickers and the differences between them explained in Carbon.

12	 http://smashed.by/fabric
13	 http://smashed.by/ibmcarbon

262 Chapter 10

http://dev.office.com/fabric#Variants
http://smashed.by/ibmcarbon
http://smashed.by/fabric
http://smashed.by/ibmcarbon

Similarly, Atlassian’s design guidelines14 describe when to
use each type of button (although, from my point of view,
some of the copy, such as “Use when you have nothing to
prove,” could benefit from being more precise).

Button variations explained in Atlassian’s design guidelines.

14	 http://smashed.by/atlassian

263Pattern Libraries

http://smashed.by/atlassian
http://smashed.by/pattern2doc
http://smashed.by/atlassian

There are many other aspects that can be important to docu-
ment, such as:

•	 Versioning of components. If products supported by
a pattern library get major upgrades, some components
can benefit from documenting changes in the API or UI
elements, relative to previous versions. The same goes
for obsolete elements and their replacements.

•	 Team members. Listing people involved in the crea-
tion of the pattern, like the Sky Toolkit15 example below,
can give people a sense of ownership, and also helps
with future development.

•	 Related patterns. Shopify Polaris16 shows alternatives
if the pattern is not quite what you’re looking for. This
can reduce the chance of patterns being duplicated.

15	 http://smashed.by/skytoolkit
16	 http://smashed.by/polarisnav

264 Chapter 10

https://www.sky.com/toolkit/style/colours
https://polaris.shopify.com/components/structure/callout-card#navigation
http://smashed.by/polarisnav

Depending on your team’s needs, there are many other bits
of information that can be included. In his article Taking The
Pattern Library To The Next Level Vitaly Friedman shared two
checklists: one for the patterns to document, and another for
the things to include alongside each pattern.17

DOCUMENTING PERCEPTUAL PATTERNS

When documenting perceptual patterns, the focus tends
to be on the buildings blocks — color palette, typographic
scale, and so on. But as we saw in the previous chapter, it’s
also important to know how those properties are used and
how they work together. Here are a few tips and examples.

Specify Usage, Not Only the Building Blocks

Representation of color doesn’t have to be limited to a list of
variables. The GOV.UK style guide18 helpfully specifies the
usage of color for text, links, backgrounds, and other roles.

The GOV.UK style guide shows patterns of usage in their color palette.

17	 http://smashed.by/pattern2doc
18	 http://smashed.by/govuk

265Pattern Libraries

http://smashed.by/pattern2doc
http://smashed.by/pattern2doc
http://govuk-elements.herokuapp.com/
http://smashed.by/pattern2doc
http://smashed.by/govuk

The dos and don’ts format can also be useful, particularly
when there’s an expected misuse. In Shopify Polaris,16 both
indigo and blue are primary colors used for interactive
elements. Stating explicitly that blue shouldn’t be used for
buttons is helpful in this case, as it would be reasonable to
assume otherwise.

The typography section of the US government’s web stand-
ards19 shows type pairings and their recommended usage.
Expandable examples demonstrate typographic treatments
in context.

US Gov. web standards19 include pairings and their recommended usage.

19	 http://smashed.by/usgov

266 Chapter 10

https://polaris.shopify.com/visuals/colors#color-usage
https://standards.usa.gov/components/typography/
https://standards.usa.gov/components/typography/
http://smashed.by/pattern2doc
http://smashed.by/pattern2doc
http://smashed.by/usgov

Cross-Reference Styles

Although we separate styles and components to make them
easier to work with, in practice they’re closely interlinked.
Even if there are duplications, referencing styles at the mod-
ule level, as well as separately, is useful. A button has many
styles that define what kind of button it is (color, shape,
style of label, transitions, spacing, and so on). At the same
time, some of those styles can be applied to other objects —
menus, links, toggle controls. Sharing styles is what makes
those objects feel like they belong to the same system.

In Carbon, the styles of a specific module, such as color, are
shown on a separate tab. The usage of colors is also docu-
mented separately.

In Carbon, colors are referenced at both the module level and all together.

267Pattern Libraries

Take another example: interactive states. Typically, we see
them documented only at the module level: here’s a button
and its hover state. But it is also useful to see all the states
together, at a glance. How does the hover state apply to
secondary links? To icon buttons? To ghost buttons? To tab
controls? Why in some cases does the outline change to
solid, and in others the color value changes?

Showing interactive states for FutureLearn in one grid
allowed us to define the overarching rules for interactive
states and apply them consistently as more interactive ele-
ments were added.

Some of the interactive states in FutureLearn’s pattern library are shown
together.20

20	http://smashed.by/flstates

268 Chapter 10

https://www.futurelearn.com/pattern-library/core-patterns/interactive-states
http://smashed.by/flstates

Show Relationships between the Elements

To be effective, perceptual patterns should interconnect
and work together. By showing the relationships (between
colors, between typography and spacing, between voice and
tone and the visuals), you help make the whole system more
connected.

The same color values can have entirely different effects
when applied in different proportions. As Michael McWatters
noted, with too much or too little red, TED can feel like a dif-
ferent brand. The color chips in the Open Table style guide21
make the hierarchy of colors clear.

Typography and spacing are also closely interlinked. Large,
higher-contrast typography requires more white space.
Smaller text can get lost in the same amount of space if

21	 http://smashed.by/opentable

269Pattern Libraries

https://brand.opentable.com/color/
http://smashed.by/opentable

you don’t compensate by reducing the padding. Even if you
have a limited selection of predefined spacing options (such
8px or 16px units), different designers might have different
preferences — some prefer more generous white space,
others like it cosier. The values might be consistent, but that
doesn't mean that the visual density will be.

To help guide the density and contrast across the product,
at FutureLearn we tried to show the relationship between
typography and spacing.

•	 Spacious modules have high typographic contrast
(large heading in proportion to the body font size)
and generous spacing to balance out the high-con-
trast typography.

•	 Regular modules form the majority of sections on
FutureLearn. They have the default heading and
spacing.

•	 Compact modules have headings only slightly larger
than the body copy.

270 Chapter 10

Some of the section types for FutureLearn.

Those settings also reflect the purpose of the modules.
High-impact promotional sections benefit from high-con-
trast typography. On the other hand, modules with a sup-
porting function tend to be more compact.

Finally, in the vast majority of today’s pattern libraries,
styles are displayed on separate pages. I see this as a limi-
tation. Perhaps the next generation of pattern libraries can
show them in more connected ways.

Like mood boards or element collages, styles could be
presented in a way that shows how they work together, and
that highlights signature patterns and the relationships
between various elements.

271Pattern Libraries

Workflow

Teams with effective pattern libraries have systematic
approaches ingrained in their workflow. How, exactly, varies
across companies. Some teams, like Airbnb, have strict and
precisely specified processes with powerful tooling. Others
are much more informal.

PROCESS FOR ADDING NEW PATTERNS

One of the foundational aspects to agree on is how the new
patterns will be added to the system. The team at Nordnet
follows a simple three step process:22

1.	 Submit a design to the UI kit folder on Dropbox.
2.	 Discuss the inclusion of the pattern as a team.
3.	 Document any included designs inside the UI kit. Add

the new design to the Craft Library which will auto-
matically roll out to the entire team.

The team meet every fortnight to discuss new submissions.
They go through a Trello backlog and decide if a module
should be approved for inclusion or archived.

22	See “Super easy Atomic Design documentation with Sketch app”
	 by Ross Malpass. (http://smashed.by/nordnet)

272 Chapter 10

http://smashed.by/nordnet

A similar workflow is adopted by the teams at Shyp23 (using
GitHub for adding and reviewing the patterns), Future-
Learn, and many others. The process doesn’t have to be strict
but it’s important to have something in place that enforces,
in some way, a regular review of patterns.

To make sure the format of submissions is consistent, some
teams find it useful to have a standard template with simple
guidelines, such as name, description, author, and date.
At FutureLearn, submissions come directly to the pattern
library rather than the master design file, and there is an
informal guide for writing a description for a pattern. It
consists of three questions: What is it? What is it for? How
does it achieve its purpose?

23	 http://smashed.by/shyp

273Pattern Libraries

https://medium.com/shyp-design/managing-style-guides-at-shyp-c217116c8126
http://smashed.by/shyp

CRITERIA FOR ADDING NEW PATTERNS

A common problem teams have is a lack of agreement on
what constitutes a design pattern. A way to manage this is
to have shared criteria for adding (and also updating and
removing) patterns.

The two most common approaches are:

•	 Every new element on the site is also automatically add-
ed to the pattern library. This works if you’re strict with
accepting patterns to the system. There should be a pro-
cess which checks if a similar pattern exists already, or if
an existing one can be modified (such as regular review
of new patterns as a team). Without those processes, the
risk is ending up with duplicated patterns.

•	 Elements are added only when they’re reused. Some
teams add modules only on the second, or even third
use. The idea is that an element has to prove itself as a
pattern before being added to the system, which helps
to keep the pattern library lean. With this approach it’s
important to have visibility of everything being created
and effective communication across teams. A log of un-
documented patterns should also be kept, so the team
has full visibility of what’s available, even if it’s not in
the pattern library.

274 Chapter 10

It’s also possible to base your decision on potential reuse. At
FutureLearn, the specificity of a component’s purpose is
used as a criterion. If an element is defined in a generic way,
it is more likely to be reused in the future. In this case, it is
added to the pattern library. If a new component has a spe-
cific purpose (such as a seasonal promo, a module related to
a specific event, and so on), it can be treated as a one-off.

When following this rule, the whole team should take care
in how they define components and not make something
specific unless absolutely necessary. If someone introduces
a one-off, they should share it and explain why it is specific.
Occasionally someone else will find the module useful for
their needs. In this situation, we’d redefine the pattern as
more generic and add it to the library.

PEOPLE AND RESPONSIBILITIES

Another aspect to consider is the practicalities of updating
documentation, particularly if there’s no dedicated team.
If contributions come from everyone, you have to be strict
at making sure they’re added to the library. For instance,
adding a component can be a part of the story for creating
it. The designer and developer who create a pattern are
responsible for adding it to the pattern library. As we saw in
chapter 6, this model doesn’t work for every team. Some-
times you need a person or group of people responsible for
curating and maintaining the pattern library, even if every-
one contributes to it.

275Pattern Libraries

If there’s a dedicated design systems team, it’s important to
agree on their role, as well as the process for managing con-
tributions. A systems team can have the role of a curator or a
producer, and many companies have a combination of both.

•	 Curator. Contributions for new patterns come from all
over the organization. The systems team defines how
internal teams contribute, including setting require-
ments and the review process. If a submitted pattern
doesn’t meet the standards, the team encourages the
designers and developers who created it to change it,
rather than making the change themselves. The team at
Atlassian follow this model.

•	 Producer. With this approach the design systems team
creates the majority of patterns. They’d typically work
closely with the product designers in different teams
and hold open meetings where others can ask questions,
give feedback, or propose missing patterns. The systems
team accept submissions from across the company, but
they have the final say over what is included, adjusted or
removed. Airbnb uses this approach.

When choosing a direction, consider your organizational
structure, team culture, and specific product needs. The
curator role is usually suited to distributed teams with
looser system structures, whereas producers are more com-
mon in stricter and more centralized systems.

276 Chapter 10

In both cases it’s important that the systems team are seen
as partners, rather than police.

We want to collaborate with teams as early as possible when they're
thinking about developing new patterns and components. Our rela-
tionship with product teams should be a partnership, rather than a
situation where someone goes away and does a bunch of work and
then we either approve or veto it. If that happens, we're not doing
our jobs very well.”

— Amy Thibodeau, UX lead, Shopify.

ALIGNING FACETS OF THE SYSTEM

Code, design and the pattern library are facets of the same
system. Treating it that way makes it more robust, because
the system is supported from multiple angles. This doesn’t
necessarily mean that the patterns must be fully synchro-
nized. What’s important is that the team practice the same
approach across the facets — to naming, structure and
understanding of the purpose.

The Carbon design team tries to be as consistent as possi-
ble across their Sketch design kit, component library and
the code.

“

277Pattern Libraries

In the Carbon design system, names and folder structure are consistent
across the three facets of the system.

Designers at Nordnet use atomic design to organize folders
in their Sketch kit. They even follow BEM naming conven-
tions for their design files24 to help developers and design-
ers talk the same language.

When design and code are aligned conceptually, synchroni-
zation between them is easier to achieve. It’s also easier to
find the tools that fit with your workflow.

24 See http://smashed.by/atomicflow by Ross Malpass.

278 Chapter 10

http://smashed.by/atomicflow

Tools

Keeping the pattern library in sync with production code is
one of the main challenges. Teams use different approaches
— from manual copy-and-paste, to making a pattern library
part of the production environment (Lonely Planet’s Rizzo is
an example of the latter). Many tools help to achieve it. Here
are some of the most popular ones.

KEEPING THE PATTERN LIBRARY UP TO DATE

Some of the easiest to implement are CSS documentation
parsing tools, such as KSS.25 They all work in a similar way:
comments in the CSS provide a description (which is pulled
into the documentation programatically); running a script
generates the markup for the pattern library. Parsing tools
are relatively simple but limited in functionality. They can
also lead to duplicate markup, which can make maintenance
more time-consuming.

Among more powerful tools are style guide generators,
such as Pattern Lab26 by Brad Frost, Dave Olsen and Brian
Muenzenmeyer. Pattern Lab comes with many useful fea-
tures, such as responsive preview and support for multiple
languages. It’s predominantly suited to larger sites with
multiple templates, particularly those that practice atomic
design methodology.

25	 http://warpspire.com/kss/
26	http://patternlab.io/

279Pattern Libraries

http://warpspire.com/kss/
http://patternlab.io/
http://warpspire.com/kss
http://patternlab.io

Fractal27 by Mark Perkins is one of the more lightweight
and flexible tools which is gaining popularity. Fractal helps
build and document a pattern library, and integrate it into
your project. One of its main advantages is that it’s flexible
and unopinionated — Fractal can work with any templating
language and organizational structure.

Full synchronization between the pattern library and
the code is extremely difficult to achieve, and companies
manage it with varying degrees of success. The ways teams
prioritize synchronization also varies:

It’s always slightly off-sync. If it’s too perfect, it’s not going to work.
Our design language, as any language, is constantly evolving. We
change details and patterns and we add patterns. We constantly
build products. So at any given time there are many versions of the
design language. We embrace this fact and design a system which
can deal with these imperfections.”

— Jürgen Spangl, head of design, Atlassian

In stricter systems and centralized organization it is more
important, whereas companies with looser structures are
more tolerant to having it out of sync.

27	 http://smashed.by/fractal

“

280 Chapter 10

http://fractal.build/
http://smashed.by/fractal

KEEPING MASTER DESIGN FILES UP TO DATE

Designers practicing a systematic approach currently tend
to use Sketch28 as their main tool (largely thanks to the fea-
tures such as text styles, symbols and artboards, which seem
to be well suited for a design system workflow). Teams typ-
ically have a master file which contains a UI kit with some
or all of the core components and styles. Product designers
tend to work from their own files, pulling elements from
the master as needed.

The challenge is making sure that the master kit always has
the latest patterns. There are many tools to help achieve that
— from the lightweight to more comprehensive solutions.

Abstract29 is a version-controlled hub for your design files.
You can create branches, commit explorations, and merge
changes. Abstract makes it easier to keep one single source
of truth for your design files, including a master UI kit.

Another popular tool is Invision’s Craft.30 Craft is a set of plug-
ins for Sketch which syncs the UI kit to anyone who has the
plug-in installed. A Craft library can be saved on Dropbox.

28	https://www.sketchapp.com/
29	https://www.goabstract.com/
30	http://smashed.by/craft

281Pattern Libraries

https://www.sketchapp.com/
https://www.goabstract.com/
https://www.invisionapp.com/craft
https://www.sketchapp.com
https://www.goabstract.com
http://smashed.by/craft

More comprehensive options include UXPin,31 Brand.ai32
and Lingo.33 These tools allow you to create and manage a
pattern library without having to use code. Naturally, they
don’t provide as much flexibility as a custom-built pattern
library, but many of them have useful features, such as
interactivity of components, Sketch plug-ins for keeping
files up to date,34 integration with Slack that pings a channel
when the library is updated, and more.

PATTERN LIBRARY AS THE SOURCE OF TRUTH

With pattern libraries gaining “source of truth” status, in
some companies it has become somewhat less important
to keep master UI kits perfectly up to date. At FutureLearn,
the master Sketch file (updated and shared via GitHub)
only contains the core granular elements that don't tend to
change (typography, buttons, navigation, and so on).

Designers use the pattern library as the main reference
for up-to-date patterns; Sketch or Photoshop are used
mainly for exploratory work. Because the majority of the
components are defined and named, more and more often
the team can get by with paper sketches, without needing
detailed design specs.

31	 http://smashed.by/uxpin
32	 https://brand.ai
33	 https://www.lingoapp.com
34	http://smashed.by/lingoapp

282 Chapter 10

https://www.uxpin.com/products/uxpin-systems
https://brand.ai/
https://www.lingoapp.com/
https://www.lingoapp.com/sketch/
http://smashed.by/uxpin
https://brand.ai
https://www.lingoapp.com
http://smashed.by/lingoapp

Thanks to design systems and pattern libraries, design
and engineering workflows are moving toward each other.
There are a lot of experiments in this area,35 such as tools
for generating Sketch files directly from a web page, and
importing real data. In the near future we may not have to
worry about keeping UI kits in sync, as they could be gener-
ated any time from the pattern library.

The Future Of Pattern Libraries

Tools should accommodate the natural workflow of the
whole team. Only then will everyone take ownership, and
contributions to the pattern library will be evenly distrib-
uted. FutureLearn’s library didn’t have the capability for
designers to update descriptions of modules, which in some
way reduced their responsibility. Front-end developers were
under more pressure to keep the documentation updated,
which at times felt like a burden.

In the future I hope to see pattern libraries accommodate
multidisciplinary workflow. They could become environ-
ments where all disciplines could contribute to discussions
around design patterns and help define their purpose.

35	 http://smashed.by/airbnbds

283Pattern Libraries

https://airbnb.design/painting-with-code/
http://smashed.by/airbnbds

With tools getting better, pattern libraries and a system-
atic approach to design will continue affecting designers
and developers deeply. Many teams are seeing the changes
already. Something that used to take days of manual work
can be done in minutes — no more detailed design specs, no
more building the same patterns again and again.

At first, this might seem threatening (Will we have jobs in
years to come? Does it take away from the creativity and
craftsmanship on the web?). But perhaps the opposite is the
case. Design systems free our time and energy to solve big-
ger and more meaningful problems, like understanding our
users better and making design languages more inclusive.

284 Chapter 10

Conclusion

In programming and design, Christopher Alexander’s pat-
tern discipline has become one of the most widely applied
and important ideas. It is now influencing how many of us
think about design systems. But there’s an essential feature
we may still be missing from Alexander’s original idea: the
moral imperative to create systems that make a positive
difference to human lives.

In his keynote speech for OOPSLA in 1996, Alexander
emphasized that at the root of the architectural pattern
language there’s a fundamental question: will these patterns
make human life better as a result of their injection into the
system? Even if not all of them will have that capacity, there
should be at least a constant effort to achieve it.1

Many aspects of our lives can now be managed online,
from buying groceries and paying bills, to finding a date
or completing a degree. Pattern language gave us a format
for thinking about design – and it also gave us a challenge:
do the patterns we create have a positive impact on human
life? How do we know if they do? How do we continuously
test that?

1	 See “Patterns in Architecture” by Christopher Alexander.
	 (http://smashed.by/archpatterns)

285Conclusion

http://smashed.by/archpatterns

It is hard to carefully consider these questions, when you
are given a task to optimize the number of clicks, or encour-
age people to spend more time on a site. Even with the best
intentions, a lot of what we create on the web is designed
for short-term commercial benefit, rather than bringing
real value to everyday lives: patterns designed to get users
hooked,2 patterns biased towards some population groups,
patterns that encourage people to spend time and money in
ways they might regret later.

On the other hand, we don’t always consider, for instance,
what happens to all our digital accounts and information
when someone passes away, how the designs we create
improve someone’s quality of life, or how inclusive and
empathetic our systems really are.

The pattern language for the web we’re creating is powerful.
It has the capacity to influence not only the digital world,
but the physical one. We owe it to ourselves, and the people
who use our products, to constantly consider and challenge
the shape this language takes, and be thoughtful in what we
contribute to it.

2	 “How Technology is Hijacking Your Mind — from a Magician and
Google Design Ethicist” by Tristan Harris http://smashed.by/techhijack

286

http://smashed.by/techhijack

Further Reading and Resources

These three books are a great source of knowledge and
inspiration for anyone interested in design systems. I kept
referring to them again and again while writing this book.

•	 The Timeless Way of Building3 by Christopher Alexander

•	 Thinking in Systems: A Primer4 by Donella Meadows

•	 How Buildings Learn: What Happens After They're Built5 by
Stewart Brand

See also:

•	 How to Make Sense of Any Mess6 by Abby Covert

•	 Front-end Style Guides7 by Anna Debenham

•	 Atomic Design8 by Brad Frost

•	 Responsive Design: Patterns and Principles9 by Ethan Marcotte

•	 Inclusive Design Patterns10 by Heydon Pickering

3	 http://smashed.by/timeless
4	 http://smashed.by/thinksys
5	 http://smashed.by/howlearn
6	 http://smashed.by/makesense
7	 http://smashed.by/fesg
8	 http://smashed.by/atomic
9	 http://smashed.by/rwdpatterns
10	 http://smashed.by/inclusivedesignpatterns

287Further Reading

https://books.google.co.uk/books?id=H6CE9hlbO8sC&printsec=frontcover#v=onepage&q&f=false
https://books.google.co.uk/books/about/Thinking_in_Systems.html?id=JSgOSP1qklUC&printsec=frontcover&source=kp_read_button&redir_esc=y#v=onepage&q&f=false
https://books.google.com/books/about/How_Buildings_Learn.html?id=zkgRgdVN2GIC&redir_esc=y
http://www.howtomakesenseofanymess.com/
http://www.maban.co.uk/projects/front-end-style-guides/
http://atomicdesign.bradfrost.com/
https://abookapart.com/products/responsive-design-patterns-principles
https://www.smashingmagazine.com/inclusive-design-patterns/
http://smashed.by/timeless
http://smashed.by/thinksys
http://smashed.by/howlearn
http://smashed.by/makesense
http://smashed.by/fesg
http://smashed.by/atomic
http://smashed.by/rwdpatterns
http://smashed.by/inclusivedesignpatterns

Other Resources

•	 Design Systems’ Slack channel,11 created by Jina Anne

•	 Design system articles12 by Nathan Curtis

•	 Style Guide Podcast,13 hosted by Anna Debenham and
Brad Frost

•	 Design Systems Newsletter,14 curated by Stuart Robson

•	 Responsive Web Design Podcast,15 hosted by Karen
McGrane and Ethan Marcotte

•	 Website Style Guide Resources16

Thank you for reading. This book is really just the beginning
of a conversation about design systems. I’m keen to con-
tinue it beyond the book, and would be happy if you’d email
me at alla@craftui.com with your thoughts and stories.

11	 http://smashed.by/dslack
12	 http://smashed.by/nathan
13	 http://smashed.by/sgpc
14	 http://smashed.by/dsnl
15	 http://smashed.by/rwdpc
16	 http://styleguides.io/

288

http://designsystems.herokuapp.com/
https://medium.com/@nathanacurtis
https://designsystems.curated.co/
https://responsivewebdesign.com/podcast/
http://styleguides.io/
mailto:alla@craftui.com
http://smashed.by/dslack
http://smashed.by/nathan
http://smashed.by/sgpc
http://smashed.by/dsnl
http://smashed.by/rwdpc
http://styleguides.io

	Table Of Contents
	Design Principles
	Functional Patterns
	Perceptual Patterns
	Shared Language
	Parameters Of Your System
	Planning And Practicalities
	Systemizing Functional Patterns
	Systemizing Perceptual Patterns
	Pattern Libraries
	Conclusion

